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Part 1. Periodic functions

periodicity means that a translational symmetry in space/time is broken to
subgroup which looks like the original group at large distances

e.g. translation by 1 water wavelength on the ocean scale, or translation by 4.5·10−7m (≈ the wavelength
of this color) on the human scale



Periodic functions exist in
abundance around us starting
with the classical mechanics,
where e.g.

x = cos(ωt)

describes the motion in a 1-
dimensional harmonic well.

We rely on periodic phenomena to keep time and measure distances



In fact, the classical motion in
any 1-dimensional well is not just
periodic but, being integrable, ex-
hibits additional periodicity for
complex time.

Fun to see it explicitly for the physical pendulum, that is, for solutions of ϕ̈(t) = − sinϕ(t), which is not
exactly in a well and can swing around.



In integrable dynamical systems,
trajectories lie on tori, and
thus demonstrate a periodic or
quasiperiodic behaviour, depend-
ing on whether the line of the
physical time closes in the given
torus.

This also works for complex time
and complex tori.

Tori may degenerate by having one or more periods go to infinity, this will be important later.



A famous example are integrable equations describing nonlinear waves.

They exhibit a hypnotizing variety of periodic and quasiperiodic patterns,
including solitary waves when the periods become infinite.

cnoidal wave for the Korteweg-deVries equation, from Wikimedia, ©Kraaiennest



A torus is a quotient V /Γ of a vec-
tor space V by a lattice Γ of full
rank.

This means we identify two points
if their difference lies in the lattice
of periods.

Every point has a representa-
tive in the fundamental paral-
lelepiped, but neither the rep-
resentative nor the fundamental
parallelepiped are unique.

For a complex torus, the rank of the lattice is twice the complex dimension



We can also represent a torus V /Γ by a fundamental parallelepiped with
opposite sides glued. This procedure is familiar to anyone who ever imposed
periodic boundary condition on a system in a box.



lattices Γ ⊂ V and tori V /Γ are the same thing

Γ-periodic functions of v ∈ V are functions on the corresponding torus V /Γ

An exponential e2πi(λ,v) is periodic if and only if λ lies in the dual lattice Γ∗.
They form a Fourier basis in periodic functions

In particular, the spectrum of the Laplace operator ∆ on the torus V /Γ is
−4π2 times the lengths squared ∥λ∥2 of the vectors λ ∈ Γ∗ in the dual lattice



Part 2. Automorphic functions

Superficially, just like periodic functions, except we:

- replace a vector space V by a noncommutative group G, for instance
the group SL(n,R) of n× n real matrices with det = 1,

- take the one-sided quotient G/Γ by a lattice Γ ⊂ G, for instance the
group Γ = SL(n,Z) of integer matrices with det = 1

Noncommutativity has a very profound effect

By definition, Γ ⊂ G is a lattice if the volume of G/Γ is finite. This is a quantitative way to say that Γ looks
like G at large distances.



Our main interest will be the spectrum of ∆ on G/Γ in a certain very general
situation.

But to keep this talk concrete, we will stick to one example

G/Γ = SL(n,R)/SL(n,Z) .

In fact, we are already familiar with the points of this space.



The points of

SL(n,R)/SL(n,Z)

correspond to lattices Ω ⊂ Rn

such that vol(Rn/Ω) = 1.

A basis {ω1, . . . , ωn} of such lattice
is a matrix with det = 1.

Two bases generate the same lat-
tice if they differ by a matrix in
SL(n,Z).



What comes up in many application is the
space of lattices Ω up to isometry, that is,
up to rotations of Rn.

This is the double quotient

SO(n,R)\SL(n,R)/SL(n,Z)

Instead of fixing vol(Rn/Ω) = 1, we can con-
sider lattices up to scale.

Letʼs see what this space is like for n = 2.



To visualize

SO(2,R)\SL(2,R)/SL(2,Z)

letʼs pick a basis {ω1, ω2} ⊂ Ω such that:

- ω1 is the shortest vector,

- ω2 is the shortest vector among those
not proportional to ω1.



It follows that |(ω1, ω2)| ≤ 1
2∥ω1∥2 and if it happens that ∥ω2∥ = ∥ω1∥ then we

can assume that the angle between them is ≤ 90◦.



So, if we take
ω1 = (1, 0) ,

then the possibilities for ω2 are

ω2 ∈
{
(x, y)

∣∣ |x| ≤ 1
2 ,

x2 + y2 ≥ 1
}
,

and we glue the points of the boundary of this domain by the
reflection in the y-axis.



Once we glue the boundaries, we get an object like this. Note it is not
compact. At infinity (called the “cusp”) of SL(2,R)/SL(2,Z) are unimodular
lattices Ω that have a very short vector ω1.

Whence there will be a mixture of discrete and continuous spectrum for the
Laplace operator.



Automorphic functions are eigenfunctions of the Laplace operator (and of
the related Hecke operators) on G/Γ.

They are incredibly important in mathematics, especially in number theory.
Suffices to say that at the core of Wilesʼ proof of Fermatʼs last theorem was
the following (extremely profound) correspondence

y2 = x(x−B)(x− C) // an automorphic function

y2 = x(x− bp)(x− cp) // problem if ap + bp = cp



In physics, classical or quantum dynamics on
the space of parameters comes up, for in-
stance, when there is a big separation of tem-
poral/spatial scales.

The fast dynamics can fill out a torus, while
the slow averaged dynamics is taking place on
the space of tori.

The fast physics may be as simple as a par-
ticle bouncing in a potential or as complex as
a string exporing a geometry set by a given
period matrix.



Part 3. Eisenstein spectrum

Ferdinand Gotthold Max Eisenstein (Berlin, 1823 ‒ Berlin, 1852) lived a very short, tragic, and influential
life, very much like Galois and Abel.



Back to the space of lattices, we
want to know the Laplace eigenfunc-
tions on this surface with two coni-
cal points and a cusp.

Fall into two categories:

(B) Bound states. Decay superexponentially with the distance t into the
cusp. Important, but very mysterious

(E) Eisenstein spectrum. These come from the infinity and are of interest
to us. Lies in the span of rather concerete functions E(λ,Ω).



Concretely,

E(λ,Ω) = 1
2

∑
primitive ω ∈ Ω

1

∥ω∥λ+1
.

For t→ ∞, these behave like

E(λ,Ω) = e
(1+λ)t

2 +
ξ(λ)

ξ(−λ)
e
(1−λ)t

2 + . . .

and since the radius of goes like R = e−t

in the cusp, none of these are in L2.

For the dual torus R2/Ω∗, this is essentially tr∆−λ+1
2 , so a spectral ζ-function.



Concretely,

E(λ,Ω) = 1
2

∑
primitive ω ∈ Ω

1

∥ω∥λ+1
.

For t→ ∞, these behave like

E(λ,Ω) = e
(1+λ)t

2 +
ξ(λ)

ξ(−λ)
e
(1−λ)t

2 + . . .

and since the radius of goes like R = e−t

in the cusp, none of these are in L2.

The function ξ(λ) in the reflection coefficient is, essentially, the Riemann ζ-function.



A more detailed look at

E(λ,Ω) = e
(1+λ)t

2 +
ξ(λ)

ξ(−λ)
e
(1−λ)t

2 + . . . , R = e−t ,

shows the Eisenstein spectrum has two pieces:

- the functions for λ ∈ iR are almost in L2 and contribute to the contin-
uous spectrum λ2

4 − 1
4 ∈ [−∞,−1

4]

- there is a pole of ξ(λ) at λ = 1, and the residue at that pole gives the
constant function, which is in L2.



There is the following nonobvious way to state this result:

E(λ) is in the spectrum ⇔

[
λ

−λ

]
= ϕ

([
1

−1

])
+X ,

where
ϕ : LieSL(2,C) → LieSL(2,C)

preserves the commutation relations and X = −X∗ ∈ LieSL(2,C) commutes
with all matrices in the image of ϕ. Indeed, the two possibilities are:

ϕ(ξ) = ξ X = 0
[
λ
−λ
]
=
[
1
−1

]
ϕ(ξ) = 0 X ∼

[
is

−is
] [

λ
−λ
]
= X



Several generations ago, R. Langlands conjectured that this is a general
pattern for any split reductive group G over a global field F, the above
example corresponding to

G = SL(2) , F = rational numbers Q .

Namely, the Eisenstein spectrum in

L2(maximal compact\G/Γ)

is always parametrized by homomorphisms

ϕ : SL(2,C) → LG(C) ,

where LG is the Langlands dual group.



There were many result for in that direction by R. Langlands himself, C. Mœglin
and J.-L. Waldspurger, V. Heiermann, M. de Martino and E. Opdam.

In recent joint work with D. Kazhdan, we prove the conjecture for arbitrary
G and F.

Our main tool is a topological interpretation of computation with Eisenstein
series. Namely, we translate them into computations with characteristic
classes of

LX = T ∗ (LG/LB
)
.

This is not that far from the interests of many high-energy physicists at the
IPMU, as I will try to explain.



Part 4. Enumerative geometry



Recall that

E(λ,Ω) = 1
2

∑
primitive ω ∈ Ω

1

∥ω∥λ+1
.

The sum is effectively over

r = slope(ω) ∈ Q ∪ {∞} = P1(Q) ,

e.g. here
ω = 2ω1 + 3ω2

so r = 3/2. We have

∥ω∥ = heightΩ(r) .

For a general group G over a number field F, Eisenstein series count heights of F-points in the corre-
sponding flag varieties.



There is a well-known parallel between rational numbers and rational func-
tions (or, more generally, rational functions on an algebraic curve/Riemann
surface C)

r = ± 23 · 7 · 71
32 · 7919

⇔ f (x) = c
(x− z1)

3(x− z2)(x− z3)

(x− w1)2(x− w2)
,

in which the prime factors of r correspond to zeros and poles of f (x).

In this parallel,
height(r)−λ ⇔ e−λdeg f



Thus counting rational numbers r weighted by height(r)−λ is like counting
rational functions f weighted by e−λdeg f

For complex f , these are the holomorphic maps → CP1.



For many people working in or near susy string
and gauge theories, it is a daily routine to
count holomorphic maps

→ X ,

weighted by

e−λdeg f = exp
(
−λArea(f ( ))

)
The relevant targets for us are:

X = G/B , or T ∗(G/B) .



Very powerful ideas have been developed to do these counts, including those
of 3-dimensional mirror symmetry. These, in particular, relate counts

→ X = T ∗(G/B) ⇔ → LX = T ∗(LG/LB)

with a very dramatic exchange of parameters.

Many fundamental contributions to this subject came from our IMPU people.



For this talk, the main takeaway from this is the following metaprinciple:

“All” integrals involving Eisenstein series for G can be ex-
pressed as certain characteristic classes of T ∗(LG/LB).

Characteristic classes can be defined, for instance, as integrals constructed
from curvature invariants. Very basic object in many branches of physics,
from GR to strings, to phases of matter.



For the spectral decomposition we use integrals of the form∫
G/Γ

ψ
(
∆kψ′) dg = ∫

T ∗(LB\LG/LB)
C1(ψ)C2(∆)k C3(ψ

′)C4(dg) ,

where ψ and ψ′ are arbitrary functions in the span of the Eisenstein se-
ries and Ci( · ) are certain characteristic classes, of which C4 is the most
interesting one.

The exact form of Ci( · ) is not important here, because the spectral decom-
position corresponds to the decomposition of the space itself:

T ∗(LB\LG/LB) =
⊔

nilpotent e ∈ Lg

Fixe(LG/LB)×2
/
FixeLG



But since it is natural to look deeper into the nature of these characteristic
classes, one natural interpretation of them is as of counts of maps

Q = ” ” → LX = T ∗(LG/LB) ,

where the source curve Q is the best complex likeness of a global field F.



Namely Q has an strip of length ln p for every nonarchimedian place of F
and disk with cone angle π (resp., 2π) for every real/complex place of F.
Here what it looks like for F = Q and F = Q(

√
−1).

The red strip corresponds to the ramification (1 +
√
−1)2 = 2

√
−1 of p = 2 in Q(

√
−1).


