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Lecture 1. An overview from physics

An introductory discussion of: indices of supersymmetric operators, their relation to topologi-
cal K-theory, K-theoretic Field Theories, moduli of vacua/Gibbs states, 3-dimensional mirror
symmetry.

1.1

We begin with an overview of the contents of this course.
The overarching problem of interest is a generalization of an old (classical) problem in

representation theory and harmonic analysis. Suppose a group G acts on a Riemannian
manifold (M, g) by isometries, and let ϕ : M → R be a G-invariant function. Then one can
ask:

what are the eigenspaces of the Laplacian −∆ + ϕ as G-modules?

In mathematical physics, this corresponds to the propagation of a quantum particle on M .
Knowing the spectrum of this Laplacian tells us about not just the time-evolution operator,
but the time-evolution operator in the presence of the G-action, e.g. quantities such as

tr (evolution(T ) · g) , g ∈ G.

There are very well-known classical cases of this problem: homogeneous spaces M = G/H;
M = Rn with the action of G = O(n) by rotation and ϕ = ϕ(r) is radial (which is just the
study of spherical harmonics). But in general, this problem is difficult.

1.2

A great simplification to this problem occurs in the presence of supersymmetry. Supersym-
metry means the following constraints.

• The Hilbert space
H = Heven ⊕Hodd

is Z/2-graded. Geometrically, H should be viewed as the space of sections of an “even”
bundle V0 and an “odd” bundle V1 on M , namely

Heven = H0(M,V0), Hodd = H0(M,V1).
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• The Laplacian factors as a square

−∆ + ϕ = (D +D∗)2

where D swaps Heven and Hodd, and D2 = (D∗)2 = 0. Here D∗ is the adjoint.

An example to keep in mind is when Vi are bundles Ωeven/oddM of differential forms on M ,
and D is the de Rham differential.

1.3

In this supersymmetric setting, let H =
⊕
λHλ be its decomposition as a G-module into its

G-eigenspaces. For λ 6= 0, an easy argument shows that

· · · D−→ Hλeven
D−→ Hλodd

D−→ · · · (1)

is an exact sequence of G-modules. Rephrasing, in the representation ring R(G),

Hλeven 	Hλodd = 0 ∈ R(G).

On the other hand, when λ = 0, the space H0 of ground states creates a very interesting
element

Index := H0
even 	H0

odd ∈ R(G).

Formally, Index is the same as Heven − Hodd, using the entire Hilbert space instead of just
ground states. Equivalently,

strH(evolution · g) = trIndex(g).

Here str is the supertrace, and we used that time-evolution on ground states is just the identity
operator. From this presentation, it is clear that Index is a topological invariant, as it is the
index of an actual elliptic differential operator.

1.4

To compute the index, we can use the Atiyah–Singer formula. This is not the place to discuss
the formula in detail, and instead we will give only a sense of its structure. It is written in
terms of G-equivariant sheaves on M , in the language of equivariant K-theory. Equivariant
K-theory is a functor(

topological space
M with G-action

)
→
(

abelian groups
Ki

G(M) with product

)
.

It is an example of a cohomology theory — a way to transform geometry into algebra. This
is an essential tool for us, since the whole subject of geometric representation theory is about
the interplay of geometry and algebra via such functors. We will discuss cohomology theories
in more detail later.
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Example. If M is compact and Hausdorff, then

K0
G(M) = {G-equivariant vector bundles on M}.

One can think of this as representations of G, but indexed by points of M . More formally, a
vector bundle V is G-equivariant if there is a G-action on its total space such that the G-action
on M induces G-linear maps

V
∣∣
m

m 7→g·m−−−−−→ V
∣∣
g·m

of the fibers of V . In particular, if M is just a point,

K0
G(pt) = R(G)

is just the representation ring. In general, K0
G(M) is a semi-ring with operations given by ⊕

and ⊗, and we make it into a ring by formally adding 	.
The other K-groups are in fact periodic, and involve suspensions of M .

1.5

The actual content of the Atiyah–Singer theorem is as follows. Recall that over M we had
two vector bundles Veven and Vodd with an operator D going between them. Since the index
is a virtual representation of the group G, it yields a map from this data landing in KG(pt).
The theorem is that there is an intermediate step consisting of an index sheaf

Index ∈ KG(M)

such that its pushforward from KG(M) to KG(pt) computes exactly the index. In principle,
this pushforward can be computed in cohomology via Riemann–Roch, which is a great theo-
retical tool. But in practice, pushforwards in K-theory are usually computed in other, easier
ways.

1.6

The really important thing to emphasize today is the passage

(Veven, Vodd, D) Index ∈ KG(M).

The perspective is that pushforwards are like integrals: while at first the mechanics of how to
integrate certain functions is very important, later we care more about what goes under the
integral sign. Naively,

Index ≈ Veven 	 Vodd,

but this is not right because there is a differential operator D between them. In particular, D
is not linear over functions. To encode the derivatives in D, we must consider π : T ∗M →M .
The pullbacks π∗Veven and π∗Vodd have a linear map between them which is the symbol of D,
and the operator D being elliptic means that symbol(D) is an isomorphism away from the
zero section M ⊂ T ∗M . Hence

π∗Veven 	 π∗Vodd ∈ KG(T ∗M)

is supported only on M , and by excision (which exists in equivariant K-theory) is therefore
an element Index ∈ KG(M), as desired. This is a “local index” of sorts.
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1.7

A natural geometric question is whether Index comes from an even smaller subset M ′ ⊂M .
For example,

tr(g · evolution(T ))

involves only diagonal elements of g, and therefore only the fixed locus Mg ⊂ M . This sort
of restriction is really important if M is infinite-dimensional, which is usually the case in
quantum field theories (in contrast to quantum mechanics).

A QFT in (d + 1)-dimensions, meaning a d-dimensional space plus one time dimension,
has M which is roughly

M = Maps(space→ X) (2)

for some X. (For now, view X as the configuration space at a point.) For example, in
(2 + 1)-dimensions, we are mapping Riemann surfaces into X.

A general QFT and such M is difficult to work with, but the index localizes to a much
smaller M ′ ⊂M if there is extended supersymmetry, i.e. when there are other operators like
D. The number of these operators is usually denoted N . One can imagine that extra such
operators produce a bigger complex than just (1), which cancels out even more stuff in H.
Usually, M ′ is the space of solutions to some PDEs defined by these additional supersymmetry
operators, and, very importantly,

M ′ =
⊔

(finite-dimensional spaces).

This is more tractable.
From now on we replace M with M ′ and never look at the original M again.

1.8

The specific M of interest to us is the subset of (2) where there is a fixed complex structure
on both the source and target, and maps are required to be holomorphic. Namely let

M = Holo ((C, p1, . . . , pn)→ X)

be holomorphic functions from a marked compact Riemann surface to an algebraic variety
X. One can construct with algebraic geometry some element in KG(M) that stands in for
the local index of D; this is some complicated construction we omit for now. To compute
the actual index, it is actually better not to immediately do the pushforward all the way to
a point. Instead, there is a forgetful map

M → {(C, p1, . . . , pn)} ×Xn

which forgets the holomorphic map f and only remembers the values f(p1), . . . , f(pn), and
we first do an intermediate pushforward along this map instead, which yields an element of

KG (Moduli(C, p1, . . . , pn)×Xn) .
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Figure 1: A possible degeneration of (C, p1, . . . , pn) in a CohFT.

Here the group action is by G := Aut(C, p1, . . . , pn)×Aut(X). There is a very nice language
to talk about equivariant K-classes on this space, because actually they form a compatible
collection when one varies over all genera and number of marked points. Such a structure is
called a cohomological field theory (CohFT) [KM94].

The basic argument in CohFTs is to degenerate C in some controllable fashion into multiple
components linked by nodes, and then there is some mechanism which glues the K-classes
on these components into a K-class on C. This requires passing from M to a slightly larger
moduli space

M ⊃M

of possibly-singular C; all our constructions extend to M as well. By such degeneration
arguments, the entire CohFT is determined by very few basic tensors, e.g.

p1

p2 p3

p1 p2

q ∈ C× = Aut(P1, 0,∞)

∈ KAut(X)(X
3), ∈ KC×

q ×Aut(X)(X
2)

.

Note that in the 2-pointed case, there is the non-trivial automorphism group C× = Aut(P1, 0,∞),
whose coordinate we denote q. This sort of reconstruction is unsurprising in physics: if it
is known how a field theory behaves on flat space, then one should be able to put it onto
any geometry. One of our main goals will be to identify these basic tensors in terms of some
geometric representation theory of certain quantum loop groups acting on the equivariant
K-theory Keq(X) of X.

1.9

Example. Here is a silly (but not so silly) example. If X = {0, 1} is a two-point space, then
K(X) = Z⊕ Z just records the dimensions of the vector spaces at the two points. Then

K(X ×X) = Mat(2× 2,Z)

acts naturally on K(X), essentially by matrix multiplication. Although this example sounds
silly, actually X really is the local configuration space of e.g. sl2-vertex models. These are
physical systems involving configurations on a lattice, with some rules on how configurations
at various vertices interact. Then, quite precisely, K(X) ⊗Z C is a module for the quantum
group U~(gl2) which governs the vertex model. There is a standard evaluation map

U~(gl2)← U~(ĝl2)

and this is the quantum loop group.
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XIR

XUV

Figure 2: A configuration in the six-vertex model, consisting of lattice paths.

One may wonder, and this is an important point: how can we possibly have a holomorphic
map into X = {0, 1}? The answer is that this X = XIR is the space of states defined
microscopically, whereas for the index computation one can assume that C is very large
because the index is independent of metric. Then the lattice is well-modelled by R2. Vacuum
states in R2 can clearly exist for infinite time, and so they are equivalent to states in R2 × R
where the second R is time. These are known as Gibbs states. In the six-vertex model,
for example, Gibbs states are parametrized by the average density of horizontal and vertical
paths, i.e. by

XUV := [0, 1]2,

which has a natural complex structure coming from an interesting function called surface
tension (which for the six-vertex model we only know slightly explicitly). In the end, the
holomorphic maps are to XUV , not to XIR.

1.10

Many different theories will not only have the same index, but also the same moduli space of
vacua XUV by virtue of appearing the same from large distances. However, we are actually
interested in situations where different theories have the same index for highly non-trivial
reasons, as follows.

Our X = XIR will have more supersymmetry than minimal. We said that the basic exam-
ple of supersymmetry is the de Rham operator in real geometry. For more supersymmetry, we
use the Dolbeault operator in complex geometry. To get even more supersymmetry, we use
hyperkähler manifolds, where there are four differential operators corresponding to 1, i, j, k.
The algebraic analogue of hyperkähler manifolds is algebraic symplectic varieties. Notably,
the group G is allowed to scale the symplectic form ωX , and the weight ~ ∈ KG(pt) of ωX will
be the deformation parameter for the quantum groups. All constructions in G-equivariant
K-theory live over this base ring KG(pt).

For certain such X, there is an amazing phenomenon called 3d mirror symmetry. If X
is viewed as a “Lie algebra of the XXI century” then this is like Langlands duality. Namely
there are pairs

X ↔ X∨

and there is a relationship between

Index ∈ Keq (Moduli(C, pi)×Xn) [[z]]
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for X and X∨. Here z is a variable that remembers the degree

deg(f) := f∗([C]) ⊂ H2(X,Z),

and zd is a character of the torus Z dual to H2(X,Z). In 3d mirror symmetry, there is a
change of variables

Z↔ A∨, A↔ Z∨

where A is the maximal torus in the group Aut(X,ω) of symplectic automorphisms, and
likewise for A∨ and Aut(X∨, ω∨). Poles of Index in A and Z are called equivariant and
Kähler roots. Usual Langlands is recovered for X = T ∗G/B and a maximal torus A ⊂ G, and
these are really the roots (and co-roots) in usual Lie theory. Of course, Index contains more
information than just where the roots are.

A long term, optimistic goal for this course is to prove 3d mirror symmetry in this form,
whenever it is defined.

Lecture 2. An introduction to vertices and quantum groups

q-hypergeometric functions and Macdonald polynomials as examples of vertex functions, quan-
tum groups and their categories of modules, R-matrices, reconstruction of a quantum group
from R-matrices.

2.1

As discussed last time, we are concerned with a moduli space of holomorphic maps

f : (C, p1, . . . , pn)→ X

where the source is supposed to be space (in spacetime) and the target X is a component of
the moduli of vacua. However, our basic building blocks (in flat spacetime) involve only very
specific C, namely

C = C = R2,

with some assumptions on what happens “at infinity”.
In algebro-geometric language, this means we actually consider C = P1, and impose the

boundary condition that f takes on a specified value f(∞) ∈ X at the point {∞} = P1 \ C.
In fact, not only should f take on this value, but it should take on the value in a non-singular
way, with f ′(∞) finite. This sort of setup appears often, e.g. Nekrasov partition functions (in
4d gauge theory) or Givental’s J-function. The locus of such functions f is an open subset of
the space of maps we were considering.

2.2

We want to integrate the local index sheaf Index on this open set. In K-theory, integration
is a pushforward, which can be thought of as taking sections (and higher cohomologies) of a
holomorphic vector bundle. But in general, the vector space of sections is infinite-dimensional.
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This is remedied by working equivariantly, with respect to the two group actions present in
the setup: Aut(P1,∞) (automorphisms preserving ∞) and Aut(X). Hence this vector space
of sections is a module for Aut(P1,∞)× Aut(X), and its character is a well-defined rational
function for a given degree d = deg f .

Generating functions are used everywhere in mathematical physics, and also in this course.
To sum these characters over all degrees d, we introduce a new variable z and obtain generating
series of the form ∑

d

zd · (rational function).

The rational functions are in terms of equivariant variables, namely weights q ∈ Aut(P1,∞)
and in Aut(X), and recall that we can think of z as a character of the torus H2(X,Z)⊗ZC×.
If we denote by q the weight of Aut(P1,∞), such series can be thought of as a generalization
of q-hypergeometric functions like the very classical

Φ
[
a, b
c

∣∣∣∣ z, q
]

:=
∑
d

zd (a)d(b)d
(q)d(c)d

,

where (x)d = (1 − x)(1 − qx) · · · (1 − qd−1x) = (x)∞/(qdx)∞. Such expressions occur very
naturally in equivariant K-theory.

2.3

What unites all of our series is that they are solutions of regular q-difference equations in
the variables z, and also of regular q-difference equations in those Aut(X)-variables which are
regular in Aut(X,ω) ⊂ Aut(X). (This is not obvious at all, and requires proof.) 3d mirror
symmetry X ↔ X∨, as discussed last lecture, exchanges these two types of q-difference equa-
tions. Note that while for compact geometries 3d mirror symmetry is an equality of indices,
for non-compact geometries the indices are different and only their q-difference equations are
preserved (and swapped).

Example. Consider the Macdonald polynomial Pλ(z; q, t) for GL(n). It is the “terminating”
specialization

(a1, . . . , an) = (qλ1tn−1, . . . , qλn)
of a certain hypergeometric function in a; here “terminating” means that variables x appearing
in q-factorials are specialized so that (x)d = 0 for all d ≥ d0.

There is a remarkable label/argument symmetry which can be viewed as a consequence of
3d mirror symmetry: the q-difference equations in a are the same as those in z, and therefore
in the terminating case the resulting solutions are equal. This is an example of the general
theory for the self-mirror X = T ∗GL(n)/B = X∨. In more generality, away from type
A, q-difference operators for Macdonald polynomials come from Cherednik algebras, and to
exchange the roots a with the co-roots z one must pass to the Langlands dual.

Macdonald polynomials are ubiquitous, and there are many ways to think about their q-
difference equations, but the perspective we take is that they are a special case of the so-called
dynamical equations associated to U~(gKM ), studied by Etingof and Varchenko [EV02] and
others. We will need to generalize U~(gKM ).
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2.4

What is a quantum group? We will take an approach which does not involve generators and
relations, which is not a productive way to think about our quantum groups for the simple
reason that they will be infinitely generated. Writing generators and relations for an algebra
is akin to writing coordinates and equations for an algebraic variety; we will try to work like
an algebraic geometer, with equations lurking in the background but not necessarily made
explicit.

To motivate the discussion, let’s begin with an example. Let G be a finite group, k be a
field (or, later, maybe a ring), and consider the group algebra kG consisting of formal linear
combinations

∑
g∈G cgg. This algebra captures in a sense everything about the representation

theory of G, e.g.
CG =

⊕
irreps M

EndC(M).

On the other hand, it forgets a lot of information about G because many different groups can
have the same group algebra. To reconstruct G, observe that kG has two structures that a
normal algebra does not. The category of G-modules has

1. a tensor product (M1,M2)→M1 ⊗M2, with unit 1, and

2. duals M∨ := Hom(M,k),

and G must act on them in some way. Namely, an element g ∈ G acts on a tensor product
by g ⊗ g, on the unit by some scalar in k, and on duals by (g−1)T . These respectively define
maps

∆: kG→ kG⊗ kG g 7→ g ⊗ g
ε : kG→ k

S : kG→ kG g 7→ g−1

called the coproduct, counit, and antipode. (Note that we omit the transpose in (g−1)T , so
the antipode is an algebra anti-automorphism.) These maps satisfy all sorts of relations. For
example, that g−1g = gg−1 = 1 means (in graphical shorthand)

∆

S

m = ∆

S

m

m((S ⊗ id)∆(x)) m((id ⊗ S)∆(x))= = unit ◦ counit.

By definition, these relations are axioms of a Hopf algebra. Notably, in a Hopf algebra,
the set of axioms is self-dual in the sense that it is invariant under reversing all arrows, and
so given a Hopf algebra one can form its dual Hopf algebra. For example, kG is dual to the
Hopf algebra k[G] of functions on G, where the product is multiplication of functions and
coproduct is

∆f(g1, g2) = f(g1g2).
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2.5

More generally, if G is a Lie group, there are many ways to create Hopf algebras from G:

• the group algebra kG, just like for finite groups, or more generally signed measures on
G (which become delta masses when G is finite) or distributions on G, a subset of which
is the universal enveloping algebra U(g);

• any covariant functor of G, e.g. homology H∗(G,A) with coefficients in a ring A.

Their dual Hopf algebras are:

• the ring of functions k[G], in the appropriate category (smooth, algebraic, etc.);

• the cohomology H∗(G,A) (which was the original case investigated by Hopf).

2.6

A quantum group is a deformation of any of these in the world of Hopf algebras, but generally
with the following feature. Note that the Hopf algebra U(g) is not commutative but has a
coproduct ∆ξ = ξ ⊗ 1 + 1 ⊗ ξ which is cocommutative. (This coproduct is the infinitesimal
version of ∆(g) = g ⊗ g.) On the dual side, the Hopf algebra k[G] is commutative but not
cocommutative. Quantum groups generally give up on both commutativity and cocommuta-
tivity. In particular,

∆ 6= ∆op := (12)∆

where (12) is the permutation of tensor factors. However, ∆ and ∆op will be related by a
cocommutation relation, like how in U(g) the commutator [−,−] (taking values in g) relates
the multiplication m with m ◦ (12).

2.7

Instead of exploring the general theory of quantum groups, we will specialize to a particular
class of examples. Concretely, we want deformations

U(ĝ) U~(ĝ)

where the underlying Lie algebra is

ĝ = Maps(G→ g)

for some 1-dimensional algebraic group G (additive, multiplicative, or an elliptic curve). For
example, if t ∈ G is a coordinate, then as modules

ĝ = g[t], G = Ga

ĝ = g[t±1], G = Gm,

14



and commutators are taken coefficient-by-coefficient. The category of modules we want to
study deforms the category of evaluation representations of U(ĝ). These representations arise
from pulling back highest weight representations of g along the evaluation maps

ĝ
evaluate at a−−−−−−−−→ g, a ∈ G.

If M is a highest weight module for g, let M(a) denote its evaluation representation (at a).
Our category of modules is then spanned by elements ⊗iMi(ai).

2.8

Prior to deformation, in
⊗
iMi(ai), it is clear that different points ai don’t talk to each other

at all, since polynomials may take any set of values at any set of given points. In particular,
the tensor product is irreducible if all the Mi are irreducible and the points ai 6= aj are distinct,
and any map between such tensor products is either zero or invertible. Upon deformation,

M1(a1)⊗M2(a2) and M1(a1)⊗op M2(a2)

are still irreducible modules for generic a1 and a2, but what will happen is that there is an
intertwiner

RM1,M2(a1, a2) : M1(a1)⊗M2(a2)→M1(a1)⊗op M2(a2)

called the R-matrix, which is an isomorphism only for a1, a2 generic (meaning, away from
finitely many points). In general it is a rational function in a1 and a2 with non-zero determi-
nant. Actually, since prior to deformation there is a loop rotation automorphism of G itself
acting on ĝ, if we wish for the deformation to preserve the loop rotation then this matrix R
must depend only on u := a1/a2.

2.9

We are not claiming yet that such a structure always exists. Instead, our strategy will be
to construct the R-matrix R first, and then the rest, including g itself, will follow. The
construction will be done geometrically, and then we will run some kind of reconstruction
process to obtain the quantum group. Our R will satisfy the following relations.

1. (Unitarity) Setting R∨(u) := (12)R(u), the composition

M1 ⊗M2
R∨(u)−−−−→M2 ⊗M1

R∨(u−1)−−−−−→M1 ⊗M2

is the identity. This is not the case for all quantum groups, but ours will have this
property.

2. (Yang–Baxter equation) The two different ways to change M1⊗M2⊗M3 to M3⊗M2⊗M1
are equal:

R(12)(a1/a2)R(13)(a1/a3)R(23)(a2/a3) = R(23)(a2/a3)R(13)(a1/a3)R(12)(a1/a2). (3)
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Pictorially, viewing R∨ as a sort of braiding operator, these two properties are often depicted
as

= =

Note that the presence of the spectral parameter u in the R-matrix makes the theory vastly
more general than for the classical case without spectral parameter, corresponding to taking
R(0) or R(∞). In particular, the unitarity property R(21)(u−1)R(12)(u) = 1 is lost in such
specializations.
Remark. The spectral YBE (3) actually predates quantum groups, which originated from the
study of vertex models in 2d statistical physics. There, an R-matrix R(12)(a1/a2) literally
encodes some interaction of states living in vector spaces M1(a1) and M2(a2), where the ai
are parameters called rapidities. From the point of view of statistical mechanics, we think of
the YBE as an invariant of the model with respect to the local arrangement of interactions,
which is a combinatorial analogue of things like covariance with respect to local changes of
coordinates.

2.10

The data {RMi,Mj (ai/aj)} for a collection of modules {Mi} is what will be constructed geo-
metrically. Given this data, the remarkable fact is that there is a reconstruction procedure
which automatically makes all tensor products

⊗
Mki(ai) into modules for a certain quantum

group, such that the R-matrices are precisely the desired cocommutation relations. Two good
references for these sorts of ideas are [Res89] and [ES98]. We will explain the reconstruction
procedure in the next lecture.

Lecture 3. Constructing quantum groups from R-matrices

More on R-matrices, comultiplication in Yangians, relations in a quantum group, R-matrix
as an interface, geometric construction of the R-matrix for Y (sl2), geometric meaning of the
Yang–Baxter equation.

3.1

The goal today is to continue the discussion of R-matrices and quantum groups, and in
particular the chicken-and-egg relationship between the two: if one has a full-fledged quantum
group satisfying some co-commutation relation, then there will be an R-matrix, and vice versa.
We will go with the historical route, where the R-matrix comes first. It will be easier for us
to construct the R-matrix, and then deduce the quantum group action from it.
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3.2

The starting point is a collection of vector spaces Mi(a), where a is the spectral variable. It
could be a complex number, or more generally we can think of Mi(a) as a free module over
k[a] or k[a±1]. Here k is some ground ring like Z[~±1]. In reality, for us,

Mi(a) = Cohomologyequivariant(X)

will be the equivariant cohomologies (e.g. ordinary cohomology, K-theory, elliptic cohomol-
ogy) of some space X, and the variable

a ∈ Gm ⊂ Aut(X)

is an equivariant parameter. Acting on these Mi(a) will be an R-matrix

R : M1(a1)⊗M2(a2)→M1(a1)⊗M2(a2)

satisfying the Yang–Baxter equation.

Example. The simplest example is the quantum group U~(ĝl2), which is produced from
Xk = T ∗Gr(k,Cn). The next simplest is U~( ̂̂gl1), which is produced from Xk = Hilb(C2, k),
which is the space of ideals in C[x1, x2] of codimension k. We write C here but really the
ground field can be anything.

3.3

From the data of these R-matrices, we would like to make all the Mi(a) into modules for a
quantum group. This takes three steps.

1. Extend the operators RM1,M2(a1/a2) to arbitrary tensor products of the form
⊗
Mki(ai)

by, pictorially, the composition
⊗

Mki
(ai)

⊗
M`i(bi)

. (4)

One easily verifies that this composition still satisfies the YBE, since each “strand”
Mki(ai) of the composite

⊗
Mki(ai) in the diagram can individually be moved.

2. Extend the operators to dual modules. (The antipode, if it exists, is actually unique;
this is like saying that for a group, the inverse is uniquely determined. So it is not
exactly a new structure.)
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3. Define operators on the second factor
⊗
M`i(bi) of (4), by taking matrix elements of

the operator ⊗
M`i(bi)auxiliary

in the auxiliary space. Each matrix element is an End(
⊗
M`i(bi))-valued function of

spectral parameters bi. This is precisely the sort of thing we want in our quantum loop
group, which is then defined to be the algebra generated by these matrix elements. We
can take coefficients (or any other linear functionals) of these operators in bi, or we also
can leave them alone, as is, as generating functions in bi.

3.4

Clearly the resulting operators form an algebra: multiplication is composition, which can be
drawn as

· :=

.

But completely analogously, there is a comultiplication given by

:=∆

( )
(5)

3.5

The comultiplication needs a bit of discussion if dimMi = ∞. If all dimMi < ∞, then
all matrices are of finite size and this composition is well-defined, but otherwise in principle
it is an infinite linear combination. To make sense of this, recall that our modules M are
cohomologies of a space X which splits as X =

⊔
k≥0Xk. So there is a grading on M which is

bounded below. R-matrices will be constructed from some simple geometric operation which
preserves this grading. Hence, taking graded matrix elements, the comultiplication

∆: U~(ĝ)→ U~(ĝ)⊗̂U~(ĝ)
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is in principle an infinite sum and requires the completion ⊗̂, but each term in the sum acts
locally nilpotently. Put differently, all but finitely many terms act by zero on a vector of any
given degree.

3.6

Depending on whether we work in ordinary cohomology, K-theory, or elliptic cohomology, we
will get R-matrices which are functions of the spectral variable u ∈ Ga, Gm, or an elliptic
curve, respectively. For an explicit example, suppose we use the additive group Ga. The
resulting quantum groups are called Yangians, and for them the R-matrices have a good
expansion around u =∞:

R(u) = 1− r

u
+O

( 1
u2

)
u→∞. (6)

The linear term r is the classical r-matrix, and is a canonical element

r =
∑

eα ⊗ eα ∈ Ŝ2g (7)

where g is a Lie algebra with a non-degenerate invariant bilinear form. It can be decomposed
into finite-dimensional root subspaces gα as

g = h⊕
⊕
α

gα.

In principle there can be infinitely many roots, which is how we get infinite sums in (7) or
the coproduct.

3.7

Example. As an example of coproduct computation, consider ∆eα. By definition, this means
to take the 1/u coefficient in the composition (5). This coefficient is additive, and therefore

∆eα = eα ⊗ 1 + 1⊗ eα.

Since the R-matrix intertwines ∆ and ∆op,

[R,∆eα] = 0.

This means R is g-invariant.

3.7.1

Example. To see an infinite sum appearing in the coproduct, let |λ〉 ∈M be a lowest weight
vector, i.e.

gα |λ〉 = 0, α < 0
h |λ〉 = λ(h) |λ〉 , h ∈ h.
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Using the expansion (6), compute the matrix coefficient

R
|λ〉,·
〈λ|,· =

|λ〉

〈λ|

= 1− hλ
u

+ h
(1)
λ

u2 + · · ·

where hλ :=
∑
α λ(hα)hα. The next term h

(1)
λ ∈ U~(g) can be interpreted as the ~-deformation

of t · hλ ∈ U(g[t]).
(To spoil the upcoming story a little, these terms hλ and h(1)

λ have the following geometric
meaning. The grading, coming from X =

⊔
Xk, can be viewed as given by the rank of some

universal bundle on X. Then hλ acts by exactly the rank of this universal bundle, and its
older siblings h(1)

λ and higher-order terms act by c1 and higher Chern classes of this universal
bundle.)

Let’s compute ∆(h(1)
λ ). By definition, this is the 1/u2 coefficient in the composition

|λ〉

〈λ|.

There are three ways to get a 1/u2 term: either 1/u2 comes purely from the first, or from the
second factor, or both factors contribute 1/u. Hence

∆(h(1)
λ ) = h

(1)
λ ⊗ 1 + 1⊗ h(1)

λ + · · ·

where the · · · denotes the latter case. But we know the 1/u term of the R-matrix very well.
Using it, we see that

· · · =
∑
α,β

〈λ|eβeα|λ〉.

By weight considerations, and using that [e−α, eα] = −hα,

〈λ|eβeα|λ〉 =
{

0 unless α+ β = 0, α > 0
−(λ, α) α+ β = 0, α > 0.

We conclude that

∆(h(1)
λ ) = h

(1)
λ ⊗ 1 + 1⊗ h(1)

λ −
∑
α

(λ, α)r−α, r−α = e−α ⊗ eα ∈ g−α ⊗ gα.

As discussed earlier, we see that in principle this sum over α could be infinite, but each piece
acts locally nilpotently.
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3.8

Remark. Usually, the condition that [R,∆g] = 0 (which was somewhat trivial to derive) and

R∆h(1)
λ = ∆oph

(1)
λ R (8)

(which we just derived) determine R uniquely up to a scalar multiple. Hence if we are
defining R geometrically, it suffices to understand the Lie algebra involved along with how c1
of universal bundles comultiply. An example of this is Hilb(C2). The Lie algebra is g = ĝl1,
generated by operators αn and commutation relations [αn, αm] = nδn+mc for a central element
c. The classical r-matrix is

r = (diagonal part) +
∑
n

αn ⊗ α−n.

Bilinear expressions in αn should remind us of Sugawara-like formulas for the Virasoro algebra.
In fact α(1)

n in this case are indeed Virasoro operators, and then (8) immediately implies the
R-matrix is the Liouville reflection operator.

3.9

It is obvious that the R-matrices do give the braiding of the modules we considered, since by
Yang–Baxter

M1(a1)

M2(a2)
M1(a1)

M2(a2)

=

Flipping the roles of physical vs auxiliary spaces, we see that Yang–Baxter is both the com-
mutation and co-commutation relation.

More generally, the braiding is an example of a morphism in the category we constructed.
Namely, we have constructed a tensor category (modulo some details about poles): objects
are

⊗
Mki(ai) and morphisms are maps that commute with R-matrices in the sense that

=R
R

By flipping physical vs auxiliary spaces, we see therefore that morphisms also give relations
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between matrix elements, in U~(ĝ):

=R
R

Such a perspective fits well with older perspectives on reductive groups G ⊂ GL(V ), e.g. H.
Weyl’s idea that thinking about G is the same as thinking about all G-invariant operators
HomG(V ⊗k, V ⊗`).

3.10

How do we actually construct R-matrices? We will begin this discussion now, and return
to it in more detail later. R-matrices are examples of morphisms in this tensor category. A
morphism which intertwines Keq(X) and Keq(X ′), where both X and X ′ are moduli of vacua,
can be understood physically as an interface in some variation of parameters of a QFT. At
some critical point, we will transition from X to X ′. At this critical point, there are extra
degrees of freedom coming from both X and X ′, and in general the physical theory is richer
there (e.g. more massless particles). This is relevant for R-matrices because essentially we
will construct them via behavior at a special point

new physics

M2(a2)⊗M1(a1) M1(a1)⊗M2(a2)

a1/a2 ∈ C

where the axis is a1/a2 ∈ C. At this special value of a1/a2 we will construct a larger module,
which for temporary lack of a better notation we call M1(a1) ⊗©M2(a2), such that there are
embeddings

M1(a1)⊗M2(a2) ↪→M1(a1) ⊗©M2(a2)←↩ M2(a2) ⊗©M1(a1)

and the cokernels of both embeddings are torsion, e.g. annihilated by something like (1 −
a1/a2~···)N . In other words, there is some enriched tensor product ⊗© which is symmetric and
better in some sense, and the embeddings are isomorphisms up to some prescribed poles.

3.11

Having a map of modules with torsion cokernel is a very typical scenario in equivariant
cohomology. A kindergarten illustration is to take X = pt with a trivial action of C× 3 a.
Then

Keq(X) = Z[a±]
is the representation ring of C×. Take Y = C with the defining action of C×. Then there is
a projection Y → X, and pullback gives an isomorphism

Keq(Y ) = Keq(X)
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since any C×-equivariant vector bundle on Y is specified by how it looks at 0. Now consider
a different map, namely the pushforward Keq(X) → Keq(Y ). The image is generated by the
structure sheaf O0, which is the quotient

0→ xC[x]→ C[x]→ O0 → 0

where x is the coordinate on Y , with weight a−1. Hence in equivariant K-theory,

O0 = (1− a−1)OC,

and
coker (Keq(X)→ Keq(Y )) = Z[a±1]/〈(1− a−1)〉

is torsion. This is a very typical feature of pushforwards.

3.12

Example. We would like to study the action of U~(ĝl2) onKeq(Xn), whereXn =
⊔
k T
∗Gr(k, n).

For example,
X1 = pt t pt.

On Gr(k, n), act by (a1, . . . , an) ∈ GL(n) along with a variable ~ which scales cotangent fibers
(by its inverse). So

Keq(X1) = Z[~±, a±1 ]⊗2

which we abbreviate as “C2(a1)”. Hence we need two different maps to a bigger module

C2(a1)⊗ C2(a2) ↪→ Keq(X2) ↪→ C2(a2)⊗ C2(a1)

which turns out to be Keq(X2). Since X2 = pt t T ∗P1 t pt, we should focus on Keq(T ∗P1).
Draw T ∗P1 with the following weights:

T ∗0 P1 T ∗∞P1

0 ∞a1

a2

a2

a1

a2

a1~
a1

a2~

In the 4-dimensional C2(a1) ⊗ C2(a2), the component T ∗P1 is the piece of “middle” weight
with respect to the Cartan h, i.e. we can normalize things so that there is one vector of weight
−2, two of weight 0, and one of weight 2. Hence we need two maps

Keq(pt t pt)→ Keq(T ∗P1)← Keq(pt t pt).

To produce these maps geometrically, we factor them into two pieces:

Keq(pt t pt) Keq(T ∗P1) Keq(pt t pt)

Keq(Attra1/a2→0) Keq(Attra1/a2→∞)

?
∼ ∼

?
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where the attracting manifolds Attr have to do with the attracting/repelling behavior of points
in T ∗P1 with respect to the action of a1/a2 (Figure 3). The pushforwards Attr→ T ∗P1 supply
the torsion cokernels we want, and it suffices to supply the isomorphisms marked with ?; in
particular, it is not enough to know that there is some abstract isomorphism, since we need
the explicit isomorphism to construct the R-matrix explicitly.

T ∗0 P1 T ∗∞P1

0 ∞a1

a2

a2

a1

a2

a1~
a1

a2~

(a) Points whose limits exist
as a1/a2 → 0

T ∗0 P1 T ∗∞P1

0 ∞a1

a2

a2

a1

a2

a1~
a1

a2~

(b) Points whose limits ex-
ist as a1/a2 →∞

Figure 3: Attracting manifolds for different a1/a2.

These explicit isomorphisms will be different in different cohomology theories, and in
particular they are not unique. Non-uniqueness is good, because it accounts for the elliptic
quantum group having lots of dynamical parameters. From the proposed construction, it is
also clear exactly where the R-matrix will have poles, e.g. at a2/a1~ in Figure 3a and at
a1/a2~ in Figure 3b. Finally, the explicit isomorphisms must satisfy the following analogue
of the Yang–Baxter equation. Consider X3 =

⊔
k T
∗Gr(k, 3), where now there are various

chambers

X3

X2 ×X1

X3
1

X3
1

for the parameters a = (a1, a2, a3), and for every type of chamber we have indicated the
a-fixed locus (X3)a. The Yang–Baxter analogue is that various compositions of our explicit
isomorphisms in this diagram are compatible, e.g.

Keq(X2 ×X1)

Keq(X3) Keq(X1 ×X1 ×X1)
∼ ∼

∼

commutes. This is some actual geometric problem.

Lecture 4. Equivariance and equivariant K-theory

Moduli of vacua in QFTs with extended supersymmetry, their response to variation of external
parameters, general idea of “stable envelopes”, equivariant cohomology theories, introduction
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to equivariant K-theory, equivariant K-theory of the projective space.

4.1

Let X be a moduli of vacua in some very supersymmetric quantum field theory in 2 + 1
dimensions. We didn’t discuss this in general, but we did discuss some examples: T ∗Gr(k, n)
and Hilb(C2, k). There are two general remarks to make about such X.

• Due to the extended supersymmetry, X wants to be a hyperkähler manifold, or a holo-
morphic symplectic variety. This is clear for both our examples.

• To be a vacuum state among all possible states usually means to minimize some function,
e.g. in statistical mechanics Gibbs states minimize the functional called free energy. So
X wants to be the critical locus of some functions on

(configurations of fields)/gauge.

What happens if we perturb this function? For a real manifold and a de Rham operator,
there is a way to twist by an arbitrary function like in Morse theory. On a complex man-
ifold, the function has to be holomorphic, and then we get Picard–Lefschetz theory. On a
hyperkähler manifold, we’d like to have a “quaternionic holomorphic” function.

4.2

One important scenario of this perturbation is the following. Consider a complex field ϕ =
x + iy and the potential m|ϕ|2/2. If the symplectic form is ω := dx ∧ dy, then one way to
interpret this potential is as the moment map which generates rotations with angular velocity
m. More canonically, if we think of m as an element of u(1) = LieU(1) acting by rotation on
the plane, we should view

m
|ϕ|2

2 = 〈moment map,m〉.

4.3

Suppose now that U is a compact group that acts by automorphisms of

(X, ω1︸︷︷︸
ωR

, ω2, ω3︸ ︷︷ ︸
ωC

).

Let u := Lie U. Then the total moment map is

µ = (µR, µC) : X → u∗ ⊗ R3.

We would like to work equivariantly with respect to an action that does not necessarily pre-
serve the hyperkähler structure, but rather rotates the “sphere” of symplectic forms ωR, ω2, ω3
around the ωR axis. This extra rotation will be denoted C×~ ⊃ U(1)~, and in fact this ~ is the
deformation parameter of the quantum group.
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ω3

ω2

ωR

C×
~

Figure 4: The “sphere” of symplectic forms ωR, ω2 and ω3 with the C×~ rotation.

To preserve this equivariance, µ must paired with a C×~ -invariant element m, giving

〈µR,m〉 = function, m ∈ u.

Now there are two different options, which are related by 3d mirror symmetry (we will see
why later):

1. view this U as an external field, i.e. some global symmetry which induces a correction
to whatever potential we had before;

2. view this U as a gauge symmetry.

4.3.1 Option 1

If U is an external field, then the new critical locus is taken without varying the new variable
m, and therefore (think about m|ϕ|2/2)

critX〈µR,m〉 = Xm

is the fixed locus in X of m. If A ⊂ U is the maximal torus, then changes in this fixed locus
Xm as m varies defines a wall-and-chamber arrangement in Lie(A). Generically the fixed
locus is XA, but e.g. at the origin the fixed locus is critX 0 = X itself.

XA

X

Figure 5: Chambers in Lie(A) defined by the fixed locus Xm for m ∈ Lie(A).

Example. Consider the simple case U = U(1), and the space u(1) of all possible m. The
difference between m > 0 and m < 0 is that the force induced by the potential is attracting
vs repelling (and at m = 0 there is no force).

While from the perspective of the compact group U(1) nothing really changes from m > 0
to m < 0, its complexification GL(1) knows that the “attracting”/“repelling” directions from
the origin have changed.
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m < 0 m > 0

m

GL(1)

0

Figure 6: The potentialm|ϕ|2/2 asm ∈ LieU(1) varies. The green arrow indicates
the action of GL(1) := U(1)⊗ C.

4.3.2

In general, different chambers in A therefore correspond to different attracting/repelling di-
rections for A. Since A preserves ωC, these attracting/repelling directions come in pairs, and,
moving from chamber to chamber, some attracting ones become repelling and vice versa, but
the total number of attracting or repelling directions remains the same.

Recall that as an external field goes through a critical value, there tends to be more
physics at the critical value and less away from it. For us, this critical value is at the origin,
so we would like to have an “interface” between X and XA. Ideally, the moduli spaces
X and XA are smooth hyperkähler manifolds, and holomorphic Lagrangians naturally form
correspondences between them. So we want an interface which is a holomorphic Lagrangian
submanifold, which looks like the attracting manifold of XA ⊂ X. (If the potential is turned
on, every point is driven by a force either away or toward a fixed point in XA.) However, the
attracting manifold is only locally closed, and its closure is very singular and unsuitable as
an interface. The stable envelopes we will define later are good correspondences that come as
close as possible to such Lagrangians.

4.3.3 Option 2

If U is viewed as a gauge symmetry, then the field m is allowed to vary, and in particular both
x and m ∈ u∗ ⊗ R3 are allowed to vary in the computation critX〈µ(x),m〉. So not only does
m fix x, i.e. m · x = 0, but we have more equations for the critical locus:

m · x = 0, µR(x) = µC(x) = 0. (9)

It also means we take the quotient by U. This whole procedure is called hyperkähler or
holomorphic symplectic reduction:

X 7→ X �� U.
The four slashes in the notation �� remind us that the equations (9), along with the quotient
by U, cut down the dimension by four times dimR U. More generally, we can make µR(x) =
θ ∈ (u∗)u and set

X ��θ U :=
{

m · x = 0
µR(x) = θ, µC(x) = 0

}
/U.

This is an extra degree of freedom and corresponds to a choice of GIT stability. For example,
if u = gln then (u∗)u is the 1-dimensional center.
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4.3.4

In analogy with option 1, we get a θ-line instead of an m-line, and there is a wall-and-chamber
arrangement in the space of all possible θ, which is now an external field. If θ is generic and
θ0 is not, then

Xθ-stable ↪→ Xθ0-stable.

Analogous to what we had for m, we would like a good interface between these θ. We will see
that this interface is not really different from stable envelopes, and is in fact their 3d mirror
dual.

4.4

Let X be a non-singular algebraic variety, perhaps holomorphic symplectic and some other
assumptions. Suppose a torus A acts on X and decompose Lie(A) into chambers C as in
Figure 5. The general problem solved by (K-theoretic) stable envelopes is to find the nicest
possible map

Keq(XA) ∼−→ Keq
(
AttrC(XA)

)
(10)

where the attracting manifold for the chamber C is

AttrC(XA) :=
{

(f, x) ∈ XA ×X : limu→0 σ(u) · x = f
for some σ : C× → A, dσ ∈ C

}
.

Equivariance is with respect to the centralizer of A in Aut(X), i.e. we keep as much equiv-
ariance as possible. In particular, the C×~ scaling ωC with weight ~ is included. Of course,
K-theory can be replaced with ordinary cohomology, elliptic cohomology, DbCoh, etc.

In the setting of relevance where we want to get quantum groups, e.g. T ∗Gr(k, n) where
there is a natural action of GL(Cn) ⊃ A, all the fixed loci are products of varieties X ′ of the
same kind. Therefore there is a decomposition

Keq(XA) ∼=
⊗
X′

Keq(X ′)

and this is what gives R-matrices and makes the modules into a braided tensor category, as
discussed last time. In general, away from Nakajima quiver varieties, there is some similar
structure but it does not give quantum groups.

4.5

We now begin a discussion of equivariant cohomology theories, to understand the source and
target of (10). These theories are: equivariant cohomology H∗eq(X), equivariant K-theory
Keq(X), and equivariant elliptic cohomology Elleq(X). In principle there is a mother of all
these theories, called equivariant cobordism, which will be discussed next lecture. We are
mainly interested in elliptic cohomology: our interfaces live on circles along the underlying
Riemann surface, and taking indices means time is made periodic — so manifestly there is an
elliptic curve (or at least a torus) on which our interface is a quantum field theory. However,
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it is a little difficult to explain what Elleq(X), so instead we will begin with the more concrete
Keq(X). Hopefully our discussion of K-theory and cobordism together prepare us to tackle
elliptic cohomology.

4.6

K-theory has many incarnations, the easiest of which is probably topological K-theory. For
Nakajima quiver varieties in general, algebraic K-theory and topological K-theory are actually
the same, so it doesn’t really matter which one we think of. Let G be a compact group acting
on a topological space X, which for convenience we assume is compact. Then an element of
KG(X) is a G-equivariant vector bundle, meaning a vector bundle E on X with a linear action

E
∣∣
x
→ E

∣∣
g·x

of G lifting the G-action on X. This is exactly like the representation theory of G, but instead
of a single vector space there is a family of them labeled by points x ∈ X.

4.7

There are natural operations on KG(X). Given two vector bundles E and F , one can form

E ⊕ F and E ⊗ F .

These operations make the set of G-equivariant vector bundles into a semiring, and then
KG(X) is obtained by adding in formal differences 	. This is the Grothendieck K-group
construction. In representation theory this is very familiar: a virtual representation is the
(formal) difference of two representations, and its character is the difference of the two char-
acters. Hence

KG(pt) = (representation ring of G).

In general, the representation ring is Z[G]G where G acts by conjugation. But we are mostly
interested in abelian groups G, for which KG(pt) = Z[G].

4.8

K-theory is a contravariant theory, meaning that if there is a map of equivariant spaces

G1 G2

X Y

then there is a pullback of vector bundles f∗ : KG2(X2)→ KG1(X1). Since every space maps
to a point, KG(X) is in general an algebra over KG(pt). When we begin discussing elliptic
cohomology, there will be no more rings and instead we will work with

SpecKG(X)→ SpecKG(pt) = G.
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4.9

Moving away from topology, there are two algebraic versions of K-theory. One can take
algebraic G-equivariant vector bundles, but in algebraic geometry there is the more flexible
object of G-equivariant coherent sheaves. These are sheaves E which have finite presentation,
i.e. can be written

F2 → F1 → E

in terms of finitely many generators F1 and finitely many relations F2. (Both Fi must be
locally free, and for Noetherian schemes the finiteness of the latter is automatic.) The group
G then actually acts on the Fi, but for a more intrinsic description of G-equivariant sheaves
see [CG97, Chapter 5], [Mer05].

Definition. Let

KG(X) := K(CohG(X))

Kperf
G (X) := K(VectG(X))

denote the Grothendieck K-group of G-equivariant coherent sheaves and of G-equivariant
vector bundles respectively. A short exact sequence 0→ E1 → E2 → E3 → 0 gives a relation

[E2] = [E1]⊕ [E3].

A basic fact in algebraic geometry is that if X is non-singular, then

KG(X) = Kperf
G (X)

because every coherent sheaf has a finite locally free resolution.

4.10

K-theory is supposed to be a functor, so now we discuss its functorial properties. Given a
map f : X → Y of algebraic varieties, factor it as a composition

X
ι−→ Γf

π−→ Y

where Γf := {(x, f(x))} ⊂ X × Y is the graph of f . Then it is easy to apply ι to sheaves,
namely

ι∗E = (extension by zero outside Γf ).

But we should not define π∗[G] to be [π∗G], since for example the pushforward of an exact
sequence ceases to be exact. The correct definition includes all higher cohomology groups:

π∗[G] :=
∑
i

(−1)i[Riπ∗G]. (11)

By long exact sequences in cohomology, this is a well-defined map between K-theories if each
term Riπ∗G is a coherent sheaf. This is implied if f is proper. Note that additional restrictions
on f are necessary in order to land inside Kperf

G (X) ⊂ KG(X).
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Actually, in equivariant theory, the properness condition on f may be relaxed. One can
have a module which is infinite-dimensional but nonetheless has finite multiplicities for the
group. The simplest example is to take the map f : A1 → pt. Letting x ∈ A1 denote the
coordinate function,

f∗OA1 = C[x].

If we have an action which scales the A1 with weight t, then x has weight t−1 and

character of C[x] = 1 + t−1 + t−2 + · · · (12)

which is a well-defined expression. It suffices to assume, for f , that it can be contracted to
a proper subset. Here “contraction” implies a choice of attracting/repelling directions, and
that choice is reflected by the direction of expansion of infinite series like (12). For A1, acting
by t contracts everything to the point 0.

4.11

There is also a pullback in K-theory. If π is a projection, then π∗[E ] is just the usual pullback
of E . However, ι∗[G] is not just [ι∗G] since ι∗G = G ⊗OΓ and tensoring with OΓ is not exact.
Like in (11) we must include all higher Tors:

ι∗[G] :=
∑
i

(−1)i Tori(G,OΓ).

To compute this, we can resolve either G or OΓ by locally free sheaves. Some assumptions
either on the map f or the sheaf G are necessary in order for the sum to be finite and therefore
well-defined. For example, it suffices for f to be locally free (in which case the resolution is
just one term), or more generally for f to be flat or of finite Tor dimension. Equivariantly
these restrictions may again be relaxed, e.g. if X := {xy = 0} ⊂ A2 then G = O0 only has
infinite resolutions, but the character like in (12) is well-defined.

4.12

Example. We want to compute KGL(V )(P(V )). The first two steps of this computation are
very general. Firstly, recall that

P(V ) = (V \ {0})/GL(1).

Equivariant theories are actually simpler than non-equivariant ones, for the reason that many
important spaces can be exhibited as quotients. To access their cohomology, we can use the
principle in K-theory that if G acts freely on X, then there is an isomorphism

K(X/G) KG(X)

pullback

invariants

.
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(These maps are in fact equivalences of categories, so even the higher K-groups are the same.)
Hence

KGL(V )(P(V )) = KGL(V )×GL(1)(V \ {0})
and this new GL(1) is the center of GL(V ). Abbreviate G := GL(V )×GL(1).

Cohomology theories in general are supposed to take certain sequences of spaces to long
exact sequences of cohomology groups. The incarnation here is that if Y ↪→ X is a closed
G-invariant embedding, then there is an exact sequence

KG(Y ) pushforward−−−−−−−→ KG(X) restriction−−−−−−→ KG(X \ Y )→ 0.

Continuing to the left, there are then higher K-groups K1
G(X \ Y ) and so on. Applying this

to P(V ),
KG(pt)→ KG(V )→ KG(V \ {0})→ 0.

So it remains to compute the first two terms and the cokernel of the map.
A sheaf on a vector space V which is equivariant with respect to e.g. the scaling action

can, firstly, be equivariantly resolved by free sheaves, and secondly these free sheaves are fully
determined by their fibers over 0 ∈ V . In other words, more canonically, the pullback

Keq(pt)→ Keq(V )

is an isomorphism. Hence, putting everything together,

KGL(V )(P(V )) = coker (KG(pt)→ KG(pt))

where the map is pushforward along the inclusion {0} ↪→ V . The remaining beautiful step is
to compute this pushforward using the beautiful, classical Koszul resolution. We will do this
in Lecture 6.

Lecture 5. Equivariant cobordism and rigidity

Lecture by Igor Krichever.

5.1

The main focus of today will be elliptic cohomology, whose little sisters, K-theory and ordinary
cohomology, we have already seen. It is perhaps easier to understand them all as certain
evaluations of the mother of the whole family: unitary cobordism.

Definition. An extraordinary cohomology theory is a functor

h∗ :
(

pairs (X,A) of
topological spaces

)
→ (an abelian category) .

To be on the safe side, we assume the topological spaces are CW complexes. The functor
h∗ must satisfy all the Eilenberg–Steenrod axioms (homotopy, long exact sequence, excision,
disjoint union, dimension) except for the dimension axiom requiring hn(pt) = 0 for n > 0.

The dimension axiom holds in ordinary cohomology but not in K-theory, for instance.
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5.2

We will talk about multiplicative cohomology theories and more. These are “nice” theories
with a notion of Chern classes for complex vector bundles. For them to exist, we require that
all complex vector bundles ξ → X are h-orientable; for us, this just means there is a Thom
isomorphism

h∗(X) ∼= h∗(B(ξ), S(ξ))
where B(ξ) (resp. S(ξ)) is the bundle over X of unit disks (resp. unit spheres) in ξ. The
isomorphism is defined by multiplication by the Thom class t(ξ) ∈ h2n(B,S). Such an iso-
morphism is more difficult but can also be established in more general cohomology theories
like K-theory and cobordism.

The existence of the Thom class plays an essential role in all localization theorems. Let
ι : X → B be the inclusion of the zero section. Then ι∗t(ξ) = e(ξ) is the Euler class of the
vector bundle, and as a result there is the so-called Gysin exact sequence

· · · → h∗−2n(X) ·e(ξ)−−−→ h∗(X)→ h∗(S) δ−→ h∗−2n+1(X)→ · · · .

It is used to derive the localization formula, but also can be used to easily compute

h∗(CP∞) ∼= h∗(pt)[[u]]

where u := e(OCP∞(1)) is the Euler class of the universal line bundle.

5.3

The Brown representation theorem says that any cohomology theory is uniquely defined by
its spectrum, which is a sequence Mn →Mn+1 → · · · of spaces with maps between them such
that there is a homotopy equivalenced S1∧Mn →Mn+1 of the suspension with the next space
in the list. Then

h∗(X,A) = lim−→
k→∞

[Sk ∧X/A,Mn+k]

and the corresponding homology theory is

h∗(X,A) = lim−→
k→∞

[Sk+n, X/A ∧Mk].

However sometimes it is highly non-trivial to construct the spectrum, e.g. for elliptic coho-
mology. From a pedestrian point of view, it is better to treat this theorem as an existence
result.

5.4

We will discuss cohomology theories in much more down-to-earth terms. Before we do so, we
require some facts from the theory of formal commutative 1-dimensional groups. A formal
group over a ring K can be treated as a series

f(u, v) ∈ K[[u, v]]

called the formal group law, which must satisfy certain properties:
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1. (identity) f(u, 0) = u;

2. (commutativity) f(u, v) = f(v, u);

3. (associativity) f(f(u, v), w) = f(u, f(v, w)).

Properties 1 and 2 imply that

f(u, v) = u+ v +
∑
i+j>1

αiju
ivj , αij ∈ K,

and associativity imposes many relations on the coefficients αij . Given a cohomology theory
h∗, one checks that the series

fh(u, v) := c1(O(1)�O(1)) ∈ h∗(CP∞ × CP∞) = h∗(pt)[[u, v]]

is a formal group law. We will see that this formal group law almost (and in some cases,
completely) defines the cohomology theory.

Example. 1. The additive formal group law is f(u, v) = u+ v. This is how Chern classes
behave in ordinary cohomology theory: c1(L ⊗ L′) = c1(L) + c1(L′).

2. The multiplicative formal group law is f(u, v) = u+ v + uv. This is how Chern classes
behave in K-theory.

3. A less obvious one is the elliptic formal group law

f(u, v) = u
√
P (v) + v

√
P (u)

1− εu2v2

where P (t) := 1 − 2δt2 + εt4. The variables δ, ε belong to the underlying ring K :=
Z[1/2][δ, ε].

5.5

A result of Lazard [Laz55] says there exists a universal formal group F (u, v) over a special
ring K̂, called the Lazard ring, such that any other formal group f(u, v) over a ring K can be
written as

f(u, v) = h̃(F (u, v))

for some homomorphism h̃ : K̂ → K. In other words, formal groups are classified by the
choice of homomorphism h̃.

The Lazard ring K̂ is obtained as follows. Over Q, all formal groups are isomorphic.
Namely, they can all be written in the form

f(u, v) = g−1(g(u) + g(v))

for some g(u) = u+
∑
i>1 λiu

i called the logarithm of f . If instead we plug in

g(u) :=
∞∑
n=0

xn
n+ 1u

n+1

34



for independent formal variables xn, then the resulting f(u, v) has coefficients which are
rational polynomials of the xn. Then K̂ is the smallest ring containing these coefficients.

The magical fact, due to Quillen [Qui69] and also present in works of Mǐsčenko, Novikov,
and Buchstaber, is that the formal group of unitary cobordism is exactly Lazard’s universal
formal group. In fact the starting point was Mǐsčenko’s work [Nov67] showing that for unitary
cobordism

g(u) =
∞∑
i=0

[CPn]
n+ 1u

n+1, (13)

but there was a need to check that there were no additional relations among the coefficients.
This was done by Quillen.

5.6

Let U∗ denote unitary cobordism, which we will define shortly. As a consequence of Lazard’s
theorem, any cohomology theory h∗ has an associated homomorphism h̃ : U∗(pt) → h∗(pt),
and

h∗(X,Y ) = U∗(X,Y )⊗
h̃
h∗(pt) (14)

as 2-graded theories (meaning grading by odd and even degrees). Such a tensor product
preserves all the Eilenberg–Steenrod axioms except possibly the exactness of long exact se-
quences, and we say h̃ is Landweber flat if it indeed also preserves exactness. We are interested
in performing this procedure in reverse, to construct a cohomology theory from (14) given a
homomorphism from U∗(pt) into a ring.

5.7

To define the cobordism theory U∗, it is easier to begin with unitary bordism theory. Two
n-dimensional manifolds Mn and M̃n are bordant, written Mn ∼ M̃n, if there exists an
(n+ 1)-dimensional manifold W with

∂Wn+1 = Mn ∪ (−M̃n). (15)

Here the minus sign means to take the opposite orientation. Then, given a pair (X,A) of
topological spaces, the oriented bordism group is

Ω(X,A) := {maps (M,∂M)→ (X,A)}/(∼ bordism),

where (M,∂M) is any manifold with boundary.
There are many flavors of bordism theory, given by putting additional structure on Wn+1,

which we have already implicitly done above by taking orientation into account. For example,
in the unoriented version the minus sign in (15) is irrelevant and is omitted. For the unitary
bordism group U∗(X,A), the stable tangent bundles of bordisms Wn+1 are required to carry
a complex structure.
Remark. The spectrum MU(n) of unitary cobordism theory is very simple: they are Thom
spaces of universal U(n)-bundles over PU(n).
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5.8

There is a canonical isomorphism U2n(pt) ∼= U2n(pt) of coefficient rings of bordism and
cobordism, and so we now begin the study of homomorphisms U∗(pt)→ Q. The ring structure
on U∗(pt) is given by direct product of manifolds.

Lemma. Every homomorphism ĥ : U∗(pt)→ Q arises as

ĥ(X) =
〈

n∏
i=1

xi
h(xi)

, X

〉

for some power series h(x) = x +
∑
λix

i, where in the rhs we treat the k-th elementary
symmetric polynomial of the xi as the k-th Chern class.

Definition. The series h(x) is a Hirzebruch multiplicative genus.

Alternatively and perhaps more concretely, the formal group associated to a homomor-
phism ĥ : U∗(pt) → Q has logarithm given by gh(u) :=

∑∞
n=0

1
n+1 ĥ([CPn])un+1, cf. (13), and

the Hirzebruch genus is its functional inverse

h(x) = g−1
h (x).

This is an observation due to Novikov. All classical genera can be obtained in this way, e.g.
Todd genus td[CPn] := 1, signature sign[CP2n] := 0 and sign[CP2n+1] := 1, and A-genus for
spin manifolds.

5.9

In many cases, we don’t know how to define a cohomology theory, e.g. the definition of elliptic
cohomology is very complicated. So, as a good approximation, instead of a cohomology theory
we just consider a pair

(cohomology theory) ≈ U∗ + (Hirzebruch genus).

There is a good notion of generalized elliptic genus, which is a particular Hirzebruch genus,
capturing a 4-parameter family of formal groups. All classical genera, and elliptic genus, are
particular cases.

Definition. Let
Φ(x, z|ω1, ω2) := σ(z − x)

σ(x)σ(z)e
ζ(z)x

where ζ and σ := ζ ′ are Weierstrass functions for the elliptic curve E with periods 2ω1 and
2ω2. It is periodic in z with

Φ(x, z + 2ωα) = Φ(x, z)

but is not an elliptic function of z because it has an essential singularity at z = 0. In the
variable x,

Φ(x+ 2ωα, z) = Φ(x, z)e2ζ(z)ωα−2ηαz,
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so it is a section of a certain line bundle on E, and near x = 0 Φ(x, z) = x−1 + O(1). The
Hirzebruch genus of interest is

ϕ̂(x, z, k|ω1, ω2) := ekx

Φ(x, z|ω1, ω2)
By definition, any such series defines a genus, and the result is the generalized elliptic genus.

5.10

In fact the function Φ was known from a different perspective, even before the introduction
of elliptic genera. It is the simplest case of a Baker–Akhiezer function, and satisfies the Lamé
equation (

d2

dx2 − 2℘(x)
)

Φ(x, z) = ℘(x)Φ(x, z)

where ℘(x) is the Weierstrass elliptic function. It also satisfies a remarkable “addition-type”
relation (for all z, which we omit in the notation)

Φ(x+ y)[℘(y)− ℘(x)] = Φ′(x)Φ(y)− Φ(x)Φ′(y)

underlying its use in many settings, e.g. elliptic Calogero–Moser systems. Finally,

Φ(x, z)Φ(−x, z) = ℘(z)− ℘(x).

It is an easy exercise to check that upon specializing z = ωα to a half-period, Φ(x, ωα) is the
elliptic formal group. Classical genera correspond to degenerations of this elliptic curve to
nodal rational curves, i.e. to multiplicative and additive formal groups, which parallels the
degenerations of the elliptic Calogero–Moser system to the trigonometric and rational cases.

The genus Φ is the most general “nice” genus. To explain what is so nice about it, we
return to the original goal of defining equivariant cobordism.

5.11

For a space X with action by a group G, equivariant bordism theory is

UG
∗ (X,A) := {G-equivariant maps (M,∂M)→ (X,A)}/(∼ unitary bordism).

Equivariant cobordism U∗G(X,A) is harder to define. With Poincaré duality in mind, cobordism
is the obvious dual to bordism. However, we will try to study U∗G(X,A) without an explicit
definition. For instance, an obvious requirement is that if X is a free G-manifold

U∗G(X) = U∗(X/G).

More generally, let X be a space with G-action. Then there is the Borel construction

XG := (X × EG)/G,

which is a bundle over the classifying space BG with fiber X. The space EG is the universal
contractible G-bundle on BG. One can try to imitate ordinary cohomology and consider
U∗(XG) as the G-equivariant version of U∗(X), but this is not what we are looking for;
already in K-theory, KG(X) 6= K(XG), see e.g. [].
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5.12

Characteristic classes are elements χ ∈ U∗(BU) of the cohomology of the classifying space. If
ξ is a G-vector bundle on X then the Borel construction gives a bundle

ξG := (ξ × EG)/G

on XG, and the G-equivariant version of χ is defined to be

χG(ξ) := p!χ(ξG) ∈ U∗(BG)

where p : BU → BG is the projection.
Let H ⊂ G be a normal subgroup. Then a very general localization theorem says

f∗(χ(X, ξG)) =
∑
S

fS,∗

(
χ(S, ξG

∣∣
S

)
e(NS/X

∣∣
S

)

)

where S ranges over connected components of the fixed locus of the H action. This formula
is well-known in cohomology, K-theory, etc. in the case where H = G, but as we will see later
it is helpful to write it for any H.

5.13

Any cohomology theory defines a homomorphism ĥ : U∗(pt) → Q, but this can actually be
extended to functors between cohomology theories, e.g. ̂̂h : U∗(X) → K∗(X) ⊗ Q. The
equivariant version

hG(X) : ̂̂h(p!(1)) ∈ KG(pt)⊗Q

is called the index genus. While the usual Hirzebruch genus is valued in Q, this is valued in
G-representations. For example, while all classical genera are indices dim coker−dim ker of
certain elliptic operators, the index genus amounts to just taking coker− ker instead.

If G is connected, then representations of G in cohomologies H∗(X,Z) with integer coef-
ficients must be trivial. Atiyah and Hirzebruch showed that this implies hG(X) is constant,
namely

im hG ⊂ Q ⊂ KG(pt)⊗Q,

known as a rigidity property. They used rigidity to prove many remarkable results about
genera, e.g. that for S1-manifolds sign(X) =

∑
S sign(S) where S ranges over S1-fixed com-

ponents. Such a statement is clear for things like Euler characteristic, but is non-trivial and
surprising for the signature. In fact the whole development of elliptic cohomology stemmed
from attempts to prove Witten’s conjecture on the rigidity of elliptic genus for S1-manifolds;
elliptic genus was originally realized as an index of a Dirac operator on loop spaces, which is
difficult to make rigorous mathematically.
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5.14

We conclude with the rigidity property of generalized elliptic genus, which provides an expla-
nation for why elliptic cohomology, K-theory, etc. are so special: they arise from a general
genus with this rigidity property.

Theorem ([Kri90]). Generalized elliptic genus is rigid for SU-manifolds.

Lecture 6. Comparing K-theory to elliptic cohomology in an
example

Koszul resolutions, localization, first steps in elliptic cohomology, Chern classes, equivariant
K-theory and equivariant elliptic cohomology of Hilb(C2), Thom spaces.

6.1

We return to the computation of KGL(V )(P(V )). Recall what we have done so far. The first
step is to express

P(V ) = (V \ {0})/GL(1)

where GL(1) acts by scaling V . There is a general principle that KG(Y ) = K(Y/G) for the
free action of a group G on a space Y , and therefore

KGL(V )(P(V )) = KGL(V )×GL(1)(V \ {0}). (16)

In fact it is a nice exercise to deduce from this general principle that KG(G/H×X) = KH(X).
Continuing, the excision long exact sequence associated to the embedding ι : {0} ↪→ V is

· · · → K1
G(V \ {0})→ KG({0}) ι∗−→ KG(V ) restriction−−−−−−→ KG(V \ {0})→ 0,

and we want the cokernel of ι∗.
If π : V → {0} is the projection, then KG({0}) π∗−→ KG(V ) is an isomorphism. This is

because any module over a polynomial ring has a finite locally free resolution of length dimV
by Hilbert’s syzygy theorem, but a locally free G-equivariant module is actually free by using
the G-action to move around.

Hence we write ι∗ as R(G) ι∗−→ R(G), and all that remains is to compute the equivariant
resolution of the image ι∗O0 of the generator. This is the subject of Koszul resolutions.

6.2

Let T ⊂ G be the maximal torus. Any G-equivariant resolution is in particular a T-equivariant
resolution. Say dimV = 2, and let R := C[x, y]. The typical T-equivariant module is a
quotient R/I for a T-equivariant ideal I, which we equivalently write as a partition. Then,
as shown in Figure 7:

• R/I is generated by a single element ;
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• the kernel of R · → R/I is generated by elements ;

• the kernel of
⊕
R · → R · is the free module generated by elements .

1

y
y2

x x2 x3

xy

Figure 7: A monomial ideal I, and generators in the Koszul resolution of R/I

In summary, there is a free resolution

0→
⊕

R · →
⊕

R · → R · → R/I → 0.

of length 2, in accordance with Hilbert’s syzygy theorem.

6.3

As another example, consider dimV = 3 and the analogous Koszul resolution of O0 =
R/〈x1, x2, x3〉, where we visualize C[x1, x2, x3]-modules by drawing 3-dimensional boxes:

0 Rx1x2x3
⊕

i<j Rxixj
⊕

iRxi R O0 0.

This is a T-equivariant resolution as written, but it is clear how to write it in a G-equivariant
fashion:

0→ ∧3V ∗ ⊗OV
d−→ ∧2V ∗ ⊗OV

d−→ V ∗ ⊗OV
d−→ OV

d−→ O0 → 0.
Here it is important to remember that the symbols xi are functions on V and therefore live
in V ∗. The differential d may be written in a manifestly GL(V )-equivariant way as

d =
∑
i

d

dxi
⊗ xi,
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where d/dxi is meant in the odd sense: commute xi to the front if it exists, and then d/dxi = 1
if it exists and 0 otherwise. One can check that d2 = 0 using that (d/dxi)2 = 0 and d/dxi and
d/dxj anti-commute. Finally, the extra equivariance s ∈ GL(1) from acts by s−k on ∧kV ∗.
In the identification (16), it is a good exercise to verify s 7→ O(1).

6.4

It follows that, in general,

KGL(V )(P(V )) = KGL(V )(pt)[s±1]
/〈∑

(−s)i ∧i V = 0
〉
.

This can equivalently be written in coordinates as follows. Any conjugation-invariant
function on GL(V ) is uniquely determined by its restriction to the maximal torus T, whose
coordinates we denote by a1, . . . , an, and therefore KGL(V )(pt) consists of symmetric polyno-
mials in the ai. As for the relation, a basis of ∧iV is given by i-element subsets of {1, . . . , n},
e.g.

∧3V = a1a2a3 + a1a2a4 + · · · = e3(a1, a2, a3)

is the third elementary symmetric polynomial, and the generating function of elementary
symmetric polynomials is

∏
(1− sai). Hence

KGL(V )(P(V )) = (sym polys in ai) [s±1]
/〈∏

(1− sai) = 0
〉

(17)

=
⋃
i

{s = a−1
i }. (18)

It is instructive, especially later for elliptic cohomology, to visualize (18) as the union of tori
{s = a−1

i } over the base SpecKGL(V )(pt). This is shown in Figure 8 for P(C2), where for
clarity we use log s ∈ C instead of s ∈ C/(lattice) as the “vertical” coordinate.

a1 = a2

a2 a1

s = a−1
1

s = a−1
2

Figure 8: Visualization of SpecKGL(2)(P(C2))→ SpecKGL(2)(pt)

6.5

There are some lessons to draw here that are also relevant for elliptic cohomology. Warning:
we will mildly abuse notation and let G denote both the compact group Gc and the split
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reductive group Galg. The relation between the two is that

Galg = Spec
⊕

irreps V
of Gc

End(V ),

while by Peter–Weyl the ring of functions on Gc is the completion of this direct sum. Which
of these two is meant by G should be clear from context. Let Gss ⊂ Gc denote the subgroup
of semisimple elements.

6.6 Lesson 1

There is a stratification of the base SpecKG(pt) = Gss/G = T/W by different types of fixed
loci. To be more precise, there is a diagram

SpecKG(X) SpecK(Xg)

SpecKG(pt) {g}

and the fixed loci Xg are different (namely, larger) for non-generic g. Figure 9 shows this for
P2, where a1 = 1 for simplicity:

• the generic fiber (1− s)(1− a2s)(1− a3s) = 0 consists of three points, corresponding to
K((P2)t) = K(pt t pt t pt) for generic t ∈ T;

• the hyperplane {a2 = a3} has fiber (1 − s)(1 − a2s)2 = 0 corresponding to the fixed
locus of diag(1, a2, a2), namely K(pt t P1);

• the origin {a1 = a2 = a3} has fiber (1− s)3 = 0 corresponding to K(P2).

a2 = 1

a2 = a3

(1− s)3 = 0

(1− s)(1− a2s)
2 = 0

(1− s)(1− a2s)(1− a3s) = 0

Figure 9: Stratification and fibers of SpecKGL(3)(P(C3))→ SpecKGL(3)(pt)

One can view localization, roughly, as the statement that the fiber over a generic t ∈ T/W
is K(Xt) = K(XT), noting that a generic point generates the whole torus T. The more
standard statement of localization arises by changing coefficients to a field, thereby capturing
only the generic point.
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6.7

The analogue in elliptic cohomology is as follows. View the base SpecKG(pt) as G/G, the
space of G-local systems on a circle S1 defined by their monodromy up to conjugation. Then

EllGc(pt) = (Gc-local systems on an elliptic curve E).

This is purely topological, but Narasimhan–Seshadri (for genus 1) tells us it is isomorphic to
the space of sums of stable G-bundles on E of degree zero, which is exactly the dual abelian
variety E∨ := Pic0(E). For various reasons it is better here to replace E by E∨, which doesn’t
change anything up to (non-canonical) isomorphism since E = Pic0(E∨). But the only stable
bundles on E are those of rank 1. Hence, for G = GL(n) for simplicity,

EllGc(pt) = {sums of line bundles on E∨ of degree 0}/W
= Erank G/W

= E ⊗Z cochar(T)/W,

and we take the last line as the definition of EllG(pt). Note that unlike in cohomology or
K-theory, this is no longer an affine scheme. Also, from the construction it is clear that for a
subgroup H ⊂ G there is a canonical inclusion

EllH(pt) ⊂ EllG(pt)

The stratification we obtain on EllG(pt) will correspond to those subgroups H for which
the fixed loci are bigger than generic. For example, for our running example of P(V ), the
analogue of (18) is

EllGL(V )(P(V ))
⋃
i{s = a−1

i } En/S(n) E

(a1, . . . , an) s

= ⊂ ×

∈ ∈

where n := dimV .
More generally, elliptic cohomology EllG(X) is covariant with respect to (G1, X1) →

(G2, X2). This is in contrast to the contravariance of HG(X) and KG(X), and is because
we took Spec. When X1 = X2 = pt, we are back to the case of just group homomorphisms.
A good example to keep in mind comes from

1→ µ3 → GL(1) z3
−→ GL(1)→ 1,

which, using that EllU(1)(pt) = E, induces

0→ E[3]→ E
3−→ E → 0.

(The convention for abelian varieties is to write the group law additively.) Writing E =
C/(Z + Zτ), we see the kernel E[3] consists of nine lattice points in Z + Zτ . They are
interpreted as pairs of commuting elements in µ3, or, equivalently, µ3-bundles over E.
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6.8 Lesson 2

Let G act on X and let P → X be a principal H-bundle. A topologist would say such bundles
are classified by maps X → BH; more intrinsically, we say they are classified by X → [pt/H].
Pullback therefore gives a map

SpecK(X)→ SpecK([pt/H]) = SpecKH(pt)

and this is the Chern class. Concretely, we will need this for rank-n (complex) vector bundles,
which give

SpecK(X)→ KGL(n)(pt) = (sym polys in x1, . . . , xn)

where the Chern roots x1, . . . , xn of V are coordinates for the maximal torus T ⊂ GL(n).
For example, the symmetric polynomial ek(x1, . . . , xn) corresponds to ∧kV . Note that ev-
erything can be made equivariant with respect to G, e.g. the G-equivariant Chern class is
SpecKG(X)→ SpecKG×GL(n)(pt).

The story is literally the same for elliptic cohomology, only now the target of the Chern
class map is EllGL(n)(pt) = SnE := En/S(n).

6.9

A collection of vector bundles V1, V2, . . . generate KG(X) as a λ-ring (or with Adams opera-
tions), meaning to include ∧kVi for all k, if the Chern class map

SpecKG(X) ↪→ KG(pt)×
∏

Srank ViT

is an embedding. For example, O(1) generates K(Pn). There is a standard argument, known
as the resolution of the diagonal, for determining whether some collection of vector bundle
{Vi} generates KG(X). Let ∆ ⊂ X ×X be the diagonal and suppose there is a resolution

O∆ =
∑
Fj � Gk ∈ KG(X ×X) (19)

such that all the Fj and Gk belong to the algebra generated by the Vi. When X is compact,
convolution with O∆ is the identity operator on KG(X), and applying this operator to F ∈
KG(X) gives

F =
∑

χ(p∗2F ⊗ Gk)Fj ∈ KG(X).

Hence {Vi} generates all of KG(X). More strongly, the resolution (19) already provides such
a generating set: take either the {Fj} or the {Gk}.

All the varieties we will consider have a natural resolution of the diagonal.

6.10

Example. On Pn there is the tautological sequence

0→ O(−1)→ Cn+1 → Q→ 0.
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Let S := O(−1) for brevity, and on Pn × Pn write Si or Qi to mean the respective bundle on
the i-th factor. Consider the composition

s : S1 → Cn+1 → Q2,

which is an element of Hom(S1,Q2) = O(1) �Q. The diagonal ∆ ⊂ Pn × Pn is exactly the
locus {s = 0}. The resolution of the diagonal O∆ is therefore the Koszul complex of s, which
evidently involves only powers of O(1).

6.11

Example. On Hilb(C2, n) there is a similar tautological sequence

0→ I → C[x1, x2]→ C[x1, x2]/I → 0

and the same argument shows that the quotient bundle generates the equivariant K-theory.
While it is difficult to write what KT(Hilb(C2, n)) is in equations, it is straightforward to
describe it explicitly, using the quotient bundle, in the embedding

SpecKT(Hilb(C2, n)) ⊂ T× SpecKGL(n)(pt).

Let s1, . . . , sn be the coordinates of KGL(n)(pt), up to the permutation action of S(n) (cf. the
Pn case where there was only one such coordinate s), and let t1, t2 be coordinates of T acting
on C2 by scaling the axes. Then, over a generic point {si}, the fiber of SpecKT(Hilb(C2, n))
is a union over T-fixed points, which are partitions as in Figure 7, and for each partition the
values of {si} are the T-weights of the boxes of the partition, i.e. the monomials in C[x1, x2]/I.
Remember that x1, x2 ∈ (C2)∗ and have weights t−1

1 and t−1
2 . Over non-generic {si}, where

fixed loci are bigger than usual, the components corresponding to different partitions interact
in some complicated way.

The elliptic cohomology EllT(Hilb(C2, n)) picture is exactly the same, but now the com-
ponents are elliptic curves instead of tori.

6.12 Lesson 3

Let E → X be a vector bundle, let P(E) be its projectivization, and consider KG(P(E)). When
E is a trivial bundle over a point, this is our earlier computation for projective space, but the
exact same argument shows that

KG(P(E)) = KG(X)[s±1]
/〈∑

(−s)i ∧i E = 0
〉
.

For instance, take E and compactify it fiber-wise by adding a projective space at infinity to
get the projective closure PX(C ⊕ E) of E . Its K-theory is shown in Figure 10: the s = 1
component comes from the trivial factor C, and the other components come from the Chern
roots εi of E .

The Thom space of E is the “twisted suspension”

Thom(E) := PX(C⊕ E)/PX(E),
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K(X)

s

s = 1

s = εi

Figure 10: SpecKG of PX(C⊕ E)

and its equivariant K-theory therefore consists of functions on SpecKG(PX(C⊕E)) that vanish
on the {s = εi} components, i.e. the ideal generated by (1 − εi) in KG(X). As a sheaf over
KG(X), this K-theory is isomorphic to KG(X) and this is the Thom isomorphism.

6.13

However, something different happens in elliptic cohomology, where modding by the ideal
generated by the (1 − εi) is not isomorphic to the structure sheaf over EllG(X). This is the
first place where the two theories differ.

Lecture 7. The Thom sheaf and Thom isomorphism

Modification of the Thom isomorphism in elliptic cohomology, Theta bundles and theta func-
tions, Bott periodicity, pushforwards in elliptic cohomology, change of groups in equivariant
elliptic cohomology.

7.1

We continue with the discussion of various aspects of K-theory, and compare and contrast
them with elliptic cohomology. To begin, let’s set up notation. Let

E = Pic0(E∨)

where the dictionary between E∨ and E is

E∨ =


smooth elliptic curve
nodal curve
cuspidal curve

 E =


smooth elliptic curve
Gm

Ga

.

It is possible to take E∨ to be nodal with multiple components, in which case line bundles
on E∨ are line bundles on the normalization along with the data of how they glue, namely
multiple copies of Gm. Note that, as written, everything is defined over families.
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Let G be a compact (usually connected) topological group. We would like an elliptic
cohomology functor

Ell : (G, X)→ (super)schemes

covariant in (G, X). The super-ness of the target is due to super-commutativity in cohomology
between odd and even parts; it is not so important since we mostly work only on spaces with
even cohomology. If there were an elliptic cohomology ring, the target (super)scheme should
be viewed as its Spec. More precisely, due to covariance, we should write

Ell : (G, X)→ (super)schemes over EllG(pt),

where, as discussed earlier, EllG(pt) is the space of G-bundles on E∨. (This picture gets more
complicated if G is not connected.)

We will be able to understand a lot of elliptic cohomology by analogy with K-theory, using
the fact that

E = Gm/q
Z |q| < 1,

due to Jacobi over C or to Tate over Qp. Another useful picture to keep in mind is that,
roughly,

Ell(X) ≈ K(Loops(X)).

This came up earlier in our discussion of interfaces on Riemann surfaces, where the loops live,
and is natural from the perspective of supersymmetric QFTs in dimension 2 + 1.

7.2

So far we’ve discussed the equivariant K-theory of one specific type of space, for which the
answer is the same in topological or algebraic K-theory: for a vector bundle V → X,

KG(P(V )) = KG(X)[s±1]
/〈∏

(1− vis) = 0
〉

for any G ⊂ GL(V ), where vi are the Chern roots of V (i.e. the restriction of V to the maximal
torus of G).

The Thom space of a vector bundle V can be viewed as the bundle of unit balls in V with
the boundary spheres collapsed to a point, or, perhaps a better picture, as the normal bundle
to the embedding V → tot(V ) with the “infinity” of the vector bundle collapsed to a point.
Algebraically we can take the projective closure PX(V ⊕OX), which contains the projective
spaces PX(V ) at infinity, and then define

Thom(V ) := PX(V ⊕OX)/PX(V ).

This can be viewed as a twisted suspension of X, where the twist happens both in the bundle
and the G-action.
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Xx x′

collapse

Vx Vx′
X

Figure 11: Two views of the Thom space of a vector bundle V → X. Green
regions are collapsed to a point.

7.3

As discussed last time, the K-theory of Thom(V ) is the ideal
∏r
i=1(1− vi) in the K-theory of

X. In elliptic cohomology, recall that these Chern roots vi are coordinates on the target of
the Chern class map

Elleq(X) c−→ EllGL(r)(pt) = SrE 3 (v1, . . . , vr).

There is a natural divisor Sr−1E ⊂ SrE consisting of points (v1, . . . , vr−1, 0), up to permuta-
tion. From the perspective of EllGL(r)(pt) as a moduli of sums of degree-0 line bundles on E∨,
this is the codimension-1 locus where the bundles have a section, known as the theta divisor
DΘ. Hence, in elliptic cohomology, the Thom sheaf is

Thom(V ) = c∗
(
ideal of

∏
(1− vi)

)
= c∗(O(−DΘ)).

Definition. Denote the Thom sheaf by Θ(−V ). More generally, note that

Θ(V1 ⊕ V2) = Θ(V1)⊗Θ(V2),

and therefore we can consider a homomorphism Θ: K(X)→ Pic(Ell(X)).

The Thom isomorphism is therefore not an isomorphism in elliptic cohomology. Perhaps
this serves as an indication that the Thom isomorphism in ordinary cohomology or K-theory,
where it really is an isomorphism, is deeper and more non-trivial than one may initially
suspect. While the Thom sheaf on Spec of cohomology or K-theory is the trivial line bundle,
elliptic cohomology is a non-affine scheme where there are many non-trivial line bundles, one
of which is the elliptic Thom sheaf.

7.4

A short digression on theta functions is appropriate here. The ordinary ϑ function comes
from the embedding S0E → S1E = E, which is

DΘ = {0} ⊂ E.

48



There is a unique section of O(DΘ) by Riemann–Roch, which is exactly ϑ. In the presentation
E = Gm/q

Z, the origin is {x = 1} ⊂ Gm, and the appropriate function on Gm is

ϑ(x) := (x1/2 − x−1/2)
∏
n>0

(1− qnx)(1− qn/x). (20)

One can quickly verify that it is a section of the correct line bundle by computing

ϑ(qx) = −q1/2x−1ϑ(x).

Note that in (20) we have allowed a square root of x, which lets us normalize ϑ(x) so that it
is odd under the involution x 7→ 1/x (corresponding to the involution p 7→ −p on E), namely

ϑ(x−1) = −ϑ(x).

From (20) it is clear that ϑ has a unique zero at x = 1 (in the fundamental domain), and
converges if |q| < 1.

7.5

Returning to the Thom isomorphism, in K-theory the Thom sheaf really is trivial and therefore

Keq(Thom(V )) ∼= Keq(X)

by multiplication by
∏

(1− vi). For the trivial bundle C→ X,

Thom(C→ X) = Σ2X (21)

is the two-fold suspension of X. (The one-fold suspension is shown in Figure 12.) Then the

x0

CX

CX

Figure 12: The suspension Σ1X := D1 ×X/S0 ×X ∪D1 × {x0}

Thom isomorphism is
K(Σ2X) ∼= K(X) (22)

which is known as Bott periodicity.
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7.6

In general,
(Cr-bundles over X) = [X,Gr(r,∞)],

because every bundle V → X is a quotient of the trivial bundle CN of sufficiently large rank,
by picking sufficiently many sections of V . Therefore V is an r-dimensional subspace of CN ,
and, as we don’t know what N is, it suffices to send N →∞. The space

Gr(r,∞) := Matfull rank(r ×∞)/GL(r)

is therefore denoted BU(r), the classifying space of rank-r bundles. In K-theory, we study
bundles up to stable equivalence, i.e. up to trivial summands. So

K(X) = [X,Z× BU(∞)] (23)

where Z keeps track of the rank of the bundles. Note that Z× BU(∞) is only a group up to
homotopy with respect to ⊕ of bundles.

A bundle on ΣX is the data of a clutching function on X, since it can be trivialized on
each cone leaving only the gluing data. So

K(Σ1X) = [X,U(∞)].

On the other hand, from (23),

K(Σ1X) = [Σ1X,Z× BU(∞)]
= [X,Ω1(Z× BU(∞))]

where Ω1(−) denotes the space of loops. Hence there is a homotopy equivalence

U(∞) ' Ω1(Z× BU(∞)).

Repeating with Σ2X and using (22),

Ω1U(∞) ' Z× BU(∞).

So there is an infinite chain of spaces, each of which is loops of the previous one, and one way
to state Bott periodicity is that this chain is 2-periodic. In particular, the homotopy groups
of U(∞) and Z× BU(∞) are also 2-periodic and only differ by a shift by one.

In the stable homotopy category, suspension Σ is like a shift [1] for complexes, and

K−i(X) = K(ΣiX).
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7.7

What is Bott periodicity in elliptic cohomology? From the Thom isomorphism,

O−2
Ell(X) = OEll(Σ2X) = c∗O(−[0])

where [0] is the divisor of {0} ⊂ E. Recall from (21) that Σ2X is the Thom space of the trivial
line bundle, so here c : E → E is the zero map. Of course then any pullback c∗ results in a
trivial line bundle on E, but it is important to write them uniformly in terms of the modulus
q because on the moduli of elliptic curves they still form an interesting line bundle. The fiber
of the trivial bundle is

O(−[0])
∣∣
0 = m0/m

2
0 = T ∗0E

where m0 is the maximal ideal of 0 ∈ E. The first equality is because O(−[0]) consists
of functions vanishing at 0, and the second equality is by definition. In the language of
enumerative geometry, this is the class ψ1 on the moduli of elliptic curves. Hence

Oi−2
Ell(X) = OiEll(X) ⊗ ψ1.

7.8

We use the Thom sheaf to formulate a pushforward in elliptic cohomology. While pullbacks
are defined for any continuous G-equivariant map, pushforwards are only defined for complex-
oriented maps f : X → Y . In algebraic geometry, pushforwards are always defined but it
is convenient to factor them into an inclusion followed by a projection; similarly, complex-
oriented maps are those which factor as

f : X inclusion−−−−−→ VY
complex vector bundle−−−−−−−−−−−−−−→ Y

such that the normal bundle of X ↪→ VY is also a complex vector bundle N . In this setting,
there are two Thom isomorphisms

ΘX(−N) ∼= OEll(Thom(N))

OEll(Thom(V )) ∼= ΘY (−V )

In fact there is a map
ΘX(−N)→ ΘY (−V ) (24)

between them, induced by the collapse map Thom(V ) → Thom(N) where any points not in
a neighborhood of X in Thom(V ) are all identified together. There is also a tautological map

ΘX(f∗V )→ ΘY (V ) (25)

over EllGL(rank V )(pt). Pushforward in elliptic cohomology is the twist of (24) by (25),

f∗ : ΘX(−Nf )→ OEll(Y ), (26)

where Nf := N − f∗V is the normal bundle to the map f . The usual definition of Nf

in algebraic geometry is in terms of the graph of f , which for our f is equivalent to our
definition.
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collapse
X

Thom(N)

Y

Thom(V )

Figure 13: The Pontrjagin–Thom collapse map

Remark. Observe that in (26) the contributions from inclusion and projection enter with
opposite signs. If one regards pushforwards as integration

∫
, then heuristically we obtain that∫

= 1/(inclusion), and, letting xi be the Chern roots of the normal bundle,

(inclusion) ∼
∏

ϑ(xi)

(integration) ∼ 1∏
ϑ(xi)

.

This is more or less the same as in K-theory, only every xi is replaced by ϑ(xi).

7.9

We conclude with yet another perspective on the computation of K(P(V )). In K-theory,
KG(G/H×X) = KH(X) simply because the data of a G-equivariant sheaf on G/H×X is the
same as the data of an H-equivariant sheaf on X. By analogy,

EllG(G/H×X) = EllH(X) (27)

as well. In particular, let G := U(n + 1) and H := U(n) × U(1) so that Pn = G/H. Let T be
the maximal torus. Then

EllG(Pn) = EllH(pt) = E ⊗Z cochar(T)/WH

= En+1/S(n) = E × SnE

and the natural map E × SnE → Sn+1E is the map EllG(Pn) → EllG(pt). Moreover, as our
computation of EllG(Pn) is equally applicable to EllG(P(E)) for any bundle E , (27) gives a
pullback square

EllH(X) EllG(X)

EllH(pt) EllG(pt)

. (28)

This appears more obvious than it actually is, and in fact the square is not a pullback for
general G and H, not even in topological K-theory. A counterexample is

KGL(2)(P1) 6= KPGL(2)(P1)⊗KPGL(2)(pt) KGL(2)(pt),

52



viewing G = PGL(2) and H = GL(2). There is a natural map from the rhs to the lhs which
is not surjective: the class O(1) is not in the image. The general question of which G and
H make (28) a pullback square is somewhat complicated; cases where it holds include when
G/H is a Grassmannian or C or C∗ (which are P1 minus one or two points).

Lecture 8. A cellular approach to elliptic cohomology

Equivariant elliptic cohomology from the cell decomposition point of view, cofibration sequence,
examples.

8.1

Previously, we approached elliptic cohomology from the perspective of Chern classes. Today
we’ll take a complementary approach via cell decompositions. The analogy with ordinary
cohomology is that, for any coefficient ring R,

H∗(X,R) = H∗(· · · d−→ Ci
d−→ Ci+1 d−→→ · · · )

for a chain complex of R-modules Ci which we equivalently view as sheaves on SpecR, and
there is a cup product

∪ : Ci ⊗R Cj → Ci+j

compatible with the differential, namely d(α∪β) = dα∪β+(−1)···α∪dβ. This chain complex,
as an element of DbCoh(SpecR), is more fundamental than the cohomology rings H∗(X,R).
Various properties of cohomology, such as the suspension isomorphism H i+1(ΣX) = H i(X)
and Mayer–Vietoris, all amount to saying that the corresponding cohomology functor

(topological spaces X)→ (complexes of R-modules)

is a triangulated functor. Namely, it must preserve the structure of triangulated categories:

• a shift-by-one (to the left) functor [1] given by

(C•[1])i := Ci+1,

e.g. so that suspension is Σ = [−1];

• triangles given by
A•

f−→ B• → Cone(f)→ A•[1]
for some map f , or any triple A• → B• → C• → A[1] isomorphic to such a complex. The
object Cone(f) must have B• as a sub-complex and A•[1] as a quotient, and therefore
is constructed as

Cone(f) :=
[
A•[1]⊕B• with differential

(
dA[1] 0
f dB

)]
.

Note that the shift on dA[1] changes some signs, and the upper right block must be zero
because B• is a sub-complex.
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8.2

For topological spaces, there is an analogous sequence called the cofibration or Puppe sequence.
The only difference is that cohomology is a contravariant functor so this sequence runs the
opposite way. Given f : X → Y , it is good to first replace the target Y by something homotopy
equivalent that makes f an embedding. Hence take the mapping cylinder of f , obtained by
gluing one end of the cylinder X × [0, 1] to Y via f as shown in Figure 14. Collapsing the
cylinder into a cone then gives Cone(f). Further collapsing the other end of the cylinder gives
a map Cone(f)→ Σ1X. Putting it all together, the cofibration sequence is

X ↪→ (mapping cylinder of f)→ Cone(f)→ Σ1X → · · · ,

which, as in cohomology, can be continued infinitely with Σ1X
Σ1f−−→ Σ1Y → · · · .

f(X)
collapse X collapse Y

X

Y Y

Cone(f) ΣXmapping cylinder

Figure 14: Cofibration sequence of a map f : X → Y

8.3

The fundamental result is that, for any space Z, taking homotopy classes of maps [−,W ] out
of this sequence produces an exact sequence of groups

· · · ← [· · · ,W ]← [ΣiX,W ]← [ΣiY,W ]. (29)

Note that [ΣiX,W ] is a group by the same construction that makes homotopy groups into
groups, see Figure 15; alternatively, by adjunction, [ΣiX,W ] = [X,ΩiW ] is like maps of
X into the i-th homotopy group of W . Consequently [ΣiX,W ] is abelian for i > 1. So,
sufficiently deeply into (29), it is an exact sequence of abelian groups.

X Z

Figure 15: Composition of two elements of [Σ1X,W ]

In cohomology theories, all long exact sequences arise from (29), and the fact that it is
exact can be rephrased as the fact that the cohomology functor takes triangles to triangles.
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8.4

Slightly more elaborately, homotopy colimits of spaces become homotopy limits of sheaves on
SpecR. In practice, avoiding delving too deeply into category theory, this boils down to the
following construction. Suppose that, instead of a single map, we have two maps f, g : X → Y .
(The more general construction reduces to this if we think of X and Y as a disjoint union of
a bunch of things which we want to glue together.) Construct a new space

Z :=

f(X)

g(X)

Y

X

(30)

by gluing the two ends of the cylinder [0, 1]×X onto f(X), g(X) ⊂ Y respectively. From our
experience with mapping cylinders and the cofibration sequence,

H∗(Z) ≈ ker
(
H∗(Y ) f−g−−→ H∗(X)

)
.

But in a triangulated category there are only cones, not kernels, so the more accurate state-
ment is

H∗(Z) = Cone
(
H∗(Y ) f−g−−→ H∗(X)

)
[−1].

This construction is used for gluing spaces from simpler pieces; as an exercise, one may check
that Mayer–Vietoris is a special case of this. For example, the simplest case is to glue a
single n-cell to a space W along an attachment map f : Sn−1 → W , in which case we take
g : Sn−1 → Dn to be the inclusion of the boundary, and Z is the homotopy pushout

Dn

X Sn−1 Z (W with cell glued).

W

f

(31)

A space which is homotopy-equivalent to a CW complex (which we always assume it is)
is obtained by successively attaching one cell at a time in this way, and its cohomology is
obtained by successively taking cones as above.
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8.5

In the equivariant situation, the notion of a cell becomes more interesting. Previously, the ba-
sis for topology was the point, and disks of different dimensions were just different incarnations
of it. The equivariant replacement for a point is

pt (orbit of a group G),

the “smallest units” of a G-equivariant topological space. There are many different possible
orbits, all of the form G/H for some subgroup H, and so equivariant cells are of the form

Dn × G/H

where G acts trivially on Dn. Attachment maps are the equivariant version of (31), namely

Dn × G/H

X Sn−1 × G/H Z (W with cell glued).

W
f

By our previous non-equivariant discussion, to construct the equivariant cohomology sheaf
Cohom∗G(−) it suffices to specify Cohom∗G(Dn ×G/H). Cohomology should still be homotopy-
invariant, so this is just some sheaf Cohom∗G(G/H) on Spec Cohom∗G(pt). We take it to be

Cohom∗G(G/H) :=
(

image of structure sheaf under
Spec Cohom∗H(pt)→ Spec Cohom∗G(pt)

)
. (32)

8.6

There is in fact no need for these spaces Spec Cohom∗G(pt) to be affine schemes; for example,
equivariant elliptic cohomology has no underlying “cohomology ring”. Put differently, if we
think of cohomology as the cohomology of a complex of sheaves, there is no need for the
sheaves to actually be modules over some ring. Stated in this way, computing cohomology
just involves working with sheaves over some scheme and repeatedly taking cones.

For G-equivariant elliptic cohomology in particular, the scheme is denoted EllG(pt) and
is roughly the space of semistable degree-zero G-bundles on the dual elliptic curve E∨. The
dual is because we would like a canonical identification(

GL(1)-bundles on E∨
)

= Pic0(E∨) = E

with the original elliptic curve. Concretely, for connected G,

EllG(pt) = E ⊗ cochar(G)/W
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where W is the Weyl group. Even more concretely, we are mainly interested in abelian groups
T, for which

EllT(pt) = E ⊗ cochar(T).

A map T1 → T2 induces a map on cocharacter lattices, or, equivalently, a map EllT1(pt) →
EllT2(pt). For instance,

(T× T ·−→ T) (group law on EllT(pt)).

This is directly related to the classical story, where the group law on abelian varieties comes
from things like tensor product of line bundles, which has to do with operations like T×T ·−→ T
for 1-dimensional groups.

8.7

More generally, given a short exact sequence 1 → Γ → T → T′ → 1 (where the kernel Γ is
often called a quasi-torus), there is an induced exact sequence

0→ EllΓ(pt)→ EllT(pt)→ EllT′(pt)→ 0.

For example, if G = C×, the sequence 1→ µn → C× z 7→zn−−−→ C× → 1 induces

0→ E[n]→ E
·n−→ E → 0

where E[n] denotes points of order n on E. Over C, as we saw previously, E[n] consists of n2

disjoint points, but over other fields it may look very different. Over a field of characteristic
p = n, it could be p points of fatness p or it could be 1 point of fatness p2. In such a setting,
it is clear there must be some fatness since the differential of the multiplication-by-p map
is zero at 0 ∈ E, which is therefore a point of fatness at least p. Such elliptic curves are
called supersingular, and in the moduli of elliptic curves they form the locus where elliptic
cohomology behaves very differently from “K-theory made q-periodic”, in the sense of that
E = Gm/q

Z.

8.8

Any abelian group is a subgroup of a torus, so we have obtained a full description of equivariant
elliptic cohomology of a point. Then equivariant elliptic cohomology of (spaces homotopic to)
CW complexes can be computed cell by cell.

Example. Take U(1) acting on CP1, which decomposes into the two 0-dimensional cells 0
and ∞ and the 1-dimensional cell U(1)×D1. This is exactly the situation of (30), with

X = U(1), Y = {0} ∪ {∞},

and the two maps collapse X to the two points in Y respectively.
In terms of equivariant cells, Y consists of two orbits U(1)/U(1) and X is the orbit

U(1)/{1}. Then elliptic cohomology of Y is O⊕2
E since E = EllU(1)(pt), and by (32) elliptic
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∞

0

⇒

∞

0

U(1)×D1

S0

S0

Figure 16: U(1)-equivariant cells of CP1

cohomology of X is O0 since {0} ⊂ E is Ell{1}(pt) ↪→ EllU(1)(pt), and the map from one to
the other is

O⊕2
E 3 (ϕ1, ϕ2) 7→ ϕ1(0)− ϕ2(0) ∈ O0. (33)

This is a surjection, and so its cone is the kernel

{(ϕ1, ϕ2) ∈ OE : ϕ1(0) = ϕ2(0)}.

In terms of geometry, i.e. taking spectrum, the kernel corresponds to two elliptic curves
E glued together at 0. This is what we have previously computed with Chern classes. The
exact sequence coming from (33) is precisely the normalization sequence

0→ OEllU(1)(pt) → Onormalization → Ointersection → 0.

8.9

Example. The same procedure can be done for the action of A = {diag(1, a2, a3)} on CP2,
where now there are three kinds of orbits: a single free orbit, three orbits A/A, and three
orbits of the form A/Ai where Ai are the three 1-dimensional subtori. We computed earlier
that EllA(CP2) is three copies of E⊕2 glued along coordinate axes. Its normalization is

EllA(pt t pt t pt) = (3 copies of E⊕2),

and OEllA(CP2) arises from OEllA(pt) by requiring functions agree along the three edges E ∼=
EllAi(pt) and the point pt = Ell{1}(pt). In other words, there is an exact sequence

0 OEllA(CP2) O⊕3
E2 O⊕3

E O0 → 0

pt
(34)

where we have also drawn the scheme corresponding to each structure sheaf. Note that the
ordering of the orbits in (34) is in relation to the size of their stabilizer, not the size of the
orbit, e.g. the smallest term O0 corresponds to the free orbit.
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8.10

Example. A different point of view on the same computation for CP1 is to take a disk
and glue its boundary U(1) to a point. View the disk as the disk bundle B(a) for the normal
bundle N0/CP1 , i.e. the defining representation which we denote a. Then CP1 is the homotopy
pushout

U(1) B(a)

pt CP1

This results in the sequence

0 Thom(a) OEllA(CP1) OEllA(∞) 0

0

vanish here
0

∞ ∞

where again we have also drawn the scheme corresponding to each sheaf. Note that this is
essentially the same computation, but we have made the roles of 0 and∞ slightly asymmetric.

This asymmetric perspective is useful for CPn, which can be constructed in the same way
by attaching CPn−1 to the normal bundle (of zero) with weights ai/a0. This gives

0→ Thom
(∑

i

ai/a0

)
→ OEll(CPn) → OEll(CPn−1) → 0.

8.11

The moral of the story is that the decomposition of a space into equivariant cells can be done
in many different ways, to give different sequences defining its cohomology.

Lecture 9. Constructing stable envelopes I: the inductive strat-
egy

Attracting manifolds, strategy for inductive construction of elliptic stable envelopes, stable
envelopes as an interpolation problem, interpolation and its relations to cohomology vanishing,
cohomology vanishing for line bundles on abelian varieties, Picard and Neron–Severi groups
of an abelian variety.
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9.1

Let X be an algebraic variety with an action of a torus A. Our perspective was that X is
some moduli of vacua and A is a group of global symmetries. Associated to this is a “phase
diagram”, in Lie(A), recording the fixed locus in X of elements in A. Today our goal is to
construct an interface between different phases, e.g. X and Xa = XA for generic a. This will
evidently depend on a choice of chamber (containing a) in the phase diagram; equivalently,
this is a choice of attracting/repelling direction for the action of A.

9.2

Assume X is smooth and symplectic, and the action of A preserves the symplectic form ω.
Then the desired interface is a Lagrangian in X × XA. It is a fact that XA =

⊔
Fi is also

smooth, but may consist of many connected components Fi. Near such a component Fi, the
desired Lagrangian consists of all attracting directions

Attr := {(x, f) | lim
a→0

a · x = f} (35)

in contrast to the (equal number of) repelling directions. The limit a → 0 in (35) is where
the choice of chamber comes in. Note that Attr is a nice Lagrangian but is not closed, since
the attracting trajectory of a point in one fixed component F1 may originate from a different
fixed component F2. The simplest example to have in mind is X = T ∗Gr(n) with the action
of a maximal torus A ⊂ GL(n), where attracting manifolds are conormals to Schubert cells
and are certainly not closed.

9.3

Over C, every attracting trajectory is a CP1. In physics we think of it as an infinite cylinder,
corresponding to the space C from §1.8, with the action of C× rotating it. The C×-equivariant
profile of fields on C will then look like Figure 17, going from one vacuum to another.

CP1 = C

X

C×

Figure 17: Attracting trajectories as physical fields

Keeping these CP1 trajectories in mind, the appropriate closure of Attr is obtained in an
absolutely standard way: if such a trajectory flows to a fixed point, we allow it to continue
flowing to another fixed point (cf. breaking of Morse trajectories, geodesics, etc.). In local
coordinates, there is a family of attracting trajectories as in Figure 18 and some of them hit
the fixed component Fi and break into two pieces. Instead of just taking the red piece alone,
we must include the other blue piece as well.
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Fi

f x

Figure 18: Attracting, repelling, and nearby trajectories for a fixed component

Definition. The full attracting set is

Attrf :=
{

(x, f)
∣∣∣∣ x connected to f

by a chain of attracting trajectories

}
⊂ X ×XA.

It is closed and proper over X, but may be singular. There is an ordering � on fixed compo-
nents by which one is attracted to which, i.e. Fj � Fi if Fj ⊂ Attr(Fi), and

Attrf (Fi) =
⋃

Fj�Fi
Attr(Fj),

e.g. think about X = T ∗Gr(n) and (conormals to) Schubert cells.

A good exercise is to check that for the action of a torus of any reductive group on a
subvariety of projective space, � is actually a partial ordering.

9.4

By itself, Attrf does not define a cobordism class. For example, again for Schubert cells, it is a
basic fact that their pre-images in a resolution depend on the choice of resolution. Instead, we
want a canonically-defined elliptic cohomology class supported on Attrf . For us, this means a
section of some line bundle on EllAut(X) where Aut is a group of automorphisms commuting
with A, and to make matters simple, we choose a maximal torus T ⊂ Aut containing A
and consider EllT(X). Recall that EllT(X) is a scheme over EllT(pt) = E ⊗ cochar(T), and
that sections of line bundles over it are the elliptic analogue of functions on SpecKT(X) or
SpecHT(X), i.e. elements of KT(X) or HT(X).

9.5

The strategy is to do the construction inductively, which makes sense since Attrf itself is
naturally defined inductively. Pick some linear ordering on the fixed components Fi such that
Fi � Fj for i ≤ j, and set

Xn := X \
⊔
i≥n

Attr(Fi).
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Then by construction Attr(Fn−1) ⊂ Xn is closed and proper over Xn. The problem of
extending a class on Xn to Xn+1 involves studying the equivariant inclusion Xn ↪→ Xn+1,
which induces a map

EllT(Xn)→ EllT(Xn+1)
which turns out to be inclusion of a closed set.

CP1

F2

F3

F4

removed in X3

Figure 19: Stratification of X by attracting sets

Example. Recall that for X = T ∗P2 with the action of A 3 diag(1, a2, a3), the elliptic
cohomology EllA(X) consists of three copies of E2 ∼= EllA(pt) corresponding to three fixed
points p1, p2, p3 ∈ X, and

X3 = T ∗P2 \Attr(p3)
X4 = T ∗P2.

Then EllA(X3)→ EllA(X4) is just inclusion of the p1 and p2 pieces.

9.6

Given a scheme Z and a line bundle L on it, a very general problem in algebraic geometry
is interpolation of sections of L, meaning to extend sections of L from their restrictions to
a subscheme Z ′ ⊂ Z. The simplest case is where Z is a curve and Z ′ is some collection
of points, and then the interpolation problem becomes whether a polynomial is uniquely
determined by its values at those points. Slightly more involved, if Z is a surface and Z ′ ⊂ Z
is a divisor, sections of line bundles correspond to other curves on Z and then the problem
becomes whether a curve is determined by its intersection with another fixed curve.

The general procedure to study this kind of interpolation problem is to take the short
exact sequence 0→ IZ′ → OZ → OZ′ → 0 and tensor with L to give

0→ L⊗ IZ′ → L → L
∣∣
Z′
→ 0,

and interpolation is about studying the kernel and cokernel

ker ⊂ H0(L)→ H0(L
∣∣
Z′

)→ coker .

The cokernel measures the existence of a solution to interpolation and the kernel measures
uniqueness of the solution. By long exact sequence, vanishing of H0(L⊗ IZ′) implies unique-
ness and vanishing of H1(L ⊗ IZ′) implies existence.
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Example. For EllA(T ∗P2), the restriction is OEllA(X4) → OEllA(X3) and the ideal sheaf consists
of functions on EllA(p3) that vanish on the intersection. This is exactly the Thom sheaf of
the normal bundle to Attr(F3). Hence we want vanishing of H i(Thom⊗L) = 0 for i = 0, 1.

9.7

Abstractly, these are cohomology groups of a line bundle on an abelian variety, e.g. EllA(p3) =
Erank A in the above example, and so we now briefly review line bundles and their cohomology
on abelian varieties.

Let A be an abelian variety. Then the Picard group of line bundles on A fits into a short
exact sequence

0→ Pic0(A)→ Pic(A)→ NS(A)→ 0

where Pic0(A) is the component consisting of line bundles algebraically equivalent to zero,
and the quotient is the discrete Neron–Severi group NS(A). Both

A∨ := Pic0(A)

and NS(A) are themselves abelian varieties. The main result about cohomology of line bundles
on A is that if L ∈ Pic0(A) is non-trivial, then

H i(L) = 0 for all i.

Line bundles of degree zero therefore behave like characters for A, in the sense that H i(L1 ⊗
L−1

2 ) = 0 for line bundles L1,L2 unless L1 ∼= L2. This is what makes Fourier–Mukai trans-
forms work.

9.8

The degree map for line bundles takes values in NS(A), and so in our case we are interested in
NS(Er). When r = 1, every line bundle on an elliptic curve (in fact, any curve) is isomorphic
to O(

∑
mipi) modulo linear equivalence, and the degree is

∑
mi ∈ Z ∼= NS(E). What’s

remarkable for abelian varieties is that the Picard functor is representable by a fine moduli
space, so not only is there a space parameterizing line bundles, there is a universal line bundle
called the Poincaré bundle. For elliptic curves, E∨ ∼= E and the Poincaré bundle is

O(diag−E × {0} − {0} × E)

on E × E. Its fiber over a ∈ E is the bundle O(a− [0]), and clearly all degree-0 line bundles
on E have this form.

9.9

As a next step, take r = 2. Let p1, p2 : E × E → E be projections onto each factor, and
similarly let ι1, ι2 : E → E × E be the inclusions. Consequently there are maps

Pic(E)2 p∗1⊗p
∗
2)

−−−−→ Pic(E × E)
(ι∗1,ι∗2)
−−−−→ Pic(E)2
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and the composition is the identity. Hence it suffices to compute ker ι∗ or coker p∗. View

Pic(E × E)/Pic(E)2 =
{

line bundles L → E × E
trivial on E × {0} and {0} × E

}
.

Such a line bundle L is equivalently a family of line bundles on E parameterized by E. Since
degree is constant in families and L

∣∣
{0}×E is trivial, L gives a map E → Pic0(E) ∼= E. In

addition, this map sends 0 to 0 since L
∣∣
E×{0} is also trivial. Fact: a map between abelian

varieties that takes 0 to 0 is a group homomorphism. Hence

Pic(E × E)/Pic(E)2 ∼= Hom(E,E)

which is some discrete group. (It contains at least Z, but may be bigger if E has complex
multiplication.) It follows that

Pic0(Er) = Pic0(E)r

NS(E2) = NS(E)2 ⊕Hom(E,E).

The way to phrase it invariantly is that NS(E2) = Homsymmetric(E2, E2), meaning elements
of the form (

∗ α
αt ∗

)
∈ Hom(E2, E2)

where ∗ denotes any element of NS(E) = Z and αt is the dual map between dual varieties.
More generally,

NS(A) = Homsymmetric(A,A∨)

and symmetric here means that the dual map in Hom(A∨,A) ∼= Hom(A,A∨) is the same as
the original. In particular,

NS(Er) ⊃ {symmetric r × r matrices with values in Z},

which correspond to integral quadratic forms, and equality holds if E is not CM (which we
will never need).
Remark. If L is a line bundle on A and Ta : A → A is the translation map b 7→ b+ a, then

T ∗aL ⊗ L−1 : A → A∨

is actually the degree of L as an element in NS(A). Exercise: check that this agrees with the
usual notion of degree for A = E.

9.10

Let A act trivially on a space Y and consider an A-equivariant vector bundle V with Chern
roots v1, . . . , vr. Recall that there is a Chern class map

EllA(Y ) c−→ EllGL(r)(pt) = SrE 3 (v1, . . . , vr),
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and there is a bundle Θ(V ) := c∗O(DΘ) where DΘ is the theta divisor defined by vi = 0 for
some i. So Θ(V ) contains ϑ(v1)ϑ(v2) · · ·ϑ(vr) as a section. One can ask for the degree of
Θ(V ) pulled back under the inclusion

ι : EllA(pt)→ EllA(Y )

for any point pt. Let a1, . . . , an be coordinates on A, so they act on the fiber V
∣∣
pt by some

monomials avi . Then
deg

∏
ϑ(avi) =

∑
deg ϑ(avi) =

∑
v2
i

since degree is some integral quadratic form. We have proved the following.

Proposition. In S2 char(A) ⊂ NS(E ⊗ cochar(A)),

deg Θ(V ) =
∑

v2
i = c1(V )2 − 2c2(V ).

Lecture 10. Constructing stable envelopes II: the details

Attractive line bundles, definition of elliptic stable envelopes, existence and uniqueness of
elliptic stable envelopes.

10.1

The goal now is to actually construct elliptic stable envelopes. We will do the construction
in a simple but representative case.

Let X be an algebraic symplectic variety with an action of a torus A preserving the
symplectic form ωX , though in general one can consider a non-abelian group. Let T ⊃ A be
a bigger torus, containing a C× which scales ωX with weight ~. In other words there is an
exact sequence

1→ A→ T ~−→ C× → 1.

This ~ will be the deformation parameter of the quantum group.
For simplicity, assume the fixed locus XA = {fi} is just a finite collection of points. Then

instead of a Lagrangian in X × XA, we just need a bunch of Lagrangian subvarieties in X.
The elliptic stable envelope Stab(fi) for the fixed point fi should be an elliptic cohomology
class, namely a section of some line bundle S. To specify S, we fix the degree of its restriction
to fixed points in variables a ∈ A.

10.2

At a fixed point f , an attracting direction of weight wi pairs with a repelling direction of
weight 1/~wi because the variety is symplectic. So

Attr(f)
∣∣
f

= ±
∏

ϑ(~wi), (36)
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recalling that ϑ(1/x) = −ϑ(x). These wi are weights of A, so wi = aµi for some µi. We
computed last time that (36) therefore has degree∑

µ2
i ∈ S2 char(A)

in the variables a. In particular this is independent of which directions are attracting/repelling,
because the change wi 7→ 1/wi corresponds to µi 7→ −µi.

Definition. The line bundle S is attractive if

degA S
∣∣
fixed locus = degA Attr

∣∣
fixed locus.

Let Nfix,<0 denote the repelling part of the normal bundle to the fixed locus, so that Attr is
the zero section of Nfix,<0. Then equivalently this degree is degA Θ(Nfix,<0), which, from last
time, is c2

1 − 2c2.

If S is attractive, then S ⊗ L is also attractive for any line bundle L of degree 0 or alge-
braically equivalent to 0. This is a very, very, very important degree of freedom, corresponding
to the necessity of dynamical variables in elliptic quantum groups. In fact we will not con-
struct stable envelopes for one choice of attracting chamber, but for all choices; the R-matrix
is obtained from changing attracting/repelling directions in Stab. Specifically, making the
complete opposite choice of attracting/repelling direction changes (36) as∏

ϑ(~wi) 
∏

ϑ(wi).

These have the same degree but are different bundles. Their ratio, with an aesthetic correction
by an ~ factor, is

ϑ(~w)
ϑ(w)ϑ(~) . (37)

This is a section of the Poincaré bundle on E×E, the universal degree-0 line bundle. Here we
are thinking of the elliptic curve as E = EllC×(pt), and an element a ∈ C× is like a coordinate
on E (modulo qZ). In (37), the coordinates on E × E are w and ~.

Equivalently, (37) is a section of

Θ(~w − w − ~) = Θ((w − 1)(~− 1)),

where we are free to tensor by an extra factor of the trivial bundle Θ(1). From this expression
it is clear the line bundle is degree-0 in either factor: setting the other variable to 1 gives the
trivial bundle.

10.3

Here is a very general way to produce line bundles of degree 0. For V ∈ KT (X), take z ∈ C×
for some C× that does not act on X at all, and define

U(V, z) := Θ
(
(V − Crank V )(z − 1)

)
∈ Pic(EllT(X)× E)

where E has coordinate z. This has degree 0 in either factor. We are free, and in fact forced
(by the earlier discussion), to twist by such line bundles in elliptic stable envelopes.
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Proposition. • U(V, z) = U(detV, z), so there is no need to consider general vector
bundles V .

• U(L, z1)⊗ U(L, z2) = U(L, z1z2).

Proof. An exercise in using the theorem of the cube.

10.4

We still need at least one attractive bundle. This will be given by a choice of polarization.

Definition. A polarization of X is a class T 1/2 ∈ KA(X) such that

T 1/2 + (T 1/2)∨ = TX, (38)

i.e. it picks half of the tangent vectors.

Then S = Θ(T 1/2) has the correct degree. Note that (38) implies

Θ(T 1/2)⊗2 = Θ(TX),

which is like picking a square root of the canonical bundle.
If X = T ∗M , let π : T ∗M → M be the projection. Then π∗TM is a polarization, and

ker dπ is another polarization. More generally, if X ⊂ T ∗(stack) is an open subset, then the
same applies. A typical such situation, which covers the case of Nakajima quiver varieties, is
when X is the GIT-stable locus in a stack of the form T ∗[W/G], and then one can take

T 1/2 = TW −Ad(G)

where Ad(G) is the adjoint representation of G. Both TW and Ad(G) are G-equivariant and
therefore descend to the quotient T ∗[W/G].

10.5

To summarize, we have two elliptic classes Attr and Θ(T 1/2), which near fixed points are

Attr
∣∣
f

= ±
∏
wi>0

θ(~wi)

Θ(T 1/2)
∣∣
f

=
∏

wi∈T
1/2
f

θ(wi).

The discrepancy is therefore

Θ(T 1/2)
Θ(N<0)

∣∣∣∣
f

= U(detT 1/2
>0 , ~)
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where we used Proposition 10.3 to replace T 1/2
>0 by its determinant. In classical terms, the

attracting part T 1/2
>0 of the polarization is also known as the index of a fixed point. Hence,

near the fixed locus F , the elliptic stable envelope is a section

Stab: Θ(T 1/2
F )⊗ U(detT 1/2

>0 , ~)−1 → Θ(T 1/2
X ),

and the twist by U(det, ~) is forced upon us. One can additionally twist both the source and
target by line bundles U(Li, zi), with the effect that ~ from U(det, ~) shifts the variables zi.

The point is that we must be careful to pick the correct line bundle whose section will
give the elliptic stable envelope. While the degree of the line bundle is fixed once and for
all, the degree-0 part is free to move around; this is exactly the dynamical freedom in elliptic
quantum groups.

10.6

Now that we have defined Stab near the fixed locus, it remains to extend it inductively. Fix
some ordering on fixed components {Fi} and let

Xn :=
⋃
i≥n

Attr(Fi).

Then there is a long exact sequence

f1

f2

X \X1

X1 \X2

X2

Figure 20: The inductive strata in constructing stable envelopes

· · · → H i(X \Xn+1, X \Xn)→ H i(X \Xn+1)→ H i(X \Xn)→ · · ·

where the relative term is exactly Thom(NX/Attr(Fn)). Note that Attr(Fn) is homotopic to
Fn itself. In elliptic cohomology the sequence becomes

· · · → Θi(−NX/Fn,<0)→ OiEllT(X\Xn+1) → O
i
EllT (X\Xn) → · · · .

In fact the arrow Θi → Oi is an embedding, because in the commutative triangle

Θi(−NX/Fn,<0) OiEllT(X\Xn+1)

OiEllT(Fn)

·
∏
wi<0 ϑ(wi) restriction
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the multiplication map is by a non-zerodivisor. Hence the whole long exact sequence just
splits into short exact sequences. In particular the zeroth such sequence is

0→ Θ(−NX/Fn,<0)→ OEllT(X\Xn+1) → OEllT(X\Xn) → 0.

Tensoring this with S gives

0→ S
∣∣
Fn
⊗Θ(−N<0)→ S

∣∣
X\Xn+1

→ S
∣∣
X\Xn → 0. (39)

Which sections in H0(S
∣∣
X\Xn) lift to H0(S

∣∣
X\Xn+1

) is therefore controlled by H0 and H1 of
the first term in (39), which is a line bundle on EllT(pt). Viewing EllT(pt) as a fibration

EllT(pt) EllA(pt)

EllT/A(pt),

this line bundle is set up so that it has degree 0 on fibers. Since non-trivial degree-0 line
bundles on abelian varieties have no cohomology, we expect our bundle to have no cohomology
either.

10.7

To start the inductive construction, note that the stable envelope is zero on X \X1. To extend
to X \ X2 and get something interesting, we have carefully set it up so that the first term
S
∣∣
F1
⊗ · · · in (39) is exactly the trivial line bundle, and therefore we get something non-zero

(and unique) on X \X2. To extend to X \X3, it suffices to show that S
∣∣
F2
⊗ · · · is not trivial

generically.

Lemma. If L is ample, then
wta L

∣∣
F1
6= wta L

∣∣
F2
.

Consequently, twisting by U(L, z) produces a result which depends non-trivially on z and
is not trivial generically.

Proof. Let C be a curve connecting F1 and F2. Then degL
∣∣
C
> 0 since L is ample. On the

other hand, by localization

degL
∣∣
C

=
wtL

∣∣
F1
− wtL

∣∣
F2

tangent weight at F1
.

So not only are the weights not equal, there is an ordering on them.

Hence if we allow dynamical variables, then the family S
∣∣
F2
⊗ · · · is non-trivial. Treating

it as a map to Pic0(EllA(pt)), the only cohomology that can appear is in the dimension of
the map. Namely H0 = 0 and H1 may appear in codimension 1. That H0 = 0 means
elliptic stable envelopes are unique; that H1 may appear in codimension 1 means elliptic
stable envelopes may have poles in zi and ~ along divisors where S|F2 ⊗ · · · becomes the
trivial bundle. Note that stable envelopes depend on ~ through the index term detT 1/2

>0 .
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10.8

In the enumerative applications we have in mind, where one studies maps f : C → X of degree
d and puts them into a generating function∑

d

zd(count of maps of degree d),

the variables z are exactly the dynamical variables living in Pic(X)⊗Z C×/qZ. So while dy-
namical variables may seem like an annoyance from the perspective of elliptic stable envelopes,
from the original enumerative perspective they are very important! Note that the enumerative
z is a “quantum” object while the elliptic z is a classical object. Also, the enumerative series
has singularities in z related to the poles of elliptic stable envelopes, and so it is a good sign
that we have discovered there are poles in z.

Lecture 11. T ∗Pn−1 and the hypertoric case

Elliptic stable envelopes for projective spaces, and for hypertoric varieties, Felder’s elliptic
R-matrix.

11.1

The plan for today is to go over some examples and properties of stable envelopes. The first
example is always X = T ∗Pn−1. Recall that

Pn−1 = (Cn \ 0)/C×.

Let x1, . . . , xn denote the variables on Cn, and s be the variable on C×. Similarly,

T ∗Pn−1 = {(x, y) ∈ V × V ∗ | x · y = 0︸ ︷︷ ︸
moment map

, x 6= 0︸ ︷︷ ︸
stability condition

}/C×. (40)

Here V ∼= Cn. In particular T ∗Pn−1 is an open set in the corresponding quotient stack

{(x, y) ∈ V × V ∗ | x · y = 0} = T ∗[V/C×].

11.2

At the level of elliptic cohomology,

Elleq(X) ⊂ Elleq(T ∗[V/C×]) = Elleq×C×(pt).

The equivariance is chosen to consist of GL(V ), acting on both V and V ×, and also a C×
scaling the cotangent vector y. Let a1, . . . , an be coordinates on the maximal torus A ⊂
GL(V ), and ~ be the coordinate on the C× (which therefore scales y by ~−1). Since Elleq(X) ∼=
Elleq(Pn−1) by the discussion in either §6.7 or §8.9,

Elleq(X) =
⋃
i

{sai = 1} ⊂ Elleq×C×(pt) = En × E × E.
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Note that in Elleq(T ∗[V/C×]) also sits Elleq(Xflop), where Xflop is defined as in (40) but with
the different stability condition y 6= 0. Then

Elleq(Xflop) =
⋃
i

{sai~ = 1} ⊂ En × E × E

since the difference between x and y is that weights are opposite and there is a twist by ~.

11.3

The A-fixed points in X are of the form

fk :=
{
y = 0
x = (0, . . . , 0, 1, 0, . . . , 0)

where the 1 is in the k-th position. Pick the attracting order · · · → f3 → f2 → f1, meaning
that e.g. f3 is attracted to f2, which is attracted toward f1.

11.4

The stable envelope Stab(fk) is a section of some line bundle S on Elleq(X), but it is better
to write it as a restriction of a line bundle on Elleq(T ∗[V/C×]). The main ingredient in S is
the theta bundle Θ(T 1/2X) so we must pick a polarization T 1/2X. From (40),

TX = T ∗V − C− C

where the first C = g∗ is for the moment map, and the second C = g is for the quotient. Here
g is the Lie algebra of the C× with coordinate s. So for the polarization we can take

T 1/2X = V − C.

The trivial factor C does not affect Θ(−). For the remaining ingredient U(OX(1), z) of S,
note that OX(1) comes from the defining representation of C× and is therefore just s on the
stack, so its sections are like

ϑ(zs)
ϑ(z)ϑ(s) .

Note that we are writing the group operation on abelian varieties multiplicatively, instead of
additively.

11.5

The stable envelope therefore looks roughly like a product

Stab(fk) ∼
∏

ϑ(ais)︸ ︷︷ ︸
Θ(V )

· ϑ(zs)
ϑ(z)ϑ(s) .

This has degree n in s and degree 1 in each ai. However, it must be supported on the full
attracting set of fk. Also, the denominator ϑ(s) is problematic because it involves s, but we
want a holomorphic section of the line bundle. However, as discussed last time, denominators
in z and ~ are perfectly acceptable and form the resonant loci.
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11.6

The correct answer, which one can check has the desired degrees in all variables, is

Stab(fk) = ϑ(aksz~n−k)
ϑ(z~n−k)

∏
i<k

ϑ(ais)
∏
i>k

ϑ(ai~s). (41)

Note that ais is the weight of the coordinate xi, and ai~s is the weight of y−1
i . To check its

support, it suffices to compute its restriction to fk by substituting s = a−1
k :

Stab(fk)
∣∣
fk

= 1 ·
∏
i<k

ϑ(ai/ak)
∏
i>k

ϑ(ai/ak · ~).

We recognize these weights ai/ak and ak/~ai as the repelling weights at fk, by our choice of
attracting direction:

fk =
[
y
x

]
=
[ attracting︷ ︸︸ ︷

0, . . . , 0, 0,
repelling︷ ︸︸ ︷
0, . . . , 0

0, . . . , 0︸ ︷︷ ︸
repelling

, 1, 0, . . . , 0︸ ︷︷ ︸
attracting

]
. (42)

Indeed, the term
∏
i<k ϑ(ais)

∏
i>k ϑ(ai~s) in (41) sets

x1 = · · · = xk−1 = 0
yk+1 = yk+2 = · · · = yn = 0

and what remains is the attracting set. Hence the formula (41) has the correct support. Fi-
nally, the remaining factor ϑ(aksz~n−k)/ϑ(z~n−k) is uniquely specified from being a section of
the required line bundle, i.e. (in older language) from having the correct factor of automorphy.
Remark. An important observation is that in the reasoning leading up to (41), there is no
dependence on the choice of stability condition. So the same formula works for Xflop, and
there is a certain flop invariance for stable envelopes.

11.7

Example. For X = T ∗P1, the toric picture and full attracting sets are drawn in Figure 21.
Note that

Attrf (f1) = {y2 = 0}
Attrf (f2) = {x1 = 0},

as expected. For example, in the notation of (42),

Attrf (f1) =
{[

y1 0
x1 x2

]
| x1y1 = 0

}
=
{[

0 0
∗ ∗

]}
∪
{[
∗ 0
0 ∗

]}
.

The first piece is the P1 and the second piece is the fiber over f2.
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f1 f2 f1 f2

y2 = 0 x1 = 0

Figure 21: Toric polytope of T ∗P1 and full attracting sets of fixed points

11.8

From T ∗Pn one can proceed more generally to hypertoric varieties

X = T ∗V �� S,

where S is a torus in GL(V ) and �� denotes holomorphic symplectic reduction. Namely if µS
is the moment map for S, then X = µ−1

S (0)�S where � involves some stability condition. We
assume that the quotient X is smooth.

The torus A which acts on X fits into a short exact sequence

1→ S→
(

maximal torus
of GL(V )

)
→ A→ 1.

Let (x, y) be coordinates on T ∗V . Note that we are free to change what we label as living in
V vs V ∗, and so without loss of generality an A-fixed point in X, viewed in T ∗V like in (42),
has the form [

y
x

]
=
[

0, 0, 0, 0, 0, 0, 0, 0, 0
∗, ∗, ∗, ∗, 0, 0, 0, 0, 0︸ ︷︷ ︸

repelling for A

]
(43)

where the unspecified coordinates ∗ correspond to a free S-orbit in T ∗V . Weights of the S-
action on these coordinates are the coordinates (s1, . . . , sr) on S. Furthermore, we take the
polarization T 1/2X to consist of the x coordinates. Let V1 denote the free S-orbit and V2
denote the repelling directions in T 1/2X.

11.9

With this setup, we can now repeat the same process as before to compute the elliptic stable
envelope:

Stab(fixed point) =
Θ(V1)

∣∣
s=sz∏

ϑ(zi)
Θ(V2) (44)

The theta bundle Θ(V2) is setting xr+1 = · · · = 0. Together with Θ(V1) they form the theta
bundle of the polarization T 1/2X, but a substitution s 7→ sz is required to produce correct
factors of automorphy. Here sz denotes (s1z1, . . . , srzr); line bundles on X correspond to
cocharacters of S, so

Pic(X) = cochar(S)
Pic(X)⊗ C× 3 (z1, . . . , zr).
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Note that (44) does not involve ~. This is due to our setup for the fixed point (43); for
example, the stable envelope for the last fixed point of T ∗Pn in our attracting order also has
no ~.

11.10

There is a nice way to draw hypertoric varieties. As preliminary examples, consider the toric
varieties T ∗P1 and an An surface. Their toric polytopes in coordinates (a, ~) are drawn in
Figure 22, and the projections of these polytopes onto a∗ are described by the singular points
of the moment map.

a∗ a∗

Figure 22: Projection of toric polytopes of T ∗P1 and An surface onto a∗

For hypertoric varieties, at each fixed point there are weights wi (of a, ~) and also weights
1/wi~ of dual directions. The moment map takes these to a cone

Cone
(
wi,

1
wi~

)
⊂ a∗ ⊕ (LieC∗~)∨.

Figure 23 is a 2-dimensional example. One can consider the cone as the polytope of the “toric
half”, in green, along with Lagrangian conormals to the toric strata, namely the 1-dimensional
orbits and fixed point.

w1

w2

1/~

1/w2~

1/w1~

1/wi~

w1

w2

moment map

Figure 23: Image of moment map around a fixed point

The picture for a general hypertoric variety is a hyperplane arrangement in a∗, where
hyperplanes are singular values of the moment map, with the understanding that the actual
moment map is produced by “folding” along the hyperplanes like origami. For example,
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(a) The toric piece Bl(∞,∞)(P1×
P1) and its conormals (b) The toric piece P2

Figure 24: A hyperplane arrangement defining a hypertoric variety

Figure 24a is such a hyperplane arrangement. In orange is a toric variety which is the blow-
up of P1 × P1 at (∞,∞), and surrounding it are all its conormals. Note that this description
changes depending on the point of view: for the same picture, we could center it around the
toric polytope of P2 instead, as in Figure 24b. Regardless, we see that hypertoric varieties are
therefore glued from cotangent bundles of various toric varieties.

11.11

A fixed point f is a zero-dimensional stratum of the hyperplane arrangement. The hyperplanes
that meet the point f are the attracting/repelling weights at f , and half will be attracting and
the other half repelling. In the stable envelope of f , the repelling coordinates are set to zero;
this is the Θ(V2) part of the formula. The remaining hyperplanes that do not meet f each
produce a divisor in X that, together, span Pic(X). As we vary the variables z in Θ(V1)

∣∣
s=sz,

we get all of Pic(X) ⊗Z E. It is possible that some of these hyperplanes do not intersect
the support of the stable envelope. Indeed, flops of X are obtained by rearrangements of
hyperplanes, but the formula for the stable envelope remains the same.

11.12

In a different direction, T ∗Pn corresponds to elliptic sl2, and one can proceed to cotangent
bundles of flag varieties and elliptic sln. Recall the space

TG(n) :=
⊔
k

T ∗Gr(k, n),

which, in the sense of geometric representation theory, is acted on by some version of ĝl2. In
some sense we can treat

TG(n) = “TG(n1)⊗ TG(n2)”, n1 + n2 = n,
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and we have

TG(1) = pt t pt
TG(2) = pt t T ∗P1 t pt.

(45)

The case TG(1) corresponds to the fundamental representation C2 for ĝl2, and TG(2) is the
tensor square. Observe that we now know the stable envelope of T ∗P1, and therefore know
the R-matrix (for the fundamental representation).
Remark. One can compute this R-matrix and see that it is gauge equivalent to Felder’s R-
matrix [Fel95]. Hence the geometric elliptic ĝl2 is the same as Felder’s (modulo checking
Yang–Baxter, and things like RV1,V2⊗V3 = RV1,V2RV1,V3 , but these are easy consequences of
general properties of stable envelopes and we will discuss them next time).

More generally, elliptic ĝln is geometrically constructed using Nakajima varieties for the
An−1 quiver. The generalization of (45) is that the fundamental representation still corre-
sponds to a collection of points, while its tensor square is a collection of points and T ∗P1’s.
It remains true that the geometric elliptic R-matrix matches Felder’s for ĝln.

Lecture 12. T ∗Gr(k, n) and abelianization

Cohomology of the Grassmannian, Schubert classes and interpolation Schur functions, elliptic
stable envelopes for Grassmannians, abelianization of stable envelopes.

12.1

For the various quantum algebras associated to ĝln, tensor products of fundamental represen-
tations ∧kiCn(ai) are realized geometrically as the cohomology of Nakajima quiver varieties
with the quiver

· · ·

called the An−1 quiver. Stable envelopes in all these cases can be written down reasonably
explicitly. It is good to have these explicit formulas, because we will learn eventually that,
among other applications, from stable envelopes one may obtain off-shell Bethe eigenfunctions.
Some integrable systems have both geometric and representation-theoretic meaning, and our
particular setup corresponds to previously-studied systems whose eigenvalues/eigenfunctions
are obtained from the Bethe ansatz. The ansatz is a formula which truly becomes an eigen-
function when its parameters satisfy the Bethe equations; the formula itself is called the
off-shell Bethe eigenfunction.

12.2

We focus on the ĝl2 case, so that the quiver has one node and no arrows. There is only one
evaluation representation, namely C2(ai), corresponding to the cohomology of the Grassman-
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nian
TG(n) :=

n⊔
k=0

T ∗Gr(k, n).

It carries the natural action by GL(n), whose maximal torus we denote A with coordinates
(a1, . . . , an). The evaluation parameters ai are exactly these coordinates. Fixed points in
TG(n)A are coordinate subspaces, of which there are 2n, and in particular

∣∣T ∗Gr(k, n)A∣∣ =
(
n

k

)
.

It is a classical problem what the attracting subspaces look like. One way to parameterize
Gr(k, n) = {V ⊂ Cn} is to view V as the image of a map Ck → Cn, so that

Gr(k, n) = Hom(Ck,Cn)rank k/GL(k)

is the open set of those maps with rank k. In other words V is some n× k matrix of full rank
k, modulo column operations, and fixed points look like e.g.

p =



1

1
1


∈ T ∗Gr(k, n)A

in the coordinate basis. Its attracting manifold is the orbit of unipotent matrices applied to
p via row operations:

Attr(p) =



1
1

1
. . .

* 1


· p =



1
∗
∗

1
1

∗ ∗ ∗
∗ ∗ ∗


(46)

where ∗ denotes entries which may be arbitrary. For our p this attracting manifold is therefore
isomorphic to C8.

12.3

In general, the attracting manifold is a Schubert cell. Let Sp be the closure of the Schubert cell
of p; these form a basis in any kind of cohomology theory. There is a very nice parameterization
of this Schubert basis by partitions, obtained after compressing the matrix in (46) by removing
all rows with 1’s. The resulting ∗ entries form a partition fitting in a k× (n−k) box, which in
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the case of (46) is (4, 2, 2). Actually it is better to think about the complementary partition
inside this box, which in this case is λ = (2, 2). Denote the original partition λc. Then

|λc| = dimSp

|λ| = codimGr(k,n) Sp.

So |λ| is the degree of the cycle in ordinary cohomology.

12.4

By the resolution of the diagonal or some other argument, the ordinary cohomology H∗(Gr)
is generated by Chern classes of the rank-k tautological bundle V . If x1, . . . , xk denote the
Chern roots of V , then equivalently

H∗(Gr) =

symmetric functions in

x1
. . .

xk


 /ideal.

For now it is not so important what the ideal is. The classical question is: what is the class
of Sλ? It turns out Sλ is the Schur function

sλ(x1, . . . , xk) = Symm
∏
xλi+ρii∏

i<j(xi − xj)
(47)

where ρ = (k − 1, k − 2, . . . , 0) is the Harish-Chandra shift. The numbers λi + ρi are the
positions of 1’s in (46). It is important to note that in the symmetrized expression the
Vandermonde determinant

∏
i<j(xi − xj) is canceled, because a symmetric function cannot

have a pole of order 1 along its diagonals. So the Schur function is a polynomial in x.
Of course there are a great many other symmetric functions, obtained by replacing the

numerator in (47) by any generalization of a monomial, e.g.
∏
imλi+ρi(x) for an arbitrary

collection of functions m`(x) of one variable. Schur functions have m`(x) = x`, but there are
many other interesting functions such as the Newton interpolation

m`(x) = (x− a1)(x− a2) · · · (x− a`) (48)

The corresponding Schur function turns out to be the equivariant cohomology class

sinterp
λ = [Sλ] ∈ H∗A(Gr).

This was first observed by Lascoux–Schützenberger in [LS82], and the proof is very short: ver-
ify it has degree |λ|, and then verify it vanishes at all fixed points not in Sλ. These two proper-
ties uniquely characterize the symmetric function. Note that if aµ denotes (aµ1+ρ1 , aµ2+ρ2 , . . .),
then

sinterp
λ (aµ) = 0 unless λ ⊂ µ.

This comes from m`(am) = 0 unless m > `.
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12.5

More generally, (48) is the unique polynomial (up to scalar multiple) of degree ` which vanishes
at a1, . . . , a`. Having degree `means it has a pole of order ` at x =∞. Thinking of polynomials
as sections of line bundles on P1, this means our section has simple zeros at a1, . . . , a` followed
by a zero of order d− ` at infinity. In principle one can also replace the latter zero by simple
zeros at points b1, b2, . . . , bd, i.e.

m`(x) = (x− a1)(x− a2) · · · (x− bd−1)(x− bd).

We are interested in the specialization bk = ak + ~, treating ~ as very large. Then the
associated Schur function is

Symm
∏
i<j

xi − xj + ~
xi − xj

n∏
i=1

m`i(xi). (49)

The first factor, in the world of symmetric functions, is a Hall–Littlewood-type function.
Dividing by an overall Vandermonde factor of

∏
i 6=j(xi − xj + ~), the cohomological stable

envelope of T ∗Gr(k, n) is

Symm
∏n
i=1m`i(xi)∏

i<j(xi − xj)(xj − xi + ~) . (50)

It has degree k(n − k) = (1/2) dimT ∗Gr(k, n), and becomes the Schubert class Sλ when
~→∞. As a general principle, sending an equivariant variable to ∞ yields its fixed locus.

12.6

The distinction between the two formulas (49) and (50) comes from viewing T ∗Gr as

T ∗Gr ⊂
open

µ−1(0) ⊂
closed

(quotient stack),

just like we did for Pn. Explicitly,

T ∗Gr =
{
I ∈ Hom(Ck,Cn)
J ∈ Hom(Cn,Ck)

∣∣∣∣ JI = 0
}

� GL(k)

and JI = 0 is the moment map µ. In cohomology, recall the embedding

SpecH∗(T ∗Gr) ⊂
closed

Lie A︸ ︷︷ ︸
a1,...,an

× LieH︸ ︷︷ ︸
x1,...,xk

/W

given by Chern roots of the tautological bundle. Here H ⊂ GL(k) is the maximal torus.
Although the formula (50) for the stable envelope is not a polynomial, it is nonetheless a
regular function on the T ∗Gr subset. On the other hand, (49) is a polynomial expression on
the stack. The difference of the Vandermonde factor can be interpreted as the equivariant
weight of the moment map JI = 0, noting that J is scaled by ~−1 because it corresponds to
the cotangent vector. Then the passage from (49) to (50) is just pushforward from µ−1(0) to
the whole stack.
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12.7

The elliptic analogue is obtained as follows. Note that if k = 1 then T ∗Gr(k, n) reduces
to T ∗P1, so our functions m` (along with the Vandermonde denominator) are just stable
envelopes for T ∗P1. Our previously-computed elliptic stable envelopes for T ∗P1 therefore give
the elliptic

m`(s) = ϑ(a1s) · · ·
ϑ(a`sz~n−`)
ϑ(z~n−`) · · ·ϑ(an~s),

where s corresponds to x−1 and terms such as a1s are the multiplicative version of the terms
a1−x previously. The new piece ϑ(a`sz~n−`)/ϑ(z~n−`) is where the dynamical variable comes
in. To get the elliptic stable envelope for T ∗Gr it remains to symmetrize:

Symm
∏
m`(xi)∏

i<j ϑ(xi/xj)ϑ(xj/xi~) .

This is an actual elliptic cohomology class, which upon pushforward to the whole stack
[Hom⊕Hom /GL(k)] becomes

Symm
∏
i<j

ϑ(xi/xj~)
ϑ(xi/xj)

∏
m`(xi).

12.8

To prove that this is indeed the stable envelope, we follow the general abelianization idea of
D. Shenfeld [She13]. Let G = GL(k) and H ⊂ G be the maximal torus. Schematically, the
idea is to examine the diagram

µ−1
G (0)/H µ−1

H (0)/H

µ−1
G (0)/G

. (51)

The beauty of the moment map is that it lives in the dual of the Lie algebra, so the moment
map directions are exactly dual to the group directions. So (51), for all intents and purposes,
is a (“smooth”) Lagrangian correspondence. The object µ−1

H (0)/H is a hypertoric variety,
assuming G acts on a vector space like Hom⊕Hom, and hence we know its elliptic envelope
explicitly. The characterization of elliptic envelopes as sections of certain line bundles is
preserved under pullback and pushforward, done correctly. Inverting the pushforward to
µ−1

H (0)/H in (51) involves terms 1/ϑ(xj/xi~), the off-diagonal weights of the moment map,
and pushing forward to µ−1

G (0)/G involves terms 1/ϑ(xi/xj), the tangent weights of the G-
action. The only remaining question is why the product is

∏
i<j as opposed to

∏
i 6=j . The

answer comes from the actual geometry, where generally half of the directions are non-compact
and therefore not integrated over or constrained by the moment map.

Abelianization is very general. In our T ∗Gr example, the correspondence is between
(T ∗Pn−1)k and T ∗Gr(k, n). In the more complicated setting of Hilb(C2, k), explicit formulas
can be found in [Smi20].
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Lecture 13. R-matrix from stable envelopes

Triangle lemma, polarization and index of a component of the fixed locus, dynamical Yang–
Baxter equation for elliptic stable envelopes.

13.1

Recall our setup for R-matrices: associated to a torus A are Lagrangian correspondences

XA → X ← XA

which are an improved version of attracting manifolds. One can choose A such that the fixed
locus XA is a product X1×X2, in which case the correspondences acting in cohomology give
maps

V1(a1)⊗opp V2(a2) Stab−−−−−→ V
Stab+←−−−− V1(a1)⊗ V2(a2).

Their composition is the R-matrix

R(a1/a2) := Stab−1
− ◦ Stab+ .

While neither of Stab± have denominators in a ∈ A, the R-matrix may. It is best to put
(a1, a2) ∈ (C×)2 where the diagonal C× acts trivially, i.e. a1 = a2 corresponds to X instead
of XA. Then the R-matrix can be drawn as in Figure 25.

a1 a2

a1 = a2

C∗

Figure 25: The R-matrix R(a1/a2)

13.2

We would like the R-matrix to satisfy the Yang–Baxter equation

=

. (52)

This is an equation now for three parameters

(a1, a2, a3) ∈ A = (C×)3/(diagonal C×).
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a1 = a3 a2 = a3

a1 = a2 XA′

XA

X

LieA

Figure 26: Fixed loci and the Yang–Baxter equation in Lie A

One can draw a “phase diagram” in LieR A for both this and the two-parameter case, where
special hyperplanes correspond to bigger fixed loci. In the phase diagram, the Yang–Baxter
equation says that the two different ways of crossing the walls in Figure 26 are equal.

Note that the picture with chambers in Lie A is more general than the Yang–Baxter picture,
which is specific to root systems of type A. But in general there is some arrangement of
hyperplanes in Lie A partitioning it into cones, and for every pair of adjacent cones there are
maps

Stab: XA′′ → XA′

where A′′ corresponds to the interior of the cone and A′ ⊂ A′′ corresponds to a sub-cone. Its
inverse Stab−1 is also a stable envelope.

13.3

The key fact which makes everything work is the following.

Theorem (Triangle lemma [MO19]). Given A′ ⊂ A′′′ ⊂ A′′, the following triangle commutes:

XA′′ XA′

XA′′′
Stab for A′′′/A′′

Stab for A′/A′′

Stab for A′/A′′′
.

In other words, the maps Stab compose, i.e. form a representation of the corresponding
groupoid.

Proof idea. By uniqueness of stable envelopes.

Let C+ and C− be the two adjacent cones in Figure 27. The triangle lemma implies that
the R-matrix

RC+→C− := Stab−1
C−
◦StabC+

can be computed inside XA′ instead of inside all of X. Yang–Baxter in the form of Figure 26
follows immediately, because both paths are different factorizations of the same R-matrix
from a cone to the opposite cone. In some sense, in the language of (52), we have defined an
object corresponding to the setting where all three strands intersect at a single point.
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cone C+

cone C−

XA

XA
X

XA′

Figure 27: R-matrix computed in XA′ ⊂ X using triangle lemma

13.4

In fact we should be proving not the usual Yang–Baxter equation, but rather the dynamical
Yang–Baxter equation. Remember we want a “Lagrangian” elliptic correspondence inside
X ×XA. This is a section of some line bundle on Elleq(X ×XA). For example:

• the identity class 1 = [X] is a section of OElleq(X) = Θ(0);

• the point class [pt] is a section of Θ(TX) since it is a pushforward of 1 under pt→ X.
(If X were compact then Θ(TX) is like the canonical bundle of Elleq(X).)

Our Lagrangians are somewhere in between these two examples. They are sections of the
bundle S, which is approximately Θ(TX)1/2 tensor a non-trivial degree-zero bundle. Recall
that this degree-zero shift is unavoidable, and stems from the attracting and repelling classes

[Attr] =
∏

ϑ(wi~), [Repell] =
∏

ϑ(wi)

being sections of different bundles. The compensating factor
∏
ϑ(wi~)/ϑ(wi) has degree zero

in a ∈ ker ~.

13.5

We will now set up conventions to be close to existing literature, at the risk of mildly bur-
densome notation. Assume X has a polarization T 1/2X, i.e. a solution to

[T 1/2X] + [(T 1/2X)∨] ≡ [TX]

in A-equivariant K-theory. Let
S := Θ(T 1/2X)⊗ U

where as discussed previously U =
⊗
U(Li, zi) for a basis {Li} in Pic(X) and the variables zi

are dual coordinates. This U has a section

ϑ(sizi)
ϑ(si)ϑ(zi)

83



where si = c1(Li) is the elliptic first Chern class. The fixed locus XA has its own polarization

T
1/2
XA = (T 1/2X

∣∣
XA)A

but in addition also has an index given by the attracting part

ind := T
1/2
XA,>0

of its polarization. Writing elliptic envelopes as maps SA → S, the universal bundle in
SA = Θ(T 1/2

XA )⊗ U
∣∣
XA must be shifted by

z 7→ z − ~det ind .

Note that det ind is a line bundle on XA, and therefore a cocharacter of Pic(XA)⊗C×, which
is where the Kähler variables z live for XA.

13.6

The triangle lemma therefore involves not just XA, X, and an intermediate XA′ , but also
the bundles SA(−~det indX/XA), S, and an intermediate SA′(−~det indX/XA′ ). The only
additional thing to note is that the intermediate arrow from XA to XA′ is the stable envelope
for XA inside XA′ but shifted by −~det indX/XA′ . In particular the dynamical Yang–Baxter
equation will have these explicit shifts in Kähler (i.e. dynamical) variables.

13.7

There is a dual picture to the phase diagrams where we consider the dual polytope, namely
where maximal-dimensional cones correspond to vertices and so on, see Figure 28. Since the
phase diagram is in Lie A, the dual polytope lives in (Lie A)∗ and has to do with weights of
A. Hyperplanes {wi(a) = 1} in Lie A are given by weights wi ∈ NX/XA , so the dual polytope
is the Newton polytope of ∧•NX/XA . Such a Newton polytope is the projection of a cube
of dimension rankNX/XA , also called a zonotope, since in forming the weights of the exterior
algebra there is a freedom to choose whether to include or exclude each weight of NX/XA .

More accurately, the wi are Chern roots, so the zonotope lives not just in (Lie A)∗ but in
fact in the equivariant Picard group PicA(XA). For example, at a fixed point, extremal vertices
correspond to ∧topT

1/2
>0 and ∧topT

1/2
<0 ; in the projection to A′ one takes attracting/repelling

weights with respect to A′. These are all line bundles and not just weights. Hence, when
crossing a hyperplane, i.e. moving along an edge of the zonotope, the transformation is not
just the R-matrix of XA inside XA′ , but rather it remembers the ambient geometry through
precisely the shift of ∧topT

1/2
>0,A′ . This is the dynamical shift we saw previously.

The moral of the story is that although zonotopes are centrally symmetric, going around
the edges of our zonotope is not a centrally-symmetric operation. In analogy with 2d mirror
symmetry, different edges correspond to different flops of a mirror variety, and so for example
opposite edges will be almost the same transformation but not quite.
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∧topT
1/2
>0

∧topT
1/2
<0

∧topT
1/2
>0,A′

∧topT
1/2
<0,A′

A′

Figure 28: Zonotope for A y X, with projection to Lie A

Remark. The dynamical shift may vary from situation to situation, but the total distance
between the extremal vertices ∧topT

1/2
>0,A′ and ∧topT

1/2
<0,A′ is fixed by topology. Choosing a

different polarization may cause the polytope to move, but its size remains fixed. Hence the
polytope is fixed by topology up to translations.

Lecture 14. Properties of the geometric R-matrix

Duality for stable envelopes, rigidity in elliptic cohomology, coproduct in quantum groups
in terms of R-matrices, various factorizations of R-matrices, operators of cup product as
vacuum-vacuum matrix elements of geometric R-matrices.

14.1

The fixed locus XA has many components in general, and its cohomology is graded by the
attracting ordering on the components. The composition

XA Stab−−−→ X
restriction−−−−−−→ XA

is therefore a block-triangular matrix. On the diagonal, for a component Fi ⊂ XA, the stable
envelope near Fi is just the attracting manifold, which is cut out by repelling directions. Hence
diagonal blocks are the Euler class of the repelling bundle NX/XA,<0. In terms of formulas, if
wk are the Chern roots of attracting directions, then these Euler classes are of the form∏

ϑ(wk~).

Note that these Chern roots include the data of the action of A, and are therefore never trivial.
So the Euler class is a non-zerodivisor on Elleq(Fi) → Elleq(pt). The conclusion is that Stab
is invertible after localization, and the R-matrix

R := Stab−1
− ◦ Stab+

has poles precisely where
∏
ϑ(wi) = 0, coming from Stab−1

− .
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14.2

Lemma. The inverse Stab−1
− is equal to Stabtranspose

+ with the substitutions

T 1/2 7→ T 1/2
opp := TX − T 1/2

z 7→ z−1.

In other words, to get the inverse, one takes all parameters and replace them by their
opposites, and then take a transpose. The transpose is with respect to some pairing like
(α, β) =

∫
X α ∪ β, but in elliptic cohomology the map X → pt has normal bundle −TX so

that the pushforward is Θ(TX) → OEll(pt). Hence the transpose of an elliptic class α ∈ S
lives in some line bundle S∇ with pairing

S ⊗ S∇ → Θ(TX).

This line bundle is therefore S∇ = Θ(TX)⊗ S−1. Recall that S = Θ(T 1/2X)⊗
⊗
U(Li, zi),

so
S∇ = Θ(T 1/2

oppX)⊗
⊗
U(Li, z−1

i ).
This is why we must substitute the opposite polarization and Kähler variables.

Note that the hyperplane arrangements in Lie A are only centrally symmetric, and despite
our schematic pictures they do not necessarily arise from reflection groups. The central
symmetry relates to full flops of the variety, namely passing from one cone to its opposite
cone corresponds to taking a full flop.

14.3

Proof of Lemma 14.2. We compute Stabt− ◦ Stab+. Each map is a correspondence, so this
composition is a pushforward

Stab−︷ ︸︸ ︷
XA ×X ×XA︸ ︷︷ ︸

Stab+

pushforward−−−−−−−→ XA ×XA

where the substitution of opposite polarization and variables means that on the X factor we
get a section of Θ(TX).

The pushforward is proper even though in general X is not compact. This is because
Stab+ is supported on the full attracting set while Stab− is supported on the full repelling
set, so for points f ∈ F and f ′ ∈ F ′ in two fixed components, the support in X is the locus
of points x such that there are (chains of) attracting trajectories f ′ → x → f . This locus
is compact as follows. Here we must assume that X has a projective map X → X0 to an
affine X0; this is true for all the usual varieties in geometric representation theory, and is in
particular true for Nakajima quiver varieties. More generally, any GIT quotient X admits a
projective map to its affine quotient X0. Or, put differently, if X is Proj of a graded algebra,
then it maps to Spec of its zeroth graded component. Then any chain of attracting trajectories
is collapsed under X → X0, and therefore forms a complete curve. The conclusion is that

supp(Stabt−)12 ◦ (Stab+)23 ⊂ XA ×X0 X
A
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is proper. Hence Stabt− ◦Stab+ is regular, i.e. has no poles.
In elliptic cohomology, it is very powerful to argue by rigidity. The basic rigidity statement

is that if L is a degree-0 line bundle on an abelian variety, then

L 6= O ⇐⇒ H∗(L) = 0.

In particular if a non-trivial line bundle has a section, then the section is zero. In our case,
Stabt− ◦ Stab+ is a correspondence Fi → Fj , so in elliptic cohomology it is a section

Θ(T 1/2
Fi

)⊗
⊗
U(Li, zi)shifted 7→ (similar).

These bundles live on Elleq(Fi), but since Fi is fixed by A, this is an EllA(pt)-fibration

p : Elleq(Fi)→ Elleq/A(Fi).

Only the shifted piece U(Li, zi) is non-trivial on the EllA(pt) fibers. Hence

(Stabt− ◦Stab+)
∣∣
p
∈ (trivial)⊗

⊗
U(Lk

∣∣
Fi
, zk)−1 ⊗ U(Lk

∣∣
Fj
, zk).

There are additional shifts in zk by factors of ~ which are unimportant. The restrictions Lk
∣∣
Fi

mean to take weights of the A-action.

• When Fi = Fj , the shifts are arranged so that the resulting line bundle is trivial. Namely,
the restriction is the diagonal in Fi × Fi.

• When Fi 6= Fj , the line bundle is not trivial, because if L is an ample line bundle, then
degL

∣∣
C
> 0 implies via localization that wtL

∣∣
Fi
> wtL

∣∣
Fj

when Fj is attracted to Fi
via a chain of attracting flows. In particular, there exists L such that these two weights
are not equal.

The composition Stabt− ◦ Stab+ therefore is the identity along the diagonal Fi × Fi, and zero
elsewhere.

14.4

Another cornerstone of quantum groups is that braiding a representation V1 with a tensor
product V2 ⊗ V3 is the same as the composition of the two simpler braidings

RV1,V2⊗V3 = RV1,V2RV1,V3 .

Equivalently, the way coproduct ∆ is defined in quantum groups is via

(1⊗∆)R = R12R13.

This is an example of the following general phenomenon. Let A′ ⊂ A be a sub-torus, corre-
sponding to some subspace of Lie A. For example, recall that in the Yang–Baxter setup, the
fixed loci of a hyperplane A12 = {a1 = a2} ⊂ A is

XA12 = X12 ×X3 ⊃ X1 ×X2 ×X3 = XA
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for some bigger space X12 whose cohomology is the tensor product of that of X1 and X2.
In our more general setting, the R-matrix RXA′ (which is defined in terms of A′ without
reference to A) can be computed in two different ways: directly passing through the origin to
the opposite cone in the hyperplane containing Lie A′, or, using the data of A, a longer route
in Lie A passing through other hyperplanes in Figure 29.

XA′ XA

X

A′

Figure 29: Computation of RXA′ in the larger torus A

More precisely, in the notation of Figure 29, the following square commutes:

XA′ XA

XA′ XA

RC′+→C
′
−

Stab ∏
Rwalls in A

Stab

.

14.5

Remark. Another interesting application (to be discussed in more detail later) of this general
principle is a factorization of R-matrices associated to quivers with loops. For the quiver on
one vertex with g loops, the fixed locus looks like the quiver variety with quiver Zg, and the
original R-matrix factorizes as a product of R-matrices for this Zg quiver. For example, we
already mentioned that the finite Ar quiver gives a geometric construction of ĝl(r + 1), so
when g = 1 the resulting R-matrix factors as a product of R-matrices for ĝl(∞). Abstractly,
if the torus A′ of interest embeds into a bigger torus A, then the R-matrix using A′ factors in
terms of R-matrices using A. In schematic form,

Rquiver/Γ =
→∏
Γ
Rquiver.

Note that such a factorization is distinct from many other factorizations, e.g. in K-theory

RUq(g) =
→∏

root sub-
algebras gα

RUq(gα),

or the factorizations
Relliptic =

→∏
RUq , RUq =

→∏
RYangian
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induced by writing E = C×/qZ and C× = C/2πiZ respectively. These latter factorizations
are also very interesting because they imply (generic) flatness in terms of the elliptic curve
(over C).

14.6

In the product R = Stab−1
− ◦ Stab+, the triangularity of Stab means one entry in R can be

computed without much thought. Namely, the lowest entry in the attracting order is given
by the product

Euler(N<0)
Euler(N>0) =

∏ ϑ(~wi)
ϑ(wi)

of the two corresponding diagonal entries in Stab−1
− and Stab+. As a concrete example, take

A = diag(a, 1, 1, . . . , 1︸ ︷︷ ︸
n times

) (53)

acting on TG(n+ 1) =
⊔
k T
∗Gr(k, n+ 1), so that

TG(n+ 1)A = TG(1)× TG(n).

Since TG(1) = pt t pt, corresponding to either [0 ⊂ C1] or [C1 ⊂ C1], for any given k the
R-matrix has blocks for T ∗Gr(k−1, n) and T ∗Gr(k, n) and we know the diagonal T ∗Gr(k, n)
block: (

∗ ∗
∗ Euler(NT ∗Gr(k,n)/T ∗Gr(k,n+1))

)
. (54)

Here we are assuming [0 ⊂ C1] is lowest in the attracting order. If we call its cohomology
class the vacuum element ∅, the entry written in (54) is the vacuum matrix element of the
R-matrix.

14.7

Explicitly, at a point [V ⊂ Cn] ∈ Gr(k, n), the tangent space is

T[V ] Gr(k, n) = Hom(V,Cn/V )
= Hom(V,Cn)−Hom(V, V )

where Hom(V,Cn) is like taking the graph of V ↪→ Cn and Hom(V, V ) is modding out by the
GL(V ) action. Doubling this,

T (T ∗Gr(k, n)) = Hom(V,Cn) + ~−1 Hom(Cn, V )− (1 + ~−1) Hom(V, V ) (55)

taking into account that cotangent fibers carry a weight ~−1. To figure out the normal bundle
NT ∗Gr(k,n)/T ∗Gr(k,n+1), it suffices to write Cn+1 = Cn+aC in accordance with (53) and extract
the terms with non-trivial a-dependence in (55):

NT ∗Gr(k,n)/T ∗Gr(k,n+1) = aV ∗︸︷︷︸
N>0

+ 1
a~
V︸ ︷︷ ︸

N<0

.
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If vi are the Chern roots of the universal bundle whose fibers are V , then the Euler class is

ϑ(vi/a/~)
ϑ(vi/a) . (56)

In ordinary cohomology, everything is additive and this becomes

vi − a− ~
vi − a

. (57)

Hence the vacuum matrix element is an operator of multiplication by characteristic classes of
tautological bundles. In fact it contains them all as a function of the spectral variable a, in
the sense of taking residues or linear functionals in a of the formulas (56) or (57).

14.8

Baxter’s original construction of integrable systems stems from operators of the form

tr1(z ⊗ 1)R12(a),

where tr1 denotes trace in the first factor, and z is a variable on the maximal torus such that
[z⊗z,R12] = 0. These operators act on the second factor and commute for all a. In particular,
the limit z → 0 is like projection to the vacuum, and one obtains the vacuum matrix elements
above. In general, the algebra formed by all such commuting operators is called the Baxter
subalgebra, and a limit of the Baxter subalgebra is the algebra of multiplication in cohomology
by tautological classes.

Lecture 15. Degenerations to K-theory and cohomology

Nakajima quiver varieties, Hilbert schemes of points and Heisenberg algebra, stable envelopes
in K-theory and cohomology, unitarity of R-matrices, classical Yang–Baxter equation, the Lie
algebra corresponding to a classical r-matrix, Langrangian correspondences, Steinberg corre-
spondences.

15.1

So far we have been working with a slightly unspecified moduli of vacua X. Many such
moduli arise as a critical locus crit(φ) modulo the action of some compact gauge group U.
Such a construction is what appears in supersymmetric gauge theories, a very rich world of
examples. One begins with a complex group G whose maximal compact subgroup is U, along
with a symplectic representation M of G which describes “matter”, and produces the algebraic
symplectic reduction

X = M �� G := µ−1
C (0) �θ G. (58)

Here µC is the moment map for the G-action on M . Equivalently, using the hyperkähler
moment map

µH := µC ⊕ µR : M → g∗ ⊗ (C⊕ R),
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where µR is the real moment map associated to the real symplectic form coming from the
imaginary part of the hermitian form, we have

X = µ−1
H (0⊕ θ)/U

where θ is the same GIT stability parameter as in (58). With this formulation one can write

φ := 〈µH, ξH〉, ξH ∈ g⊗ (C⊕ R)

as the critical function. In supersymmetric gauge theory, these ξH are the superpartners of
the gauge fields.

15.2

A general such X is not smooth, and indeed the smooth ones are rare. This has to do with the
fact that the GIT quotient in (58) means to take the (actual) quotient of the GIT semistable
locus µ−1(0)ss by G, and this quotient usually has non-trivial finite stabilizers. To avoid
stabilizers, M has to be small, meaning that weights appearing in M cannot be very large.
In particular the weights have to be indivisible, e.g. a weight w2 is stable if w is, but w2

has a stabilizer of order 2. For the case G =
∏

GL(Vi), there is no known general theorem
characterizing which M are permitted, but the following definitely work:

• the defining representations Vi and their duals V ∗i ;

• the bifundamental representations Hom(Vi, Vj) and their duals.

Of course, for M to be symplectic, each of these representations must appear along with its
dual. So in general we set

M =
(⊕

V ⊕wii ⊕ dual
)
⊕
(⊕

Hom(Vi, Vj)⊕eij ⊕ dual
)
.

The resulting X = X(v, w) is called a Nakajima quiver variety with dimension vectors v =
(dimVi)i and w = (wi)i. The data of wi and eij is encoded in a (framed) quiver, see Figure 30,
with:

• a vertex associated to each Vi;

• edges Vi → Vj of multiplicity eij ;

• an additional vertex Wi (drawn as a square) connected to each Vi, corresponding to a
vector space of dimension wi, and we view V ⊕wii as Hom(Wi, Vi).

In particular GL(Vi) does not act on Wi. An important observation is that G commutes with∏
GL(Wi)×

∏
GL(Eij), where GL(Eij) is the analogue of GL(Wi) but for edges. Fixed points

of GL(Eij) are quiver varieties whose quivers are coverings of the original quiver.
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eij

v1 v2

w1 w2

· · ·

Figure 30: Framed quiver for a Nakajima quiver variety

15.3

We focus on fixed points of the GL(Wi), which are products of quiver varieties for the same
quiver. For example, suppose W =

⊕
Wi is split as

W = W ′ ⊕ aW ′′

by a one-parameter subgroup A := {(1, 1, . . . , 1, a, a, . . . , a)} ⊂
∏

GL(Wi). If X(w) :=⊔
vX(v, w), then

X(w)A = X(w′)×X(w′′).

The stable envelopes for this A will give the R-matrix R(a) acting on the cohomology of
X(w′)×X(w′′). Similarly, the one-parameter subgroup splitting W as

W = W ′ ⊕ a2W
′′ ⊕ a3W

′′′

gives exactly the sort of picture expressing the Yang–Baxter equation. For example, the
hyperplane a2 = a3 corresponds to the enlarged fixed locus X(w′)×X(w′′ + w′′′).

15.4

From these R-matrices we get a quantum group. One goal will be to show that it is an elliptic
deformation of the Hopf algebra U(ĝ), where g is a Lie algebra having something to do with
the quiver. Note that g is not the Kac–Moody algebra gKM of the quiver. The An−1 quivers
already provide an example, where gKM = sln but g = gln. For a more dramatic difference,
take the Ân−1 quivers, i.e. cyclic quivers on n vertices. From Â0 we will obtain

g ≈ ĝl1 = 〈αn,
d

dt
, c〉
/([αn, αm] = nδn+mc

[ ddt , αn] = nαn

)

where, viewing ĝl1 as loops in gl1, the element d/dt is loop rotation and c is a central extension.
In contrast

gKM = 〈α±1,
d

dt
, c〉
/
(same relations)

is a finite-dimensional algebra. The difference becomes even more dramatic for other quivers,
and in general g is much bigger than gKM.
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15.5

For enumerative applications, the Â0 quiver is the most important case. This is because it
has an associated Nakajima quiver variety

X(1) =
⊔
n≥0

Hilb(C2, n)

and more generally X(r) is a moduli space of certain sheaves on C2 of rank r. The Hilbert
scheme Hilb(C2, n) parameterizes ideals I ⊂ C[x1, x2] of codimension n, i.e. dimC[x1, x2]/I =
n. For more general quivers, one can obtain moduli of certain sheaves on ADE surfaces.

15.6

To understand (elliptic) deformations of U(ĝ), a good starting point is where the R-matrix is
R = 1. In principle one could achieve this by setting ~ = 0, but this is a very difficult thing
to do in deformation theoretic terms. Instead, we use specializations

(elliptic quantum groups) Uq(ĝ) Y (g)

where the Yangian Y (g) is a graded deformation of U(ĝ). Elliptic quantum groups are as-
sociated to elliptic curves E of EllT(X), and the successive specializations correspond to
degenerating E into a nodal and cuspidal curve respectively:

  

E Gm Ga .

Note that while both elliptic cohomology and K-theory are Z/2-graded, ordinary cohomology
is Z-graded.

15.7

Elliptic stable envelopes, restricted to fixed components, are sections of certain line bundles
S on the abelian variety

E := EllA(pt) ∼= Erank A.

The degeneration of the pair (E ,S), as E becomes nodal or cuspidal, is done following work of
[Ale02]. We first degenerate E , in the rank 1 case. A nodal curve can be viewed as P1 with two
points identified, but better yet it can be viewed as a chain of P1’s modulo the translations
Z, and a degeneration into multiple nodes can be written in the same fashion:

= modZ

= mod3Z

. (59)
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To illustrate the degeneration, consider the 3-torsion points

E[3] = Ellµ3(pt) ⊂ EllA(pt) = E

drawn in the fundamental region of E = C2/Λ as shown in Figure 31. Fibers at these
points correspond to ordinary equivariant cohomology H∗C∗(Xµ3), except over the identity
1 ∈ E where the fiber is H∗C∗(X). The degeneration to K-theory stretches one direction off
to infinity, and each remaining clump of points should be viewed as a P1 in the chains in
(59). Over each P1 lives either KC∗(X) or KC∗(Xµ3) depending on the order of the points
contained within it. Finally, degeneration to ordinary cohomology stretches both directions
off to infinity, and only the fiber H∗C∗(X) over the identity 1 ∈ E remains.

µ3

H∗
C×(Xµ3)

E = C2/Λ

modZP1

KC×(X) KC×(Xµ3)

H∗
C×(X)

P1

Figure 31: 3-torsion points and their fibers over E = EllA(pt), degenerating to
K-theory and ordinary cohomology

As for the line bundle S, recall that a toric variety with an ample line bundle can be
encoded as a polytope, e.g. P2 is a triangle, and integer points of the polytope are sections of
the line bundle. In the case of multiple nodes, the restriction of S to the different P1’s may
have polytopes of different sizes, according to degS. In higher rank, for instance E2, the data
becomes a “periodic” toric variety in the sense of a tiling of the plane by polytopes, see e.g.
Figure 32, which we take modulo Z2.

( )⊕2

 

Figure 32: A degeneration of E⊕2 drawn as a periodic toric variety
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15.8

Summarizing, in the degeneration to K-theory, the abelian variety E degenerates into a union
of toric varieties, each of which carry the equivariant K-theory of fixed loci of various subgroups
of A. Sections of S, restricted to fixed loci, degenerate into Laurent polynomials, whose
Newton polytope must fit inside the Newton polytope of (the restriction of) S.

15.9

In elliptic cohomology, Stab(Fi)|Fj is a section of the bundle S = Θ(T 1/2) ⊗ · · · with a shift
by a degree-zero line bundle. Degenerating to a nodal curve, being a section of S becomes
the constraint

Newton(Stab(Fi)
∣∣
Fj

) ⊂ Newton
(
∧•T 1/2∣∣

Fj

)
+ (shift)

on Newton polytopes, where the shift comes from the degree-zero line bundle in S. Degen-
erating further to the cuspidal curve, since everything escapes to infinity, all that survives is
the constraint

dega
(
Stab(Fi)

∣∣
Fj

)
< dega

(
Euler(T 1/2∣∣

Fj
)
)

= 1
2 codimFj .

The equality follows from a previous observation that T 1/2|Fj and Attr |Fj have the same
A-degree, and so the Euler class is a product of rank Attr |Fj linear terms. Stable envelopes in
ordinary cohomology are extremely simple, and their existence and uniqueness is rather easy.

15.10

We discuss the setting of ordinary cohomology for today. Observe that in ordinary cohomol-
ogy, stable envelopes have diagonal entries of the form ±

∏
(wi + ~) and off-diagonal entries

O(1/u) where u is the additive version of the coordinate a ∈ A. It follows that the (rational)
R-matrix Rrat(u) has diagonal entries

∏ wi + ~
wi

+O

(1
u

)
and off-diagonal entries O(1/u). Upon sending u→∞, we obtain

Rrat(∞) = 1.

This is what we originally wanted. Note that the analogous limit in K-theory produces not
1, but rather the R-matrix for Uq(g) ⊂ Uq(ĝ).

15.11

We can consider the expansion of Rrat(u) in u. By other general arguments which we will not
discuss, R|~=0 = 1 as well, so the linear term of the expansion is of the form

Rrat(u) = 1 + ~
u
r + · · ·
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for some operator r called the classical R-matrix. Properties of r follow immediately from
properties of Rrat(u).

• Reversing the attracting order, i.e. what is attracting/repelling, shows that

(12)Rrat(−u)−1(12) = Rrat(u),

so [r, (12)] = 0. Hence r is a symmetric matrix.

• The Yang–Baxter equation (with spectral parameter) for Rrat(u) gives

[r12 + r13, r23] = 0 (60)

along with all permutations of the factors.

The relation (60) is very interesting, because we can rewrite it as [r13, r23] = −[r12, r23] and
take matrix elements in the first and second factors. The resulting relation implies that such
matrix elements form a Lie algebra, which is precisely the g that we want. Since r ∈ S2g is
a symmetric tensor, it doesn’t matter which factor we choose to take matrix elements. That
(60) holds means r ∈ S2g is an invariant.

15.12

The operator r is an example of a Lagrangian Steinberg correspondence between X(w1) ×
X(w2) and X(w′1)×X(w′2), where w1 +w2 = w′1 +w′2. Lagrangian means the correspondence
is a Lagrangian subvariety, which is clear because stable envelopes are supported on the
Lagrangian Attrf ⊂ X ×XA.

Definition. A correspondence Z ⊂ X × Y is Steinberg if X × Y admits a proper map to an
affine space which wlog we take to be a vector space V , such that in fact

Z ⊂ X ×V Y.

That stable envelopes are Steinberg comes from X being a Nakajima quiver variety, which
is in particular a GIT quotient Proj

⊕
n≥0Rn. So there is a projective map

X = Proj
⊕
n≥0

Rn → SpecR0 =: X0.

Since X0 is affine, this map contracts all complete curves in X. Stable envelopes are only
supported on such curves, and are therefore Steinberg.

15.13

In fact, Nakajima quiver varieties are examples of symplectic resolutions, i.e. the map X → X0
is birational onto its image. For such X, there is a general theorem that the Steinberg variety
X ×X0 X is isotropic, so its top-dimensional components are Lagrangian. In particular

dimX ×X0 X ≤ dimX.
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So in this line of work, Lagrangian correspondences come almost for free.
Note that the defining relation (1⊗∆)R = R12R13 for the coproduct ∆ becomes

(1⊗∆)r = r12 + r13

for the linear term in 1/u. Hence r12+r13 not only commutes with r23, but also with R23. This
is a general feature of Lagrangian Steinberg correspondences: they intertwine R-matrices.

Lecture 16. Steinberg correspondences and instanton moduli
space

Equivariant symplectic resolutions, Lagrangian residues, Lagrangian Steinberg correspondences
commute with R-matrices in cohomology, Nakajima–Baranovsky operators and classical r-
matrix for instanton moduli spaces, general properies of the Maulik–Okounkov Lie algebras.

16.1

Let X be a Nakajima quiver variety. It is constructed as a GIT quotient X = (· · · ) �θ G,
which by definition is of the form Proj

⊕
k≥0Rk. So there is always a map

X → X0 := SpecR0

to the affine quotient, viewing R0 as invariants of G. This map has two features: it is
projective, and it is birational onto its image. The simplest example is X = T ∗P1, where the
affinization map simply blows down the P1 to give the cone X0 = {uv = w2}. A very useful
axiomatization of these properties of X is as follows.

Definition. X is an equivariant symplectic resolution if:

1. X is algebraic symplectic, e.g. a smooth algebraic symplectic reduction;

2. X p−→ X0 := SpecH0(OX) is proper and birational (for us, being proper is the most
important property, but being birational also comes in handy);

3. there exists σ(t) ∈ Aut(X) which contracts X0 to a point, so that X0 looks like a cone.

In the X = T ∗P1 example, the one-parameter subgroup σ contracts the cotangent fibers
(with weight ~−1).

The paper [Kal09] is recommended reading for the general theory of equivariant symplectic
resolutions.

16.2

Theorem. The Steinberg variety

Steinberg(X) := X ×X0 X = {(x1, x2) ∈ X ×X : p(x1) = p(x2} (61)

is isotropic with respect to (ωX ,−ωX).
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Hence dim Steinberg(X) ≤ dimX, and the top-dimensional components of Steinberg(X)
are Lagrangian.

This is a very useful result for us, and we will axiomatize two different aspects of it.
Suppose L ⊂ X × Y is a correspondence, which may be singular. It can be Lagrangian, or,
better, it can be Steinberg, meaning that

L ⊂ X ×V Y

for some affine V with proper maps X → V and Y → V . Of course, the Steinberg variety
(61) is the prototypical example of a Steinberg correspondence.

16.3

Being a Steinberg correspondence is interesting, because Lagrangian Steinberg correspon-
dences commute with R-matrices. We must work in ordinary cohomology for this, since L
does not immediately define an operator in either K-theory or elliptic cohomology.

Definition. Let X be symplectic and A be a torus acting on X preserving the symplectic
form, such that XA is smooth (and symplectic). Let L be an A-invariant Lagrangian, with
LA =

⊔
Li ⊂ XA. Then set

ResL :=
∑

miLi

where the mi a multiplicity which is zero unless Li ⊂ XA is Lagrangian. Such Li produce
Lagrangian subspaces

Fi ⊂ Nf := NX/XA
∣∣
f

for each point f ∈ Li, and then mi is defined by the following.

Lemma. In the polynomial ring H∗A(Nf ), there is some scalar mi such that

[Fi] = mi[Nf,<0].

Proof. All coordinate Lagrangians are equal up to a sign.

In fact it is better to take [Fi] = mi[T 1/2
f, 6=0]; it doesn’t matter which Lagrangian we take,

because as a corollary of the lemma, the class of any Lagrangian in H∗A(Nf ) is a multiple of a
coordinate Lagrangian. This is absolutely false in K-theory and is one of the first things that
fails there.

Note that mi = ±1 if there is a smooth point on Li.

16.4

Theorem. Let L be a Lagrangian Steinberg correspondence for X × Y . Then

XA X

Y A Y

Stab
C,T

1/2
X

Res
T

1/2
X

,T
1/2,opp
Y

L
L

Stab
C,T

1/2
Y
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commutes for all choices of attracting chamber C.

Proof. We show that going along XA → X
L−→ Y → Y A is equal to ResL. First, use that

Stab−1
C,T

1/2
Y

=
(

Stab−C,T 1/2,opp
Y

)T
.

Stable envelopes are designed so that rigidity arguments apply. Namely, the Steinberg is
proper and so the resulting integral is independent of a ∈ Lie A. Then send a ∈ Lie A to ∞
to compute the answer ResL.

Corollary. Res(L)RX = RY Res(L) for the R-matrices RX and RY of X and Y .

This is a systematic and powerful way to produce elements commuting with the R-matrix
in cohomology.

16.5

Example. Consider the quiver with one vertex and one loop. Then

X(v1, w1) =M(r, n)

are moduli spaces of torsion-free and framed sheaves F on C2 or P2 of rank r and c2(F) = n.
Framed, here, means that at the line `∞ = P2 \C2, there is an isomorphism F

∣∣
`∞
∼= O⊕r`∞ . So,

for example,
M(1, n) = {ideals I ⊂ C[x1, x2] of codim n} = Hilb(C2, n).

LetM(r) :=
⊔
nM(r, n). The group GL(r) acts by changing the basis on O⊕r`∞ . If A ⊂ GL(r)

is the maximal torus, called the framing torus, then

M(r)A =M(1)×M(1)× · · · ×M(1)︸ ︷︷ ︸
r times

so all F ∈M(r)A are a sum of ideal sheaves F =
⊕r

i=1 Ii.
Any time we work with moduli of sheaves, there are always correspondences given by short

exact sequences of sheaves. Let

M(r, n)× C2 α−k−−→M(r, n+ k)

be the correspondence on (F1, p,F2) ∈M(r, n)× C2 ×M(r, n+ k) given by

0→ F2 → F1 →
(

torsion sheaf
supported at p

)
→ 0.

In rank r = 1 these correspondences were first studied by Nakajima, and then in rank r > 1
by Baranovsky and others.
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The claim is that α−k is a Lagrangian Steinberg correspondence. The argument goes by
embedding both sides of the correspondence into a common space M(r + 1, n+ k), by

M(r, n)× C2 M(r + 1, n+ k) M(r, n+ k)

(F1, p) F1 ⊕
(

some fixed I
translated to p

)

F2 ⊕O F2.

The affinization map for M(r, n) is given by

F → (F∨∨, suppF∨∨/F),

mapping into the Uhlenbeck space M(r, n)0. Taking double duals removes torsion, so F∨∨ is
a vector bundle and it is therefore clear that both F1 ⊕ I and F2 ⊕O map to the same point
inM(r, n)0. Hence the correspondence is Steinberg, and also isotropic since it sits in a bigger
space which is Steinberg and therefore isotropic. Finally, it is straightforward to compute it
is middle-dimensional, to show it is therefore Lagrangian as well.

16.6

What is Resα−k? Since the correspondence α−k is supported on the fixed locus M(2)A =
M(1) ×M(1), it is clear that the support of Resα−k is on the Lagrangians α−k ⊗ 1 and
1 ⊗ α−k. In fact the multiplicities of these terms are 1, because there is a smooth point on
each Lagrangian, and one can arrange the polarization such that both signs ±1 are actually
positive. Hence

Resα−k = α−k ⊗ 1 + 1⊗ α−k. (62)

Define for k > 0 the operators αk := ±(α−k)T . The sign is chosen so that the commutation
relation in rank 1 is

[αk, α`] = kδk+` · diagC2 .

The rank-r commutation relations follow directly from this and (62). It is important to keep
in mind the presence of a C2 factor in all these correspondences; this is the diagC2 term on the
rhs. One can modify the αk to constrain the point p to lie in some equivariant cohomology
classes, in which case the diagC2 will change accordingly.

16.7

The equivariant cohomology of M(1) = Hilb(C2) is a Fock module for these operators αk,
and in particular it is irreducible. So denote it

Fock := H∗eq(M(1)).
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The R-matrix acts on Fock⊗ Fock. Set

α±n := αn ⊗ 1± 1⊗ αn,

so we have just shown the R-matrix commutes with all α+
n . Decompose

Fock⊗ Fock = Fock+ ⊗ Fock−

where Fock± are the modules generated by the α±n respectively. (They commute.) Hence the
R-matrix is some kind of expression in only the α−n .
Remark. To compare with a simpler example, take the ordinary R-matrix R(u) = 1 − P/u
where P := (12) swaps the two tensor factors. Then one can normalize things so that R acts
trivially on the symmetric tensors and non-trivially on the anti-symmetric tensors. In our
setting Fock⊗ Fock, thinking of each Fock as a boson ϕ(i), we just showed that our R-matrix
does not act on the center of mass only acts on ϕ(1) − ϕ(2).

Lemma. Any expression in α−n is uniquely determined by its matrix elements |∅〉 ⊗ Fock →
|∅〉 ⊗ Fock, where the vacuum |∅〉 is the generator of H∗eq(Hilb(C2, 0)).

To be clear, the R-matrix does not preserve the subspace |∅〉 ⊗ Fock. We are just taking
matrix elements in it. In tensorial notation, these matrix elements are R|∅〉,·|∅〉,·.

16.8

We showed earlier that vacuum-vacuum matrix elements are operators of classical multiplica-
tion, i.e. cup product by characteristic classes of the tautological bundle Taut, of the form

rank∏
i=1

wi + u+ ~
wi + u

= 1 + ~
u

rank + + 1
u2 (c1 ∪+ rank) + · · · .

Clearly rank = rank Taut = n, and by an elementary observation about the Heisenberg
algebra, this can be written as

rank =
∑
k>0

α−kαk

perhaps up to some normalization that doesn’t matter at the moment. The conclusion is that

R(u) = 1− ~
u

diagC2 ·
∑

α−−nα
−
n + · · · .

16.9

In fact, there is only one step remaining to compute the full R-matrix. Take the Yang–Baxter
equation

R12(u1 − u2)R13(u1 − u3)R23(u2 − u3) = R23(u2 − u3) · · ·
and consider u1 → ∞. Of course, if we literally take the limit, the resulting equation is
uninteresting. Instead, consider the coefficient of 1/u1, which gives an equation

[r12 + r13, R23] = 0.
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This we have seen already, and says that R commutes with the Nakajima–Barankovsky oper-
ators, which we also already knew. Going further, taking the coefficient of 1/u2

1 gives a highly
non-trivial equation

(· · · ) · · ·R23 = R23 · (· · · )
involving the operator of multiplication by c1(Taut) onM(2). This operator has to do with a
Virasoro algebra acting on Fock−, of which rank = L0 is the degree-zero part, so R23 becomes a
certain Virasoro intertwiner. The Virasoro acts irreducibly on Fock−, so this already uniquely
determines the whole operator R23.

16.10

As a general principle, for a Nakajima quiver variety X, one can look at the inclusions of two
different fixed components

X(v1, w1)×X(v2, w2) ⊕−→ X(v1 + v2, w1 + w2)← X(v′1, w′1)×X(v′2, w′2),

where of course v′1 + v′2 = v1 + v2 and similarly for w. The Steinberg inside X(v1 + v2, w1 +
w2) gives a correspondence between the two fixed components. In particular, there is a
correspondence

X(α,w0)×X(v, w) Act−−→ X(0, w0)×X(α+ v, w) = X(α+ v, w),

and this is some matrix element of the stable envelope. The upper-/lower-diagonal part of the
classical part r of the R-matrix is then supported on a Lagrangian–Steinberg correspondence.
This gives the action of the Lie algebra g = h⊕

⊕
α gα by taking appropriate matrix elements

in X(α,w0). To see which matrix elements to take, consider the silly correspondence

X(α,w0)×X(0, w0) P−→ X(0, w0)×X(α,w0).

The Yang–Baxter equation implies that P 2 = −w0(α)P , so up to normalization P is a pro-
jector onto the image

gα |∅〉 ⊂ H∗eq(X(α,w0)).

16.11

To make a connection with enumerative geometry, note that both P and Act are residues of
the correspondence

{p, q ∈ X both lie on a rational curve of degree α}.

Moduli spaces of curves, e.g. as in Gromov–Witten theory and its relatives, are great sources
of correspondences like this. It is clear that any such correspondence is Steinberg, because
any complete curve is contracted by the affinization map. To define these correspondences
usually requires a virtual cycle, and if one arranges the virtual dimensions correctly, they will
be Lagrangian correspondences as well.

As an exercise, verify for the quiver with one vertex and one loop that P = α−nαn in
order to reproduce the formula for r.
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Lecture 17. The instanton R-matrix and the Yangian Y (ĝl1)
Cup product by divisor in cohomology of instanton moduli spaces, its relation to quantum
Calogero–Sutherland and Benjamin–Ono integrable systems, full R-matrix for instanton mod-
uli spaces, Yangian of ĝl(1) and its relation to the Virasoro algebra and W-algebras, Kac
determinant from R-matrices, the R-matrix for the Hilbert scheme of points as the reflection
operator in Liouville CFT, slices and relations in quantum groups.

17.1

We continue with the example of a quiver with one vertex and one loop. Recall that,
from general principles, we obtain an elliptic/trigonometric/rational R-matrix R(u) acting
on Fock ⊗ Fock. Here the u are framing variables. Our goal is to understand the rational
R(u). Since many things in the theory of quantum groups are done by deformation, one can
draw many conclusions about features at a general point once enough features at a special
point are understood. In particular we will write R(u) in terms of conformal field theory
(CFT), in terms of a Virasoro algebra Vir.

Note that R(u) depends on equivariant variables

(t1, t2) ∈ T2 ⊂ Aut(C2). (63)

From the perspective of the quiver, t1 is the weight of a scaling action on the single loop, and
the dual cotangent direction is t2 = −~ − t2, so that ~ := −t1 − t2. Cohomology is a graded
theory, so the dependence on t1, t2 is only up to scaling, e.g. by the degree-0 quantity

κ2 := (t1 + t2)2

t1t2
. (64)

Another way to parameterize the scaling is by t1/t2.

17.2

What is the meaning of the Virasoro algebra? All the features we see in this example really
find their explanation in a higher-dimensional geometry, and physically one should really
be thinking about the full 11-dimensional M-theory. A particular instance where one can see
higher-dimensional geometry come into play is the Alday–Gaiotto–Tachikawa (AGT) relation.
Physically, for our quiver of interest, we are studying instantons on the C2 ∼= R4 from (63).
Take the 6-dimensional manifold R4 × C, which could be the world-volume of an M5 brane,
or, more generally, a stack of r M5 branes. These are certain extended objects in M-theory
which we won’t need to know much about. AGT says that to study them, we can compute
either

• with instantons on R4, with Nekrasov partition functions (counting instantons), or

• with some CFT on C with some extended W (glr) ⊃ Vir symmetry,
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and there is a certain correspondence between quantities derived from these two perspectives.
In this course, however, we will not discuss M5 branes at all. Instead, we focus on 3d

theories, which live on world-volumes of M2 branes, and the degrees of freedom we find in
things like AGT are not as intrinsic in the 3d geometries.

The quantum group we will study is the Yangian Y (ĝl1), acting on the cohomology of
moduli spaces of rank-r instantons, i.e. an r-fold tensor product Fock⊗r. In fact there is a
factorization

Y (ĝl1) End(Fock⊗r)

W (glr)

through some completion of W (glr). So all the W-algebras in the AGT relation can be
understood through the image of the Yangian in its defining representation. Pictorially,
generators of the Yangian are drawn in Figure 33, with the lowest row corresponding to the
Heisenberg algebra ĝl1 acting on Fock. The lowest r rows act irreducibly on Fock⊗r. For
example: the second-lowest row is the Virasoro Vir, which together with ĝl1 act irreducibly
on Fock⊗2; the lowest three rows form W (gl3) acting irreducibly on Fock⊗3; and so on.

W (gl3)

α−1 α−2α1α2α3

t2α−3

ĝl1

Vir

Figure 33: Generators of Y (ĝl1)

17.3

For brevity, today we will work up to powers of −1, factors of 2. We also neglect cohomology
labels; namely, recall that α−k is a correspondence from Hilb(n) × C2 to Hilb(n + k), and
one can put any cohomology class on the C2 factor. Though H∗T(C2) is rather trivial, the
T-equivariance does have some significance, and usually denominators of t1t2 such as in (64)
arise from integrating over this C2.

Recall that we already constructed ĝl1 as the algebra generated by these correspondences
αn, along with a central element c and loop rotation t ddt , with commutation

[αn, αm] = nδn+mc.

When forming the Nakajima quiver variety Hilb, we get a tautological bundle V and a trivial
framing bundle W . The element c acts by rank(W ), which is r for rank-r instantons, and t ddt
acts by rank(V ), which is the instanton number. More or less, t ddt is the same as L0 ∈ Vir.
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The element α0 is not obtained from taking matrix elements of the coefficient [u−1]R. In
fact we will define

α0 := c1(W )

so that α0 acts on Fock⊗r by the sum a1 + · · · + ar of framing variables. In particular α0 is
primitive, i.e. ∆α0 = α0⊗1+1⊗α0. Note that c1 of bundles only appears starting in [u−2]R.
But we include it in ĝl1 for ease in writing formulas, e.g. if we introduce

α(t) :=
∑
n

αnt
−n,

we can ask about expressions like
∫

:α2: and
∫

:α3: and so on. Here normal-ordering :(−):
means to put annihilation operators first, and integration essentially extracts the t0 coefficient.
For example

1
2

∫
:α2:= 1

2α
2
0 +

∑
n

α−nαn.

Of course, for formulas like this, the presence of α0 makes a difference. In this language,

r = 1
2

∫
:α2
−: .

17.4

From previous discussion, it is equivalent to know any of the following: the coefficient
[u−2]R(u), the coefficient [u−2]R(u)|∅〉,−|∅〉,− of the vacuum-vacuum matrix element, or the op-
erator c1(V ) ∪ − where V is the tautological bundle. This is because R(u) commutes with
α+, as previously discussed, and vacuum-vacuum matrix elements of R(u) are operators of
multiplication by characteristic classes of tautological bundles.
Remark. A quantum integrable system is some maximal collection of commuting operators
in some space. The operator c1(V ) is just one operator in a certain quantum integrable
system consisting of operators of multiplication by all characteristic classes. From an R-matrix
perspective, matrix elements like [u−2]R(u)|∅〉,−|∅〉,− form a limiting case of a Baxter subalgebra.
This is an algebra of Baxter operators, of the form

Z = tr1(Z ⊗ 1)R12(u) ∈ End(second factor)

for some Z such that [Z ⊗ Z,R] = 0. The classical proof that such operators commute, for
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fixed Z and for all u, can be written as

YBE

Z

Z

Z

Z
R R−1

=

,

by inserting R and R−1 and then applying the Yang–Baxter equation.

17.5

Recall that knowledge of R(u) up to the u−2 coefficient actually recovers the whole operator
R(u). So now we discuss some properties of [u−2]R(u). All the following properties are
equivalent.

17.5.1

Property 1.
lnR(u) = ~

2u

∫
:α2
−: + ~

6u2

∫
:α3
−: +O( 1

u3 ).

This can be seen directly from the factorization R
ĝl(1) =

∏→Rgl(∞), and one can directly
compute Rgl(∞) and take its u−2 coefficient.

17.5.2

Property 2. The operator c1(V ) is the (second quantized) Hamiltonian

HCS := 1
2 ∈

:α3: +κ
∑
n>0

nα−nαn

of the quantum trigonometric Calogero–Sutherland system, with the constant κ basically the
one from (64).

Remembering that c1(V ) and thereforeHCS are vacuum-vacuum matrix elements, the term∑
n>0 nα−nαn in HCS comes from a vacuum-vacuum matrix element of the perfectly nice zero-

mode
∫

:α3: of a vertex operator in R(u). The quantum trigonometric CS Hamiltonian is
also a quantum version of the Benjamin–Ono equation, describing 1d hydrodynamics, which
involves a non-local operation called the Hilbert transform. It is responsible for exactly this
extra term.
Remark. In K-theory, HCS becomes a Macdonald operator.

106



The Calogero–Sutherland system describes particles that sit on a circle, which interact
with potential

U = c(κ)
∑ 1
|xi − xj |2

for some constant c(κ). One can look for eigenfunctions of the form∏
i<j

(xi − xj)constf(xi) (65)

where f is a symmetric polynomial. The operator HCS acts on the symmetric polynomials. As
the number of particles goes to infinity, the behavior of the system stabilizes and we can think
about symmetric polynomials in infinitely many variables. Then there is the identification
α−n =

∑∞
i=1 x

n
i . The eigenfunctions (65) are Jack symmetric polynomials, a specific limit of

Macdonald polynomials (from K-theory).

17.5.3

Property 3. (Lehn) [c1(V ), αn] = · · · is a Virasoro commutation relation.

Property 4.
∆c1 = c1 ⊗ 1 + 1⊗ c1 − ~

∑
n>0

nαn ⊗ α−n.

Recall that quantum groups are in particular Hopf algebras. Our Hopf algebras have very
few primitive elements, namely basically only the elements of the original Lie algebra, and
in general the more complicated a Hopf algebra, the fewer primitive elements it has. So to
understand an element such as c1, it is productive to compute ∆c1. The commutator [c1, αn]
being a Virasoro commutation relation means equivalently that [[c1(V ), αn], α−m] is (some
scalar multiple of) the primitive element c, and such a double commutator can be computed
directly from a formula for ∆c1.

More generally, from property 4, the operator D of multiplication by a divisor therefore
satisfies

∆D = D ⊗ 1 + 1⊗D − ~
∑
β>0

effective curves

(D,β)eβ ⊗ e−β

where eβ ⊗ e−β is the canonical tensor in gβ ⊗ g−β.

17.5.4

Property 5. Under the identification α−n 7→
∑
xni , fixed points are Jack symmetric poly-

nomials (determined by their triangularity and orthogonality properties).
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17.6

Let’s spell out in more detail how to recover the full R-matrix R(u) from [u−2]R(u), using
Yang–Baxter. The action of c1(V ) on the cohomology of rank-2 instantons pulls back, via
Stab≷, to

(R01R02)|∅〉,−,−|∅〉,−,− or (R02R01)|∅〉,−,−|∅〉,−,− (66)
depending on which chamber ≷ is taken, and the Yang–Baxter equation tells us these two
operators are intertwined by the full R-matrix R12. But (66) are two very explicit operators
in Fock⊗ Fock ∼= Fock+ ⊗ Fock−, with terms

· · ·+
∑

α+
n ⊗ L−−n,≷.

This is not unexpected, because the Sugawara-type Virasoro for ĝl1 is given by∑
L0
nt
−n =:α(t):2

and [u−2]R(u) involves cubic terms in α(t), which in the coproduct should split into the tensor
product of a degree-1 and a degree-2 term. Note, however, that our Virasoro operators coming
from vacuum matrix elements has a slight correction, taking the form

Ln = 1
2
∑
k∈Z

αkαn−k + nκαn

L0 = 1
2α

2
0 +

∑
k>0

αkα−k −
κ2

2

∆ = 1
2α

2
0 −

1
2κ

2, c = 1− 12κ2. (67)

The sign of κ creates a choice for

Ln,≷ = 1
2
∑
k∈Z

αkαn−k ± nκαn

which is the dependence on the chamber for the stable envelope. The full R-matrix therefore
intertwines these two, and changes + to −. In Fock(u1) ⊗ Fock(u2) ∼= Fock+ ⊗ Fock−, the
module Fock− is the Verma module for the Virasoro with lowest weight ∆ and central charge
c as given in (67). The eigenvalue of α−0 in Fock− is u := u1− u2. Both ∆ and c are invariant
under κ ↔ −κ, or, essentially equivalently, u1 ↔ u2. The conclusion is that the R-matrix
does nothing on the Fock+ factor, and does a reflection on Fock−. This terminology comes
from Liouville CFT, where the ui are literally the momenta of two bosons, and the exchange
u1 ↔ u2 is literally a reflection. The Fock+ factor corresponds to the center of mass of the
two bosons, and Fock− is the relative position.
Remark. On one hand, we can compute detR(u) explicitly, since R = Stab−1

< ◦Stab> and both
pieces are triangular. On the other hand, detR(u) = 0 whenever the two representations
are not isomorphic, and unitarity implies detR(u) is therefore the isomorphism between a
representation and its dual, also known as the Shapovalov form. Hence

detR(u) = det(Shapovalov) = (Kac formula)

recovering a result of Feigin and Fuchs.

108



17.7

We defined quantum groups via matrix elements of R-matrices. When the R-matrix is de-
formed in a flat manner, e.g. from rational to trigonometric to elliptic, the generators of
quantum groups obviously deform as well. It remains to ask whether relations deform. Many,
many lectures ago, we discussed that relations come from operators Q that commute with
R-matrices. There is a geometric source of such operators, as follows. Recall that we work
with spaces X → X0 such that the action of C×~ on X0 contracts it to a single fixed point
0 ∈ X0. If we specialize other equivariant variables to depend on ~, it is possible to create
other fixed points x0 ∈ X0, and we can look at their pre-images in X. These are called “slices”
of X.

Example. Consider X = T ∗P1 with weight u on the P1. Then X0 is a cone with weights
−~ ± u, and so something special happens when u = ±~. In terms of representations,
H∗(T ∗Gr(2)) = C2(u1)⊗C2(u2) with u = u1− u2, and it becomes reducible only at u = ±~.

17.8

Stable envelopes preserve the map X → X0, so upon specialization we get an action of the
quantum group on the slice. However, we can also treat x0 as the neighborhood of 0 ∈ X ′0
for some other quiver variety X ′ → X ′0. The inclusion of the slice into X therefore induces
an intertwiner for the quantum group.

Concretely, take Fock(u1) ⊗ Fock(u2). It is irreducible in general, but becomes reducible
if u2 = u1 − nt1 − t2, and there is a slice corresponding to

Fock(u1)⊗ Fock(u2)→ Fock(u1 − t2)⊗ Fock(u1 − nt1).

This is a screening operator for the Virasoro algebra. Commutation relations with screening
operators in fact give a complete set of relations for Y (ĝl1). The book proof of this comes
from looking at ~ = 0, where Y (ĝl1) becomes U(gl∞) ⊂ End(Fock). The relations cutting out
U(gl∞) are Plücker relations, analogous to relations cutting out End(M) ⊂ End(∧•M), and
one can check that our commutation relations become exactly the Plücker relations at ~ = 0.

17.9

Constructed geometrically in this way, these relations in quantum groups therefore persist in
K-theory and elliptic cohomology. In general, it is a conjecture that this construction actually
does produce a complete set of relations.

Lecture 18. Slices, intertwiners, and relations in quantum groups

Slices in quiver varieties and more general moduli problems, slices for Grassmannians and in-
stanton moduli spaces, slices as quantum group intertwiners, screening operators and Plücker
relations, quantum integrable systems from R-matrices, their relation to quantum multiplica-
tion for Nakajima varieties.
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18.1

Let Q be a quiver and consider the quiver data which goes into the definition of a Nakajima
quiver variety. If this data seems a bit arbitrary, equivalently one can think about representa-
tions of the path algebra AQ, whose generators are arrows of Q and relations are the moment
map equations.
Remark. A nice trick to simplify the situation a little is to observe that all the framing vertices
and framing maps can be combined into a single framing vertex of dimension v0 = 1. Instead
of having a framing vertex of dimension wi and one arrow wi → vi, we can instead draw wi
arrows from the new, single framing vertex.

w1 w2 w3

v1
v2 v3

· · · v1
v2 v3

· · ·
=

v0 = 1
w1 arrows

Figure 34: Replacing framing vertices in a quiver with a single additional vertex

Let R be a representation of an algebra A. Then End(R) = HomA(R,R) contains au-
tomorphisms of R, first-order deformations are given by Ext1

A(R,R), and obstructions to
first-order deformations (i.e. whether a first-order deformation can be continued to a second-
order deformation) are given by Ext2

A(R,R). In principle this sequence of Exts continues, but
this will not be the case for us due to the kinds of representations we consider. Let δi be the
irreducible representation with C at the i-th vertex and all maps zero, so that R =

∑
viδi.

• Hom(R,R) =
⊕

gl(vi) ⊃
∏

GL(vi).

• Viewing Ext1(A,B) as the space of extensions 0→ B →?→ A→ 0,

dim Ext1(δi, δj) = (# of arrows i→ j).

Observe that there is a duality Ext1(δj , δi) = ~−1 ⊗ Ext1(δi, δj)∨, where the ~−1 factor
comes from the weight of the dual arrow. For our algebra, this is a special case of Serre
duality.

• The obstruction map turns out to be the moment map. If we believe Serre duality,

Ext2(R,R) = ~−1 ⊗Hom(R,R)∨,

which is exactly where the moment map lives.
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18.2

More or less, a Nakajima quiver variety X is some open subset

X ⊂
[

quiver data +
moment map eq.

/
GL(V )

]

in the stack of representations of the path algebra AQ. Since X is a GIT quotient, it has
an associated ordinary affine quotient X0 = Spec(invariants) and there is a blow-down map
X → X0. For the action of a reductive group on an affine variety, invariant functions separate
closed points. So in every fiber of X → X0 there is a unique closed GL(V )-orbit, which is the
representative of the point in X0. In terms of representations,

X0 ⊂ {semisimple representations}.

Every representation R admits a filtration R• whose graded pieces Ri/Ri−1 are semisimples.
Although the filtration is not unique, the sum

⊕
iRi/Ri−1 is, and the map X → X0 sends R

to this sum. Another way of saying this is to map R to its K-theory class.
This puts us in a rather general framework, where if we have an algebra A of a certain

kind, e.g. satisfying Serre duality, then its moduli space of representations will look like a
quiver variety in the neighborhood of any point. For example this is true for moduli spaces
of sheaves on K3 surfaces. So quiver varieties are not as esoteric as they may seem.

18.3

Recall that X0 has a weight ~−1 which attracts everything to the point 0 ∈ X0 where all
invariants are zero. It corresponds to the representation

⊕
i viδi. We saw last time that at

certain specializations of equivariant variables, it is possible to have a fixed point R other
than 0. Then in a neighborhood of R, the moduli space still looks like a quiver variety.

Example. Let Q be the quiver with one loop, of weight t1. Take a two-dimensional framing
vertex, with framing weights a1, a2. Then there are invariant representations of the form

t1t2

a1 a2 = a1t
−n
1 t−1

2

a1
a1t

−1
1

a1t
−2
1

a1t
1−n
1

· · ·

as long as a2 = a1t
−n
1 t−1

2 . Note that these representations are reducible: an irreducible factor
is given by the image of (the vector of weight) a1.

18.4

Let R =
⊕
iR
⊕v′i
i be the decomposition into irreducibles. Then, by the preceding discussion,

the neighborhood of R (and its pre-image in X) will look like the quiver variety for the quiver
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whose vertices are the Ri, with dimensions v′i, and arrows are Ext1(Ri, Rj). This Ext we can
compute in K-theory from the Euler characteristic

χ(Ri, Rj) =
∑

(−1)i Exti(Ri, Rj),

because we already know Ext0 and Ext2.

Proposition. Suppose R = R0 ⊕
∑
i 6=0 v

′
iδi and R0 has (equivariant) dimension (1, β) where

the first factor is the framing dimension w0. Then the new quiver is the same, up to loops at
the 0-th vertex. Let

C := (1 + ~−1)− (adjacency matrix of Q)
be the equivariant Cartan matrix, which records χ(δi, δj). For example, for the A2 and Â0
quivers,

CA2 =
(

1 + ~−1 −1
−~−1 1 + ~−1

)
, C

Â0
= (1− t1)(1− t2).

Then the new dimension vector is v′, and the new framing dimension vector is w′ = w−~Cβ.

The degree of freedom given by a loop at the 0-th vertex is a vector space, and corresponds
to the freedom to move the point R in some stratum without changing what its neighborhood
looks like.

Example. In the setting of Example 18.3,

β = a1
(
1 + t−1

1 + · · ·+ t1−n1

)
.

There is some cancellation and
w′ = a1

(
t−1
2 + t−n1

)
is the new framing dimension. Hence restriction to a neighborhood of a slice gives a map

Fock(a)⊗ Fock(at−n1 t−1
2 )→ Fock(at−1

2 )⊗ Fock(at−n1 ). (68)

The ordering of tensor factors is important, since it determines whether we use coproduct or
the opposite coproduct, and we will discuss it later.

18.5

Why do maps like (68) intertwine the quantum group actions? Recall that stable envelopes
are correspondences over X0, and a typical correspondence looks like

X(β,w0)×X(v, w) Stab−−−→ X(β + v, w0 + w) res−−→ X(0, w0)×X(β + v, w).

Suppose the component in X(β,w0) contracts to 0 ∈ X0, and the component in X(v, w)
contracts to R⊕ 0 ∈ X0. Then on X0 we get

{0} × {R⊕ 0} 7→ {R⊕ 0},

and note that the dimensions of 0 add correctly. It follows that restriction to the slice at R⊕0
is a map of quantum group modules.
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Example. Consider the Yangian Y (gl2) acting on C2(a1)⊗ C2(a2). Geometrically,

C2(a1)⊗ C2(a2) = H∗(T ∗Gr(2)A) Stab−−−→ H∗(T ∗Gr(2))

is a map of Yangian modules. In general it is an isomorphism. Now suppose there is resonance,
e.g. a2 − a1 = ~. Then we can take a new fixed point in T ∗P1 ⊂ T ∗Gr(2), and consider its
interaction with some components of Stab±:

−a− ~ a+ ~ = 0

Stab−

−a− ~ a+ ~ = 0

Stab+ .

• Consider the maps

C2 ⊗ C2 H∗(T ∗Gr(2)).

Stab−

StabT+

As drawn, Stab− misses the slice, so it is not surjective. On the other hand, StabT+
involves integration but over a component with zero weight, and therefore blows up.

• Consider the maps

C2 ⊗ C2 H∗(T ∗Gr(2)).

Stab+

StabT−

Both maps are perfectly well-behaved isomorphisms.

The conclusion is that the module H∗(T ∗Gr(2)) always breaks up as

0→ (3 dim)→ H∗(T ∗Gr(2)) slice−−→ (1 dim)→ 0,

whereas the module C2 ⊗ C2 has both decompositions

0→ (3 dim)→ C2 ⊗ C2 → (1 dim)→ 0
0→ (1 dim)→ C2 ⊗ C2 → (3 dim)→ 0

depending on the choice of sign. Put differently, these two C2 ⊗ C2 are dual to each other;
the former is the cohomology H∗(T ∗Gr(2)) while the latter is the homology H∗(T ∗Gr(2)).
Generically H∗(T ∗Gr(2)) is irreducible self-dual, but at a certain point there is a difference
between homology and cohomology.

In general, the ordering of tensor factors in things like (68) come from exactly this kind
of situation.

113



18.6

Conjecture ([MO19]). All relations in our quantum groups come from slices.

This is true for the quiver with one loop. By deformation, it suffices to check for the
Yangian: relations come from operators that commute with the R-matrix, so upon perturbing
the R-matrix the number of generators can only increase while the number of relations can
only decrease. In fact, for Y (gl1) it is enough to check at ~ = 0, where we get all the Plücker
relations. As discussed, the slices give Virasoro screening operators.

We know by different means that deformations are generically flat. There is also a result
[NO] that if 0 is the only fixed representation, then H∗(

⊔
vX(v, w)) are irreducible.

18.7

Last time we saw a quantum integrable system formed by Baxter operators tr1(Z ⊗ 1)R12(a)
for some fixed operator Z such that [Z⊗Z,R] = 0. As we discussed, these operators commute
for all a and fixed Z. An example of such Z is

Z =
∏

zvii .

Since the R-matrix preserves dimensions, clearly Z⊗Z commutes with R. For z = 0 these are
vacuum-vacuum matrix elements of R, which are operators of classical multiplication (which
obviously commute). What are they for z 6= 0?

Conjecture (Nekrasov–Shatashvili [NS10]). These are operators of quantum multiplication.

Quantum multiplication is a new (assocative!) product which deformations the cup prod-
uct, and encodes counts of rational curves in the variety X. In cohomology, let (α, β) :=∫
X α ∪ β be the natural pairing on H∗(X). Then one defines this new (associative!) product

by
(α ? β, γ) :=

∑
C

z[degC]

where the sum is over rational curves C ⊂ X with three marked points that intersect the
prescribed homology classes α∨, β∨, and γ∨. The degree of C is some element [degC] ∈
H2(X,Z), so this sum produces a formal series in the group algebra of the effective cone in
H2(X,Z). The tip of the cone corresponds to degC = 0, i.e. C is just a point, and so

(α ? β, γ) = (α ∪ β, γ) +O(z).

It is a remarkable and non-obvious fact that ? is an associative product.

18.8

The Nekrasov–Shatashvili conjecture occurred before our geometric R-matrices and quantum
groups, and their approach was to compute, in a completely mathematically-rigorous way,
the spectrum of these operators of quantum multiplication in a “Bethe ansatz form”. This
refers to a specific way of tackling certain integrable systems, stemming from much previous
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work on diagonalizing Baxter’s operators, in which there is a particular schematic form given
for eigenvalues. Nekrasov and Shatashvili showed that the spectrum of operators of quantum
multiplication matches this description, and therefore it was natural to conjecture there is an
underlying quantum group and quantum integrable system.

Lecture 19. Integrable systems from enumerative geometry

Classical and quantum integrable systems in enumerative geomety, Plücker relations and Toda
equations, Toda equations in the Gromov–Witten theory of P1, the corresponding quantum in-
tegrable system and free fermions, free fermions as the Yangian of ĝl(1) at ~ = 0, Donaldson–
Thomas theory and its relation to GW theory, the full Yangian in the GW/DT theory of local
curves in 3-folds.

19.1

Today we give a pictorial introduction to enumerative geometry and (one perspective on) its
relationship with the deep and multi-dimensional subject of integrable systems. Namely, our
goal in this course is to understand some aspects of the theory of membranes and M-theory,
and the way that these subjects manifest themselves is via the connection between M-theory
and Donaldson–Thomas (DT) theory. There is also a bridge to Gromov–Witten (GW) theory
called the GW/DT correspondence [MNOP06], and in the world of GW counts there are a
lot of approaches to obtaining various integrable systems.

19.2

Rather than starting from M-theory, we begin with the KdV equation. Generally, to study
enumerative geometry means to study intersection theory on some moduli space, e.g. Schubert
calculus on the Grassmannian. A well-studied moduli space is Mg,n, the Deligne–Mumford
moduli space of (connected) stable n-pointed curves of genus g. These are curves C that may
have singularities that are at worst nodal, with n distinguished points p1, . . . , pn.

The cohomology ring H∗(Mg,n) is very interesting but very complicated. Mumford’s con-
jecture [Mum83], later proved by Madsen and Weiss in [MW07], says that the only cohomology
classes that are “stable” as g → ∞, i.e. those that can be defined at “infinite” genus, are
the characteristic classes of the line bundles T ∗piC on Mg,n. These have fibers which are the
cotangent spaces at the i-th marked point, as the curve C varies. (We prefer the cotangent
line bundle over the tangent line bundle because it is more ample.) As a line bundle, its only
non-trivial characteristic class is the first Chern class c1(T ∗piC), and we define

〈
∏
i

τki〉 :=
∫ ∏

i

c1(T ∗piC)ki .

There is no need to indicate the genus of C because it is found by a dimension constraint,
namely this integral vanishes unless

3g − 3 + n = dimCMg,n =
∑

ki.
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Though thinking about connected curves is more economical, the generating series which
count disconnected curves often have better formal properties, and the two kinds of generating
series are related by

(disconnected curves) = exp (connected curves)

where denominators like n! = |Sn| come from a permutation symmetry of n connected com-
ponents. One lesson that mathematicians have learned from theoretical physicists is that
when enumerative data is packaged in an appropriate way, intricate structures appear. For
example, a remarkable conjecture [Wit91] of Witten’s is that〈

exp
( ∞∑
k=0

τktk

)〉
= (τ function of KdV), (69)

where the lhs is expanded as a series in the formal variables tk. We will not spend too
much time discussing this particular conjecture, now a theorem; many giants of mathematics,
including Kontsevich, Mirzakhani, etc., have contributed to our understanding of it and nearby
subjects.

19.3

Is there some direct geometric meaning of the KdV equation? In the absence of a direct
connection between two objects which are known to be related, it is often productive to
ask whether the relation is a degenerate case of something much more general, where the
connection may be more direct. The perspective we will take is that the KdV equation arises
as a specialization

(2-Toda equation) (KP equation) KdV,
Many brilliant people have contributed to our understanding of the 2-Toda system, but in
particular we will focus on the work of the Kyoto school (see e.g. [MJD00]), where the 2-Toda
system arises as follows. Consider the group GL(∞), which acts on the Fock module. There
are two different flavors of Fock module, bosonic and fermionic, and the one we want sits in the
semi-infinite wedge ∧

∞
2 C∞ of the defining representation of GL(∞). To be more precise, this

GL(∞) action is by determinants, but in the infinite-dimensional limit some regularization is
necessary in order to take determinants, creating an action by a central extension of GL(∞)
instead. After this central extension, there is an identification

U(gl(∞)) ∼= Y (ĝl(1))
∣∣
~=0.

Under this identification, the Nakajima operators αn we discussed become matrices of 1’s
along some sub-diagonal and zeroes everywhere else, called infinite Töplitz matrices. Let
{en}n≥0 be a basis for C∞, and let

|n〉 := en ∧ en−1 ∧ en−2 ∧ · · · ∈
∧∞

2 C∞.

Then the semi-infinite wedge can be presented as∧∞
2 C∞ :=

⊕
n∈Z

U(gl(∞)) |n〉 .
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In fact it suffices to act on |n〉 using only the raising operators α−k for k > 0, i.e.

U(gl(∞)) |n〉 ∼= C[α−1, α−2, . . .] |n〉 .

As discussed for the Yangian, the image of GL(∞) is cut out by equations

[g ⊗ g, (screening op.)
∣∣
~=0] = 0,

which are bilinear equations on matrix elements of g. More specifically, they are Plücker
relations among the minors of g. At ~ = 0, the screening operators are explicitly

(screening op.)
∣∣
~=0 =

∑
i

ψi ⊗ ψ∗i

where ψi := ei ∧ − and its adjoint is ψ∗i := ∂/∂ei. In this setup, the 2-Toda equation is an
equation on a sequence of functions

τn(x, y) :=
〈
n

∣∣∣∣ exp
(∑
k>0

αk
k
xk

)
g exp

(∑
k<0

αk
k
yk

)∣∣∣∣ n
〉

(70)

for some arbitrary operator g. We will discuss why this is called a τ function later. Taking
partials with respect to x and y, we get all possible matrix elements of the operator in (70),
not just the 〈n| · |n〉 matrix element. Plücker relations between all these matrix elements form
the 2-Toda PDE. The operator g is like an initial condition.
Remark. A valid question to ask if why the 2-Toda PDE is interesting if there is already an
explicit formula (70) for its solutions; when we talk about a solvable integrable system, there
is a suggestion that it may not actually be solvable. But in reality the underlying theory often
just directly yields formulas for the solution, and we should actually talk about a solved and
integrated system.

19.4

This formulation of the 2-Toda system can be seen directly within the Gromov–Witten theory
of P1. This is the study of the moduli space

Mg,n(P1) = {f : C → P1}

for some stable maps f . Roughly one can imagine that C is smooth, of genus g with n marked
points, but f is a rational map with zeros and poles at certain points on C. Note that it can
very well be the case that f contracts entire components of C. On P1 there is the standard C×
action of scaling by q, but we will work in cohomology with the variable ε := log q ∈ Lie(C×).
In addition to the old discrete invariants g and n, there is a new invariant deg f . The genus
g is, again, constrained by a virtual dimension

vir dimMg,n(P1) = 2g + 2 deg−2 + n.

Note that 2g + 2 deg−2 is the number of branch points of a generic f .
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Let u be a formal variable keeping track of the genus g, and similarly let Q keep track of
deg f . Work in [OP06] shows that〈∏

τki(0)
∏

τ`i(∞)Qdeg fu2g−2
〉
P1

=
〈

0
∣∣∣∣∏ τki(0)eα1

(
Q

u2

)L0

eα−1
∏

τ`i(0)∗
∣∣∣∣ 0
〉

(71)

where now these τki(0) ∈ gl(∞) are explicit, commuting operators. They depend on u, and
are of the form

τk(0) = W

(
uk

(k + 1)!αk+1 + (explicit linear function)(αk, . . . , α1)
)
W−1

where the operator W is also explicit, and in fact triangular. The explicit linear function
here is responsible for a linear shift of the variables xk, yk in the solution (70) to the 2-Toda
equation.

19.5

Take the point of view of the target space P1, which consists of two “halves” around 0 and ∞
respectively glued together along a circle S1. The two halves of the formula (71) come from
maps to each of these halves, particularly if one computes via localization. The Fock space is
the space of states over this S1.

0 ∞

→

2:1

3:1

Figure 35: A map f : C → P1 corresponding to a partition (3, 2)

Given a map f : C → P1, the pre-image f−1(S1) may consist of many circles, and the
topological data for the k-th S1 upstairs is the (winding) number nk of times it covers the
downstairs S1. These numbers {nk} then form a partition of size deg f , since deg f is exactly
the total winding number.

Example. The map f which is d copies of the identity map P1 → P1 is recorded by a term
Qdu−2d, which is exactly the (Q/u2)L0 operator in (71).

So we can really interpret

〈0|
∏

τki(0)eα1 = 0 (72)

as vectors. The rhs consists of some Hodge integrals on the GW side. More generally, one
can put different insertions of τk(0), and view this “cap” as an operator

(polynomials in τk(0))→ Fock.
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19.6

The non-equivariant GW theory of P1 is a certain limit of the equivariant theory, and is
described by:

• the usual Toda system for τk(pt) since 0,∞ ∈ P1 are the same point in non-equivariant
cohomology;

• the Dubrovin–Zhang system for τk(1), where 1 is the non-equivariant limit of ([0] −
[∞])/ε.

The former is much more basic:〈∏
τki(pt)Qdeguχ

〉
=
〈

0
∣∣∣∣eα1(diagonal)

(
Q

u2

)L0

eα−1

∣∣∣∣ 0
〉
. (73)

Here (diagonal) means some diagonal matrices in gl(∞). They come from the “tube” operator

pt

τk(pt) (74)

where the point is an insertion τk(pt). These operators commute with each other and form
a quantum integrable system, but not a very complicated one because they are all diagonal
matrices. It is a very degenerate case of the commutative algebra in the Yangian Y (ĝl1) of
Baxter type.

We can expand (73) more explicitly. The creation operator eα1 creates all possible parti-
tions λ, each with weight dimλ/|λ|, and the annihilation operator e−α1 annihilates all of them
with the same weight. The diagonal matrices are diagonal precisely in the basis of monomials,
i.e. wedges of the ei, or, in the language of the α’s, the basis of Schur functions. Hence (73)
becomes ∑

λ

(dimλ

|λ|

)2
(sym. poly.)(λi − i).

The weight (dimλ/|λ|)2 is some multinomial coefficient, so this is a finite analogue of integrals
like ∫

Rn

∏
(xi − xj)2P (x)e−

∑
x2
i .

19.7

At this point, it is natural to ask:

• is there a deeper reason we see partitions here?

• what about ~ 6= 0, i.e. Y (ĝl1) in its full glory?
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The answers are found in the GW/DT correspondence for local curves in 3-folds. Note that
the case of a general curve reduces to the case of P1 by degeneration. A local curve in a 3-fold
means to take a (target) curve B and promote it to a 3-fold, by taking a formal neighborhood
of the curve B in an ambient 3-fold. Specifically, take two line bundles L1 and L2 over B; the
resulting 3-fold is the total space

X := tot(L1 ⊕ L2 → B).

In principle we can take any rank-2 vector bundle over B, but GW theory and any enumerative
theory is deformation-invariant, and by deformation we can break any rank-2 vector bundle
into the sum of two line bundles. A nice feature of having two line bundles is we gain two
more automorphisms, scaling fibers of L1 and L2 by t1 and t2 respectively.

In general, any kind of theory for a vector bundle recovers the theory for the original base
in some kind of limit, but here the passage back is very easy: if L2 = L∨1 , so in particular
t2 = −t1, then there is a relation due to Mumford that says the GW theory of X reduces to the
GW theory of B. The parameter ~ in the Yangian is the combination ~ = −t1−t2, as one may
expect, and so we expect the full Y (ĝl1) for X, while for B we get the ~ = 0 specialization.
Operators like the “tube” earlier will form the Baxter sub-algebra. The parameter Z in the
Baxter operator turns out to be eiu. The “cap” (72) can also be understood in the same way.

19.8

Now we address why partitions show up, via the GW/DT equivalence. DT theory is an
enumerative theory of sheaves on 3-folds. For smooth 3-folds, the category Coh(X) of coher-
ent sheaves behaves nicely, but DT theory also encompasses the study of objects in related
categories that behave very similarly. Note that if X is a fibration

S X

B

by surfaces S over a base curve B, e.g. like for local curves, then a sheaf on X is like a map

B → (moduli of sheaves on S). (75)

This is actually true if the sheaf on X in question is actually flat over B, but in general for
DT theory we should consider the non-flat sheaves too. These will induce singularities in the
map (75). Such singularities are analogous to ones appearing in GW theory when the rational
map f : C → X must be resolved by degenerating the source curve C. In contrast, for DT
theory, the curve B is part of the target space and does not degenerate, and instead we get
singularities. This turns out to work better in many aspects than the compactification, via
degeneration, specified by GW theory.
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19.9

Example. Figure 36a shows an example of a sheaf on a specific local curve. As drawn, it has
degree 2 over the base P1 and therefore corresponds to a (rational) map

P1 99K Hilb(C2, 2).

Away from 0,∞ ∈ P1, this map is the constant map to the point

x2

x2
1

∈ Hilb(C2, 2),

i.e. the ideal generated by x2
1 and x2. The singularities are at 0,∞ ∈ P1. In comparison, in

GW theory, such singularities involve components of the source curve contracted by f , as in
Figure 36b. Contributions of the contracted components are Hodge integrals, which become
equivalent to “boxcounting” in DT theory (which is especially simple in PT theory).

(a) A monomial ideal sheaf
on O(−1)⊕O(−1)→ P1 of
degree 2 over P1

→

(b) A degree-2 map C →
P1 with contracted compo-
nents over 0,∞ ∈ P1

Figure 36: Elements in GW vs DT theory with singularities

Regardless of the (combinatorial) nature of singularities, both GW and DT theories can
be solved explicitly in the language of quantum groups.

19.10

So far we have discussed Yangians; what about other quantum groups? For example, Uq( ̂̂gl1)
has to do with the K-theory of DT moduli spaces, for X a local curve. While cohomology has
to do with the space of states in X, K-theory has to do with the space of states in X × S1

for an extra circle which physically represents time. The base B × S1 becomes a real 3-fold,
and is the world-volume of an M2 brane in M-theory. M-theory is an 11-dimensional theory
with some extended degrees of freedom: M5-branes and M2-branes. We will not discuss M5-
branes, but M2-branes take the form B×S1 for a Riemann surface B, and to compute in the
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Hamiltonian formulation of the theory of M2-branes means to deal with the K-theory of some
moduli of objects on B. Specifically, the theory with Uq( ̂̂gl1) symmetry should be the theory
of a stack of M2-branes on B × S1 inside the 11-dimensional Z × S1, for a Calabi–Yau 5-fold
X. The number of M2-branes in the stack is the analogue of deg f , or the operator L0. One
of the many motivations for studying 2 + 1-dimensional theories like we do in this course is
to better understand M2-branes. In particular, the actual moduli space of M2-branes is still
under construction [NO16].

Lecture 20. Virtual fundamental classes in enumerative geom-
etry

Lecture by Chiu-Chu Melissa Liu.

20.1

Consider a moduli space X, over C, on which we have enumerative problems of interest.
In all the problems considered so far in this course, X has been a Deligne–Mumford stack
which is not smooth but instead virtually smooth. This means X is equipped with a perfect
obstruction theory E, which is a certain object in the derived category D(X) locally of the
form [E−1 → E0] for vector bundles E−1, E0. From the perfect obstruction theory we get a
virtual tangent bundle

T vir := (E0)∨ − (E1)∨,

a replacement for the tangent bundle T in the smooth case. Its virtual dimension is

vir dimT vir := rank T vir = rankE0 − rankE−1.

20.2

Given a virtually smooth DM stack (X, E), a construction [BF97] of Behrend and Fantechi
yields a virtual fundamental class

[X, E]vir ∈ Ad(X;Q)

in the Chow group of X (of the virtual dimension d). Note that, since X is a stack, we are
forced to take coefficients in Q as opposed to Z. Here are some properties of [X, E]vir which
will be verified later.

• If X is actually a scheme, then [X, E]vir ∈ Ad(X;Z) is actually an integral class.

• If X is smooth, then the (canonical choice of) perfect obstruction theory E = [0→ ΩX]
has just one term, namely the cotangent bundle of X. Equivalently, T vir = TX is just the
tangent bundle. The virtual dimension becomes d = dimX, and [X, E]vir = [X] ∈ Ad(X).
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In this course, we would also like to work in K-theory. Following [Lee04], (X, E) also yields
a virtual structure sheaf

Ovir
X,E ∈ D(X).

As with [X, E]vir, if X is smooth and T vir = TX, then this is just the usual structure sheaf OX.
If X is proper, enumerative invariants arise from the pushforward to a point of virtual

classes like [X, E]vir or Ovir
X,E , in cohomology or K-theory respectively. More generally we can

take proper pushforwards to other targets, not just a point.

20.3

We now describe a perfect obstruction theory, and the Behrend–Fantechi construction [BF97]
in more detail.

Definition. Let D[−1,0](X) ⊂ D(X) consist of only those complexes E with hi(E) = 0 unless
i = 0,−1. Then a perfect obstruction theory is an element E ∈ D[−1,0](X) with a morphism

E [· · · → E−1 → E0]

LX [· · · → L−1
X → L0

X]

φ

where LX is the cotangent complex of X, to be discussed later. We require:

• h0(φ) is an isomorphism;

• h−1(φ) is surjective.

20.4

Objects on stacks can be understood using an atlas of the stack. For ordinary schemes X, an
atlas is a map

⊔
α Uα → X where the charts Uα = SpecRα are affine schemes, and the maps

Uα → X are open embeddings. For DM (resp. Artin) stacks, the maps

Uα → X

are now allowed to be étale (resp. smooth). Restriction of the object in question to each Uα
chart allows us to understand it in terms of commutative algebra.

Take φ : E → LX and restrict it to an étale chart U → X to get

φU : EU → LU . (76)

Let i : U → W be a closed embedding of the affine U , which may be singular, into a non-
singular scheme W . Let I be the ideal sheaf of the embedding, and

CU/W := Spec
(⊕
n≥0

In/In+1
)

NU/W := Spec
(

Sym I/I2
)
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be the normal cone and normal sheaf respectively; see Fulton [Ful84]. In this situation, the
(truncation of the) cotangent complex τ≥−1LU is very explicit, and (76) becomes

EU [E−1
U E0

U ]

LU [I/I2 L0
X].

∼=

Taking Spec, let (E1)U := Spec(SymE−1), which can be identified with the vector bundle
(E−1

U )∨. The condition that h−1(φ) is surjective means there are embeddings

CU/W ⊂ NU/W ⊂ (E1)U . (77)

Note that (E1)U is an actual vector bundle, while NU/W is an abelian cone and CU/W is just
a cone. Moreover, there is a map

i∗TW ∼= (E0
U )∨ → (E1)U .

Take the quotient of (77) by the image of this map to get

CU ⊂ NU ⊂ EU (78)

where CU := [CU/W /i∗TW ] and similarly for NU and EU . These are now stacky vector
bundles and (abelian) cones. In particular, the cone CU is actually independent of the choice
of embedding i : U →W , and has pure dimension 0 since CU/W has pure dimension dimW .

20.5

All the objects in (78) glue appropriately across different affine charts, i.e. they descend to
the stack X, and we denote the resulting objects by

CX ⊂ NX ⊂ EX.

Definition. CX (resp. NX) is the intrinsic normal cone (resp. sheaf).

Both CX and NX are determined by X itself, but EX depends on the choice of perfect
obstruction theory. It has rank

rankEX = rankE−1 − rankE0 = − vir dim .

20.6

If E be a vector bundle of rank r over a scheme X, then in the classical setting of Fulton’s
intersection theory there is a Gysin map

0!
E : Ad(E;Z)→ Ad−r(X;Z).

Now if we have a vector bundle stack E of rank r over a DM stack X, then Kresch [Kre99]
constructs an analogous Gysin map

0!
E : Ad(E;Q)→ Ad−r(X;Q).
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Definition. The virtual fundamental class of (X, E) is

[X, E]vir := 0!
E[CX] ∈ Avir dim(X).

To understand this more concretely, we return to the simpler case over a scheme instead
of a DM stack by restricting to affine charts in an atlas (namely, the same atlas considered
earlier). Let EU → U be the restriction of EX → X. While U is now a scheme, EU is still a
vector bundle stack, and so to further simplify things we pass to the smooth cover

π : (E1)U → EU = [(E1)U/i∗TW ].

Clearly π is smooth of relative dimension d0 := dimW = rankE0. Let d1 := rankE−1 and
d := d0 − d1 = − rankEU be the virtual dimension. By construction,

π∗[CU ] = [CU/W ] ∈ Ad0((E1)U )

and there is a commutative diagram

Ad0((E1)U ) Ad0−d1(U)

A0(EU ) Ad(U).

0!
(E1)U

π∗

0!
EU

Hence
[U,EU ]vir = 0!

(E1)U [CU/W ] = 0!
EU

[CU ] ∈ Ad(U).
The intuition is that, inside the total space of (E1)U , we are intersecting the normal cone
CU/W with the zero section U .

For the virtual structure sheaf, the idea is analogous:

Ovir
U,EU

:= OU ⊗LO(E1)U
OCU/W ∈ D(U)

where ⊗L is the derived tensor product. In terms of the stacky objects, this is equivalent to
OU ⊗LOEU

OCU . These descend to X to give

Ovir
X,EX

= OX ⊗L OEX
∈ D(X)

when X is a virtually smooth DM stack.

20.7

Example. If U is a smooth scheme, for the closed embedding into something smooth one
can take the identity map i = id: U → U . Then CU/U = U is the zero bundle and there is an
isomorphism

EU [0→ Ω1
U ]

LU [0→ Ω1
U ].
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The stacky cones are CU = EU = [U/TU ], the Gysin map 0! : Ad(U ;Z) → Ad(U ;Z) is the
identity, and so

[U,EU ]vir = 0![CU/U ] = [U ] ∈ Ad(U ;Z).

The same computation applies for a smooth DM stack X, but in Ad(X;Q), and similarly for
virtual structure sheaves.

20.8

The next step, important for this course, is to make everything equivariant. Let X be a DM
stack with the action of an algebraic group G. It is good to be careful about what a group
action on a stack means; we mean in the sense of [Rom05]. Then LX ∈ DG(X) is a complex
of G-equivariant sheaves. The obstruction bundle

E ∈ D[−1,0]
G (X)

must also be G-equivariant. The result is equivariant classes

[X, E]vir ∈ AGd (X), Ovir
X,E ∈ DG(X).

20.9

When G = (C×)k is a torus, there is the torus localization of virtual fundamental classes
[GP99, Beh02] as follows. Let ι : XG ↪→ X be the inclusion of the fixed locus. In K-theory,
there is a splitting

E
∣∣
XG

= Ef ⊕ Em

into G-fixed and G-moving parts. The G-fixed part is used to define the virtual fundamental
class on XG. So, similarly,

T vir
X

∣∣
XG

= T vir
XG ⊕N

vir

where the moving part Nvir is called the virtual normal bundle. Then, with this notation, the
virtual localization formula is

[X, E]vir = ι∗

(
[XG, Ef ]vir

eT (Nvir)

)
∈ AG∗ (X)⊗RG SG. (79)

Here RG := A∗G(pt) = Q[t1, . . . , tk] is the G-equivariant Chow ring of a point, generated by
universal first Chern classes, and SG = Q(t1, . . . , tk) is its fraction field.
Remark. The original proof of the virtual localization formula (79) required a G-equivariant
embedding of X into something smooth, but this assumption has since been removed by
[CKL17].
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20.10

Finally, we need a relative version of the virtual classes. Let X be a DM stack, and let
ΠX/M : X → M be a projection to a smooth Artin stack of dimension m. Suppose ΠX/M is
virtually smooth of relative dimension d, in the sense that there is a relative perfect obstruction
theory, i.e. an object

EX/M ∈ D[−1,0](X)
with morphism φ : EX/M → LX/M to the relative cotangent complex such that h0(φ) is an
isomorphism and h−1(φ) is a surjection. Again, we consider étale charts U and closed embed-
dings into schemes W

U X

M

étale U W

M

i

except now everything is over M, and W → M is smooth of relative dimension d0. The
relative intrinsic normal cone is

CU/M := [CU/W /i∗TW/M]

and has pure dimension dimM. Similarly there is the relative intrinsic normal sheaf NU/M

and there are embeddings like in (78). The relative virtual fundamental class, on U , is then

[U,EU/M]vir := 0!
EU/M

[CU/M] ∈ AdimM+d(U).

Note that EU/M is a vector bundle of rank −d, and [CU/M] ∈ AdimM(EU/M;Q). Similarly, we
also get the virtual structure sheaf.

20.11

Example (Gromov–Witten theory). Let X be a non-singular projective variety. In physics,
we consider two-dimensional sigma models to X. This means to consider maps of curves into
the target X. Let β ∈ H2(X,Z) be a curve class, and let

X̃ := Mpre
g,n(X,β)

be the moduli of genus-g, n-pointed prestable maps of degree β to X. Denote points in X̃ by

f : (C, x1, . . . , xn)→ X.

Two such prestable maps are isomorphic if there is an isomorphism φ : C → C ′ of source
curves such that

(C, x1, . . . , xn)

X

(C ′, x′1, . . . , x′n)

f

g
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commutes. The actual moduli space of interest

X = Mg,n(X,β) ⊂ X̃

is the moduli of stable maps to X. While X̃ is usually a singular Artin stack, the stability
condition |Aut | < ∞ implies that X is a proper DM stack. But actually X̃ already has
a relative perfect obstruction theory; once we describe what it is, the Behrend–Fantechi
construction will produce the virtual fundamental class.

Let M := Mg,n be the moduli of genus-g n-pointed prestable curves. It is a smooth Artin
stack of dimension 3g − 3 + n. The forgetful map

Π
X̃/M

: X̃→M

is virtually smooth, by the following relative perfect obstruction theory. Let πM : CM → M
be the universal curve, and form the Cartesian diagram

C
X̃

CM

X̃ M

π
X̃ πM

so that C
X̃

is the universal curve over X̃. One can identify

X̃ = Γ(M, CM ×X/CM)

over M, because once a specific curve ξ := (C, x1, . . . , xn) has been fixed, the remaining data
is just that of the map C → X, which corresponds to its graph in C×X. There is a universal
evaluation map

ev
X̃

: C
X̃
→ X

which on fibers is just the map f : C → X. With this setup, the relative perfect obstruction
theory is

E
X̃/M

:=
(
R•π

X̃,∗ ev∗
X̃
TX
)∨
.

Concretely, the cohomologies of E
X̃/M

, over the point ξ, are

h0(E∨
X̃/M

)
∣∣
ξ

= H0(C, f∗TX)

h1(E∨
X̃/M

)
∣∣
ξ

= H1(C, f∗TX),

measuring infinitesimal deformations (and obstructions thereof) of a map from a fixed domain
curve C to X. Finally, M is a smooth Artin stack whose tangent space is a two-term complex

TM
∣∣
ξ

=
[
Ext0

OC (ΩC(D),OC)→ Ext1
OC (ΩC(D),OC)

]
where D := x1 + · · · + xn is the divisor of the marked points. The first term sits in degree
−1, meaning that there are no obstructions to deforming the domain C, but there exist
infinitesimal automorphisms.
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One can compute the relative virtual dimension

vir dim X̃/M = χ(C, f∗TX) =
∫
β
c1(TX) + (dimX)(1− g)

by Riemann–Roch, and add it to the dimension of M to get

vir dimMg,n(X,β) =
∫
β
c1(TX) + (dimX − 3)(1− g) + n.

Lecture 21. Self-duality and quasimaps

Exact and approximate self-duality of obstruction theories, symmetrized virtual structure sheaf,
the quest for proper moduli spaces with self-dual obstruction theory, quasimaps to GIT quo-
tients, quasimaps to projective spaces and to the Hilbert schemes of points.

21.1

Recall that our original story began with a moduli space X of vacua in a supersymmetric
(2 + 1)-dimensional theory. At large scales, i.e. in the infrared, this theory behaves like
a theory of modulated vacua. In other words, we consider a theory of maps f : C → X
from a Riemann surface C. Since there is an extended supersymmetry, only supersymmetric
configurations f will contribute. We can arrange it so that these are precisely the f which are
holomorphic, for a fixed choice of complex structure on C and for the one already present on
X (which is actually almost hyperkähler). The moduli of supersymmetric states is therefore,
approximately, a moduli of such holomorphic maps f .

21.2

Recall from the very first lecture that in order to take indices in this setting, we require
an index sheaf on this moduli of maps. It should behave like the index sheaf for the Dirac
operator /D. For example, for a Kähler manifold M , the Dirac operator is

/D = ∂ y K
1/2
M ⊗

⊕
i

Ω0,i(M) (80)

where KM is the canonical bundle and Ω0,i(M) are anti-holomorphic i-forms. Note that there
is a Z/2-grading by whether i is even or odd. Analogously, let

Tvir = TM︸︷︷︸
deformations

− Obs︸︷︷︸
obstructions

be the tangent-obstruction theory (in K-theory). Then, in the construction of the virtual
structure sheaf, we should also twist by K1/2 and define

Ôvir := Ovir ⊗K1/2
vir
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where
Kvir := det(Tvir)−1

is the virtual canonical. There is no reason a priori why a square root of Kvir exists; we will
discuss this later.

21.3

Suppose the obstruction sheaf Obs is actually a vector bundle. Then

Ovir = OM ⊗
∑

(−1)i ∧i (Obs∨) (81)

arises from the Koszul complex of Obs. Comparing with (80), and remembering that Ω0,∗(M)
is dual to TM , we see that we should require

Obs ≈ (deformation)∨.

The ≈ is because it is also OK if, instead,

Obs = (deformation)∨ ⊗ (?) (82)

where (?) is something we can control. In particular, if obstructions are dual to deformations
in this way, then

Kvir = det(Obs∨−Obs)−1 = det(Obs)2.

So indeed Kvir will have a square root. However this is not a proof that Kvir always has a
square root, since usually our moduli spaces are not cut out in M by a section of a vector
bundle, Obs is in general some sheaf, and (81) does not hold.

21.4

To recap, we want a moduli space of maps f : C → X with a perfect obstruction theory that
is almost self-dual, in the sense of (82). In algebraic geometry, we would also like this moduli
space to be proper, but this cannot happen when X itself is not proper. Better, recall that
X has a projective map π : X → X0 to its affinization, and so the composition

C
f−→ X → X0

maps C to a point (assuming C is connected). We would like the moduli to be proper over
the analogous moduli of maps C → X0. Namely, each fiber π−1(p) ⊂ X is projective, and the
subspace of maps C → π−1(p) should be proper.

21.5

Neither the self-duality nor the properness property is easy to achieve! To compactify a space
of maps f : C → X, it is necessary to add maps which are singular. The simplest possible
example is to take a conic in P2, which equivalently is a degree-2 map P1 → P2, and degenerate
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it into a union of two lines. There is no way to parameterize the union of two lines by a map
P1 → P2. In the moduli space of stable maps, for Gromov–Witten theory, the solution is to
allow C to grow extra components called bubbles and become a nodal (singular) curve. This
indeed results in a proper moduli space, but the presence of bubbles spoils the self-duality of
the perfect obstruction theory even for the best of targets X. We can observe this as follows.
Suppose X is smooth, and consider the deformation theory of the map f . For every point in
the image f(C) ⊂ X, there is a freedom to deform it along any tangent vector, so

Def = H0(C, f∗TX).

To identify the obstructions, we can work very concretely. Cover C by affine charts C \ {pt}
and D where D is a formal disk around pt. (These charts are glued along the formal punctured
disk). Maps from affine varieties can be deformed in any way, but to glue the deformations
together requires them to agree on the overlap of the two charts. This is measured exactly by
the Čech complex. In particular

Obs = H1(C, f∗TX).

For us, X is a symplectic variety and is therefore always self-dual. Then

Obs∨ = H1(C, f∗TX)∨ = H0(C, (f∗TX)∨ ⊗KC) = H0(C, f∗TX ⊗KC)

by Serre duality. This canonical bundle KC is the canonical bundle of the whole curve,
including any bubbles. Since it is some divisor on C, it is something we can control as long as
we can control C itself. Unfortunately, the bubbles affect KC in predictable but a basically
unmanageable way.

21.6

One approach to K-theoretic Gromov–Witten theory is to modify the index sheaf, via some
insertions, to restore an approximate self-duality; see [Liu19] for a discussion of this approach.
The basic challenge is, for X = T ∗G/B, to recover Macdonald operators. In the degeneration
~→ 0,∞ of the cotangent weight, this should recover the Toda operators for X = G/B found
in [GL03].

21.7

We take a different approach to compactifying the moduli of maps, using that X comes from
a supersymmetric gauge theory, and is a Nakajima quiver variety.
Remark. Note that T ∗G/B is not a Nakajima quiver variety for G 6= GL(n). This is not a
new issue in integrable systems. It is known that Macdonald polynomials and other objects,
have features in type A which are different from those in other types. Here we have another
manifestation of this fact.
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In particular, X is the Higgs branch of the supersymmetric gauge theory, whose ingredients
are a gauge group G and a symplectic representation M containing matter in the theory. Then
M has a moment map µ : M → g∨, and X is the stable locus inside the quotient stack

X ⊂ X := [µ−1(0)/G].

Instead of considering maps f : C → X, we first think about maps f : C → X. Singular points
will be where the image of f lands in the unstable locus inside X instead of the stable locus
X.

21.8

To understand maps to stacks, we begin with the simple case of [pt/G]. By definition,

(f : C → [pt/G]) ≡ (principal G-bundle P → C).

In more generality it would be important to discuss what topology (analytic, Zariski, étale,
etc.) to take on G and C for the principal G-bundles, but in our setting we are doubly safe:
they are all equivalent for G = GL(n) or a product of such, and also they are all equivalent
for a smooth curve C.

In more generality, a map f : C → [Y/G] is the data of the principal G-bundle P → C
along with a choice of section of the associated bundle P ×G Y → C. For instance, if G = C×
acts on Y = Cn, the space of maps is

{line bundle L → C and , s ∈ H0(C,L⊕n)}.

This is almost equivalent to a map f : C → Pn−1, which is given by

f = [f1(x) : f2(x) : · · · : fn(x)]

for a coordinate x ∈ C. On Pn−1, these coordinates fi(x) are not functions but rather sections
ofO(1). Equivalently, setting L = f∗O(1), these fi are sections fi ∈ H0(C,L). But to actually
be a map to Pn−1, they must have no base points, i.e. there cannot exist x ∈ C such that

f(x) = [0 : · · · : 0].

In our previous stacky language, we are viewing Pn−1 ⊂stable [Cn/C×] and

Maps(C → Pn−1) ⊂ Maps(C → [Cn/C×])

consists of those L and n sections with no base points.

21.9

The moduli Maps(C → Pn−1) is not proper, because the condition that something doesn’t
vanish is an open condition. Instead, there is an intermediate space

Maps(C → Pn−1) ⊂ QMaps(C → [Cn/C×]) ⊂ Maps(C → [Cn/C×])
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of stable quasimaps where we allow a zero-dimensional locus of base points. Eventually we
will also think about nodal C, in which case the base points should be disjoint from the nodes
(and any marked points) of C as well. Actually, QMaps is a very simple space: for a fixed
line bundle L, it is just

P(H0(C,L⊕n)) = (H0(C,L)⊕n \ {0})/C×.

The projectivization is necessary because every line bundle L has Aut(L) = C×, from an
overall scaling, which also acts on sections. Allowing L to move, we see that QMaps is just a
projective space bundle.

Definition. A stable quasimap in QMaps(C → [Y/G]) is:

• a principal G-bundle P → C;

• a section f of the associated Y -bundle P ×G Y → C whose base locus f−1(Yunstable) is
zero-dimensional and disjoint from nodes (and marked points, if any) of C.

21.10

Example. What are stable quasimaps to Hilb(C2, n)? Recall that Hilb(C2, n) is a Nakajima
quiver variety consisting of representations

W C V.

A

B

x1

x2

(83)

The moment map is µ = [x1, x2] +AB ∈ gl(V )∨, and

Hilb(C2, n) ⊂stable [µ−1(0)/GL(V )].

The stability condition we impose (among two possible conditions) is that the vectors xi1x
j
2A·1

span V . This turns out to imply B = 0. To move to quasimaps, in general the only thing
that changes is that all vector spaces in (83) are now replaced with vector bundles over the
curve C:

W OC V.
A

B

x1

x2

.

As with Hilb(C2), the bundle V varies as we move in the moduli space, while W is fixed and
in general is acted upon by GL(W), or GL(W ) if it really is a trivial bundle. The maps are
now maps of bundles, e.g. xi ∈ HomC(V,V). A base point is where {xi1x

j
2A}i,j fail to generate

the fiber of V. Since by stability B vanishes away from the base locus, i.e. away from finitely
many points, B is actually still identically zero.
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21.11

The data of V and the two operators x1, x2 is equivalent to the data of a sheaf F on C ×C2.
Namely, given F , pushing forward along the projection π : C×C2 → C gives a sheaf V = π∗F
on the base along with an action of the two coordinates x1, x2 ∈ C2. In addition, V is not just
a sheaf on C, but rather a bundle, i.e. it is locally free. On curves, locally free is equivalent to
torsion-free, meaning that there are no zero-dimensional subsheaves, and this is the property
that lifts to F . In other words, F has no zero-dimensional subsheaves; it is pure of dimension
1. Finally, the image of xi1x

j
2A · OC is exactly OC×C2 , and therefore the map

OC×C2 → F (84)

has non-trivial cokernel supported at exactly the base locus in C.

Definition. Pairs like (84), on threefolds in general, where F is pure 1-dimensional and
dim coker = 0, are known as Pandharipande–Thomas (PT) pairs [PT09].

We have just verified that

QMaps(C → Hilb(C2, n)) = PT(C × C2).

So quasimaps really correspond, on the nose, to some sort of three-dimensional sheaf counting.

21.12

A variation is to take a non-trivial C2-bundle over C instead of the trivial bundle C × C2.
In quasimap language, this corresponds to a twist of the quiver data by Aut(X) ⊃ GL(W )×
GL(edge)× C×~ . For example, we could make

xi ∈ Hom (V,V ⊗ (line bundle on C)) .

Explicitly, if the bundle is L1 ⊕ L2 → C, then this line bundle could be L∨i .

21.13

To summarize, in Gromov–Witten theory we take the target X to be smooth but otherwise
fairly arbitrary, e.g. projective-over-affine to achieve properness, and the compactification
happens via bubbling of the source curve C. In quasimap theory, bubbling is replaced by
the presence of base points, and, importantly, the notion of base point does depend on the
ambient stack X. Also, for properness, the target X must embed as an open (stable) locus in
a quotient stack X = [V/G] where V is affine and G is reductive. For example, this will not be
the case for (the obvious realization of) T ∗G/B, since the Borel subgroup B is not reductive.
Furthermore, to get a perfect obstruction theory for quasimaps, V itself must already have a
perfect obstruction theory, which implies V must be a local complete intersection (lci). This
means the number of equations cutting out V in its ambient space is equal to its codimension.
One can verify that µ−1(0), for Nakajima quiver varieties, is indeed lci. For Hilb(C2), this
is precisely why it is important to have the map B, even though on the stable locus B is
identically zero.
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21.14

In principle, these conditions on the quasimap target X fit into a larger world of X of the
form

X = [crit(f)/reductive],
where f is a function on a smooth ambient space with certain scaling properties. For Nakajima
quiver varieties, we can introduce an extra variable ξ ∈ gl(V ) and define the function

f = 〈ξ, µ(x)〉.

Then crit(f) = {µ = 0, ξ · x = 0}, and on the stable locus ξ · x = 0 implies ξ = 0. This
illustrates the general idea that equations like ξ = 0 can be traded for extra variables in a
defining function like f . In different work, see e.g. [CLLL17], these extra variables are called
P-fields.

Lecture 22. Quasimaps to Hilb(C2) as PT theory

Donaldson–Thomas counts of subschemes in 3-folds, quasimaps to Hilb(C2) and Pandharipande–
Thomas counts for rank 2 bundles over curves, torus fixed points in the Hilbert scheme of
curves and the PT spaces, twisted quasimaps, evaluation maps, relative quasimaps, accor-
dions, nodes and generation formula, the glue matrix.

22.1

Recall that Hilb(C2, n) parameterizes 0-dimensional subschemes of C2 of length n. In quiver
language, there is a surjection

C[x1, x2] · 1 = OC2 � V = Osubscheme.

To take a map C → Hilb(C2, n) means to have a flat family (over C) of such surjections, so
it follows that (

nonsingular map
f : C → Hilb(C2, n)

)
≡
(

subscheme Z ⊂ C2 × C
flat over C

)
.

Flatness here can be thought of as the condition that the fiber over c ∈ C is the limit of nearby
fibers, i.e. the whole subscheme Z is a closure of its generic fibers. As we discussed previously,
this condition is not a closed condition; a family of regular maps can converge to something
with a singularity. For us, the easiest example to look at the family of automorphisms of
C = P1 which scales everything toward 0 ∈ C. In the limit, we get a map which is constant
away from 0 ∈ P1, namely it takes the value f(∞) everywhere else, and clearly this is not flat.

22.2

Last time we resolved this issue by considering quasimaps instead of maps. Quasimaps to
Hilb(C2, n) relax the condition that

OC×C2 → OZ → 0.
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has to be surjective, so that OZ becomes something which is no longer the structure sheaf
of a subscheme. Let π : C × C2 → C be the projection. Recall that the vector bundle V in
the quiver data of a quasimap C → Hilb(C2, n) can be identified as π∗F for a sheaf F . Then
there are equivalences

V is a vector bundle ⇐⇒
(

F has no
0-dimensional subsheaves

)
(

xi1x
j
2 · 1 generate V

except at finitely many base points

)
⇐⇒ dim coker(OC×C2

s−→ F) = 0.

So on one hand we allow the map O → F to not be surjective, but on the other hand we
require F must be pure of dimension 1. In an enumerative context, such pairs were first
studied by Pandharipande and Thomas [PT09] and are called PT pairs.

22.3

In some sense, for Hilb(C2), the quasimap stability condition equals the PT stability condition.
More generally, PT pairs fall into the more general framework of “Donaldson–Thomas counts”,
which count stable objects in categories that look like sheaves on 3-folds, meaning that there
is a Serre duality

Exti(F1,F2) ∼= Ext3−i(F2,F1 ⊗K)∨ (85)
for objects in the category. In particular, the deformations Ext1(G,G) are roughly dual to the
obstructions Ext2(G,G). Examples of such categories include:
• actual sheaves on 3-folds;

• representations of quivers (which form a “2d” category) in sheaves over a curve (which
provides the extra dimension).

In the former example, note the presence of a potentially non-trivial K in (85); the 3-fold does
not need to be Calabi–Yau. Quasimaps fall into the latter example. The earliest enumerative
theory of this flavor is from [MNOP06], studying ideal sheaves of curves in 3-folds. In that
setting, there is an actual surjection

O3-fold → Ocurve → 0,

which in terms of quiver data means we give up on V being a vector bundle (cf. stability for
PT pairs). There are many, many other possibilities for stability chambers.

22.4

A general expectation, supported by many theorems and computations, is that all stability
conditions give equivalent counts in the sense that there is some dictionary which converts
between the counts. This is known for local curves in cohomology, and in K-theory is an
area of active research. In cohomology, DT counts are also equivalent to GW counts for local
curves, and this was the original motivation of [MNOP06]. It is unknown what happens to
GW/DT in K-theory, one issue being the loss of self-duality. In this course, many of our
K-theoretic computations will rely crucially on self-duality properties.
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22.5

Example. We can draw what PT and DT objects look like for C instead of C2. On C it
is fairly easy to draw arbitrary subschemes, e.g. we can depict Z = {(x − a)3(x − b) = 0}
as a single “box” at a and three boxes at b, and then rankOZ = 1 + 3 = 4. The operators
(x−a) and (x− b) are nilpotent on OZ , and our boxes are actually the Jordan blocks of these
operators. Now consider a map C→ Hilb(C1, 4) which is constant and maps to Z away from
0 ∈ P1. Let x0 be the coordinate on the source curve C, and x1 be the coordinate on the
target C1.

x1

x0

coker s

(a) A PT-stable configura-
tion

x1

x0

torsion in x0

(b) A DT-stable configura-
tion

Figure 37: A comparison of PT and DT stability conditions for maps Cx0 →
Hilb(Cx1 , 4) which generically land in {(x1 − a)3(x1 − b) = 0}.

To have a vector bundle means coordinates act freely, so PT configurations are free along
the x0 direction, but the action of x0 (starting at 1) may not generate the whole sheaf.
Additional boxes may appear in negative powers of x0, and correspond to singularities. In
contrast, in DT configurations, x1 need not act freely and boxes which are torsion in x1
correspond to singularities. However, the boxes xj0x0

1 · 1 must generate everything under the
action of x1; this is the condition for the sheaf to be an ideal sheaf.

22.6

In 3d, there are now three coordinates x0, x1, x2, and we can draw torus-fixed points for the
torus (C×)3 scaling these coordinates. Such torus-fixed F are therefore graded by Z3, with
deg x1 = (1, 0, 0), deg x2 = (0, 1, 0) and deg x3 = (0, 0, 1). Consider slices in x0 direction.
For PT configurations, multiplication by x0 is always injective, so slices “increase” in positive
powers of x0. For DT configurations, multiplication by x0 can be torsion but must generate
everything, so slices “decrease” in positive powers of x0.
Remark. These combinatorial descriptions get a lot more interesting when C2 is replaced with
an ADE surface, see [Liu21] for a description of Bryan–Steinberg configurations.
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Instead of a trivial bundle C×C2, we can also take a bundle L1⊕L2 → C. For quasimaps,
this means quiver maps like x1 become an element of Hom(V,V)⊗L∨1 . As a general principle,
if X ⊂ [(prequotient)/G], there could be a bigger group

1→ G→ G̃→ GAut → 1

where GAut contains additional automorphisms of the Nakajima quiver variety, e.g. for
Hilb(C2) we have GL(2) ⊂ GAut acting on C2. Then, for quasimap data, instead of a principal
G-bundle P, we can consider a principal G̃-bundle P̃ with given image in GAut-bundles. For
Hilb(C2, n), this means we can take an arbitrary rank-2 bundle over C.

22.7

Now that we have discussed moduli spaces, it is time to set up enumerative counts of curves in
X. For us, “curves” will mean quasimaps; this is our choice of compactification. The counts
will be tensors in Keq(X)⊗···, where a vector in Keq(X) remembers the notion of how the curve
meets a prescribed cycle at a certain point, and the (−)⊗··· means there may be multiple such
points. More generally, we should also allow for the possibility that these tensors take values
in Keq(X)⊗···. The spaces Keq(X) and Keq(X) are usually very big, and it is impractical to
write down every entry of the tensors. Rather, to compute the counts means to identify the
tensors in terms of quantum groups.

22.8

Consider a stable quasimap f : (C, p1, . . . , pn)→ X where the source curve C carries marked
points p1, . . . , pn. Then there is an evaluation map

ev : f 7→ (f(p1), f(p2), . . . , f(pn)) ∈ Xn

since at base points f(pi) may not land in X ⊂ X. More generally, for GAut-twisted stable
quasimaps, we can also remember the data of the principal bundle:

(PAut → C, f(p1), . . . , f(pn)) ∈ Bun× Xn.

With respect to this data, the K-theoretic counts form what is called an “extended” K-
theoretic cohomological field theory (cohFT). Here “extended” means that we remember PAut,
and “cohFT” means the collection of K-theoretic tensors and how they behave under nodal
degenerations of the curve C. In the moduli of nodal curves (C, p1, . . . , pn), there is a stratifi-
cation by how many nodes C has, and degenerations tell us how the K-theory classes behave
as we move from one stratum into deeper strata. In particular, we want some kind of gluing
operator at nodes, and therefore nodes must be disjoint from base points. For this and other
reasons, it is useful to have an evaluation map not to X, but to X ⊂ X. Another reason is
that the K-theory of X is finite-dimensional, while the K-theory of X is something nice but
infinite-dimensional.

138



22.9

To get an evaluation map to X and not X, we need a moduli space that resolves the following
map. Inside the moduli of all quasimaps sits the open locus

QMaps ⊃ QMapsnonsing
at p

:= {f(p) ∈ X},

which by definition admits an evaluation map to X. Hence there is a rational map QMaps 99K
X, and we should blow up QMaps in a specific way to get a regular proper map

QMapsrelative
at p

→ X.

In more detail, imagine a one-dimensional family of quasimaps, for a family of curves Ct.
A marked point p on each Ct forms a section p(t) of the family. Suppose there are other
sections corresponding to base points in each Ct, which generically are disjoint from p(t) but
at some special t = tbad hits p(t). The standard algebro-geometric way to handle this is
to blow up the intersection (perhaps with some weighted blow-up, base changes, etc.). The
result is that Ctbad can grow several new components, i.e. the exceptional divisor, and these
new components separate the marked point p(t) from the base points, see Figure 38.

t

t = tbad

p
blow-up

at p

base points

p(t)

Figure 38: Bubbling for relative quasimaps, to separate the marked point p(t)
from base points.

This is not unlike what happens in ordinary 2d field theories, where we could have some
insertion of a point in the worldsheet which we would like to keep away from other operators,
or defects. As the other operators approach, our point goes off in a new bubble, thereby
escaping from the operators.

22.10

Importantly, in this resolution we construct, curves C only bubble in chains as opposed
to in trees. While the original component of C is fixed and parameterized, and therefore
has no automorphisms, the new components form a chain of P1’s which themselves have
automorphisms. Namely, each bubble has Aut = C×, and so overall there is an automorphism
group

Aut = (C×)# of bubbles.
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The presence of these automorphisms means we must take the new stability condition

{dim(base locus) = 0 and dim(stabilizer) = 0},

where the new condition dim(stabilizer) = 0 prevents unnecessary bubbles/blow-ups.
Note that the moduli space of relative quasimaps is a DM stack, and in particular lo-

calization on it is much more complicated. For example, fixed loci are not isolated points
anymore.

22.11

We conclude with a discussion of K-theoretic CohFT via quasimaps. How should gluing work,
i.e. what are quasimaps from a nodal curve C1 ∪p C2? The condition to impose is that nodes
are disjoint from base points, where, to keep nodes away from base points, we perform the
exact same procedure as for marked points. After blow-up, the node “opens” into a chain of
P1’s, which we call an accordion:

(C×)4

 

.

The accordion swallows all the base points, in the sense that base points now live on each of
the bubbles, and again we have an overall automorphism by (C×)# of bubbles. On the other
hand, we can take quasimaps on C1 relative to a point p1, and quasimaps on C2 relative to a
point p2, and “just glue” them.

p1 p2

glue
 

p1 p2

glue

.

This means to pair with the diagonal in X ×X via the evaluation map. But this will over-
count, compared to the accordion, since we must make a choice of where to cut the accordion
into two pieces. It turns out the correct formula is, schematically,

=
〈

p1 p2

︸ ︷︷ ︸
K(X)⊗2⊗···

, Glue−1︸ ︷︷ ︸
(K(X)∗)⊗2⊗···

〉

where

Glue := = (diagonal) + (corrections) ∈ K(X)⊗2

is a sum over accordions of all possible lengths.
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Lecture 23. Non-singular and relative boundary conditions

Diagrammatic notation for different flavors of insertions/boundary conditions in enumerative
problems, relative moduli spaces in DT theory, expanded degenerations, degeneration formulas,
correspondence between different boundary condition, degeneration and algebraic cobordism,
relative counts in GW theory, their correspondence with relative DT counts.

23.1

We introduce some useful shorthand for quasimaps:
= component of source curve C

= base point

= a point, evaluates to the stack X

= a nonsingular point, evaluates to X ⊂ X

= a P1 component modulo C× rescaling

) = a relative point, with proper evaluation to X.
Recall that base points are outside of our control; they appear, and we try to deal with them.
When they approach a point which we wish to remain non-singular, recall we blow up and
bubbles isomorphic to [P1/C×] appear, and we get relative quasimaps. In our shorthand,

) = .

In general it is difficult to allow source curves with arbitrary singularities, but we discussed
how to allow for nodal singularities:

= .

Finally, we discussed the glue operator:

( ) =

( )
.

Importantly, the bubbles form chains (called accordions) as opposed to trees. This is for
control over the canonical class ωC , which gives us the crucial property of self-duality.
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23.2

Theorem.

= ) Glue−1 ( .

If we think of Glue as an operator Gab with two lower indices, it sort of makes sense that
the actual operator which glues two vectors should be Gab = (G−1)ab.

Proof. See [Oko17, Section 6.5].

This equality is true not just for a fixed source curve, but also in moduli. Namely, the
lhs defines a divisor in the moduli of (nodal) source curves, and, more precisely, it is a sheaf
on this divisor. On the rhs, we have the same kinds of sheaves but on a different moduli
space. The equality is of K-theory classes of these sheaves. It therefore defines a K-theoretic
gluing rule analogous to the gluing rule in cohFTs. It would be very interesting to extend the
very powerful Givental–Teleman classification of cohFTs to K-theory, which would allow us
to sidestep many units of complexity in enumerative computations.
Remark. The presence of a non-trivial operator Glue−1 in K-theory was first recognized by
Givental in K-theoretic Gromov–Witten theory [Giv00]. In cohomology, Glue is trivial for
dimensional reasons, but such dimensional vanishing is not available in K-theory.

23.3

Recall that quasimaps to Hilb(C2) are the same as PT theory of a local curve in a threefold. It
is good to rephrase non-singular points, relative points, etc. in the language of the threefold.

Let Y be a threefold, e.g. Y is a C2-fibration over a curve C. The analogue of a point on
C is a divisor D ⊂ Y . We can impose enumerative conditions on D. For example, a curve in
Y can be viewed in either DT or PT theory, as the support of a sheaf F , and it could hit D
in various ways. If x is the coordinate normal to D ⊂ Y , then in PT theory the analogue of
the evaluation map is

ev : [OY
s−→ F ] 7→ [OD

s mod x−−−−−→ F ⊗OD].

The map s mod x could be anything; the only thing we know is that F has no zero-dimensional
subsheaves. We would like to impose some conditions on the original [OY → F ] so that its
image under the evaluation map is still a PT pair:

• F ⊗ OD has no zero-dimensional subsheaves iff F has no 1-dimensional components in
D;

• the image of OD under s mod x generates iff there are no base points of F in D, i.e.
coker(s) must be disjoint from D.

This defines the threefold version of . Similarly, the relative condition ) means
that there can be an accordion at the divisor D, where bubbles can contain base points and
entire 1-dimensional components of F , but the intersection of F with any copy of D must still
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be nice (like how quasimaps must be non-singular at nodes). Each bubble is a component
isomorphic to P(NY/D ⊕OD), a P1-bundle over D. Such pictures were first studied by Jun Li
in [Li01] under the name of expanded degenerations.

Y

D

P(NY/D ⊕OD)

F

Figure 39: An expanded degeneration of (Y,D) with three accordions. The re-
striction of F to any of the four copies of D has no base points.

23.4

It turns out that there are some building blocks from which all other enumerative counts can
be recovered. Explicitly, consider a threefold Y containing a cycle Z ⊂ Y , and impose some
constraints on how our curves meet Z. It is still valid to blow up Z × {t = 0} ⊂ Y × Ct, to
get a new threefold (at t = 0) of the form

Y ′ := Y ∪P(NY/Z) P(NY/Z ⊕OZ).

Here P(NY/Z) is a divisor in Y , recording all possible ways in which the curve can approach Z.
The new threefold Y ′ consists of the original Y along with the bubble, attached by a nodal
singularity at P(NY/Z). The original cycle Z lives on the bubble. Counting curves on Y ′

therefore involves gluing relative counts on Y with relative counts on the bubble P(NY/Z⊕OZ).
In other words, any count on Y can be written in terms of

• counts relative to a divisor in Y , and

• whatever counts we originally wanted, but in the model geometry P(NY/Z ⊕OZ).

This model geometry is special in comparison to Y , e.g. because it admits a C× action
by scaling either the bundle NY/Z or OZ , and then equivariant localization applies. In our
quasimap shorthand, we have shown

= ) Glue−1 ( (86)

where on the lhs the line and • represents an arbitrary geometry and “boundary condition”,
but on the rhs the second piece is a projective bundle.

23.5

There is an interplay between non-singular and relative counts, of the following kind. Note
that in (86), C× acts on the relative counts and not on the gluing operator. The C×-fixed
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points are constant and non-singular on ( except possibly at the point •. In particular,
this means at C×-fixed points there is a decomposition

( = ( · (87)

where C× still acts on both pieces in the rhs. Between the two non-singular points we must
insert ( )−1 by the same reasoning as for Glue−1, but this operator is much, much
simpler.

23.6

The conclusion is that there are dictionaries between “boundary conditions” given by (86) and
(87), where in (87) the boundary condition • could be anything, including a relative point. If
X is a variety of interest, it is therefore important to know tensors of the form

∈ Keq(X)⊗Keq(X)⊗ (series in z)

( ) (Thm)= Glue

( ∈ Keq(X)⊗2 ⊗ (series in z)

) ∈ Keq(X)⊗Keq(X)⊗ (series in z).

The second line is a non-trivial theorem. The formal variable z records the degree of the
quasimap.

23.7

The first and most crucial order of business is then to describe these tensors. Our goal is to
describe all of them in terms of quantum groups acting on X. The analogy to have in mind
is with Chern–Simons theory. It takes place on a real threefold, which is easy to break into
pieces. Then Chern–Simons theory reduces to computations on a few different pieces, which
one then computes in terms of (ordinary) quantum groups. In our setting, we encounter not
just quantum loop groups, but quantum double loop groups.

23.8

Our degeneration arguments are a special case of the following more general phenomenon.
Let Y be a smooth threefold, and suppose it degenerates into Y1 ∪D Y2 where both Y1 and
Y2 are smooth and D is a divisor. This means that there is a flat family in which the general
fiber is Y and the special fiber is Y1 ∪D Y2. In such a degeneration, NY1/D ⊗ NY2/D = OD.
Jun Li’s theory of expanded degenerations works equally well in this setting.

Theorem ([LP09]). The relations

[Y ] = [Y1] + [Y2]− [P(OD ⊕NX1/D)]

generate algebraic cobordism.
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We have already discussed the smooth cobordism ring; algebraic cobordism is more com-
plicated to define, but its representatives are smooth algebraic varieties over a base. Over
pt = SpecC, smooth cobordism is the Lazard ring, which, when tensored with Q, is

Q[P1,P2,P3, . . .].

In particular, in dimension 3, there are only three classes in smooth cobordism: (P1)3, P2×P1,
and P3. However, this argument does not immediately reduce all counts to toric counts,
because our enumerative counts depend not just on X but also on a smooth divisor D ⊂ X,
but smoothness of the divisor is not necessarily preserved under degeneration. Nonetheless,
Theorem 23.8 is still very powerful.
Remark. It is useful to read Theorem 23.8 in both directions. Sometimes it is good to add
extra smooth components to the variety and relate the original counts to counts on the new,
bigger variety.

23.9

There is a notion of relative invariants in Gromov–Witten theory. For a divisor D ⊂ X and
a map f : C → X, the non-singularity condition is that

f∗D =
∑
i

µi[pi]

for some fixed µi, and any points pi ∈ C. So there cannot be any 1-dimensional components
of C lying in D, and C must intersect D with prescribed multiplicities. When this fails to
hold in a degeneration, bubbling occurs. The evaluation map produces points with fractional
multiplicities, since the pullback of a point x ∈ X can be a non-trivial multiple of a point
p ∈ C, or, equivalently, the image of p ∈ C can be some non-trivial fraction of f(p) ∈ X.
Hence the evaluation map really takes values in the orbifold cohomology of

exp(D) :=
⊔
n

[Dn/S(n)]. (88)

Conjecture. Relative counts in GW are equivalent to relative counts in PT/DT/· · · .

This general conjecture is known for ADE surface fibrations over a curve, in cohomology.
But the orbifold (88) is actually derived equivalent to

⊔
n Hilb(D,n) [BKR01, Hai01], not just

isomorphic in cohomology or K-theory. So it would be nice to sort out at least the case of
K-theoretic GW theory.

23.10

Gromov–Witten theory of target curves with relative insertions is very nice, e.g. it has
Virasoro constraints. For a more general relative divisor, this is something that is not so
well-understood and it is even unclear how to create operators that form something like a
Virasoro algebra. But for target curves, basic tensors like ( ) are very close to things
like double ramification cycles (DRC). This is where one studies moduli of a curve and a
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function with prescribed zeros and poles, which is nothing more than a map from the curve
to P1. The DRC is then the pushforward of the virtual class for this moduli to the moduli
of curves. As a cycle in the moduli of curves, it is a different object of study, but when it is
paired with other cycles we get exactly counts from relative GW theory.

Lecture 24. Building blocks of quasimap counts and their q-
difference equations

Basic building blocks of quasimap counts, vertex with descendants, its expression as an elliptic
stable envelope, relative counts and q-difference equations, q-Gamma functions, vertex with
descendants and integral solutions to quantum difference equations, integral solutions and
Bethe Ansatz, residues in the integral vs. localization formulas for vertices with descendants.

24.1

We continue the discussion of basic building blocks of the enumerative theory of maps C → X.
Already we have reduced to the case of C = P1 with marked points at 0 and ∞, treated
equivariantly with respect to a C× acting with a weight q. Those familiar with topological
field theories may expect that more generally we need a 3-pointed sphere, but this equivariance
is a substitute for the third point in a precise way. Physically, if one can understand some
field theory on flat space equivariantly with respect to all of its diffeomorphisms, then actually
one understands it on any manifold. This may be familiar from instanton counting, where
Nekrasov partition functions really live on flat space, and from them one extrapolates to more
general manifolds. This is also what we are doing here. The analogue of flat space for us is the
Riemann sphere; objects live on C with the origin 0, equivariantly with respect to rotation by
q, and with boundary conditions at infinity. In instanton counting, these boundary conditions
at infinity are also present, from the Uhlenbeck compactification.

24.2

Recall that we had three kinds of boundary conditions: none, non-singular, and relative. The
points 0 and ∞ can carry various combinations of these boundary conditions. For example,

corresponds in the PT picture to configurations as in Figure 40. Highlighted boxes
correspond to the fiber at 0, which is a point in the ambient stack X instead of X.

∞

Figure 40: A PT (1-leg) vertex configuration with ev∞ landing in Hilb(C2, 5).

In the lingo of Donaldson–Thomas theory, this is the 1-leg vertex with descendants (at 0).
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Descendants refer to the characteristic classes of F ⊗O0, where F is the universal sheaf. To
get 2- and 3-leg vertices, we must replace Hilb(C2) with Hilb(An).

24.3

Another building block is ( . By degeneration,

= ) G−1 ( .

We can think of ) G−1 as the matrix which relates ( and . Explicitly, if

p(n) = rankK(Hilb(C2, n)) is the number of partitions of size n, then ( is a p(n)×p(n)
matrix, and is an ∞ × p(n) matrix. Here ∞ is because K-theory of the stack is
infinitely generated.

Another relation comes from localization:

)( = ( · ) .

So we have a bunch of interrelated tensors in K(X)⊗2, or K(X)⊗K(X), etc.

24.4

The hardest building block is . It can be viewed as

ev0,∗
(
ev∗∞(−)⊗ Ôvirz

deg
)

: K(X)→ K(X)loc[[z]]. (89)

The evaluation ev0,∗ is not a proper pushforward, so it requires localization with respect to
C×q acting on the source P1. While a general quasimap can have base points located anywhere
on P1, fixed loci of this C×q can only have base points at the origin 0 ∈ P1. Hence fixed loci
are proper. The result therefore lives in localized K-theory for this C×q . As a series in z, it is
in fact convergent and meromorphic.

24.5

The claim is that this map (89), with suitable q-Gamma function factors, is the elliptic stable
envelope in the context of X ⊂ X. Recall that stable envelopes arise as an extension problem
from an open subset, specifically

Attr ⊂
(

component of XA ×
(
X \ lower attracting

manifolds

))
.

There is a stratification of X by Attr(components of XA), and we used a long exact sequence
in elliptic cohomology to inductively extend the definition of stable envelopes to all strata. In
comparison, our setting now is that we have the GIT stable locus X ⊂ X, and the complement
X \ X has a stratification (studied by Bogomolov, Hesselink, Kempf, Ness, Rousseau, etc.)
which reduces to the attracting stratification in the case that the group is a torus.
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Our X are quotients by G =
∏

GL(Vi), which may be reduced to tori by a trick to be
discussed later. In general G should be reductive and connected. Let X = [M/G], and take
elliptic cohomology for an elliptic curve E = C×/qZ. This q is our equivariant variable q from
earlier. The elliptic stable envelope we want is a map

Stab: Θ(T 1/2M
∣∣
X

)⊗ · · · → Θ(T 1/2M)⊗ · · · .

Here · · · denotes some degree-0 line bundle which depends on a coordinate z ∈ Pic(X)⊗ZC×.
This z is also our variable z from earlier. As we have repeatedly emphasized, Stab is an
interpolation problem, and there is an map in the reverse direction which is just restriction.
Since the prequotient M is a vector space, the image of Stab lives in sections of a line bundle
on EllG×GAut(pt), which is just a product of elliptic curves modded out by a Weyl group. On
the other hand, the source lives over something 0-dimensional over EllGAut(pt). So Stab is a
finite×∞ matrix.

24.6

Now we discuss ( . This is a fundamental solution of a flat q-difference connection
(for the same q as before) in both the Kähler variables z ∈ Pic(X) ⊗ C× and equivariant
varaibles in Aut(X). The mechanism which constructs the q-difference equation itself is very
simple and will be explained in due course, but the actual identification of the equation is
very complicated. We can do it in terms of the quantum group U~(ĝ).

• The q-difference equation in equivariant variables is a generalization of qKZ to a cochar-
acter (with some technical restrictions)

σ : C× → Aut(X), a 7→ σ(q)a.

Namely, there is an “R-matrix” associated to σ, and it is the q-difference operator.

• The q-difference equation in Kähler variables is a generalization of the dynamical equa-
tion (e.g. for KZ). This must be the case since the overall q-difference connection is flat,
and therefore the two q-difference operators must commute.

Note that q is a free parameter! This is surprising because in the usual KZ setup, how much
to shift by is related to the parameter ~ of the quantum group (and the level). But q and ~
are independent in our setting.

24.7

A very classical question is whether one can solve this q-difference equation (in both sets
of variables) by an integral. KZ and related equations generalize things like hypergeomet-
ric equations, which in turn generalize things like spherical harmonics, so having an integral
representation of solutions generalizes a very broad range of questions about special func-
tions in mathematical physics. In the usual hypergeometric world, there are two kinds of
representations:
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• an “Euler” integral
∫ 1

0 x
···(1− x)···(z − x)··· dx;

• a “Mellin–Barnes” integral
∫

poly(x)Γ(··· )
Γ(··· ) dx.

In the q-difference world, these two become the same. Namely,

(1− x)m  (1− x)(1− qx) · · · (1− qm−1x) = (x)∞
(qmx)∞

.

It is better to use the second formula since m is not necessarily an integer. Here

(x)∞ := 1
Γq(x)

:=
∞∏
i=0

(1− qix), |q| < 1.

Note that Γq(x) is therefore the character of the polynomial ring in infinitely many generators,
of weights x, qx, q2x, and so on. This is exactly

OMaps(C→C)

where q acts on the source and x−1 acts on the target. Explicitly, if t ∈ C is the coordinate
on the source, then the action is

tk 7→ x−1(q−1t)k = q−kx−1.

Then recall that weights of functions are dual to weights of the vectors themselves. In this
way, q-Gamma functions are ubiquitous in the study of moduli spaces of maps.

24.8

The usual form of integral representations is as follows. For α, β ∈ Keq(X),〈
α,

fundamental
solution · β

〉
=
∫

cycle(β)
fα(x, . . .)weight(x, . . .) dx.

Here x is a dummy integration variable, and . . . denote the actual variables of interest in
the q-difference equation. Which coordinate α we want is specified by a function fα in the
integrand, and which solution β we want is specified by a choice of contour cycle(β). But in
the q-difference situation (and for a torus) we can do better, by fixing the cycle and writing〈

α,
fundamental

solution · β
〉

=
∫
|xi|=1

fα(x, . . .)gβ(x, . . .)weight(x, . . .)
∏ dxi

2πixi
. (90)

Here gβ is some elliptic function. The idea is that functions constant with respect to q-shifts
are elliptic functions, and inserting them into the integrand is like moving the contour. In our
situation,

• the xi are coordinates of the maximal torus in G,
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• fα is the K-theoretic stable envelope of the class α,

• gβ is the elliptic stable envelope of the class β, and

• the overall integral expression is the inner product on K(X) given by

(F1,F2) 7→ χ(M,F1 ⊗F2)G

on the prequotient M . The weight function includes the Weyl integration formula, for
taking G-invariants, and some q-Gamma factors coming from Maps(C→M), as before.

K-theoretic and elliptic elements are combined as follows. Recall that elements of equivariant
elliptic cohomology, associated to E = C×/qZ, pull back to equivariant K-theory, associated to
the pre-quotient C×. This is “reduction mod q”, and sections of line bundles are re-interpreted
as solutions of some abelian q-difference equation.

24.9

More explicitly, and returning to enumerative problems, suppose we can find fα such that

fα
) = ( ) . (91)

Then the matrix elements of the our fundamental solution become exactly the vertex with
descendent fα:

α ( · β =
fα

· β

= χ
(
QMaps, ev∗0(fα) ev∗∞(β)Ôvirz

deg
)

= χ (X, fα ⊗ (elliptic Stab)(β)⊗ ev0,∗(maps D→ X))

where the last equality follows from push-pull with respect to ev0. The elliptic stable envelope
arises by our discussion of (89). The term ev0,∗(maps D→ X), involving maps from the formal
disk D, is the origin of Γq factors in the formula (90). Finally, we will see that the solution to
the problem of finding fα satisfying (91) is solved by stable envelopes in K-theory.

24.10

Now suppose an expression of the form in (90) solves an equation

Ψ(qz) = M(z)Ψ(z).

Recall that q is a free parameter. What will happen if q → 1? Let ψi be an eigenvector of
M(z) with eigenvalue λi(z). Then in the limit,

Ψ(z) ∼ e
1

ln q

∫
λiψi(z).
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Hence the limit provides both eigenvalues and eigenvectors of the operator M(z)
∣∣
q=1.

The exponential behavior of limq→1 Ψ(z) comes from the weight term in the integral
representation, while the eigenvector comes from fα(x, . . .). The equation ∇x · · · = 0 for the
critical point is the Bethe equation, and the vector fα(x, . . .) is called the off-shell Bethe
eigenvector. Substituting in solutions x gives the eigenvector. Many people study these
objects and it is useful to have a geometric realization of the off-shell Bethe eigenvector in
terms of K-theoretic stable envelopes.

24.11

One can compute the integral representation (90) by residues, especially in specific examples.
The singularities are in the weight function.

Example. For Hilb(C2, n), there are poles at

xi = qdit···1 t
···
2

where di is the number of boxes stacked in the negative direction at xi, and t1, t2 are equiv-
ariant weights of C2.

More generally, the weight function looks like

· · ·
ϕ(1/xi)ϕ(xi/xj)ϕ(qxi/~xj)

,

so in addition to the poles xi = qdi coming from the first two factors, there are poles coming
from ϕ(qxi/~xj) that we don’t want. The former poles are exactly Chern roots of F ⊗ O0.
By an elliptic transformation,

gβ(qdix) = z
∑

digβ(x) = zdeggβ(x).

The poles we don’t want are killed by gβ. This is because gβ is supported on the open subset
µ−1(0) ⊂ X, meaning that gβ

∣∣
X\µ−1(0) = 0; recall that

Ell(X \ µ−1(0)) ↪→ Ell(X)

is closed. The embedding generalize the “wheel conditions” for functions in Ell(X). These are
specific vanishing conditions, i.e. zeros of gβ, at exactly the poles we want to cancel away.

Lecture 25. The q-shift operator, via explicit localization

Difference equations in equivariant variables, twisted quasimaps, equivariant localization, for-
mula for the K-theory class of the virtual tangent bundle, edge and vertex contributions in
localization formulas, pure edge and q-Gamma functions, q-analog of the Iritani class, the
degree of a twisted map, its relation to Kähler line bundles in elliptic cohomology.
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25.1

Both and ( require localization to define. On the other hand, objects like
)( and ) are still not exactly proper integrals, but it turns out they are rational

functions in all variables. Most importantly, they are rational functions of the Kähler variable
z ∈ Pic(X) ⊗ C× recording the degree of the quasimap. But both of these types of objects
are born as series of the form ∑

d

zd(rational function)

because we sum over maps of all possible degrees, and then for each degree we take some
Euler characteristic of some sheaf on a finite-dimensional variety, and in equivariant variables
these will all be rational functions.

25.2

Recall that, up to normalization, is basically the elliptic stable envelope. Today we
will discuss ( , which is the fundamental solution to a certain q-difference equation in
all variables.
Remark. Proofs of all these statements require different geometric inputs at multiple different
steps, and is a sign of a real synergy between geometry and representation theory. They do
not appear to stem from a single geometric fact from which everything else follows by formal
manipulations in quantum groups. For example, we will use localization and degeneration
arguments, which are fairly general and “soft” arguments (modulo the technicalities of con-
structing virtual classes, etc.), but also we will use rigidity, which really requires a careful
examination of the moduli space for the enumerative problem at hand.

25.3

Where do the difference equations come from? We begin with q-difference equations in
equivariant variables, which were computed first in the current logic of the subject. Let
X = prequotient � G be a Nakajima quiver variety, e.g. Hilb(C2, n). Let G̃ be a symmetry
group acting on the prequotient, in which G is a normal subgroup, and equivariant variables
live in the quotient GAut in

1→ G / G̃→ GAut → 1.

Most of the time G̃ really is split, since we work with reductive groups. But it is good to
remember what is a sub-object and what is a quotient.

In addition to counting quasimaps to X, we can also count twisted quasimaps C → X,
consisting of the data of:

• a principal G̃-bundle P̃ (whose GAut structure is fixed);

• a section C → P̃ ×G̃ (prequotient).

It is stable if it evaluates to a stable point away from a finite set of points in C.
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Example. Ordinary quasimaps C → Hilb(C2, n) form the PT moduli space of C2×C. There
is an action of GL(2) on C2 that can be used to twist this trivial product. Then(

twisted quasimaps C → Hilb(C2, n)
)

= PT(Y → C)

where Y is some twisted C2-bundle over C, e.g. O(1)⊕O → P1 as in Figure 41b (but drawn
for DT, not PT configurations).

t1

t2

t1

t2

q

q−1

∞

(a) For O ⊕O → P1

qt1

t2

t1

t2

q
q−1

(b) For O(1)⊕O → P1

Figure 41: An untwisted vs. twisted DT (1-leg) configuration.

In general, for non-trivially twisted quasimaps, we pick the linearization so that the twist
is equivariantly trivial at infinity, and so there is a non-trivial q-shift in equivariant variables
at 0. The shift happens by σ(q) where σ : C× → G̃ is a cocharacter, and we use σ as a
clutching function for a non-trivial X-bundle over C = P1.

25.4

We can now define the twisted versions σ and ( σ , and ask how they compare with
the original untwisted counts. The first observation is that the combinatorics remain the
same, and in fact there is an obvious bijection on the actual moduli spaces. However, the
localization weights of fixed points are different, but in a very controllable way.

25.5

We briefly discuss what localization looks like, in particular the weights. For concreteness we
focus on DT/PT theory, but in general objects can be in any category of “sheaves on 3-folds”
or representations of quivers valued in vector bundles on a curve C. Quasimaps in general
are of the latter kind. Let E be such an object. Then in general

T vir
E (moduli) = −(automorphisms) + (deformations)− (obstructions) + · · · .

We would like there to be no automorphisms for stable E , and by some sort of Serre duality
we would like all the higher obstructions · · · to also vanish. For example, for an object in a
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category of sheaves, this would concretely become

−Hom(E , E) + Ext1(E , E)− Ext2(E , E) + · · · = −χ(E , E).

This is a very accessible object in K-theory. Namely, the K-theory class [χ(E , E)] only depends
on the K-theory class [E ] and not E itself.

For DT/PT, objects are E = {OY
s−→ F} where F is the structure sheaf of a subscheme

in DT theory or a pure 1-dimensional sheaf in PT theory. The formulas to be discussed will
remain the same in either situation. Note that [E ] = [OY ]− [F ] since in K-theory it doesn’t
matter what the map in the complex actually is. As we deform, the OY term remains fixed,
so

Tvir = χ(OY ,OY )− χ(E , E)
= χ(OY ,F) + χ(F ,OY )− χ(F ,F). (92)

25.6

Now suppose there is a torus T acting on Y , and for simplicity assume it has isolated fixed
points. The terms in (92) are Euler characteristics on Y , so they can be computed by lo-
calization in the equivariant K-theory of Y . Only fixed points contribute to this calculation,
so

Tvir =
∑

fixed pt p
T (Fp,Fp)

for the appropriate function T , where Fp is the restriction of F to the affine chart containing
p. Concretely, for 3-folds Y , these affine charts are copies of C3.

Example. In Figure 41 there are two such charts, one around 0 and one around ∞, and
e.g. F∞ ∈ Keq(C3). But everything in Keq(C3) is a multiple of the structure sheaf O0 (or
of OC3 ; up to equivariant factors, it doesn’t really matter). So to compute F∞ it suffices to
know weights of all boxes around ∞, and remembering that weights of functions are inverse
to weights of coordinates,

F∞ = O0 ·
1 + · · ·+ t−1

1 t−1
2

1− q .

If we call t3 := q−1 the weight of the third coordinate, the function T is then

T (F ) = F − t1t2t3F − (1− t1)(1− t2)(1− t3)FF .

To check this formula, it suffices by linearity to check that

T (�) = 1− t1t2t3 − (1− t1)(1− t2)(1− t3)
= t1 + t2 + t3 − t1t2 − t1t3 − t2t3,

which is the correct virtual tangent space. In general, T (F ) is a big rational function, and
only after summing over fixed points does it become a Laurent polynomial. Explicitly, observe
that all terms contain a denominator 1− q−1.

154



25.7

A better idea is to think about single out the contributions of “pure edges”, meaning that e.g.
for Figure 41, instead of thinking of

Tvir = (rational function for 0) + (rational function for ∞),

we instead think

Tvir = Tvir


+ polynomial(F0) + polynomial(F∞).

The first term is a “constant” map, in the sense that the section C → P̃×G̃X is the “constant”
section, and we call it a pure edge. The polynomials come from T ′(F) := T (F)−T (pure edge).
Concretely, for example,

Fat 0 = Fpure edge + (finitely many boxes),

where the second term corresponds to the colored boxes in Figure 41.

25.8

Suppose now that there is a twist by a cocharacter σ(q). Then boxes at 0 are just shifted by
σ(q). However, the edge character changes non-trivially. Let λ ∈ Hilb(C2, n)σ be the partition
of the edge; in particular, σ acts on Tλ Hilb. Then by localization,

Tvir(pure edge) =
Tλ Hilb

∣∣
σ

1− q−1 + Tλ Hilb
1− q . (93)

Each term is a geometric series, but overall most terms cancel and this is a Laurent polynomial.
Recall that Tvir makes contributions to the virtual structure sheaf Ovir as

Tvir =
∑

ai  Ovir =
∏ 1

1− a−1
i

.

(We discuss the symmetrized Ôvir later.) So in particular

Tvir =
∑ ai

1− q−1  Ovir =
∏

Γq(a−1
i ), Γq(x) :=

∏
i≥0

1
1− qix.

We conclude that

weight of the twisted edge =
∏

w∈weight TλX

σ · Γq(w−1)
Γq(qw−1)
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where the denominator comes from the other term in (93). In conclusion, a twist by σ affects
equivariant weights of the pure edge by a factor

∏
w∈TλX

σ · Γq(w−1)
Γq(w−1) .

This means it is a good idea to multiply vertices by the factor
∏
w Γq(w−1), which is kind of

like the “Iritani class” counting maps from C → X. Such a factor is completely analogous
to the double gamma functions in instanton counting, which are “perturbative prefactors”
corresponding to maps C2 → X.

25.9

Finally, Figure 41b visibly has fewer boxes than Figure 41a in the pure edge part. This means
the operator zdegF = z# boxes changes. There are infinitely many boxes; here the “number of
boxes” is

degF detF0/ detF∞,

defined with respect to the line bundle O(1) on Hilb. For a pure edge, this is

degF = 〈σ,weight(O(1)
∣∣
λ
)〉

where the pairing is of cocharacters and characters. The cocharacter in our running example
is (t1, t2) = (q, 1), and O(1) is always the product of all weights in λ, and from this we get
the (visible) difference of 4 boxes.

We conclude that it is good to also multiply vertices by the factor

exp
( ln z · ln weight(O(1))

ln q

)
, (94)

or, more generally, exp (
∑
i ln z lnLi/ ln q) if dim Pic > 1. This expression has the same

behavior under q-shifts of variables as the Poincaré line bundle U on Elleq(X)× (PicX⊗ZE).
Actually it suffices to put any expression that has the same q-shift behavior, e.g.

ϑ(z)ϑ(O(1))
ϑ(zO(1)) (95)

would also work. In Gromov–Witten literature, it is more common to see expressions of the
form (94) rather than (95).

Lecture 26. The geometric meaning of our q-difference equa-
tions

Geometric meaning of the operator in the q-difference equation in equivariant variables, q-
difference equations in Kähler variables, quantum Knizhnik–Zamolodchikov equations.
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26.1

Let T ⊂ Aut(X) be the maximal torus, with coordinate denoted t. For a one-parameter
subgroup σ : C× → T, we are comparing a twisted quasimap invariant, e.g. ( σ , with an

untwisted one, e.g. ( . Last time we discussed that in fact they are equal up to some
modifications.

( σ = ( σ ∣∣
t7→σ(q)t ·

σ · Γq
Γq

zdeg. (96)

Recall that the q-Gamma terms come from the difference in the pure edge, and deg here is
the degree of the “constant” map.

26.2

In general, a one-parameter subgroup σ : C× → Aut(Y ) gives a twisted Y -bundle over P1

using σ as a clutching function, and σ-fixed points in Y give constant section. For example,
if Y = P1 then the resulting bundle Ỹ is a Hirzebruch surface. The two σ-fixed points in Y
induce sections s0 and s∞ whose normal bundles are O(k) and O(−k), so that

[s0]− [s∞] = k[fiber P1].

One way to think about this relation in homology is that degrees of curves are measured by
pairing them with line bundles, i.e. by viewing curve classes as elements [curve] ∈ Pic∨. There
is a short exact sequence

0→ Pic(P1)→ Pic(Ỹ )→ Pic(Y )→ 0

where the first term measures degree in the P1 direction and the quotient measures degree in
the fiber direction. Then 〈

L, constant section
y ∈ Y σ

〉
= 〈σ,L

∣∣
y
〉. (97)

In our example, Pic(P1) = Pic(Y ) = Z and we pick the linearization O(1)
∣∣
0 = q and O(1)

∣∣
∞ =

1. Since σ(z) = zk = q, the pairing (97) differs by k between 0 and ∞.
The moral of the story is that even constant sections have non-trivial degrees, and different

constant sections may have different degrees.

26.3

Returning to (96), we can equally well degenerate the twisted quasimap to get

( σ = )( σ Glue−1 ( . (98)

In full, not using our shorthand, let Ψ := Ψ(z, t, q) := ( . The combination of (96) and
(98) says that

Ψ(z, σ(q)t, q)σ · ΓqΓq
z〈σ,−〉 = Sσ(z, t, q)Ψ(z, t, q)
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for the operator
Sσ(z, t, q) := )( σ Glue−1 .

This is the q-difference equation in equivariant variables. What is remarkable and difficult
to prove is that Sσ(z, t, q) is a rational function in all variables. So Ψ solves a q-difference
equation with rational coefficients.

26.4

A better way to put it is that Ψ intertwines an interesting q-difference connection defined by Sσ
(and other operators) with the abelian connection corresponding to the terms zdeg(w ·Γq)/Γq.
This abelian connection is very closely related to the “attractive” line bundles S = Θ(T 1/2

X )⊗U
in the discussion of elliptic stable envelopes. The relation is that sections of U = Θ(

∑
(zi −

1)(Li − 1)) are of the form ∏ ϑ(ziLi)
ϑ(zi)ϑ(Li)

,

and a q-shift in Li produces the terms z−1
i in zdeg. The q-Gamma functions arise from

Γq(w−1)Γq(~w) ≈ ϑ(w).

So far we have not done much real work; any matrix trivially satisfies a q-difference
equation where the q-difference operator is given by the ratio of the two sides. The real work
lies in computing the operator Sσ.

26.5

Now we discuss the q-difference equation in Kähler variables. It will arise in a very similar
manner. Consider an equivariant line bundle L on P1, for the action of C×q . Localization says

c1(L
∣∣
0)− c1(L

∣∣
∞) = deg(L)c1(T0P1)

for the equivariant Chern class c1. Another way of writing the same thing is the K-theoretic
version

L
∣∣
0 ⊗ L

∣∣−1
∞ = (T0P1)degL.

If F is any sheaf on P1, then detF is a line bundle and degF = deg detF , and

qdegF =
detF

∣∣
0

detF
∣∣
∞
.

This is the same formula as (97) for the degree of the constant map. Consequently, ifM is a
moduli of maps from P1, then

χ
(
M, zdegÔvir ⊗ (insertions)

) ∣∣∣∣
z 7→qz

= χ
(
M, zdegÔvir ⊗ (insertions)⊗ det(F

∣∣
0)⊗ det(F

∣∣
∞)−1

)
.
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Now ifM is a moduli of maps like ( σ , then the contribution at ∞ is pulled back via the
evaluation map, namely

F
∣∣
∞ = F ⊗O∞.

In other words,

(
∣∣
z 7→qz = (

•
⊗ L−1

where L is the line bundle on X corresponding to the variable z, and the dot • indicates an
insertion det(F ⊗O0).

26.6

We can now play the same game as for the q-difference equation in equivariant variables. By
degeneration,

(
•

⊗ L−1 = )(
•

Glue−1 ( ⊗ L−1.

Equivalently,
Ψ(qLz, t, q)⊗ L = MLΨ(z, t, q)

where ML := )(
•

Glue−1 is the q-difference operator in Kähler variables. Its main feature
is that it commutes with the q-difference connection in equivariant variables, i.e. both are
satisfied by the same function Ψ. It is very rare to have commuting q-difference connections,
and it means that ML is a solution to a q-difference equation. Either of ML or Sσ will uniquely
determine the other. In the current logic, in fact ML is determined starting from Sσ.

26.7

The overarching goal is to describe the flat q-difference connection, formed from ML and Sσ,
in terms of quantum groups. The plan is to start with particular q-difference equations for
certain special equivariant variables.

Recall that K(T ∗Gr(k, n)) is the weight-k subspace in C2(a1)⊗C2(a2)⊗ · · · ⊗C2(an) as
U~(ĝl2)-modules, where the C2(ai) are evaluation representations, and

diag(a1, . . . , an) ∈ GL(n) = GL(W )
acts on T ∗Gr(k, n) by changes of framing (in the language of Nakajima quiver varieties). On
this tensor product of evaluation representations, there is a quantum Knizhnik–Zamolodchikov
(qKZ) connection which moves the ai around. Clearly, it must be the connection we want.
This is indeed true.

More generally, let Q be an arbitrary quiver, and MQ(v,w) be its associated Nakajima
quiver variety. Then K(MQ(v,w)) is the (integral form of the) weight-v subspace in⊗

i

wi⊗
j=1

(
i-th fundamental

evaluation rep

)
(aij)

where aij are coordinates in GL(W ) =
∏
i GL(Wi).

Theorem. The q-difference equation in the equivariant variables aij is exactly qKZ.
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26.8

What is qKZ? There are two ingredients:

• a collection of unitary R-matrices, meaning R-matricesR which satisfyR21(u−1)R12(u) =
1 along with Yang–Baxter;

• an operator Z such that [Z ⊗ Z,R] = 0.

For example, take Z to be an element in the maximal torus of the quantum group. For general
quantum groups, only the elements in the maximal torus stay group-like, i.e. Z ⊗Z = ∆Z =
∆opZ, and since R takes ∆ to ∆op it follows automatically that R commutes with ∆Z.

From the R-matrices we get a representation of the type-GL(`) affine Weyl group acting
in V1(a1)⊗ V2(a2)⊗ · · · ⊗ V`(a`). Transpositions are given by the operator

Ř := (12) ◦R.

Unitarity says (Ř)∨ = 1, and Yang–Baxter implies the Coxeter relation. This gives an action
of the symmetric group S(`). We think of the Vi(ai) as quantum spaces at sites of a 1d
lattice. To get the affine Weyl group Waff, we make the lattice periodic like in Figure 42, like
a periodic spin chain. In fact we should make it quasi-periodic using the operator Z, and since
[Z ⊗ Z,R] = 0 the result is still a representation of Waff. In the analogy with spin chains, in
e.g. the XXZ spin chain we can always insert operators like Z = diag(1, z).

 

W Waff

Figure 42: R-matrices on a periodic lattice yield the affine Weyl group.

It is better to think about the extended affine Weyl group W̃aff := S(`)oZ` where Z` is a
lattice of the commuting operators given by taking the `-th strand and moving it all the way
around the circle.

Z

Figure 43: Lattice translations in the extended affine Weyl group.
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26.9

To produce commuting q-difference operators, we modify the operator Z and define

ZnewVi(ai) := [ZoldVi](qai).

This Znew still commutes with the R-matrix, since the R-matrix

RV1(a1),V2(a2) = RV1,V2(a1/a2)

depends only on the ratios between the ai.
We may as well treat only the case of a tensor product of two representations, because

in any tensor product V1(a1) ⊗ · · · we can set V2(a2) := · · · . Explicitly, the commuting
q-difference operators are

Ψ(qa1, a2) = (z ⊗ 1)R12(a1/a2)Ψ(a1, a2). (99)

This is qKZ. The maximal torus of our quantum groups U~(ĝ) (modulo central elements) is
Pic(X)⊗ C×, which is the home of the Kähler variables z.

How can something like this be the q-shift operator )( σ Glue−1, where we set σ :=
(q, 1, . . .)? This quasimap count (neglecting the glue operator) contains a summation over
all degrees with zdeg, so in particular it is a series in z, whereas (99) is just a monomial! It
would be easier to explain if it were the case that actually (99) were independent of z; then
the statement would be that all quantum corrections vanish. The actual explanation is that
only “constant” maps contribute, if everything is normalized correctly, but they are constant
maps to a non-trivial geometry.

Lecture 27. Singularities of q-shift operators and minuscule
cocharacters

Singularities of the difference equations in equivariant variables, minuscule cocharacters and
their geometric meaning, quantum Knizhnik–Zamolodchikov equations for shifts by minuscule
cocharacters.

27.1

Let’s recap. We have an operator

( ∈ End(Keq(X)loc)

which depends on equivariant variables in T ⊂ Aut(X) and Kähler variables in Z := Pic(X)⊗Z
C×. This operator is the fundamental solution for a flat q-difference connection in both sets
of variables. Specifically, let

1→ A→ T ~−→ C× → 1
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where ~ is the weight of the symplectic form ωX . Then the shifts in equivariant variables
are only for variables in A, and we do not attempt to shift ~ 7→ q~. Such a q-difference
equation in ~ is possible and very complicated, e.g. like intertwining operators for t 7→ tq in
Macdonald–Cherednik theory, or like U~ 7→ Uq~, and it is unclear what the application would
be.

27.2

We begin in our discussion of qKZ by asking where its singularities are. These singularities
are q-periodic, so it is good to ask this question mod q and work on A/q··· = EllA(pt). The
q-periodicity is because for a q-difference equation in one variable

Ψ(qa) = S(a, q)Ψ(a),

singularities are points where S(a, q) /∈ GL(n), and solutions Ψ(a) will therefore have sin-
gularities at a, qa, q2a, . . .. More generally, the singular locus is a periodic arrangement of
hyperplanes, i.e. shifts of

EllA′(pt) ⊂ EllA(pt) codimA A′ = 1.

We have seen such arrangements before, given by points a ∈ A where the fixed locus Xa 6= XA.
Another description comes from looking at the normal bundle for the inclusion XA ⊂ X. Let
{wi} be the A-weights in NX/XA . Then the hyperplane arrangement, viewed in Lie A instead
of EllA(pt), consists of hyperplanes ξ such that 〈ξ, wi〉 ∈ Z, since then a = e2πiξ acts trivially
on some normal direction.

To be more precise, weights inNX/XA appear in pairs w and 1/wi~. So hyperplanes come in
pairs as well: for every hyperplane wqn = 1 there is another one w~qn = 1. It is good to think
~ ≈ 1, since at exactly ~ = 1 all poles and zeros cancel, and the pair of hyperplanes annihilate
each other. Hence, while none of our theory of stable envelopes, difference equations, etc.
interacts directly with ~, it is nonetheless very important that ~ is there in order to get non-
trivial objects. The same consideration is true at ~ = qn. For example, recall that the vertex
function for P1 is ∑

d

zd
(~)d(~a)d
(q)d(qa)d

,

which has no zeros or poles at ~ = q, and more generally at ~ = qn it becomes some rational
function.

The weights {wi} ofNX/XA which define the hyperplane arrangement are called equivariant
roots. Analogously, on the Kähler side, i.e. for q-difference equations in Kähler variables, there
will be Kähler roots. These will live in characters of Z, which is just H2(X,Z). The two sets
of roots are swapped by 3d mirror symmetry.

27.3

Among all difference equations in equivariant variables, we want to find qKZ. By previous
discussion, it is enough to do this for two variables, where qKZ looks like (99). The qKZ
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operator (z ⊗ 1)R12(a1/a2) arose geometrically as

Sσ := )( σ Glue−1

counted with zdeg as usual, with σ := (q, 1). In the result, however, z appears only as an
overall factor, as a monomial; this is very surprising. More importantly, there is no q at all!
In classical treatments of the KZ equation, e.g. [FR92], q arises as q ≈ ~level. But for us, q
is not related to ~. This means that in the q-difference equation, Ψ only has singularities at
qnb = 1 for a particular weight b. Typically this is not the case, since if some equivariant
root w has pairing 〈w, σ〉 = m, meaning that w(σ(b)) = bm, then there are singularities at
qnbm = 1 which involve m-th roots of q. Hence it must be the case that

|〈w, σ〉| ≤ 1.

Such a condition on cocharacters σ is very well-known in Lie theory: these σ are called
minuscule.

27.4

For us, it is easier to establish a different, equivalent condition on σ. As an example, think of
X = T ∗P1, where σ must act with weights as in Figure 44. In the projection X → X0, some of
these weights may become trivial, from the collapsed P1, but some other weights will remain.
The condition on σ is therefore that X0 embeds into a vector space where σ acts with weights
±1, 0. Specifically, functions on this vector space generate H0(X0,OX0) = H0(X,OX). Hence
we arrive at a equivalent, geometric condition.

w−1

w
w−1

w

w

w−1

X0

X

Figure 44: Weights of any cocharacter σ acting on T ∗P1 and its affinization.

Definition. The cocharacter σ is minuscule if C[X] is generated by functions of weight−1, 0, 1
with respect to σ.

The fundamental theorem of invariant theory usually directly gives us generators for C[X],
so this geometric condition is much easier to check. As an exercise, show that cocharacters of
the form

σ(b) := diag(b, b, . . . , b, 1, 1, . . . , 1) ∈ GL(W )
are minuscule. (These are exactly the minuscule cocharacters for GL(n).)
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27.5

This is not yet a proof, but at least for such σ the operator Sσ has a chance to be qKZ.
The difficult and more mysterious part is to show that only “constant” quasimaps contribute
to Sσ, so that the result is monomial in z. All other contributions must somehow vanish.
The way to prove such vanishing is by rigidity, which recall involves two steps: a properness
argument, and a bound on weights. Properness tells us the answer is a Laurent polynomial,
and boundedness tells us the Newton polygon of that Laurent polynomial contains no lattice
points. The minuscule condition on σ is also important for properness.

27.6

Example. We focus on a (somewhat silly) example for clarity. Let X = C2 be the simplest
possible symplectic manifold, and let

σ(b) := diag(bk, b−k) ⊂ Aut(X,ω)

for k > 0. A σ-twisted quasimap to X is the bundle

X̃ := O(k)⊕O(−k)→ P1.

Sections of X̃ come only from O(k), but the space of sections is a (k + 1)-dimensional vector
space, which is clearly bad for properness. But thinking of such counts as forming an operator,
taking a matrix element of the operator means to impose some conditions on the sections at
0 and ∞, e.g. that they vanish at both 0 and ∞. Then the space of sections has dimension

dimH0(O(k − [0]− [∞])) = k − 1.

Hence if k = 1 exactly, i.e. the minuscule condition, then there are no non-zero sections, and
the space of sections is now proper.

This example is not great when we start counting weights in the second part of the rigidity
argument, to show boundedness. For example

Opt = (1− b−1)(1− b)

and its Newton polygon is [−1, 1], which clearly contains lattice points. The solution is to
impose different conditions at 0 and ∞; instead of using a single point, we use the repelling
directions Attr−. The resulting space of sections is still proper, since there are no sections in
the Attr− direction anyway where normal bundles have negative degree.

27.7

For general X, the map X → X0 is proper and by hypothesis there is an embedding (also
proper) of X0 into a vector space of weights 0,±1. Hence σ-twisted quasimaps to X have a
proper evaluation map to sections of some bundle

O(1)··· ⊕O(−1)··· ⊕O···.
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From our silly example we know the minuscule condition implies properness here. Hence we
get properness for σ-twisted quasimaps. In general, the Attr− conditions at 0 and ∞ in the
silly example should be replaced by stable envelopes.

Theorem. The (composite) operator

Keq(Xσ) Keq(Xσ)

Keq(X) Keq(X)

Stab−

Sσ

(Stab−)transpose

is proper, i.e. defined in non-localized K-theory, and vanishes for non-constant quasimaps.

The K-theoretic stable envelope depends on a slope parameter which comes from the
Kähler variables in the elliptic setting. The slopes in the theorem must be chosen with care.

Proof. We have essentially proved properness. To show vanishing it remains to bound the
weights, see [Oko17] for details.

Recall that Stabtranspose
− = (Stab+)−1, and the R-matrix is Stab−1

− ◦ Stab+. Hence for
constant quasimaps, we get exactly qKZ.

27.8

What about the q-difference equations for all other non-minuscule shifts? For minuscule
shifts, the picture is that there is one wall-crossing (modulo q) from Xσ → X → Xσ, and
therefore the shift operator is Rσ = Stab−1

− ◦ Stab+. For general σ, there is therefore a natural
conjecture that

Sσ =
→∏

(R-matrices for Xa)

where the product is over all root hyperplanes crossed by σ. These Xa are also Nakajima
quiver varieties. Good progress has been made toward this conjecture in [KS20].

Lecture 28. The dynamical groupoid of q-difference operators

q-difference equations in Kähler variables, Dubrovin connection for Nakajima varieties, dy-
namical groupoids, slope R-matrices in equivariant K-theory, Khoroshkin–Tolstoy factoriza-
tion of R-matrices, slope subalgebras in quantum loop groups, fusion operators J for slope sub-
algebras, dynamical groupoid associated to slope subalgebras and quantum q-difference equia-
tions for Nakajima varieties.
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28.1

Today we discuss the q-difference equation in Kähler variables. The object

( ∈ EndKeq(X)loc[[z]]

is a fundamental solution. In fact the solution is rational in z and works for all birational
models Xflop of X, e.g. for different choices of GIT stability, by performing different series
expansions in z. The [[z]] should be viewed as the semigroup ring of H2(X,Z)effective.

28.2

Let M(v, w) be a Nakajima quiver variety, and abbreviate M(w) :=
⊔
vM(v, w). Then the

K-theory ofM(w) is a module over a quantum group, and eachM(v, w) gives a weight space.
Recall thatM(w)×M(w′) is a component of the fixed locus ofM(w+w′), for the action of
some C× whose coordinate we call a. There is therefore a stable envelope map

K(M(w))⊗K(M(w′)) Stab−−−→ K(M(w + w′)),

making the collection {K(M(w))} into a tensor category. We know that ( is a solution
of q-difference equations in both z and a, and in particular the q-difference equation in a is
just qKZ. The claim is that this information determines the q-difference equation in z up to
a scalar multiple. The general principle is that (almost) nothing commutes with R-matrices,
meaning that our tensor category has very few tensor automorphisms.

28.3

The scalar multiple for the q-difference equation in z is actually very interesting, even in
cohomology. In cohomology qKZ becomes the quantum differential equation, also known as
the Dubrovin connection. This connection lives on a trivial H∗eq(X)-bundle over H2(X) =
Pic(X)⊗ C = Lie(Z). If λ denotes the coordinate on the base, then for a curve class zα

d

dλ
zα = (λ, α)zα

The Dubrovin connection is then d/dλ− (λ ?−) where

(λ ?−) = (λ ∪ −) + ~
∑

effective
roots α

(λ, α) zα

1− zαCα + (constant) (100)

is quantum multiplication by λ. Note that the term zα/(1−zα) is the contribution of multiple
covers. The term Cα is some Steinberg correspondence, which can be written in terms of the
Lie algebra

g = h⊕
⊕
α 6=0

gα

from the classical r-matrix. Recall that elements of h act by linear functions of v and w,
corresponding to classical multiplication by elements of Pic(X) ⊗ C and central elements
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respectively. A root α is effective iff θ ·α > 0, e.g. if θ = (1, 1, . . . , 1) is the stability condition
then this really is the condition for a root to be positive. The Steinberg correspondence Cα
is the Casimir element in g−αgα. The cup product (λ ∪ −) is the Yangian deformation of
λt ∈ h[t].

In cohomology, the constant in (100) is determined by the condition that

λ ? 1 = λ,

i.e. quantum corrections kill 1 ∈ H0(X). (In terms of the quantum group, 1 is a “Whittaker”
vector.) For example, for the moduli of rank-r instantons, the constant vanishes if r > 1.

In comparison, in K-theory:

• sums become products;

• roots of g are promoted to roots of ĝ = g⊗Q[t±];

• the situation is best phrased in terms of the dynamical groupoid.

28.4

Consider a periodic arrangement of rational hyperplanes, given by 〈β,−〉 + n = 0 in e.g.
Lie(A). Equivalently this is an arrangement of translates of codimension-1 subvarieties in an
abelian variety, given by aβqn = 1 in e.g. A or EllA(pt). For every wall w, we would like an
operator Bw ∈ End(vector space) associated to w such that the following hold.

Bw

w

Lie(A)

〈β,−〉+ n = 0

Figure 45: A periodic hyperplane arrangement in Lie(A). The green arrow indi-
cates one automorphism of the arrangement, and one wall w with its operator Bw
is drawn.

• {Bw}w satisfies the braid relations
∏

loopBw = 1, where the product is over walls crossed
by any closed loop. An example is the Yang–Baxter equation with spectral parameter.

• The automorphism group Aut of the arrangement, which by periodicity always includes
translation by the lattice, acts on {Bw} by

Bw(τ−1 · a) = O(τ)Bτ ·w(a)O(τ)−1
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for an automorphism τ . An example is the arrangement in Figure 46a, which has
Aut = S3oZ2. This is slightly bigger than the affine Weyl group Waff(ĝl3), by the outer
automorphism of the Dynkin diagram which rotates the whole diagram. Previously
we already saw an action of Aut on q-difference operators, e.g. the automorphism in
Figure 46a corresponds to Figure 46b. The operator Z corresponds to conjugation by
O(τ).

R∨
12

R∨
23

affine
wall

(a) The element of Aut

Z

(b) The element of Waff

Figure 46: An automorphism of the arrangement as an affine Weyl group element.

28.5

Such a structure gives rise to a q-difference connection in the following way. The subgroup of
translations in Aut really acts by q-shifts, since if τλ is translation by a lattice element λ then

Bw(τ−1
λ a) = Bw(q−λa).

Hence pick a path which goes to infinity from any given alcove (in a sufficiently generic way),
and consider the formal product

Ψ :=
→∏
Bw := Bw1Bw2Bw3 · · ·

of operators at each wall crossed by the path. By the braid relations, this product is inde-
pendent of the choice of path. Completely formally, it satisfies a q-difference equation of the
form

τλΨO(λ) = O(λ)Bw1 · · ·Bwk︸ ︷︷ ︸
Mλ

Ψ (101)

where Bw1 · · ·Bwk is a path which connects the original alcove to its translate under λ.

28.6

Last time we discussed the conjecture that, for the equivariant torus A, there is a hyperplane
arrangement {a ∈ A : Xa 6= XA} and the general q-difference equations in equivariant vari-
ables is a product of R-matrices for Xa (decorated by z like in qKZ and with an appropriate

168



Figure 47: Two paths to infinity from the same alcove, differing by a single braid
relation.

shift by q). Today we saw an analogous picture for the torus Z := Pic(X) ⊗ C×, where the
hyperplane arrangement consists of slopes where stable envelopes jump. Recall that stable
envelopes in elliptic cohomology are sections of Θ(T 1/2) ⊗ (deg zero) on Elleq(X), which is
a union of abelian varieties T/qcochar(T). In the limit q → 0, these abelian varieties become
a periodic gluing of toric varieties and assemble into

⋃
t SpecKeq(Xt). Stable envelopes in

K-theory are therefore polynomials with Newton polygon the same as the Newton polygon of

∧•(T 1/2) + (shift)

where the shift is by something in Pic(X) ⊗ R, called the slope, and comes from the degree-
zero line bundle on Elleq(X). The lattice points contained in the Newton polygon are locally
constant with respect to changes of slope, and places in Pic(X) ⊗ R where they change are
the walls.

Definition. Given two alcoves s, s′ ∈ Pic(X)⊗ R separated by a single wall, define the wall
R-matrix

Stab−1
s′ ◦ Stabs .

It satisfies the Yang–Baxter equation, and the spectral variable a ∈ A only appears in a trivial
way as a monomial of a given degree. Hence its define a quantum group U~(gw) which is not
a quantum loop group.

The old R-matrix, corresponding to changing attracting directions, e.g. C → −C, has a
Khoroshkin–Tolstoy factorization

R−C←C
s =

∏
path from
−∞ to s

R−Cs′′←s′ ·R
−C←C
−∞←∞ ·

∏
path from
s to ∞

RC
s′′←s′ . (102)

The middle operator R−C←C
−∞←∞ is an explicit product of q-Gamma functions. The choice of the

overall path from −∞ to s to ∞ is like the choice of factorization of the longest element of
the Weyl group W , e.g. as in Lusztig’s work on quantum groups.
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Figure 48: Paths to infinity and back, forming the Khoroshkin–Tolstoy factoriza-
tion of the R-matrix.

28.7

The factorization implies that each wall sub-algebra U~(gw) embeds into U~(ĝ).

Example. A familiar example may be U~( ̂̂gl1), where g = ĝl1. Here roots are just {β} = Z,
and hyperplanes in Pic(X) ⊗ R are therefore {x : βx + n ∈ Z} = Q. All but finitely many
wall R-matrices act trivially in Keq(Hilb(C2, n)) for a fixed n; explicitly, the only non-trivial
walls are at a/b for |b| ≤ n. The wall sub-algebras are all isomorphic to U~(ĝl1), and some
are shown in Figure 49. The infinite slope R-matrix, in the KT factorization, corresponds to
the vertical (commutative) sub-algebra.

U~(g 1
2
)

U~(g 1
3
)

U~(g0)

R∞ in KT

Figure 49: Some wall sub-algebras of U~( ̂̂gl1).

28.8

We return to the discussion of the operators Bw. The wall sub-algebras U~(gw) always have
gw of rank 1. Also, qKZ for U~(gw) is not a q-difference equation, since the q-shift is on the
loop rotation variable, which is not present here. Hence qKZ becomes a linear equation

(z ⊗ 1)RJ = J(z ⊗ 1)R(0)
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for an operator J . Explicitly, R(0) = ~··· is the diagonal part of the R-matrix. There is a
universal formula for Bw(z) in terms of J called dynamical reflection, of the form

Bw(z) = m
(
(1⊗ S)J−1

21

)
. (103)

Here “universal” refers to how it only involves multiplication and antipode in the Hopf algebra.
In particular we can check it in the case of sl2, where we should get the explicit formulas for
the dynamical Weyl group of Etingof–Varchenko [EV02].

Theorem ([OS16]). These Bw(z) form a dynamical groupoid, and give the q-difference equa-
tion for Nakajima quiver varieties.

Proof. The main idea is that, given two slopes s and s′ separated by a single wall, the wall
operator Bw is essentially an intertwiner for the qKZ operators in s and s′. Moving in a closed
loop, like in the Khoroshkin–Tolstoy factorization (102), we obtain an operator commuting
with qKZ. But nothing commutes with qKZ. This verifies the braid relations.

28.9

Example. What we need for Hilb(C2, n) is an explicit formula for J in the case ĝl1 =⊕
n>0 Heisenberg/centers. It suffices to write J for a single Heisenberg, with presentation

H := ~xd/dx, K := ~, E := x, F := −d/dx

where ∆(K) := K ⊗K is group-like and

∆(E) := E ⊗ 1 +K−1 ⊗ E, ∆(F ) := F ⊗K + 1⊗ F.

Then
J = exp

(
−(~− ~−1) z

1− zF ⊗ E
)
. (104)

28.10

Remark. The hyperplane arrangement in Z has to do with singularities of both the quantum
difference equation and the quantum differential equation. For Hilb(C2, n), the singularities
are ⋃

b≤n

b
√

1 ⊂ C× = Z.

One can ask: what is the monodromy around one of these singularities? By general principles,
if we view a differential equation in z as a degeneration of a difference equation in z, then the
monodromy of the differential equation is a less severe degeneration and does not involve z.
For each wall operator Bw(z), the monodromy is given by the operator Bw(∞); this can be
proved by the same sort of argument as in the theorem, using that nothing commutes with
qKZ.
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Lecture 29. Rigidity results for the glue operator and capped
vertex

Tube = Glue, the glue matrix in terms of the dynamical groupoid, varieties X ′ associated to
strata in Pic(X)⊗R, conjectural formula for the wall operators in terms of these X ′, what it
says for rank-r framed sheaves on C2, capped vertex with descendants, large framing vanishing,
Smirnov’s formula for the capped vertex with descendants, the fusion operator J again.

29.1

Recall that we have two operators

Tube := )(

Glue := )(

Today we will prove that Tube = Glue, and in fact we will prove it in two ways.

29.2

Proof 1. Consider the operator

P := )( Glue−1 .

By degenerating the Tube operator, we get

P = )( Glue−1 )( Glue−1 = P 2.

So P is in fact a projector. Since P
∣∣
z=0 = 1, it follows that P = 1.

Remark. In cohomology, the Glue operator is trivial, so this also proves that Tube is trivial.

29.3

Proof 2. Proceed by localization with respect to the C×q acting on Tube. Since C×q acts only
on the non-rubber part, fixed points are of the form

q

constant map

and q does not act in the bubbles. In this picture, q only acts on the normal bundle to
the fixed locus, and this normal bundle has to do with smoothing the nodes connecting the
rubber to the non-rubber parts. Such a smoothing has a tangent weight qψ, where ψ is the
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line bundle of tangent spaces (at a marked point) for the moduli of curves corresponding to
the rubber part. These tangent weights contribute factors

1
1− q−1ψ−1 →

{
1 q →∞
0 q → 0

to localization. The same is true for smoothing at∞, but with a substitution q ↔ q−1. Hence,
in total, Tube is some Laurent polynomial in q (due to properness) such that

Tube→
{

Glue (from 0) q →∞
Glue (from ∞) q → 0.

29.4

The argument in proof 2 can also be applied to our fundamental solution Ψ := ( as
well. It follows that

Ψ→
{

Glue (from 0) q →∞
1 q → 0.

Plugging this into the quantum difference equation,

ML → L, q → 0
ML(q−Lz, q)→ GlueL, q →∞

for L ample [Oko17, Corollary 8.1.19]. But the q-difference operator ML we know from
last time, and therefore we learn what Glue is. In terms of the dynamical groupoid, Glue is
therefore the operator moving from the anti-ample to the ample alcove, across 0 ∈ Pic(X)⊗R.

stratum

Figure 50: The glue operator for X, in red, and (conjecturally) a glue operator
for a related X ′, in green.

Thinking of walls as reflections in the affine Weyl group, and a path −∞ → ∞ as the
longest element in the affine Weyl group, the Glue operator is the “longest element in the
finite Weyl group”. Here of course there is no “finite Weyl group”; it is just a groupoid.
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29.5

In general, in our groupoid, a special role is played by the transformations of the kind in
Figure 50. In the equivariant lattice, this is like the R-matrix which moves from an attracting
chamber C to the opposite chamber Copp. The geometric meaning of these operators should
be the following (research project): they are glue matrices for a different variety X ′, obtained
from X by a procedure sort of like deformation, as follows. Our hyperplane arrangement
consists of subgroups in a torus Pic(X)⊗ C×, so the hyperplanes passing through the origin
have a geometric interpretation as the discriminant in

Pic(X)⊗ C =
(

deformation space of
(X,ω) as a symplectic manifold

)
,

i.e. the hyperplanes are where X0 is singular or X is not affine. In each stratum there is a
space X ′0 which is the deepest singularity. For example, if X0 ⊂ g0 is the nilpotent cone, then
deformations are other conjugacy classes in g and the discriminant consists of roots. But what
about hyperplanes which do not pass through 0 ∈ Pic(X)? There are many answers, but the
easiest may be to study deformations of the multiplicative analogue of X. To really get a
new example, it is important to go outside of Lie theory, because we really want a fractional
hyperplane.

29.6

Example. The usual symplectic deformation of the moduli of rank-r instantons is

M(r) {XY = Y X + (const) + (rank r)}

where (const) ∈ Pic(M(r))⊗C is the deformation parameter. Instead, take the multiplicative
deformation (part of a general theory of multiplicative Nakajima varieties)

{XY = zY X + (rank r)}

where z ∈ Pic(M(r)) ⊗ C×. When z is a primitive b-th root of unity, then the algebra with
relations XY = zY X has a b-dimensional irreducible representation b where

spectrum(X) = spectrum(Y ) = µb

consists of all b-th roots of unity. We will study it in terms of slices in the moduli of repre-
sentations, as previously discussed.

To study representations of algebras, it is easier to use the Crawley-Bovey notation where
a rank-r framing node is replaced by r maps from a rank-1 ordinary node. In the setting of
b, the overall representation therefore decomposes into representations

b =


x y

b

0


⊕···

, remainder :=


x y

n mod b

1

 .
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Compute that
χ(b, b) = 0, χ(b, remainder) = 2rb.

We don’t care about χ(remainder, remainder), because these are coordinates along the stratum
where we take the slice. The slice therefore corresponds to the quiver

x y

br arrows

In summary, if X = M(r) and z = b
√

1, then X ′ = M(br). This makes sense by 3d mirror
symmetry, because X∨ = Hilb(Ar−1,points) and z = diag(z, z−1) is an equivariant variable
acting on X∨, and

(X ′)∨ = (X∨)z

has the same quiver (but with a different stability condition) as Hilb(Abr−1, points). Addi-
tionally, putting together (101), (103) and (104), one can obtain an explicit formula

MO(1) = O(1)
←∏

s=a/b∈Q
−1≤s<0

:exp

∑
k≥0

ck~−kbr/2

1− z−kbqka~−kbr/2
α−(kb,ka)α(kb,ka)

: .

In this formula, the scalar br enters exactly as expected, in the sense that e.g. the operator
of crossing the wall at 0 is Glue for M(r) while the operator crossing the wall at a/b is Glue
for M(br) (with a mild change of parameters).

29.7

This sort of behavior should hold in general. The 3d mirror dual story is that, at walls for
the equivariant variables, we have R-matrices R(Xa) for the fixed locus Xa ⊂ X of the wall.

Put differently, Nakajima quiver varieties X have natural multiplicative analogues Xmult,
and there is usually a map

Pic(X)⊗ C× → Def(Xmult)

to the deformation space of Xmult. For a point z ∈ Pic(X)⊗C×, we set X ′ to be the deepest
singularity of the corresponding deformation of Xmult.

29.8

Consider the object ) . The evaluation maps ev0 and ev∞ land in the stack X and
X respectively, and so in this object the stable and unstable loci in X really interact. Both
evaluation maps are proper and therefore have no denominators in localization, and so there
is not much room for complexity. There is, however, a lot of room for rigidity.
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Example (Large framing vanishing). Let X = M(v, w) be a Nakajima quiver variety. The
stack is X is a quotient by GL(V ) :=

∏
i GL(Vi). Hence

SpecKeq(X) ⊂ Spec Rep GL(V )× · · ·

where Rep GL(V ) is explicitly just the ring of symmetric Laurent polynomials in groups of vi
variables. This ring is independent of w, and we can choose an element λ in it. For any given
λ, we can choose the framing w so large that

λ ) = λ⊗ Ôvir
const maps

consists of purely classical contributions, with no quantum corrections [Oko17, Theorem
7.5.23]. This is really a rigidity result, not a dimensional vanishing since dimension is indepen-
dent of degree. Picking the correct normalization, which involves some choice of polarization,
the term Ôvir

const maps = ~··· is just some multiple of ~.

29.9

For simplicity, assume λ is a polynomial on GL(V ). Take W = W1 ⊕W2, where W1 is the
framing we want and W2 is very large so that we have vanishing. Let a ∈ C× act on W2 by
scaling, and consider M(w) =

⊔
vM(v, w).

• By large framing vanishing, λ ) is purely classical.

• By localization, in the a→ 0 limit,

classical→ classical⊗ 1

) = · ) →
λ
⊗

1
·

)
⊗

)
· J.

It is fairly clear that the bare vertex with descendants is just a tensor product
of two bare vertices in the limit, but the limit of ) and the presence of the slope-0
fusion operator J is a theorem of A. Smirnov.

Putting this together, we get the formula

classical
⊗
1

=
λ )
⊗

1 )
· J.

This is Smirnov’s formula for the object λ ) . Actually Smirnov has a better (unpub-
lished) version of this formula which is more explicit.
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29.10

Where does this J come from? Recall that ) is a fundamental solution of Ψ(qLz)L =
MLΨ(z), and one can ask what happens when a → 0. From geometry, ML becomes upper-
triangular, and up to gauge equivalence it is just

ML →
(
ML

ML

)
.

The gauge equivalence is essentially J . Recall also that ) solves a q-difference equation
in a, namely qKZ, given by

R(a) =
→∏
Rslope(· · · )

where the variable a enters monomially in · · · . As a→ 0, this becomes the slope-0 R-matrix,
and J is the universal solution for qKZ for this R-matrix.

Lecture 30. The stratification of the unstable locus

Capped vertex with descendants as a correspondence between X and the ambient quotient stack,
stable and unstable loci in GIT, stratification of the unstable locus, inductive construction of
stable envelopes for quotient stacks.

30.1

We continue to discuss the capped vertex with descendents, which involves a moduli space of
quasimaps with two evaluation maps: ev0 valued in X, and ev∞ valued in X. Push-pull using
this object is how X and the stack X talk to each other.

30.2

The stack X is a quotient stack, and admits an embedding into a stack of the form [V/G]
where V is a vector space. For Nakajima quiver varieties, G =

∏
GL(Vi). The K-theory of

the stack is very simple:

Keq([V/G]) = Keq×G(pt) = Keq(pt)[x±i,j ]
W

where the xi,j are coordinates in the maximal torus of G.

30.3

On the other hand, X is the quotient of an open stable locus Ysst ⊂ Y := µ−1(0). Further,
Y is a closed subset in some ambient space Z (which for us is a vector space) which comes
equipped with an ample G-equivariant line bundle L. We now briefly discuss stability. There
are two notions of stability, one algebraic and the other geometric. In this setting,

X = Proj
⊕
n>0

H0(Y,Ln)G.
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So we can say a point y ∈ Y is stable iff there exists a function f ∈ H0(Y,Ln)G such that
f(y) 6= 0. Geometrically, what does this mean? Take a G-equivariant embedding Z ↪→ P(V )
for a vector space V such that L is the pullback of O(1). Let Ŷ be the affine cone of Y , so
that

X = ProjC[Ŷ ]G.

In general, if a reductive group acts on an affine variety, then G-invariants separate closed
orbits on Ŷ . So two orbits in Ŷ intersect iff they contain 0 ∈ Ŷ in the orbit, and therefore
y ∈ Y ⊂ Ŷ is unstable iff 0 ∈ Gy.

X

Y

Ŷ
V

P(V )
G

G
G

Figure 51: Various G-orbits in the affine cone Ŷ . The red one contains 0 and
therefore corresponds to an unstable point in Y .

The Hilbert–Mumford criterion says

0 ∈ Gy ⇐⇒ 0 ∈ Ty

for a maximal torus T ⊂ G. Written out, it means there exists a one-parameter subgroup
σ : C× → G such that

σ(t) · y → 0 as t→ 0.

But there is a very easy way to tell if 0 ∈ Ty: draw the Newton polygon of y, namely the
convex hull

Conv(weights appearing in TyY ),

and see if it contains the zero weight. If it does not, there is a hyperplane σ which separates
zero from the Newton polygon, showing that 0 ∈ Ty. It is very natural to talk about the
Newton polygon since Ty is a toric variety.

0 weight

σ

Figure 52: A hyperplane σ separating the Newton polytope from the zero weight.
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30.4

In practice, e.g. for Nakajima quiver varieties, the setup is slightly different and the ambient
space is actually affine instead of sitting in a projective space. This is equivalent because the
affine variety is the complement of a very ample divisor in projective space, so one reduces to
the other very easily. But the statement of stability is slightly different. A general L on an
affine Y is of the form

L = OY ⊗ (character χ of G),

and if we follow through the discussion earlier, the Newton polytope is replaced by a cone
spanned by the T -weights that appear in y, and if −χ lives in this cone then y is stable.

Example. Embed

T ∗Gr(k, n) ↪→ [Hom(Cn,Ck)⊕Hom(Ck,Cn)/GL(k)],

and let (A,B) be coordinates on the pre-quotient. Let T = diag(t1, . . . , tk) ⊂ GL(k) be the
maximal torus. Then the Newton polygon of weights in A remembers the non-zero rows in
A, i.e. it is the convex hull of ti for all non-zero rows i. Let χ := det−1, i.e. −χ = (1, 1, . . . , 1)
in the weight lattice. Then

(A,B) are stable for the T-action ⇐⇒ all rows of A are non-zero
(A,B) are stable for the G-action ⇐⇒ rankA = k,

where the latter condition rankA = k means that, however conjugated, all rows of A are still
non-zero.

30.5

The topic of today and next lecture is that the capped vertex with descendents is (like) a stable
envelope, in the following sense. Recall that stable envelopes solve an extension problem for
cohomology classes. We can pose a very similar problem. Since the action of G on Ysst is free,

Keq(X) = Keq×G(Y sst).

One can in principle consider non-free actions and take orbifold K-theory (or cohomology),
and this is perhaps interesting. We can ask about the extension problem from Keq×G(Y sst)
to Keq×G(Y ). But because Y is in general singular, it is better to ask about an extension

Keq×G(Y sst)→ Keq×G(Z) supported on Y

to the smooth ambient space Z; smoothness is rather crucial for the construction of stable
envelopes. Of course, the same question may be posed in elliptic cohomology.
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30.6

Like for stable envelopes, this extension problem may be solved inductively using a stratifica-
tion of the unstable locus. Recall that for stable envelopes, we built a stratification

X ⊃ X1 ⊃ X2 ⊃ · · ·

by ordering the components XA =
⊔
Fi and setting

X1 \X2 := Attr(F1), X2 \X3 := Attr(F2), , . . . .

In fact this is a special case of the stratification of the unstable locus, which itself is a classical
perspective (see e.g. [VP89]). In our more general GIT setting on Z, let supp(z) denote the
Newton polytope for a point z ∈ Z (as in e.g. Figure 52) for each point. The stable locus
Z \ Z1 is where 0 ∈ supp(z), and then the unstable locus can clearly be stratified by how far
away 0 is from supp(z). To quantify this measure of instability we must choose an invariant
metric on Lie(G), which then induces a metric on (co)weights. The shortest path from 0 to
supp(z) specifies a 1-parameter subgroup σ∨ which brings z to 0 the fastest.

0σ∨

supp z

supp z0

Figure 53: The maximally destabilizing 1-parameter subgroup σ∨, with the closest
face supp(z0) indicated in blue.

30.7

The point z is reduced if supp(z) cannot be made any further from 0 by the G-action. Let
z0 ∈ P(V ) be the projection of z ∈ P(V ) onto the weight spaces on the closest face of supp(z)
to 0. This point z0 has its own polytope supp(z0), and the projection of 0 gives a new point
0 ∈ supp(z0).

Theorem. z is reduced if z0 is stable under the action of Gσ.

Example. Continue with T ∗Gr(k, n) from Example 30.4. Let A ∈ Hom(Cn,Ck) be such
that only rows 1 and 3 are non-zero. So it is an unstable point, and its Newton polytope lies
in the plane spanned by t1 and t3. The vector −χ = (1, 1, . . . , 1) projects to the new vector
(1, 1), and we are now asking for the stability of the projection of A to only its non-zero rows,
under the GL(2) action. This projection is clearly stable iff its rank is exactly 2.

Proof idea. Consider Gσ ⊂ G and its positive/negative parabolics P± ⊂ G consisting of ≥ 0
and ≤ 0 σ-weights respectively. By hypothesis, P+ preserves the fact that 0 ∈ supp(gz0). On
the other hand, G = P+WP+.
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30.8

Taken all together, this gives the following stratification. First, for unstable points z, order
their paths σ∨i by their length. By construction, supp(z0) lies on the hyperplane orthogonal
to σ∨i . So z0 ∈ P(V ) is fixed by σi, meaning that if w(σi) is the weight of σi then

z0 ∈ Vw(σi) ⊂ V

lies in a specific weight space of V . Then set

Fi := Vw(σi) ∩ (stable locus for Gσi).

For a fixed torus T ⊂ G, the i-th stratum is then Attrσi(Fi), as before.

Theorem ([VP89, Theorem 5.6]). As we vary the torus T , the strata become

G×P+,i Attrσi(Fi)

where P+,i is the positive parabolic corresponding to σi.

To be precise, Lie(P+,i) = g≥0,σi consists of those weight spaces gα such that 〈σi, α〉 ≥ 0.
For example, in GL(n),

σ(t) =



t
t
t
t

1
1


 P+ =




.

30.9

As a corollary, if Z is smooth then these strata are smooth with normal bundle

N := NZ/Fi,<0 	 g<0,σi

where the second term is the tangent space to G/P+,i. The induction strategy therefore
proceeds using the cofibration sequence

Y := Z \ stratum→ Z → Thom(N)→ · · · .

However, recall that after passing to elliptic cohomology, we must twist the whole sequence
· · · → Θi(−N)→ OiEll(Z) → O

i
Ell(Y ) → · · · by an “attractive” line bundle S so that Θi(−N)⊗S

has degree 0 in σ and therefore has no cohomology. In fact the definition of attractive was
some condition on degree. The definition of attractive in the new situation requires us to look
at both

S0 := Θ(T 1/2Z)⊗ (degree 0)
S := ker(OEll(Z) → OEll(Z\Y )),

and while the former is a line bundle, the latter is not. So a somewhat new argument is
needed. Note that the latter sheaf is supported on Y , as desired.
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30.10

For Nakajima varieties, we already know the answer to the extension problem, i.e. the elliptic
stable envelopes on the stack. Namely, our formulas for elliptic stable envelopes were written
in terms of Chern roots of universal bundles, and therefore make sense on the stack as well.
So for Nakajima varieties, our discussion introduces no new generality.

Example. For T ∗Gr, stable envelopes have the form

Symm
∏
i<j

1
ϑ(xi/xj)ϑ(~xi/xj)

∏
ϑ(· · · )

on X, and so also on the pre-quotient Ysst. The pushforward to Z comes from the inclusion
with normal bundle given by {µ = 0}, and so corresponds to multiplication by

∏
i,j ϑ(~xi/xj).

On Zsst, the result is
Symm

∏
i<j

ϑ(~xj/xi)
ϑ(xi/xj)

∏
ϑ(· · · ).

Upon symmetrization, the first-order poles at xi = xj disappear, and hence this is a regular
function. So one may wonder how it can extend in some other interesting way to all of Z. In
fact it already is the correct extension, with no further change.

Lecture 31. Non-abelian stable envelopes

Nonabelian stable envelopes for algebraic symplectic reductions, the relation between abelian
and nonabelian stable envelopes, K-theoretic stable envelopes and equivalence between descen-
dant and relative insertions, integral solutions of the quantum difference equations, Bethe
equations, K-theoretic stable envelopes as the off-shell Bethe eigenfunction.

31.1

To summarize the setup, recall that an algebraic symplectic reduction is of the form

X := Z �� G := µ−1(0) � G := µ−1(0)st/G.

We assume that there are no strictly semistable points in µ−1(0). In addition, for Nakajima
quiver varieties it turns out there are even no finite stabilizers. The problem is to take a class
α on X and extend it to Y := µ−1(0):

Y = µ−1(0)

Z Yst X

Zst

/G .

The extension Yst → Y is problematic since Y is not smooth. So it is better to first pushfor-
ward to Zst and do the extension Zst → Z such that the result is supported on Y .
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31.2

The extension Zst → Z is in fact a non-abelian stable envelope. This is like the abelian stable
envelope in many ways.

31.2.1

Property 1. It solves an interpolation problem.
The inclusion of an open Zst ↪→ Z induces a map in cohomology, e.g.

Elleq(Zst)→ Elleq(Z),

which is a closed embedding. Hence the extension problem is asking for a section of a line
bundle which takes given values at given points, and this is exactly what interpolation means.

The result must also vanish on the open Z \Y ↪→ Z, meaning on the image of the induced
closed embedding Elleq(Z \Y )→ Elleq(Z). Such vanishing conditions translate into what are
more commonly known as “wheel conditions”.

Example. For Hilb(C2, n), we have Z = Hom(V, V ) ⊗ (t1 + t2) ⊕ V ⊕ V ∗t1t2. Let the
coordinates on the maximal torus on GL(n) be x1, x2, . . . , xn. Check that the vanishing
condition here is

{xi, xj , xk} = {c, ct1, ct1t2} or {c, ct2, ct1t2}
for any weight c. This is the original “wheel condition” in the literature.

31.2.2

Property 2. It may be solved inductively, using the stratification of the unstable locus
discussed previously.

31.2.3

Property 3. It takes values in

S0 = Θ(T 1/2Z)⊗ (degree 0),

or, more specifically, S := ker(restriction to Z/Y ), i.e. some sheaf which already encodes the
wheel conditions.

The main source for the degree-0 twist is G-equivariant line bundles on Z, especially
L = OZ ⊗ (character χ of G). For these L, let U(L, z) be the line bundle whose sections have
the form

ϑ(χ(x)z)
ϑ(χ(x))ϑ(z)

where z is a dual Kähler variable.

31.2.4

Property 4. If G =
∏

GL(Vi), then these non-abelian stable envelopes reduce to the abelian
ones.
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31.3

Here are the main applications of non-abelian stable envelopes.

1. The vertex with descendents , viewed as a map K(X)→ K(stack), is the elliptic
stable envelope up to some Γq factors.

2. The capped vertex ) is related to the K-theoretic stable envelope for the stack.

The degeneration from elliptic to K-theoretic is the limit q → 1, and the behavior of ln z/ ln q
determines the K-theoretic slope.

31.4

Let α ∈ Keq(X), and let Stab(α) ∈ Keq×G(Z) be the K-theoretic abelian stable envelope. It
is supported on {µ = 0}.

Theorem ([AO17]). Let ∆~ be the weight of µ. Then

Stab(α)
∆~

) = α )( .

Example. For G = GL(n) the factor is ∆~ =
∏
i,j(1 − ~xi/xj). The vertex ) studies

quasimaps f : P1 → Z such that µ(f(t)) = 0, and so ev0(f) = f(0) already satisfies the
moment map constraint. To divide by ∆~ means to cancel this very same factor of ∆~ arising
from the localization formula.

Remark. This goes the opposite direction compared to Smirnov’s formula, which tells us the
specific relative insertion necessary to produce a given descendent insertion. Note that there is
no z and no q in the K-theoretic Stab(α), whereas in Smirnov’s formula the relative insertion
must involve z and q.

31.5

Corollary. In any source curve, any relative insertion α can be replaced by a descendent
insertion Stab(α)/∆~.

Proof. Bubble off the point where we want to change the insertion, and apply the theorem to
the P1 bubble.

Corollary.
α ( β = Stab(α)

∆~
β.

On the lhs, ( is the fundamental solution of our q-difference equations. On the
other hand, the rhs is some Mellin–Barnes integral∫

γβ

∏ dxi
xi

Stab(α)(x)∏
(1− ~xi/xj)

∏ Γq(· · · )
Γq(· · · )

.
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This is because, acting on by the scaling C×q , fixed loci are themselves GIT quotients
by G. If F is a G-equivariant sheaf on Z then

χ(Z/G,FG) = χ(Z,F)G =
∫

max compact
torus in G

(Weyl integration formula).

Similarly, for a GIT quotient,

χ(Z �χ G,FG) =
∫

contour
depending on χ

· · ·

with the same integrand. This is because χ(Z �χ G,FG) is the value at m = 0 of

χ(Z/G, (F ⊗ χm)G) m� 0,

which is an analytic function of m. Analytic continuation in m means we perform steep-
est descent, which involves changing the contour; see [AFO18, Appendix] for details. The
conclusion is that〈

α

∣∣∣∣ fundamental solution of
q-difference equations

∣∣∣∣β
〉

=
∫

cycle(β)
Stab(α)Γq(· · · )

Γq(· · · )
∏ dxi

2πixi
.

31.6

In this formula, we can take the q → 1 limit. The K-theoretic Stab(α) has no q, but the Γq
factors will blow up as

Γq(· · · )
Γq(· · · )

∼ exp
(
W (x, . . .)

ln q

)
.

Saddle points of the integral, i.e. where ∂W/∂xi = 0, are therefore the only contributions in
the limit. On the other hand, for a q-difference equation Ψ(qz) = M(z, q)Ψ(z), sending q → 1
produces

Ψ ∼ exp
( 1

ln q

∫
λi

)
ψi

where {λi} and {ψi} are the eigenvalues and eigenvectors respectively of M(z, q). Comparing
the two,

∂

∂xi
W = 0

must be the Bethe equations for the spectrum (cf. Nekrasov–Shatashvili), and therefore
Stab(α) must be the off-shell Bethe eigenfunction, i.e. the Bethe ansatz for eigenvectors. The
variable z is a parameter, similar to the quasi-periodic boundary condition in spin chains.
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31.7

The z = 0 limit is strange from the spin chain perspective, but for us it reduces the quantum
integrable system to classical multiplication in Keq(X), and the spectrum becomes nothing
more than SpecKeq(X). For example, given p ∈ XT, the structure sheaf Op is always an
eigenvector since

F ⊗Op = F
∣∣
p
⊗Op.

Irreducible components of SpecKeq(X) correspond to these fixed points. If fixed points are
not isolated, then the components may be non-reduced, and the spectrum has non-trivial
Jordan blocks. Deforming away from z = 0, we get the Bethe equations, and

Stab(· · · )
∣∣∣
Bethe eq.

= eigenvectors.

31.8

Proof of Theorem 31.4. The input to the theorem is a K-theoretic Stab(α), which involves a
slope and a polarization, both of which must be fixed correctly. Recall that the rhs is the glue
operator, and one of our proofs for this was by showing that it is independent of q using a
rigidity argument. We will do the same here. By localization, the lhs becomes

Stab(α)
∆~

· (edge term) · ) .

The last term ) in reality means contributions of the form

.

At the first node there is a contribution 1/(1− qψ∞). Hence, by the same argument as in the
Glue = Tube theorem,

) →
{

Glue q → 0
1 q →∞.

It therefore suffices to show that

Stab(α)
∆~

→
{
α q → 0
bounded q →∞.

This is a typical rigidity proof, involving bounding weights that appear in stable envelopes.

31.9

Example. For X = Hilb(C2, n), the non-abelian stable envelope is a map

α
Stab−−−→ (symmetric functions of x1, x2, . . . , xn).
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If Fock is the Fock representation of the quantum group, e.g. Fock = Elleq(Hilb), then the
claim is that Stab is a matrix element of the R-matrix on

Fock⊗
⊗
i

Fock(xi).

In other words, (x1, . . . , xn) plays the role of (a1, . . . , an) ∈ GL(W ). Specifically, the matrix
element of interest is of the form

⊗n
i=1 Fock(xi)

∅

∅α

Fock

? .

where ? is the class consisting of a single box in each Fock(xi) representation (at the origin
x = y = 0), e.g. if we write α = {1, t1, t2, t22} in terms of the weights of its boxes then
? = {x1, x2, x3, x4}.

Lecture 32. Vertices with descendents as non-abelian stable
envelopes

Nonabelian stable envelopes for G =
∏

GL(Vi), algebraic Bethe Ansatz, vertex with descen-
dents and nonabelian stable envelopes, maps from the formal disk and q-Gamma functions,
integral solutions of the quantum difference equations and the monodromy of the vertex func-
tions.

32.1

For a general Nakajima quiver variety, there are special points where all maps from the framing
W to the nodes V are isomorphisms, and all other maps are zero (to satisfy µ = 0). Then the
framing variables (x1, . . . , xn) ∈ GL(W ) become elements of GL(V ), via these isomorphisms.
We take the class ? of these points and consider, as we did last time, the R-matrix elements
shown in Figure 54.

Example. For X = T ∗Gr(k, n), which is a quotient by GL(k), we want a symmetric function
in x1, . . . , xk. The auxiliary representation

⊗k
i=1 C2(xi) is the cohomology of

⊔k
`=0 T

∗Gr(`, k).
The point ? is the component T ∗Gr(k, k) = pt. In terms of spin chains,

∅ = {↓↓ · · · ↓}

187



⊗
Fi(xi,k)

∅

∅α

K(X)

?
Figure 54: K-theoretic nonabelian stable envelope as an abelian one, by taking
R-matrix elements. The Fi(xi,k) for i ∈ I are fundamental representations, with
k = 1, . . . ,dimVi.

corresponds to all spins down, and since α is a class on T ∗Gr(k, n) we can view it as consisting
of k spins up (out of n). We can draw the matrix element in this language:

T ∗Gr(k, k)

{↓↓↓ · · · ↓}

{↓↓↓ · · · ↓}α = {↑↑ ↓ · · · ↑}

T ∗Gr(k, n)

{↑↑↑ · · · ↑}

where α has k spins up (in red) out of n. Reading this matrix element backward, we recognize
the very classical formula

B(x1)B(x2) · · ·B(xk) |∅〉 , B(x) =

↑

↓

in the algebraic Bethe ansatz for Y (gl2), U~(ĝl2), etc.

32.2

Let X := Z��GL(V ) be an algebraic symplectic reduction by a single G := GL(V ) (as opposed
to
∏

GL(Vi)), for simplicity. Let

X
/G←− Yst ↪→ Y := µ−1(0) ↪→ Z

be the usual setup. Introduce the space

Z̃ := Z × T ∗Hom(V ′, V )
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where V ′ is in fact the framing W , but with dimV ′ = dimV in general and V ′ ∼= V on the
locus we care about. Write the new maps as

V ′ V

A

B

.

Then on Z̃, there are enlarged versions of everything:

Ỹ := µ̃−1(0), µ̃ := µ+AB

X̃ := Ỹst/GL(V ).

Note that any point where V ′ ∼−→ V is an isomorphism (or with the arrow the other way
around) is stable. On T ∗Hom(V ′, V ) there is an action of GL(V ′), inside which are scalars
u · 1V ′ . Then (

Z̃/G
)u
⊃ (Z/G× {0}) t (Zu/G× {V ′ ∼−→ V, V

0−→ V ′}).

Here Zu means the fixed locus under u · 1V ∈ GL(V ). Hence it makes sense to take stable
envelopes on X̃ for u′ ∈ GL(V ′). They are GL(V ′)-equivariant objects on the quotient by
GL(V ), but equally well, they are GL(V )-equivariant objects on the quotient by GL(V ′), i.e.
on

Ỹiso/GL(V ′)

where Ỹiso is the locus where V ′ ∼−→ V is an isomorphism. The action of GL(V ′) is therefore
free on Ỹiso and the quotient is well-behaved.

32.3

Remember that non-abelian stable envelopes are about extending a class from Yst to Z. We
can embed

Z ↪→ Ỹiso/GL(V ′)

as follows. In addition to the coordinates on Y , the extra coordinate on T ∗Hom(V ′ →
V )iso/GL(V ′) is AB ∈ Hom(V, V ). Since Ỹ = {µ + AB = 0}, the desired embedding is
therefore given by AB = −µ. Put differently, in Ỹ we have one extra coordinate and one extra
equation, and we can exactly satisfy the equation by choosing the coordinate appropriately.

It is easy to check that, after this whole process, the resulting stable envelope on Ỹiso/GL(V ′)
is a section of the correct bundle. So it remains to check that it is supported on Z. This
follows because it is supported on µ̃−1(0), by construction, but on the other hand AB is
invariant with respect to u and vanishes on X ⊂ X̃, so AB = 0 on the whole u-attracting
manifold.

See [AO17] for more details about this argument.
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32.4

Finally, we prove a relationship between the vertex with descendents and the non-abelian
stable envelope:

K(X)K(stack) ≈ ch
(

nonabelian elliptic stable
envelope for E = C×/qZ

)
.

This requires some setup. There is a map C× → C×/qZ = E which induces a map of groups

SpecKeq(X)→ Elleq(X).

Induced maps of sheaves go the other way, and we denote it as the “Chern character”

ch : (sheaves on Elleq(X))→ (sheaves on SpecKeq(X)) .

This is analogous to the usual Chern character, which is induced by the map of curves C exp−−→
C×.

The vertex with descendents is like a q-hypergeometric function, which looks nothing like
an elliptic function. To have a meaningful comparison, namely an actual equality instead of
≈, we need:

1. suitable Γq-factors;

2. to work with matrix elements (α, ), which are functions of all variables.

32.5

Theorem. Let X = Z �� G, and suppose 1 → G → G̃ → GAut → 1 with GAut acting on X.
Then

KGAut(X)z,mero KG̃(X)z,mero

KGAut(X)z,mero KG̃(X)z,mero.

Γ

ch(StabEll for G)

Γ′⊗~−
dimX

4

vertex with descendents

(105)

The vertical arrows Γ and Γ′ ⊗ · · · are q-analogues of the Iritani map. The subscripts
KG(X)z,mero mean to take meromorphic functions on

SpecKG(X)× {|q| < 1} × Pic(X)⊗ C×

which are analytic in z ∈ Pic(X) ⊗ C× in a neighborhood of 0. Here 0 is some point on the
boundary of a (partial) toric compactification of Pic(X)⊗C×, and corresponds to the choice
of stability condition.
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32.6

In particular, as a consequence of the theorem,

βα
=
(
α,Stab(β) Γ

Γ′ ⊗ · · ·

)
stack

= 1
|W |

∫
|xi|=1

∏ dxj
2πixj

α(x) Stab(β)(x) Γ
Γ′ ⊗ · · · .

Last time we showed that

Stab(α)
∆~

· β = α ( · β,

and recall that ( is the fundamental solution to the q-difference equations.

32.7

Corollary. 〈
α

∣∣∣∣ fund.
solution

∣∣∣∣β
〉

= 1
|W |

∫
|xi|=1

∏ dxj
2πixj

fα(x)gβ(x) Γ
Γ′ ⊗ · · · (106)

where:

• fα is the K-theoretic stable envelope of α;

• gβ is the elliptic stable envelope of β;

• the ∆~ factor has been absorbed into the gamma functions.

The difference between this and the formulas from last time is that the gβ(x) factor was
not present, and instead we integrated over some contour, depending on stability conditions,
different from {|xi| = 1}. Importantly, note that the Γ factors and the choice of contour
are interchangeable in the world of q-difference equations; the former is elliptic and therefore
behaves like a constant with respect to q-shifts, and changing the integrand by a constant is
like changing the contour. It is much better to insert a function gβ instead, which takes the
place of integrating over some complicated contour.

A beautiful consequence of this integral representation is that it immediately gives the
analytic continuation and monodromy of the vertex functions. This is because the integrand
in (106) is already meromorphic. Put differently, the vertex with descendents in (105) is a
series in z, and the other way of traversing the commutative square is its analytic continuation.

32.8

The Γq factors have to do with maps from A1 (or the formal disk) to X. Namely, consider
Maps(A1 → A1) and let q and w act on the source and target respectively by scaling. It is
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some infinite-dimensional space, with coordinates which are polynomails 1, t, t2, t3, . . .. These
coordinates have weights w,w/q, w/q2, . . ., and therefore

OMaps(A1→A1) = 1
(1− w−1)(1− qw−1)(1− q2w−1) · · · = Γq(w−1).

This is the origin of q-Gamma factors in K-theory, and is much more direct than the original
story by Iritani in cohomology. More generally, if S is a smooth stack and ev0 : Maps(A1 →
S)→ S is evaluation at 0 ∈ A1,

ev0,∗OMaps(A1→S) = Γq(qT∨S)

where we extend Γq(−) as a multiplicative genus.
In the diagram (105),

Γ′ := Γq(qT∨X − qg∨ + qg∗)
Γ := Γq(qT∨X − qg∨ + g∗).

The −qg∨ factor comes from the quotient by G, while g∗ is as in the target of the moment
map, with a weight ~. We add g∗ because it is much easier to work with p-fields.

32.9

Proof idea. We look at the main ideas in the example of Hilb(C2, 5), where the quasimap
moduli is exactly the PT moduli. Specifically, consider the point

∞

and its contribution to the matrix element.

1. The contribution of the (unsymmetrized) virtual structure sheaf Ovir, at this point, has
the form

ev∞(Γq expression)
ev0(Γq expression) .

This is because Ovir comes from the virtual tangent space

Tvir = H0(· · · )−H1(· · · ) = term at 0
1− q−1 −

term at ∞ · q−1

1− q−1 ,

and these terms produce the Γq expressions. Hence the vertical arrows in (105) take
care of Ovir.
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2. Let γ be an elliptic stable envelope of some class. Then

ev∗0(γ)
ev∗∞(γ) = section of some line bundle (. . . , q3t−1

1 t−1
2 , . . .)

section of some line bundle (. . . , t−1
1 t−1

2 , . . .)
= z−degree · (constant in z),

and in fact this constant turns Ovir into the symmetrized Ôvir ⊗ ~−
dim

4 .

3. Using (1) and (2), (and Theorem 31.4), we can move the insertion at ∞ to 0:

βα
 

1α⊗ Stab(β)
.

It remains to forget the non-singularity condition at ∞, i.e. to extend the integration
over

QMaps(X) ⊂stable Maps(A1, stack)

from the stable locus to the whole space, since integration over Maps(A1, stack) is what
gives the Γq factors. This is the hardest step and can be found in [Oko20, Section 3.4].
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