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Lecture Eight (Hechen Hu, Generation of
Derived Categories, 3/26/25)

6.1 Preliminaries

Let D be a triangulated category and E → D an object. Denote by ↑E↓1 the strictly full (i.e. closed
under isomorphism classes) subcategory containing objects isomorphic to direct summands of finite
direct sums

⊕
i E[ni] of shifts. For n > 1, let ↑E↓n denote the full subcategory consisting of direct

summands of objects X fitting into the triangle

A ↔ X ↔ B ↔ A[1]

with A → ↑E↓1 and B → ↑E↓n→1. Each ↑E↓n is closed under taking direct summands and shifts but not
necessarily cones, hence they are not triangulated subcategories. However, the category ↑E↓ :=

⋃
n↑E↓n

is a triangulated subcategory. Call a subcategory thick if it is closed under taking direct summands.

Proposition (Lemma 0ATG). ↑E↓ is the smallest strictly full and thick triangulated subcategory of D.

Definition (Definition 09SJ).

1. E is a classical generator if ↑E↓ = D;

2. E is a strong generator if ↑E↓n = D for some n;

3. E is a weak generator (or generator) if for any nonzero object K there is some n such that
HomD(E, K[n]) ↗= 0.

This can be generalized to a collection of objects E . For example, weak generation means that E↑
= 0.

Example. If Ei is an collection of exceptional objects forming a semiorthogonal decomposition of D,
then

⊕
i Ei is a classical generator.

Remark. In the definition of a generator we can also shift in E, i.e. consider HomD(E[n], K).

Remark. A classical generator is always a generator. If the category has a strong generator, then a
classical generator is also strong.
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6.2 Generation by Perfect Objects

For a scheme, let D(OX) be the derived category of complexes of OX -modules and DQCoh(OX) the
subcategory consisting of complexes with quasi-coherent cohomology sheaves. Recall that a complex
(of OX -modules) is perfect if it is locally quasi-isomorphic to a bounded complex of vector bundles.
From now on, assume that X is quasi-compact and quasi-separated. The main theorem we wish to prove
is DQCoh(OX) is generated by a single perfect object.

Remark. DQCoh(OX) ↘= D(QCoh(OX)) when X is separated.

6.2.1 The Affine Case

Let X = Spec A be an affine scheme.

Proposition (Lemma 06Z0). All functors in the triangle

DQCoh(OX)

D(QCoh(OX)) D(A)

R!(X,→)inclusion

↓

are equivalences of triangulated categories. Moreover, for all E → DQCoh(OX) one has that H
0
(X; E) =

H
0
(X; H

0
(E)).

Sketch of a Proof. The functors R!(X, ≃) and ↘ are adjoints (they are identified as Rω↔, Lω
↔ with

ω : (X, OX) ↔ (⇐, A)). Thus we have the unit-counit maps

⊋R!(X, E) ↔ E, E → DQCoh(OX)

M
• ↔ R!(X, M̃•), M

• → D(A)

which can be proven to be quasi-isomorphisms.

Thus OX is the perfect object generating DQCoh(OX).

6.2.2 The General Case

Note the following fact: if the cohomology sheaves of a complex E is supported in a closed subset
T ⇒ X , then E|X→T is exact so it is zero in the derived category. By abuse of notation we will write
E|X→T = 0 and say that E is supported in E.

Lemma (Lemma 08DF). Temporarily we will work over general ringed spaces (X, OX). Let j : U ↔
X be an open subspace and T ⇒ X a closed subset containing in U . For objects (in D(OU ) or D(OX))

supported on T , one has the isomorphisms (≃) ↘= Rj↔(≃|U ) and j!(≃) ↘= Rj↔(≃), j! the direct image

with proper support (in the open immersion case this is the same as extension by zero).

Proof Sketch. Let V = X ≃ T and look at the sheaves over the open cover U, V .

Lemma (Section 08CL). Again we work over general ringed spaces.
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1. If f : (X, OX) ↔ (Y, OY ) is a morphism of ringed spaces, the Lf
↔

preserves perfectness.

2. If any two of the elements in a distinguished triangle in D(OX) is perfect, so is the third.

3. Perfectness is preserved under
L
⇑ and ⇓;

4. Let j : U ↔ X be an open subspace. If E → D(OU ) is a perfect object supported on a closed

subset T ⇒ U such that j(T ) is also closed in X , then Rj↔E is also perfect.

Proof of the Last Statement. Since perfectness is local, suffices to prove that Rj→E|U and Rj→E|V , V =

X ≃ j(T ), are perfect. Now observe that Rj→E|U = E and Rj→E|V = 0.

Lemma (Lemma 05QT). Consider a distinguished triangle X
f≃↔ Y

g≃↔ Z ↔ X[1]. If g has a right

inverse s : Z ↔ Y , then f ⇓ s : X ⇓ Z ↔ Y is an isomorphism.

Proof. One can prove that in a distinguished triangle the composition of two consecutive maps are zero.
The existence of s says that Z ↔ X[1] is the zero map so there is a split short exact sequence

0 ↔ Hom(≃, X) ↔ Hom(≃, Y ) ↔ Hom(≃, Z) ↔ 0

and we can conclude by Yoneda.

Now going back to schemes.

Lemma (Lemma 08EG). Let X = Spec A be an affine scheme and U a quasi-compact open subscheme.

For every perfect complex E → D(OU ) there is an integer r and a finite locally free sheaf F such that

F [≃r] ⇓ E is the restriction of a perfect object in D(OX).

Proof. By Lemma 08EE, there is a bounded above complex F• of finite free A-modules such that F•|U
is isomorphic to E in the derived category. Because U is quasi-compact and E is locally of finite tor
dimension, in fact E has finite tor dimension. Say that the tor groups are zero for any i /→ [a, b] and pick
r < a. Set

K := Ker(Fr ↔ Fr+1
) = Im(Fr→1 ↔ Fr

)

and F = K|U . By our choice of r the sheaf F is flat and of finite presentation, thus is finite locally free.
Then F ↔ Fr|U ↔ Fr+1|U ↔ · · · is a bounded complex of vector bundles isomorphic to E. If we let
P = (Fr ↔ Fr+1

), then by truncation there is a distinguished triangle

F [≃r ≃ 2] ↔ P |U ↔ E ↔ F [≃r ≃ 1]

If we choose r ⇔ 0, then E ↔ F [≃r≃1] is necessarily zero so one has a splitting P |U ↘= F [≃r≃2]⇓E

(representable functors are cohomological, see Lemma 05QT).

The preceding lemma also holds when X is quasi-compact and quasi-separated, however we will
not give a proof, see Lemma 09IQ.

Lemma (Lemma 09IR). Let j : U ↔ X be an inclusion of open subscheme into X = Spec A such

that U = Df1 ↖ · · · ↖ Dfr for fi → A. Let K → D(OX) correspond to the Koszul complex. For

E → DQCoh(OX) the following are equivalent
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1. E = Rj↔(E|U );

2. Hom(K[n], E) = 0 for all n → Z.

Proof. Choose a distinguished triangle E ↔ Rj↔(E|U ) ↔ N ↔ E[1]. By adjunction

Hom(K[n], Rj↔(E|U )) ↘= Hom(K|U [n], E) = 0

for all n → Z because K|U = 0. It suffices to prove the statement for N , i.e. assume that E|U = 0. Let
ei be natural numbers. There are distinguished triangles

K
•
(f

e1
1 , · · · , f

e↑
i

i , · · · , f
er
r ) ↔ K

•
(f

e1
1 , · · · , f

e↑
i+e↑↑

i
i , · · · , f

er
r ) ↔ K

•
(f

e1
1 , · · · , f

e↑↑
i

i , · · · , f
er
r ) ↔ · · ·

so if we let Ke := K(f
e
1 , · · · , f

e
r ), e ↭ 0, then Hom(K[n], E) = 0 implies that Hom(Ke[n], E) = 0

for all e. By Lemma 08E3, in this setting (H i
(E)|U = 0) given any s → H

0
(X; E) there is e ↭ 0 and

a morphism Ke ↔ E such that s is in the image of H
0
(X; Ke) ↔ H

0
(X; E). Combining these two

statements, it follows that R!(X, E) is exact so E = 0.

Remark. The last statement is easier to see in the case E is a complex with only one term in degree 0

and U = Df is a principal open subset. In this case Ke = (A
·fe

≃≃↔ A). The condition H
0
(E)|U = 0

says that E is supported in X ≃ U . The statement is saying that given any global section s → !(X; E)

there is some e such that there is a commutative diagram

A !(X, E)

A 0

·fe

with the top row given by sending 1 to a unit times s. The commutativity asserts that f
e
s = 0, which is

classically known.

Remark. The preceeding lemma shows that K is a perfect generator of the kernel of the restriction map
DQCoh(OX) ↔ DQCoh(OU ).

Theorem 6.2.1 (Theorem 09IS). There exists a perfect object P of D(OX) such that the following are

equivalent for all E → DQCoh(OX):

1. E = 0;

2. Hom(P [n], E) = 0 for all n → Z.

Thus DQCoh(OX) is generated by a single perfect object.

Proof. The affine case is already know. By induction it suffices to do the case X = U ↖ V , U quasi-
compact and V = Spec A affine, such that the theorem holds for U . Let P → DQCoh(U) be a perfect
generator. By the lemma (that we never proved) there is a perfect object Q → D(OX) with P a direct
summand of Q|U . Let Z = X ≃ U so that Z is a closed subset of V with quasi-compact complement
V ≃ Z. Then we can choose f1, · · · , fr → A such that Z = V (f1, · · · , fr). Let K → D(OX) be the
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perfect object corresponding to the Koszul complex of fi over A. Since K is supported on Z ⇒ V closed,
K

↗ := RjV,↔K, jV : V ↔ X , is also perfect. We claim that Q ⇓ K
↗ is a generator for DQCoh(OX).

Let E → DQCoh(OX) such that Hom((Q ⇓ K
↗
)[n], E) = 0 for all n → Z. If we can show that

E = RjU,↔E|U , then we are done because then

Hom(Q[n], E) ↘= Hom(Q|U [n], E|U )

and Hom(Q|U [n], E|U ) contains Hom(P [n], E|U ) as a direct summand.

The proof that E = RjU,↔E|U uses a Mayer-Vietoris type argument. By another lemma RjV,↔K ↘=
jV,!K so one has an adjunction

Hom(K
↗
[n], E) ↘= Hom(K, E|V ) = 0

Then the previous lemma says that E|V ↘= RjU↘V,↔E|U↘V . For every sheaf of OX -modules F we have
the Mayer-Vietoris sequence

0 ↔ F ↔ jU,↔F |U ⇓ jV,↔F |V ↔ jU↘V,↔F |U↘V ↔ 0

which gives a distinguished triangle

E ↔ RjU,↔E|U ⇓ RjV,↔E|V ↔ RjU↘V,↔E|U↘V ↔ E[1]

c.f. Lemma 08GW. The isomorphism E|V ↘= RjU↘V,↔E|U↘V gives a section of RjU,↔E|U ⇓RjV,↔E|V ↔
RjU↘V,↔E|U↘V , which by a lemma gives the desired isomorphism

E ↔ RjU,↔E|U

Example. Consider the case of X = Pn
A. We claim that P = OX ⇓ OX(≃1) ⇓ · · · ⇓ OX(≃n) is a

generator. Twisting the Koszul complex for xi in A[xi] by OX(n + a) gives an exact complex

0 ↔ OX(a) ↔ · · · ↔ OX(a + i)
(

n+1
i ) ↔ · · · ↔ OX(a + n + 1) ↔ 0

c.f. Lemma 0BQS. The case a = ≃n≃1 says that OX(≃n≃1) → ↑P ↓ and by induction OX(≃m) → ↑P ↓
for all m ↭ 0. By adjunction

Hom(OX(≃m), E[p]) = Ext
→p

(OX(≃m), E)

↘= Ext
→p

(OX , RHom(OX(≃m), E))

↘= H
→p

(X; RHom(OX(≃m), E))

↘= H
→p

(X; E
L
⇑ OX(m))

↘= H
→p

(X; E
L
⇑ OX(1)

≃m
)

so the last cohomology group is zero for all p → Z and all m ↭ 0. However, since OX(1) is ample, this
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forces E = 0, c.f. Lemma 0BQR.

Example (Remark 0BQT). If f : X ↔ Y is a map between quasi-compact and quasi-separated schemes,
then by adjunction we have the following equivalences:

1. Rf↔ is injective, i.e. Rf↔K = 0 if and only if K = 0.

2. Lf
↔ takes generators to generators.

These two conditions hold when f is a composition of affine morphisms or open immersions. In partic-
ular,

1. If X is quasi-affine, then OX is a generator;

2. If X ⇒ Pn
A is a quasi-compact locally closed subscheme, then OX ⇓ OX(≃1) ⇓ · · · ⇓ OX(≃n)

is a generator.


