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March 5

Anna Abasheva: Kuznetsov components.

0.1 Review

Recall given 7 : Dy — D an admissible subcategory, we can define orthogonals
(Do, ~Dy) (Dy, D)
And we have mutation functors
Rp, =k':D—*Dy, Lp,=j*:D— D+

Given a decomposition Dy = (Dj, ..., D,,), the mutation functors compose as Lp, =
O0...0 LDm'
Serre functors satisfy Hom(E, F') = Hom(F, SpE)*.

Lp
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Proposition 0.1. If Dy — D is admissible, and D has a Serre functor, then Dy has a Serre
functor as do its orthogonals. In fact,

Spy i'o Spoi, S;i ~ Lp, o 5'51
0
Proof. For F,E € Dy, we have

Hom(F, E) ~ Homp(S5,'E, F)* =~ Homp, (Lp, 0 S5 E, F)*

Definition 0.2. D is Calabi-Yau if Sp = [n]. It is fractional Calabi-Yau if S}, = [n].

If D= D°(X), then Sp = —®uwx|[n] for n = dimz. So if wx = Ox then D is Calabi-Yau,
and if w} = Ox, then D is fractional Calabi-Yau.



0.2 Kuznetsov components

Let X C P"™! be a hypersurface of degree d. Then Sx : E+— E ® Ox(d — (n + 2))[n].
Observe:

e Ox(1) is exceptional if d < n = 1. This follows from H™(Ox) = 0 for all m > 0.
e Ox(i) € Ox(j)*. This follows from H™(Ox(j —i)) =0for 0<j—1<n+1—d.
Now we can produce a semi-orthogonal decomposition:
D'(X) = (Ax,Ox,...,Ox(n+1—d))
Definition 0.3. Ay is the Kuznetsov component.

Example. Let d = 2. Then we saw Ay = (X) or (X1,37), where these objects are spinor
bundles.

Kuznetsov components are often Calabi-Yau categories.
Theorem 0.4. Ifn+ 1 < 2d, then Ax is fractional Calabi-Yau.

Example. For d = 3, can prove for any line L C X, the ideal sheaf Z; is the right orthogonal
to (Ox,Ox(1)). To check this, see

0—->17Z;, — IL/P”+1 — O)((—?)) —0

and use that the middle term is O(—1)%"+1,
So if n = 3, we have a semi-orthogonal decomposition (Ax, Ox,Ox (1)) with Z; € Ax.
If n = 4, we have a decomposition (Ax,Ox,Ox(1),0x(2)). So Z(1) € (Ax, Ox), and
SO L@X(IL(l)) c .Ax.

Proof of Theorem[0.4. To prove the theorem, we need to understand

S;\)l( - L(OX ..... Ox (n+1—d) o S[_)l}(X)
Proposition 0.5. L = T""?74[—n] for T = Le, o (Ox(1) ® —)|ay-
Lemma 0.6. Gwen an auto-equivalence, p : D — D and Dy C D admissible, we have
o Lp, = Ly o9
So then

T4 = Lo, 0 (Ox(1) ® =) o... o Loy (1)e-
=Lo,o...oLo (ny1-a 0 (Ox(n+2—-d)® —)
= SB’}(X) [n]
And finally we have:
Proposition 0.7. T¢ = [2].



]
Letting ¢ = ged(d, n + 2), the fractional dimension of Ay is <w / g)—Calabi—Yau.

Example. For cubic surfaces, Ay is (4/3)-Calabi Yau. For cubic threefolds, Ax is (5/3)-
Calabi-Yau. For cubic fourfolds, Ax is 2-Calabi-Yau.

Proof of Proposition|[0.7. Let us find the Fourier-Mukai kernel of T
Lemma 0.8. The Fourier-Mukai kernel of Lo, ;) is
[Ox (i) K Ox(—i) = Oay]
Proof of Lemma[0.8. For E € D*(X),
Ox (i) M Ox(—i) = Oa, — C
E(i)ROx(i) > En > C®FE
giving an exact triangle

P E"(E(—i) @ Ox(i)[-m] = E — Lo, E

Then we have that the Fourier-Mukai kernel of T is
[OX D Ox(l) — OAX(l)]

Lemma 0.9. If K;, K, € D*(X x X) are Fourier-Mukai kernels, the compositions of their
transforms has Fourier-Mukai kernel

D13, (D121 @ phaK)
So the Fourier-Mukai kernel of T2 is

p13*[oX X OX(l) X OX(l) — OA12(2) XOx @ OX(l) X OA23(1) — OA123(2)]
= [0(1) @ Qpn(1)|[x = O(2,0) = Oa(—2)]

And the Fourier-Mukai kernel of 77 is
K =[0x(1) @ (i —1)|x = ... > Ox(i — 1)K Qp(1)|x = Ox(i) M Ox — Ox(i)]

Observe that it is similar to the resolution of Oap, (7).
So we have an exact triangles

OApn ®OX><X(d) E— OAX(d) E— OAX[Q]

[ al I

Kd’ R — OAX(d) e Kd

where Kd/ = [Ox(l) X Ox(d> X OX]
Claim: Ky and Oap, ® Oxxx(d) induce the same Fourier-Mukai transform on Ax.
Thus K, the Fourier-Mukai kernel of 7%, induces the same Fourier-Mukai transform as
Oay [2], which is [2] as desired. O



0.3 Cubic fourfolds

Theorem 0.10 (Bernardara-Macri, Mehrotra-Stellari). Let Y and Y’ be (smooth) cubic
threefolds. Then Ay ~ Ay implies Y ~Y'.

Theorem 0.11 (Huybrechts). Let X and X' be cubic fourfolds. If X X' are not special,
then Ax ~ Ax: implies X ~ X'.

Not true without generality assumption.
Conjecture 0.12. Ax ~ Ax: implies X ~p; X'

Conjecture 0.13 (Kuznetsov). A cubic 4-fold is rational if and only if Ax ~ D®(S) for S
a K3 surface.

Now we do some setup for a conjecture of Hassett. For a cubic fourfold, dim H3! =
dim H*? =1,
h? € H**(X,Z) = H**(X) N H*(X,Z)

where h is a hyperplane section.

Definition 0.14. X is special if rank(H*?(X, Z)) > 1.

A labeled special cubic fourfold is an assignment of a primitive sublattice K C H*?*(X, Z)
of rank 2 with K 5 h%. Let d = discr(K). If d > 8 and d = 0,2 mod 6, then Cy is non-empty
and irreducible, where Cj is the moduli space of labeled cubic 4-folds.

Next, tk(K+) = 21, where the orthogonal is taken in H*(X,Z).

Definition 0.15. A cubic 4-fold has an associated K3, if there exists (5, ¢) with ¢ € H*(S,Z)
an ample class such that K+ C H*(X,Z) is isomorphic to ¢+ C H?(S,Z).

Proposition 0.16. X has an associated K3 if and only if d is not divisible by 4, 9, or any
prime number that is = 2 mod 3.

Conjecture 0.17 (Hassett). X is rational if and only if it has an associated K3.

So we have two perspectives on conjectured rationality: Hodge theoretic, and derived
categorical. The following theorem shows that these conjectures are equivalent.

Theorem 0.18 (Addington-Thomas). X has an associated K3 if and only if Ax ~ D(S).

Now let’s look at the example of d = 8. It turns out in this case (and only in this case),
the corresponding cubic fourfold X contains a plane P? C X.

Let P C X be a plane. We construct a rational projection X --+ P? undefined along P,
giving a diagram:

D, QEEEEEEE » P?
[~
BlpX

where BlpX — P? is a dim 2 quadric bundle.
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Lemma 0.19. The locus in P? where the fibers of BlpX — P? is singular is a sextic.

Now, consider the relative Fano scheme of lines F/(X) — P? on this quadric bundle. The
smooth fibers are smooth quadrics P! x P!, for which the space of lines is P! LI P!, and
the singular fibers are quadric cones for which the space of lines is P'. Taking the Stein
factorization, we have

F(X) —— P?

o 2

S

where S is a K3 surface, F(X) — S is a P! bundle, and S — P? is a double cover ramified
in the sextic.
From the P*-bundle over S, we get a Brauer class a € Br(S). It turns out:

Theorem 0.20. Ax ~ D°(S,a).
Now, suppose there are disjoint planes P, P, C X. Then we deduce:

1. X is rational, as we can define P; x P, --» X by sending any (x,y) to £ N X where ¢
is the line between x and y.

2. From a section of Blp X — P? we get a section of F(X) — S, which means the Brauer
class is trivial, i.e., a = 0.

This confirms Hassett’s conjecture in this case!
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