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Anna Abasheva: Kuznetsov components.

0.1 Review

Recall given i : D0 ↪→ D an admissible subcategory, we can define orthogonals

⟨D0,
⊥D0⟩ ⟨D⊥

0 ,D0⟩

And we have mutation functors

RD0 := k! : D → ⊥D0, LD0 = j∗ : D → D⊥

Given a decomposition D0 = ⟨D1, ...,Dm⟩, the mutation functors compose as LD0 =
LD1 ◦ ... ◦ LDm .

Serre functors satisfy Hom(E,F ) = Hom(F, SDE)∗.

Proposition 0.1. If D0 ↪→ D is admissible, and D has a Serre functor, then D0 has a Serre
functor as do its orthogonals. In fact,

SD0 ≃ i! ◦ SD ◦ i, S−1
D⊥

0
≃ LD0 ◦ S−1

D

Proof. For F,E ∈ D⊥
0 , we have

Hom(F,E) ≃ HomD(S
−1
D E,F )∗ ≃ HomD⊥

0
(LD0 ◦ S−1

D E,F )∗

Definition 0.2. D is Calabi-Yau if SD = [n]. It is fractional Calabi-Yau if Sq
D = [n].

If D = Db(X), then SD = −⊗ωX [n] for n = dimx. So if ωX = OX then D is Calabi-Yau,
and if ωq

X = OX , then D is fractional Calabi-Yau.
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0.2 Kuznetsov components

Let X ⊂ Pn+1 be a hypersurface of degree d. Then SX : E 7→ E ⊗OX(d− (n+ 2))[n].
Observe:

• OX(i) is exceptional if d ≤ n = 1. This follows from Hm(OX) = 0 for all m > 0.

• OX(i) ∈ OX(j)
⊥. This follows from Hm(OX(j − i)) = 0 for 0 < j − 1 ≤ n+ 1− d.

Now we can produce a semi-orthogonal decomposition:

Db(X) = ⟨AX ,OX , ...,OX(n+ 1− d)⟩

Definition 0.3. AX is the Kuznetsov component.

Example. Let d = 2. Then we saw AX = ⟨Σ⟩ or ⟨Σ+,Σ−⟩, where these objects are spinor
bundles.

Kuznetsov components are often Calabi-Yau categories.

Theorem 0.4. If n+ 1 < 2d, then AX is fractional Calabi-Yau.

Example. For d = 3, can prove for any line L ⊂ X, the ideal sheaf IL is the right orthogonal
to ⟨OX ,OX(1)⟩. To check this, see

0 → IL → IL/Pn+1 → OX(−3) → 0

and use that the middle term is O(−1)⊕n+1.
So if n = 3, we have a semi-orthogonal decomposition ⟨AX ,OX ,OX(1)⟩ with IL ∈ AX .
If n = 4, we have a decomposition ⟨AX ,OX ,OX(1),OX(2)⟩. So IL(1) ∈ ⟨AX ,OX⟩, and

so LOX
(IL(1)) ∈ AX .

Proof of Theorem 0.4. To prove the theorem, we need to understand

S−1
AX

= L⟨OX ,...,OX(n+1−d) ◦ S−1
Db(X)

Proposition 0.5. L = T n+2−d[−n] for T = LOX
◦ (OX(1)⊗−)|AX

.

Lemma 0.6. Given an auto-equivalence, φ : D → D and D0 ⊂ D admissible, we have

φ ◦ LD0 = Lφ(D0) ◦ φ

So then

T n+2−d = LOX
◦ (OX(1)⊗−) ◦ ... ◦ LOX(1)⊗−

= LOX
◦ ... ◦ LOX(n+1−d) ◦ (OX(n+ 2− d)⊗−)

= S−1
Db(X)

[n]

And finally we have:

Proposition 0.7. T d = [2].
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Letting c = gcd(d, n+ 2), the fractional dimension of AX is
(

(n+2)(d−2)
c

/d
c

)
-Calabi-Yau.

Example. For cubic surfaces, AX is (4/3)-Calabi Yau. For cubic threefolds, AX is (5/3)-
Calabi-Yau. For cubic fourfolds, AX is 2-Calabi-Yau.

Proof of Proposition 0.7. Let us find the Fourier-Mukai kernel of T .

Lemma 0.8. The Fourier-Mukai kernel of LOX(i) is

[OX(i)⊠OX(−i) → O∆X
]

Proof of Lemma 0.8. For E ∈ Db(X),

OX(i)⊠OX(−i) → O∆X
→ C

E(i)⊠OX(i) → E∆ → C ⊗ E

giving an exact triangle⊕
Hm(E(−i))⊗OX(i)[−m] → E → LOX(i)E

Then we have that the Fourier-Mukai kernel of T is

[OX ⊠OX(1) → O∆X
(1)]

Lemma 0.9. If K1, K2 ∈ Db(X ×X) are Fourier-Mukai kernels, the compositions of their
transforms has Fourier-Mukai kernel

p13∗(p
∗
12K1 ⊗ p∗23K2)

So the Fourier-Mukai kernel of T 2 is

p13∗[OX ⊠OX(1)⊠OX(1) → O∆12(2)⊠OX ⊕OX(1)⊠O∆23(1) → O∆123(2)]

= [O(1)⊗ Ω1
Pn(1)|X → O(2, 0) → O∆(−2)]

And the Fourier-Mukai kernel of T i is

Ki := [OX(1)⊗ Ωi−1
P (i− 1)|X → ... → OX(i− 1)⊠ Ω1

P(1)|X → OX(i)⊠OX → OX(i)]

Observe that it is similar to the resolution of O∆Pn (i).
So we have an exact triangles

O∆Pn ⊗OX×X(d) O∆X
(d) O∆X

[2]

Kd′ O∆X
(d) Kd

=

where Kd′ = [OX(1)⊠ ...OX(d)⊠OX ].
Claim: Kd′ and O∆Pn ⊗OX×X(d) induce the same Fourier-Mukai transform on AX .
Thus Kd, the Fourier-Mukai kernel of T d, induces the same Fourier-Mukai transform as

O∆X
[2], which is [2] as desired.
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0.3 Cubic fourfolds

Theorem 0.10 (Bernardara-Macri, Mehrotra-Stellari). Let Y and Y ′ be (smooth) cubic
threefolds. Then AY ≃ AY ′ implies Y ≃ Y ′.

Theorem 0.11 (Huybrechts). Let X and X ′ be cubic fourfolds. If X X ′ are not special,
then AX ≃ AX′ implies X ≃ X ′.

Not true without generality assumption.

Conjecture 0.12. AX ≃ AX′ implies X ∼bir X
′.

Conjecture 0.13 (Kuznetsov). A cubic 4-fold is rational if and only if AX ≃ Db(S) for S
a K3 surface.

Now we do some setup for a conjecture of Hassett. For a cubic fourfold, dimH3,1 =
dimH1,3 = 1,

h2 ∈ H2,2(X,Z) = H2,2(X) ∩H4(X,Z)

where h is a hyperplane section.

Definition 0.14. X is special if rank(H2,2(X,Z)) > 1.

A labeled special cubic fourfold is an assignment of a primitive sublattice K ⊂ H2,2(X,Z)
of rank 2 with K ∋ h2. Let d = discr(K). If d ≥ 8 and d ≡ 0, 2 mod 6, then Cd is non-empty
and irreducible, where Cd is the moduli space of labeled cubic 4-folds.

Next, rk(K⊥) = 21, where the orthogonal is taken in H4(X,Z).

Definition 0.15. A cubic 4-fold has an associatedK3, if there exists (S, ℓ) with ℓ ∈ H2(S,Z)
an ample class such that K⊥ ⊂ H4(X,Z) is isomorphic to ℓ⊥ ⊂ H2(S,Z).

Proposition 0.16. X has an associated K3 if and only if d is not divisible by 4, 9, or any
prime number that is ≡ 2 mod 3.

Conjecture 0.17 (Hassett). X is rational if and only if it has an associated K3.

So we have two perspectives on conjectured rationality: Hodge theoretic, and derived
categorical. The following theorem shows that these conjectures are equivalent.

Theorem 0.18 (Addington-Thomas). X has an associated K3 if and only if AX ≃ Db(S).

Now let’s look at the example of d = 8. It turns out in this case (and only in this case),
the corresponding cubic fourfold X contains a plane P2 ⊂ X.

Let P ⊂ X be a plane. We construct a rational projection X 99K P2 undefined along P ,
giving a diagram:

X P2

BlPX

where BlPX → P2 is a dim 2 quadric bundle.
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Lemma 0.19. The locus in P2 where the fibers of BlPX → P2 is singular is a sextic.

Now, consider the relative Fano scheme of lines F (X) → P2 on this quadric bundle. The
smooth fibers are smooth quadrics P1 × P1, for which the space of lines is P1 ⊔ P1, and
the singular fibers are quadric cones for which the space of lines is P1. Taking the Stein
factorization, we have

F (X) P2

S

P1
2:1

where S is a K3 surface, F (X) → S is a P1 bundle, and S → P2 is a double cover ramified
in the sextic.

From the P1-bundle over S, we get a Brauer class α ∈ Br(S). It turns out:

Theorem 0.20. AX ≃ Db(S, α).

Now, suppose there are disjoint planes P1, P2 ⊂ X. Then we deduce:

1. X is rational, as we can define P1 × P2 99K X by sending any (x, y) to ℓ ∩X where ℓ
is the line between x and y.

2. From a section of BlP1X → P2 we get a section of F (X) → S, which means the Brauer
class is trivial, i.e., α = 0.

This confirms Hassett’s conjecture in this case!
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