
Semi-orthogonal Decompositions Seminar Notes

Notes taken by Amal Mattoo, who apologizes for any mistakes.

March 12

Vidhu Adhihetti: Surfaces with rational singularities.
Let X be a normal rational (projective) surface with rational singularities.
We want to understand semi-orthogonal decompositions

Db
Coh(X) = ⟨A1, ...,An⟩

We would like for Ai to be generated by exceptional objects, but that might be too much.
So instead we hope Ai ∼ Db(Ki-mod) for Ki a finite local algebra, e.g., k[x]/(x2).

If X has cyclic quotient singularities, we can do this.
Let π : Y → X be a resolution of singularities, a proper birational map. Because X is

rational, we have π∗OY ≃ OX (all functors are derived).
Let D be the exceptional locus. We have D is a disjoint union of trees of smooth rational

curves.
Take a semi-orthogonal decomposition

Db(Y ) = ⟨Ã1, ..., Ãn⟩

compatible with π. This means that if Ei is an irreducible component of D, then OEi
(−1) ∈

Ãj. Then we will get

Ãj/⟨OEi
(−1)⟩i:OEi

(−1)∈Ãj
≃ Ai ⊂ Db(X)

giving a semi-orthogonal decomposition on X.
We will go about proving this. Preliminaries. Since X is singular, π∗ does not necessarily

preserve boundedness. Instead, we have

π∗ : D−(X) → D−(Y ), π∗ : D
−(Y ) → D−(X)

From π∗ ◦ π∗ ≃ idD−(X) we get a semi-orthogonal decomposition

D−(Y ) = ⟨kerπ∗, π
∗D−(X)⟩

We assume we have a semi-orthogonal decomposition D−(Y ) = ⟨Ã−
1 , ..., Ã−

n ⟩ compatible
with π. We want to combine these decompositions and then bring them down to Db(X).
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Lemma 0.1. Let E, E ′ be irreducible components of the exceptional locus D, and OE(−1) ∈
Ãi and OE′(−1) ∈ Ãj. Then E ∩ E ′ = ∅.

Proof. For j > i, we have Ext•(OE′(−1),OE(−1)) = 0. By the Riemann Roch formula for
the intersection, E · E ′ equals χ(OE′(−1),OE(−1)), and the latter is zero.

Now, partition the exceptional locusD =
⋃

Di whereDi = {Ei : OEi
(−1) ∈ OE′(−1), Ã−

i }.
Note that there is a way to extend a semi-orthogonal decomposition Db(Y ) = ⟨Ã1, ..., Ãn⟩
to D−(Y ) = ⟨Ã−

1 , ..., Ã−
n ⟩ so that Ã−

i ∩Db(Y ) = Ãi.

Lemma 0.2. 1. Ã−
i ∩ ker(π∗) = ⟨OEi

⟩Ei∈Di
allowing infinite direct sums.

2. F ∈ ker(π∗) satisfies F =
⊕

i Fi with Fi ∈ Ãi ∩ kerπ∗.

3. Ext•(Ã−
i , Ã−

j ∩ ker(π∗)) = 0 if i < j and π is crepant along Dj or i > j.

Brief aside on crepancy. Say Y → X is a crepant resolution if π∗KX = KY , i.e., KY ·E =
0. Say π is crepant along Dj if KY · Ei = 0 for all Ei ∈ Dj.

We have projection functors α̃i : D−(Y ) → D−(Y ) whose essential image is Ã−
i . It

follows formally α̃i|Db(Y ) = α̃i, where the right hand side is the projection functor for Db(Y ).

We have π∗Ã−
i = Ã−

i ⊂ D−(X).

Theorem 0.3. 1. We have a semi-orthogonal decomposition

D−(X) = ⟨A−
1 , ...,A−

n ⟩

with projection functors αi = π∗ ◦ α̃i ◦ π∗.

2. π∗(A−
i ) ⊂ ⟨Ã−

i , Ã−
i+1 ∩ kerπ∗, ..., Ã−

n ∩ kerπ∗⟩.

3. If in addition π is crepant along Dj for j > i, then π∗(Ã−
i ) ⊂ Ã−

i .

Proof sketch. Let F ∈ Ã−
i . Define F ′ by

π∗π∗F → F → F ′

Since π∗π
∗ = id, applying π∗ to this triangle yields π∗F ′ = 0, so F ′ ∈ kerπ∗.

By the lemma we have F ′ =
⊕n

m=1F ′
m with F ′

i ∈ Ãi ∩ kerπ∗. We have Ext•(F ,F ′
j) = 0

for j < i and Ext•(π∗π∗F ,F ′
j) = 0 for j < i. Thus, Hom(F ′,F ′

j) = 0 for j < i and so F ′
j = 0

for j < i.
Thus, F ′ ⊂ ⟨Ã−

i ∩ kerπ∗, ..., Ãn ∩ kerπ∗⟩. And by assumption F ⊂ Ã−
i , so π∗π∗F ⊂

⟨Ã−
i ∩ kerπ∗, ..., Ãn ∩ kerπ∗⟩. Then any element of Ã−

i is π∗g for g ∈ A−
i .

To see that A−
i is triangulated, for any g ∈ A−

i we can take

g′ → π∗g → α̃i(π
∗g)

Applying π∗ we get π∗g
′ = 0 and g ∼= π∗π

∗g ∼= (π∗ ◦ α̃i ◦ π∗)(g) which we call αi(g).
Semi-orthogonality follows formally, and pushing forward filtrations works as well.
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Now we want to return to the bounded derived category.

Theorem 0.4. 1. Ai := A−
i ∩Db(X) gives a semi-orthogonal decomposition with projec-

tion functors αi.

2. αi preserves boundedness.

3. Ai ≃ π∗(Ãi) and π∗ induces equivalence of triangulated categories.

Proof sketch. We need to check boundedness of αi. Let F ∈ D[k−,k+](X), so π∗F ∈ D(−∞,k+](Y ).
Take truncation

τ≤k−2(π∗F) → π∗F → τ k−1(π∗F)

Then apply α̃i

α̃i(τ
≤k−2(π∗F)) → α̃iπ

∗F → α̃iτ
k−1(π∗F)

Then α̃j sends ker π∗ to itself. So π∗(τ
k−2π∗F) = 0.

Now let’s apply this to cyclic quotient singularities. Consider weighted projective space
An/µr, or P(1, 1, d) for d > 1. Let π : Y → X be a resolution with E the exceptional locus.

There exists a semi-orthogonal decomposition

Db(Y ) = ⟨Ã1, ..., Ãn⟩

with each Ãi = Db(End(
⊕

vector bundles)).

By Hille-Ploog we have π∗Ãi = Db(Ki-alg) for Ki a finite local algebra.
For X = P(1, 1, d), there is a resolution by Y = Fd = PP1(O ⊕ O(d)). Let E,C, F ∈

Pic(Fd) with E ∩ C = ∅, E2 = −d, C2 = d, F 2 = 0, and KFd
= −E − C − 2H. Then there

is a semi-orthogonal decomposition

Db(Fd) = ⟨O(−H − E),O(−H),O,O(C)⟩

Let Ã1 = ⟨O(−H−E),O(−H),O,O(C)⟩, Ã2 = ⟨O⟩, and Ã3 = ⟨O(C)⟩. We have OE(−1) ∈
Ã1.

Now let Ai = π∗Ãi so
Db(X) = ⟨A1,A2,A3⟩

where A1 = ⟨R⟩ for
R = π∗(O(−H − E)) ∼= π∗O(−H)

and A2 = ⟨O⟩ and A3 = ⟨O(d)⟩.
Finally, let’s look at the Brauer obstruction. If T = ⟨Db(K1-mod), ...⟩ we have K0(T ) =⊕
K0(D

b(Ki-mod)), which is torsion free. But K0(D
b(X))tors = Br(X) = H2(X,Gm)tor.
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