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0. Introduction

First, a word of warning. This is a fast introduction; as such, we will omit various
technical details, some of which might actually be important. We will focus on how
to work with derived categories in practice. We refer to [Har66] and especially
[Huy06] for a more in-depth discussion.

Let us start by recalling the construction of sheaf cohomology, say as in [Har77,
§III.2]. Let X be a topological space, and let E be a sheaf of abelian groups on E .
The sheaf cohomology Hi(X,E ) is defined as follows.

(1) Start by taking an injective resolution 0 → E → I 0 → I 1 → . . . , where
each I n is an injective sheaf.

(2) Drop E , and apply the global sections functor. We get a complex

Γ(X,I 0)→ Γ(X,I 1)→ . . . .

(3) The ith cohomology of this complex is set as Hi(X,E ).

As one quickly realizes, this is a delicate construction. The big issue comes from
the first point: injective resolutions are not unique. Instead, any two of them
homotopic. This is, if I • and J • are two injective resolutions, there are maps
ϕ : I • → J • and ψ : J • → I • such that the compositions ϕ ◦ ψ and ψ ◦ ϕ are
homotopic to the identity.

So, our first instinct would be to consider morphisms of complexes up to homo-
topy. This still is not good enough, as in general E is not homotopic to its injective
resolutions. Instead, we need to formally declare these maps to be invertible; some-
thing called a quasi-isomorphism.
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1. The homotopy category

We will start by discussing the homotopy category of an abelian category. This
is an intermediate step to construct the derived category. We follow [Huy06, pp.
27–31].

Let A be an abelian category. (There are a couple of good examples to keep
in mind: ModR for a ring R, Coh(X) and QCoh(X) for a variety X.) Recall
that a complex A• is a collection {Ai} of elements of A, and maps di : Ai → Ai+1

(called differentials) satisfying di+1 ◦ di = 0. A map of complexes ϕ : A• → B• is a
collection of maps ϕi : Ai → Bi satisfying ϕi+1 ◦diA = diB ◦ϕi, i.e. that the diagram

· · · Ai Ai+1 · · ·

· · · Bi Bi+1 · · ·

di
A

ϕi ϕi+1

di
B

commutes. This defines an abelian category, denoted Kom(A).

Definition 1. Let ϕ, ψ : A• → B• be two morphisms in Kom(A). An homotopy
between ϕ and ψ is a collection of maps hi : Ai → Bi−1 (note the change of degree!)
satisfying di−1

B hi + hi+1diA = ϕi − ψi.

One quickly verifies that (i) being homotopic is an equivalence relation, and (ii) it
is compatible with composition. This way, we define the homotopy category K(A) to
be the category whose objects are the same as in Kom(A), and HomK(A)(A

•, B•) =
HomKom(A)(A,B)/homotopy.

Example 2. Let R = k[x], and let A = k[x]
·x−→ k[x]. Let us compute Hom(A,A)

in the homotopy category. To do so, note that a map of complexes ϕ = (ϕ0, ϕ1)
must satisfy ϕ1 · x = x · ϕ0, i.e. ϕ0 = ϕ1. Moreover, two maps ϕ, ψ are homotopic
if there exists some h such that h · x = ϕ0 − ψ0. In other words, two maps are
homotopic if and only if ϕ0(0) = ψ0(0), and so HomK(A,A) is one-dimensional.

2. The triangulated structure

Our next stop is to describe the triangulated structure of Kom(A). The idea
here is that Kom(A) is not an abelian category, as kernels and cokernels fail to
exist. However, the homotopy category “remembers” the short exact sequences —
sort of. Let us introduce the key objects.

To start, given a complex A•, we let A•[n] be the shift. This is defined as

(A•[n])i = An+i, dkA•[n] = (−1)ndn+k
A• .

The sign here is a bit annoying, but we cannot avoid it: a sign needs to appear
somewhere.

Now, let us introduce the cone of a map of complexes. Given a morphism
ϕ : A• → B• of complexes, we set C(ϕ) to be the complex

C(ϕ)n = An+1 ⊕Bn, dC(ϕ)n =

(
−dn+1

A 0
ϕn+1 dnB

)
.

Note that by construction the natural maps B• → C(ϕ)• → A•[1] are morphisms
of complexes. Moreover, we have the following cool result.
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Lemma 3. Assume that ϕ : A• → B• is an injective morphism in Kom(A), and
let ψ : B• → C• be the image. We have that the map C(ϕ)• → C• induces isomor-
phisms in cohomology.

Note however that this might not admit an “inverse”: witness ϕ : Z→ Z given by
×2. This is part of the reason why we want to allow inverses of quasi-isomorphisms.

In any case, we will introduce the notion of a distinguished triangle. These are
a collection of three complexes A•, B•, C• and maps A• → B• → C• → A•[1] that
are isomorphic (in K(A)) to the “cone construction”

A• ϕ−→ B• → C(ϕ)→ A•[1].

Theorem 4. The collection of distinguished triangles in K(A) satisfies the follow-
ing axioms:

TR1. (Existence of triangles)
(i) For any A, the triangle

A
id−→ A

0−→ 0→ A[1]

is distinguished.
(ii) Any triangle isomorphic to a distinguished triangle is distinguished
(iii) Any morphism f : A→ B can be extended to a triangle

A
f−→ B → C → A[1].

TR2. (Shifts of triangles) The triangle

A
f−→ B

g−→ C
h−→ A[1]

is distinguished if and only if

B
g−→ C

h−→ A[1]
−f [1]−−−→ B[1]

is distinguished.
TR3. (Extension of morphisms) Suppose we have a diagram with arrows f, g and

f [1], as follows.

A B C A[1]

A′ B′ C ′ A′[1].

f g f [1]

Assume that the left square commutes. Then there exists a (non-unique!)
h : C → C ′ making the diagram commute.

TR4. (Octahedral axiom) Assume that we have triangles A• → B• → X• →
A•[1], B• → C• → Y • → B•[1], A• → C• → Z• → A•[1]. Then there is a
triangle

X• → Z• → Y • → X•[1]

satisfying some compatibilities (that we will omit).

In general, a triangulated category is an additive category endowed with a shift
functor and a collection of “distinguished triangles” satisfying the axioms TR1–
TR4 above. One should think on the triangulated axioms in the same way we
think about abelian categories: many “basic properties” (like the existence of long
exact sequences and such) follow directly from the triangulated axioms, but it is
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a good idea to focus on the “concrete” setups at the beginning. (Let us point out
that in the seminar most of the triangulated categories will be subcategories of the
derived category, so this is really the “main” example to keep in mind.)

3. The derived category

As we have hinted before, the homotopy category is not the object we need for
our purposes, as sometimes we get quasi-isomorphisms that are not isomorphisms
(in K(A)). Instead, our replacement will be to formally take “inverses” of these
maps. Let us start by introducing the notion of a quasi-isomorphism.

Definition 5. A map ϕ : A• → B• is a quasi-isomorphism if it induced isomor-
phisms in cohomology. Equivalently, if C(ϕ)• is acyclic (i.e. it has zero cohomology
objects).

It is worth pointing out that homotopic maps induce the same map in cohomol-
ogy. Thus, the notion of quasi-isomorphism is well defined in K(A).

Definition 6. The derived category D(A) of A has the same objects as K(A), and
morphisms from A• → B• are diagrams,

A• f←−−
qis

C• g−→ B•

where the two maps are in Kom(A). (We should think of this as a “fraction gf−1”.)
Two maps A• ← C•

i → B• are equivalent if they can be dominated (with a quasi-
isomorphism) by a third diagram.

This definition has many subtle details. First of all, we have not said anything
about composition — it is a tricky construction, see [Huy06, 2.17]. Second, it is
impossible from the definition itself to compute anything, as we need to consider
all possible quasi-isomorphisms C• → A•. Third, there is a hidden set-theoretic
issue that we will ignore completely.

What can we do in the derived category? First of all, we still have a triangulated
structure: we take all triangles that are isomorphic (in D(A)!) to the cone triangle.
Second, note that we still have well-defined mapsHi : D(A)→ A. In particular1 one
realizes that any triangle A• → B• → C• → A•[1] induces a long exact sequence

· · · → Hi(A•)→ Hi(B•)→ Hi(C•)→ Hi+1(A•)→ . . . .

There are many variants of the construction of the derived category. For example,
we could have consider the bounded derived category Db(A), where complexes are
only allowed to have Ai ̸= 0 for finitely many indices. Or the left/right bounded
categories.

Similarly, say that we are considering the category of coherent sheaves on X.
Instead of working directly in Db(Coh(X)), we could look at the subobjects of
D(OX) that have bounded and coherent cohomology. (There are technical reasons
why we would want this, e.g. usually injective resolutions will be infinite.) It turns
out that these details will not make a difference in the cases we are interested, so
we will ignore them.

1Which is something that also holds in K(A).
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4. Derived functors

Let us finish up by discussing two related problems that D(A) carries, which (a
bit surprisingly at first) have a related solution.

• How do we compute maps Hom(A,B) in the derived category?
• Is there a way to extend the functors f∗, f

∗,⊗ and so on?

We will focus on the second part for now. Assume that F : A → B is an additive
functor between abelian categories. It is clear that F is compatible with homotopies,
and so it induces a functor K(F ) : K(A)→ K(B). This functor is compatible with
cones, and it will map triangles to triangles. (Such functors are called triangulated).
However, functors usually will not preserve quasi-isomorphisms.

Example 7. Consider the complex A = [Z ×2−−→ Z] (in degrees −1 and 0) and
B = Z/2Z (in degree zero). There is a quasi-isomorphism A→ B. However, if we
apply the functor Z/2Z⊗−, the resulting map is not a quasi-isomorphism.

Now, there is a trick we can do. Instead of trying to apply the functor −⊗Z/2Z,
we will try to apply it only to finite complexes of free Z-modules. The key point is
that − ⊗ Z/2 is exact if we apply it only to complexes of free modules. Thus, we
will do a two-step process to extend − ⊗ Z/2 to Db(Z): first, replace the complex
by free Z-modules, and then apply −⊗Z/2 in the usual way. Let us introduce this
in full generality.

Definition 8. Let F : A → B be a right exact functor between abelian categories,
where A has enough projective objects. The left derived functor LF : D−(A) →
D−(B) is defined as

LF (A) := K(F )(Ã),

where Ã→ A is any quasi-isomorphism from a complex Ã of projective objects.

One shows that this does not depend on the choice of a projective resolution, and
so we get a triangulated functor LF . Moreover, by using a version of the horseshoe
lemma, we quickly verify that this is a triangulated functor.

Remark 9. Note that in the examples we are interested in (e.g. in Db(Coh(X))),
there are no projective objects in general. In any case, all right exact functors
we will be interested about (tensor products and pullbacks) can be computed with
locally free resolutions. The key point is that these are acyclic objects for the tensor
product, cf. [Har66, p. 53].

A dual version applies for left-exact functors: we take an injective resolution and
apply the functor directly. Of course, this is only useful for proofs — in practice,
one can use Čech covers to compute the derived functors of Γ(X,−) and f∗.

At last, the same recipe applies to compute HomD(A)(A,B): we replace A by
projective objects (or B by injective objects), apply HomK(A), and take the zeroth
degree piece.

5. Computations

Let us use the remaining time to discuss how these computations are performed
in practice.
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Example 10. Let X = A2, and let O(0,0) be the skyscraper sheaf at the origin.

Let us compute the derived tensor product O(0,0)

L
⊗ O(0,0).

To start, we need a locally free resolution. In this case this is quite direct: we
take the Koszul resolution

OA2

(y,−x)t−−−−−→ O⊕2
A2

(x,y)−−−→ OA2 ,

and we apply −⊗ O(0,0). Note that this kills the differentials, and so the complex
is given by

O(0,0)

L
⊗ O(0,0) = [O(0,0)

0−→ O⊕2
0,0

0−→ O⊕2
(0,0)].

We can write

O(0,0)

L
⊗ O(0,0) = O(0,0) ⊕ O⊕2

(0,0)[1]⊕ O(0,0)[2],

thanks to the fact that the differentials are zero.

This is a good opportunity to mention that the tensor product can be computed
by resolving either of its factors. We also point out that the usual properties (as-
sociativity, commutativity and such) are still present. At last, the ith cohomology

of the derived tensor product Hi(A
L
⊗ B) is known as the (−i) Tor functor.

Warning! Just knowing the cohomology Hi(A
L
⊗ B) is not enough to recover

A
L
⊗ B. The differential here makes a big difference!

Example 11. Let us try to compute RΓ(P2,OP2(1)). Here, our definition instruct
us to take an injective resolution on OP2(1). But this is almost impossible! There
are two options here.

• Recall that the sheaf cohomologyHi(P2,OP2(1)) can be computed by taking
a Čech cover, assembling the complex⊕

|I|=1

Γ(UI ,OP2(1))→
⊕
|I|=2

Γ(UI ,OP2(1))→ . . .

and computing its cohomology objects. This complex (without taking co-
homology) recovers RΓ(P2,OP2(1)).

• The complex RΓ(X,F ) is equal to
⊕

nH
n(X,F )[−n]. This works only

because RΓ(X,F ) is a complex of vector spaces, and so it does not work in
general! (In particular, if we wish to compute Rf∗ instead, we will almost
certainly need to take a Čech cover.)

As we hinted in the example, the ith cohomology object of RΓ(X,F ) is known
as the ith sheaf cohomology Hi(X,F ). It is also worth mentioning that if X is
proper, then the RΓ(X,F ) are finite dimensional.

Example 12. Let us go back to P2. Pick a smooth curve C of degree 3, so that it
has genus 1. How do we compute Hom(OC ,OC [1]) in the derived category?

Our recipe tells us to take a resolution of OC [1] by injective objects, apply
Hom(OC ,−), and take the zeroth degree piece. But this is the same as resolving OC ,
applying Hom(OC ,−) and taking the first degree piece. This equals Ext1(OC ,OC).

In fact, one verifies that HomD(F,G[i]) = Exti(F,G) if F,G are sheaves.
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It is worth pointing out that we cannot compute HomD(F,G) by taking locally
free resolutions of F . The issue is that locally free sheaves might have cohomol-
ogy! Instead, we have that RΓ(X,RHom(F,G)) = RHom(F,G) (the “composition
of functors” theorem). If we are only interested in Ri Hom(F,G), these can be
computed by the Grothendieck spectral sequence

Ep,q
2 = RpΓ(X,RqHom(F, g))⇒ Rp+q Hom(F,G) = Hom(F,G[p+ q]).

We have hinted at various compatibilities between derived functors. The basic
philosophy here is that we can replace objects by injective resolutions or locally free
resolutions, which allows us to extend “classical” properties to the derived world.
For example, if f : X → Y is a morphism of schemes, then

Rf∗(A
L
⊗X Lf∗(B)) ∼= Rf∗(A)

L
⊗Y B

holds provided that B can be represented by a complex of locally free sheaves.
(This holds in more generality though, compare [Stacks, Tag 08EU].)

Example 13. Let us prove the following fact. Let S be a smooth surface and let
p ∈ S be a point. If π : S̃ → S is the blow-up of S at p, we claim that Rπ∗OS̃ is
isomorphic to OS . Here it is worth pointing out that

HomS(OS , Rπ∗OS̃) = HomS̃(Lπ
∗OS ,OS̃) = HomS̃(OS̃ ,OS̃),

so there is a canonical map OS → Rf∗OS̃ .
To start, let us focus on a really concrete example: can we do this for the plane?

For sure! We put coordinates and compute Rπ∗OS̃ via a Čech cocycle. In fact, this
strategy works provided that S is affine and p is a complete intersection (in which
case we can compute the blow-up explicitly).

How do we tackle the global case? It should be “obvious” now, as π is an
isomorphism outside of p. In fact, we let i : U → S be an affine open subset
containing p such that p ∈ U is a complete intersection, and we consider the diagram

Ũ S̃

U S.

j

ϕ π

i

One quickly verifies that2 i∗Rπ∗E = Rϕ∗j
∗E: replace E by a complex of injective

modules, and use that the restriction to an open subset is still injective3

At last, the argument should make intuitive that this works if we blow-up any
smooth subvariety of a variety.
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