Semi-orthogonal Decompositions Seminar Notes

Notes taken by Amal Mattoo, who apologizes for any mistakes.

March 12

Vidhu Adhihetti: Surfaces with rational singularities.
Let X be a normal rational (projective) surface with rational singularities.
We want to understand semi-orthogonal decompositions

DL (X) = (A, ..., Ay)

We would like for A; to be generated by exceptional objects, but that might be too much.
So instead we hope A; ~ D°(K;-mod) for K; a finite local algebra, e.g., k[z]/(z?).

If X has cyclic quotient singularities, we can do this.

Let m : Y — X be a resolution of singularities, a proper birational map. Because X is
rational, we have 1,0y ~ Ox (all functors are derived).

Let D be the exceptional locus. We have D is a disjoint union of trees of smooth rational
curves.

Take a semi-orthogonal decomposition

DY) = (A, .., A,)

compatible with m. This means that if F; is an irreducible component of D, then Og,(—1) €
A;. Then we will get

Avj/<OEi(_1)>i:OEi(fl)egj ~A; C Db(X)

giving a semi-orthogonal decomposition on X.
We will go about proving this. Preliminaries. Since X is singular, 7* does not necessarily
preserve boundedness. Instead, we have

™ : D (X)=>D(Y), mm:D(Y)— D (X)
From 7, o m* ~ idp-(x) we get a semi-orthogonal decomposition
D= (Y) = (kerm,, 7" D™ (X))

We assume we have a semi-orthogonal decomposition D~ (Y) = (.Zl_, ...,.,Zlv; ) compatible
with 7. We want to combine these decompositions and then bring them down to D°(X).

1



Lemma 0.1. Let E, E' be irreducible components of the exceptional locus D, and Og(—1) €
A; and OE/(—l) € .Aj. Then ENE' = ().

Proof. For j > i, we have Ext*(Og/(—1),Og(—1)) = 0. By the Riemann Roch formula for
the intersection, E - E' equals x(Og/(—1),Og(—1)), and the latter is zero. O

Now, partition the exceptional locus D = |J D; where D; = {E; : Og,(—1) € OE/(—l),.Z[}.
Note that there is a way to extend a semi-orthogonal decomposition DY) = (A, ..., A)
to D(Y) = (A7, ..., A7) so that A, N DY(Y) = A;.

Lemma 0.2. 1. A Nker(m,) = (Og)p,ep, allowing infinite direct sums.
2. F € ker(m,) satisfies F = @, F; with F; € A; Nker, .
3. Ext'(ﬂ;,ﬂg Nker(m,)) =0 if i < j and 7 is crepant along D; or i > j.

Brief aside on crepancy. Say Y — X is a crepant resolution if 7" Kx = Ky, i.e., Ky -E =
0. Say  is crepant along D; if Ky - E; = 0 for all E; € D;.

We have projection functors &; : D~ (Y) — D~(Y) whose essential image is A;. It
follows formally az| DY) = a;, where the right hand side is the projection functor for Db(Y)

We have 1, A7 = A- € D~(X).
Theorem 0.3. 1. We have a semi-orthogonal decomposition
D (X)=(A],...., A)
with projection functors o; = m, o a; o T*.
2. (A7) C (A7 Az+1 Nkerm,, .., A- Nkerm,).
3. If in addition w is crepant along D; for j > i, then W*(yz(;) C .2(;.
Proof sketch. Let F € .Zi_. Define F’ by
v, JF — F — F

Since m,m* = id, applying 7* to this triangle yields 7,7’ = 0, so F' € ker,.

By the lemma we have 7' = @, _, F,, with 7 € A; Nker7,. We have Ext*(F, F}) =0
for j < and Ext*(7*m.F, F}) = 0 for j <i. Thus, Hom(F', F}) = 0 for j < i and so F; =0
for j < 1. N N

Thus, 7' C (A7 Nkerm,, ..., A, Nkerm,). And by assumption F C A
(.A Nkerm,, ..., A, Nker 7.). Then any element of A is mg for g € A;.

To see that Al is triangulated, for any g € A; we can take

so mm.F C

7 )

g = 79— a;(7"g)

Applying 7, we get m.¢' =0 and ¢ = m,7*g = (7, 0o a; o 7*)(g) which we call o;(g).
Semi-orthogonality follows formally, and pushing forward filtrations works as well. O
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Now we want to return to the bounded derived category.

Theorem 0.4. 1. A; := A; N D" X) gives a semi-orthogonal decomposition with projec-
tion functors ;.

2. «; preserves boundedness.

3. A; ~ . (A;) and 7, induces equivalence of triangulated categories.

Proof sketch. We need to check boundedness of ;. Let F € DE-#+(X) so m*F € D(=ok+](Y).
Take truncation
TR 2 F) = o F — N (1 F)
Then apply «;
a; (TSR (* F)) = apn* F — apm" T (1 F)
Then @&; sends ker m, to itself. So 7.(7"27*F) = 0. O

Now let’s apply this to cyclic quotient singularities. Consider weighted projective space
A™/p" or P(1,1,d) for d > 1. Let 7 : Y — X be a resolution with E the exceptional locus.
There exists a semi-orthogonal decomposition

DY) = (A, ..., A,)

with each A; = D?(End (€D vector bundles)).

By Hille-Ploog we have A = DP(K;-alg) for K; a finite local algebra.

For X = P(1,1,d), there is a resolution by Y = F; = Pp:(O ® O(d)). Let E,C,F €
Pic(Fy) with ENC =0, E? = —d, C* =d, F?* =0, and Kp, = —E — C — 2H. Then there
is a semi-orthogonal decomposition

Db(Fd) = <O(_H - E>7O(_H>7070(C>>

Let A; = (O(—H—E),0(~H),0,0(C)), Ay = (0), and A3 = (O(C)). We have Op(—1) €
A _

Now let A; = 7,A; so

Db(X) = (A1, Az, A3)
where A; = (R) for
R=m.(O(-H - FE)) 2 7.0(—H)

and Ay = (O) and Az = (O(d)).

Finally, let’s look at the Brauer obstruction. If 7 = (D°(K;-mod), ...) we have Ko(T) =
D Ko(DP(K;-mod)), which is torsion free. But Ko(D?(X))iors = Br(X) = H*(X, G tor-



