Representations of the orthosymplectic Yangians

Alexander Molev

University of Sydney

Orthosymplectic Yangians

Orthosymplectic Yangians

Consider the \mathbb{Z}_{2}-graded vector space $\mathbb{C}^{N \mid 2 m}$ with the canonical basis $e_{1}, e_{2}, \ldots, e_{N+2 m}$.

Orthosymplectic Yangians

Consider the \mathbb{Z}_{2}-graded vector space $\mathbb{C}^{N \mid 2 m}$ with the canonical basis $e_{1}, e_{2}, \ldots, e_{N+2 m}$. Set $i^{\prime}=N+2 m-i+1$.

Orthosymplectic Yangians

Consider the \mathbb{Z}_{2}-graded vector space $\mathbb{C}^{N \mid 2 m}$ with the canonical basis $e_{1}, e_{2}, \ldots, e_{N+2 m}$. Set $i^{\prime}=N+2 m-i+1$.

The vector e_{i} has the parity $\bar{\imath} \bmod 2$ and

$$
\bar{\imath}= \begin{cases}1 & \text { for } \quad i=1, \ldots, m, m^{\prime}, \ldots, 1^{\prime} \\ 0 & \text { for } \quad i=m+1, \ldots,(m+1)^{\prime}\end{cases}
$$

Orthosymplectic Yangians

Consider the \mathbb{Z}_{2}-graded vector space $\mathbb{C}^{N \mid 2 m}$ with the canonical basis $e_{1}, e_{2}, \ldots, e_{N+2 m}$. Set $i^{\prime}=N+2 m-i+1$.

The vector e_{i} has the parity $\bar{\imath} \bmod 2$ and

$$
\bar{\imath}= \begin{cases}1 & \text { for } \quad i=1, \ldots, m, m^{\prime}, \ldots, 1^{\prime}, \\ 0 & \text { for } \quad i=m+1, \ldots,(m+1)^{\prime},\end{cases}
$$

The endomorphism algebra End $\mathbb{C}^{N \mid 2 m}$ is equipped with
\mathbb{Z}_{2}-gradation, the parity of the matrix unit $e_{i j}$ is $\bar{\imath}+\bar{\jmath} \bmod 2$.

A standard basis of the Lie superalgebra $\mathfrak{g l}_{N \mid 2 m}$ is formed by elements $E_{i j}$ of parity $\bar{\imath}+\bar{\jmath} \bmod 2$ with the commutation relations

$$
\left[E_{i j}, E_{k l}\right]=\delta_{k j} E_{i l}-\delta_{i l} E_{k j}(-1)^{(\bar{\imath}+\bar{\jmath})(\bar{k}+\bar{l})}
$$

A standard basis of the Lie superalgebra $\mathfrak{g l}_{N \mid 2 m}$ is formed by elements $E_{i j}$ of parity $\bar{\imath}+\bar{\jmath} \bmod 2$ with the commutation relations

$$
\left[E_{i j}, E_{k l}\right]=\delta_{k j} E_{i l}-\delta_{i l} E_{k j}(-1)^{(\bar{\imath}+\bar{\jmath})(\bar{k}+\bar{l})}
$$

The orthosymplectic Lie superalgebra $\mathfrak{o s p}_{N \mid 2 m}$ is the subalgebra of $\mathfrak{g l}_{N \mid 2 m}$ spanned by the elements

$$
F_{i j}=E_{i j}-E_{j^{\prime} i^{\prime}}(-1)^{\bar{\imath} \bar{\jmath}+\bar{\imath}} \theta_{i} \theta_{j}
$$

A standard basis of the Lie superalgebra $\mathfrak{g l}_{N \mid 2 m}$ is formed by elements $E_{i j}$ of parity $\bar{\imath}+\bar{\jmath} \bmod 2$ with the commutation relations

$$
\left[E_{i j}, E_{k l}\right]=\delta_{k j} E_{i l}-\delta_{i l} E_{k j}(-1)^{(\bar{\imath}+\bar{\jmath})(\bar{k}+\bar{l})}
$$

The orthosymplectic Lie superalgebra $\mathfrak{o s p}_{N \mid 2 m}$ is the subalgebra of $\mathfrak{g l}_{N \mid 2 m}$ spanned by the elements

$$
F_{i j}=E_{i j}-E_{j^{\prime} i^{\prime}}(-1)^{\bar{\imath} \bar{\jmath}+\bar{\imath}} \theta_{i} \theta_{j}
$$

where

$$
\theta_{i}=\left\{\begin{aligned}
1 & \text { for } \quad i=1, \ldots, N+m \\
-1 & \text { for } \quad i=N+m+1, \ldots, N+2 m
\end{aligned}\right.
$$

Presentation of $\mathfrak{o s p}_{N \mid 2 m}$: even part $\mathfrak{o}_{N} \oplus \mathfrak{s p}_{2 m}$ is

Presentation of $\mathfrak{o s p}_{N \mid 2 m}$: even part $\mathfrak{o}_{N} \oplus \mathfrak{s p}_{2 m}$ is

The permutation operator P takes the form

$$
P=\sum_{i, j=1}^{N+2 m} e_{i j} \otimes e_{j i}(-1)^{\bar{\jmath}} \in \operatorname{End} \mathbb{C}^{N \mid 2 m} \otimes \text { End } \mathbb{C}^{N \mid 2 m}
$$

The permutation operator P takes the form

$$
P=\sum_{i, j=1}^{N+2 m} e_{i j} \otimes e_{j i}(-1)^{\bar{\jmath}} \in \operatorname{End} \mathbb{C}^{N \mid 2 m} \otimes \text { End } \mathbb{C}^{N \mid 2 m}
$$

Set

$$
Q=\sum_{i, j=1}^{N+2 m} e_{i j} \otimes e_{i^{\prime} j^{\prime}}(-1)^{\bar{\imath} \bar{\jmath}} \theta_{i} \theta_{j} \in \text { End } \mathbb{C}^{N \mid 2 m} \otimes \text { End } \mathbb{C}^{N \mid 2 m}
$$

The permutation operator P takes the form

$$
P=\sum_{i, j=1}^{N+2 m} e_{i j} \otimes e_{j i}(-1)^{\bar{\jmath}} \in \operatorname{End} \mathbb{C}^{N \mid 2 m} \otimes \text { End } \mathbb{C}^{N \mid 2 m}
$$

Set

$$
Q=\sum_{i, j=1}^{N+2 m} e_{i j} \otimes e_{i^{\prime} j^{\prime}}(-1)^{\bar{\imath} \jmath} \theta_{i} \theta_{j} \in \operatorname{End} \mathbb{C}^{N \mid 2 m} \otimes \operatorname{End} \mathbb{C}^{N \mid 2 m}
$$

The R-matrix associated with $\mathfrak{o s p}_{N \mid 2 m}$ is the rational function in u given by

$$
R(u)=1-\frac{P}{u}+\frac{Q}{u-\kappa}, \quad \kappa=\frac{N}{2}-m-1 .
$$

The permutation operator P takes the form

$$
P=\sum_{i, j=1}^{N+2 m} e_{i j} \otimes e_{j i}(-1)^{\bar{\jmath}} \in \text { End } \mathbb{C}^{N \mid 2 m} \otimes \text { End } \mathbb{C}^{N \mid 2 m}
$$

Set

$$
Q=\sum_{i, j=1}^{N+2 m} e_{i j} \otimes e_{i^{\prime} j^{\prime}}(-1)^{\bar{\imath} \jmath} \theta_{i} \theta_{j} \in \text { End } \mathbb{C}^{N \mid 2 m} \otimes \text { End } \mathbb{C}^{N \mid 2 m}
$$

The R-matrix associated with $\mathfrak{o s p}_{N \mid 2 m}$ is the rational function in u given by

$$
R(u)=1-\frac{P}{u}+\frac{Q}{u-\kappa}, \quad \kappa=\frac{N}{2}-m-1 .
$$

[A. B. Zamolodchikov and AI. B. Zamolodchikov, 1979]

The extended Yangian $\mathrm{X}\left(\mathfrak{o s p}_{N \mid 2 m}\right)$ as a \mathbb{Z}_{2}-graded algebra with generators $t_{i j}^{(r)}$ of parity $\bar{\imath}+\bar{\jmath} \bmod 2$, where $1 \leqslant i, j \leqslant N+2 m$ and $r=1,2, \ldots$, satisfying the following defining relations.

The extended Yangian $\mathrm{X}\left(\mathfrak{o s p}_{N \mid 2 m}\right)$ as a \mathbb{Z}_{2}-graded algebra with generators $t_{i j}^{(r)}$ of parity $\bar{\imath}+\bar{\jmath} \bmod 2$, where $1 \leqslant i, j \leqslant N+2 m$ and $r=1,2, \ldots$, satisfying the following defining relations.

Introduce the formal series

$$
t_{i j}(u)=\delta_{i j}+\sum_{r=1}^{\infty} t_{i j}^{(r)} u^{-r} \in \mathrm{X}\left(\mathfrak{o s p}_{N \mid 2 m}\right)\left[\left[u^{-1}\right]\right]
$$

and combine them into the matrix $T(u)=\left[t_{i j}(u)\right]$.

The extended Yangian $\mathrm{X}\left(\mathfrak{o s p}_{N \mid 2 m}\right)$ as a \mathbb{Z}_{2}-graded algebra with generators $t_{i j}^{(r)}$ of parity $\bar{\imath}+\bar{\jmath} \bmod 2$, where $1 \leqslant i, j \leqslant N+2 m$ and $r=1,2, \ldots$, satisfying the following defining relations.

Introduce the formal series

$$
t_{i j}(u)=\delta_{i j}+\sum_{r=1}^{\infty} t_{i j}^{(r)} u^{-r} \in \mathrm{X}\left(\mathfrak{o s p}_{N \mid 2 m}\right)\left[\left[u^{-1}\right]\right]
$$

and combine them into the matrix $T(u)=\left[t_{i j}(u)\right]$.

The defining relations are given by the $R T T$-relation

$$
R(u-v) T_{1}(u) T_{2}(v)=T_{2}(v) T_{1}(u) R(u-v)
$$

The extended Yangian $\mathrm{X}\left(\mathfrak{o s p}_{N \mid 2 m}\right)$ as a \mathbb{Z}_{2}-graded algebra with generators $t_{i j}^{(r)}$ of parity $\bar{\imath}+\bar{\jmath} \bmod 2$, where $1 \leqslant i, j \leqslant N+2 m$ and $r=1,2, \ldots$, satisfying the following defining relations.

Introduce the formal series

$$
t_{i j}(u)=\delta_{i j}+\sum_{r=1}^{\infty} t_{i j}^{(r)} u^{-r} \in \mathrm{X}\left(\mathfrak{o s p}_{N \mid 2 m}\right)\left[\left[u^{-1}\right]\right]
$$

and combine them into the matrix $T(u)=\left[t_{i j}(u)\right]$.

The defining relations are given by the $R T T$-relation

$$
R(u-v) T_{1}(u) T_{2}(v)=T_{2}(v) T_{1}(u) R(u-v)
$$

[D. Arnaudon, J. Avan, N. Crampé, L. Frappat, E. Ragoucy, '03]

Verma modules

Verma modules

Let $\lambda(u)=\left(\lambda_{1}(u), \ldots, \lambda_{1^{\prime}}(u)\right)$ be an arbitrary tuple of series.

Verma modules

Let $\lambda(u)=\left(\lambda_{1}(u), \ldots, \lambda_{1^{\prime}}(u)\right)$ be an arbitrary tuple of series.
The Verma module $M(\lambda(u))$ is the quotient of $X\left(0^{0_{p}}{ }_{N \mid 2 m}\right)$ by the left ideal generated by all the coefficients of the series $t_{i j}(u)$ for $1 \leqslant i<j \leqslant 1^{\prime}$ and $t_{i i}(u)-\lambda_{i}(u)$ for $1 \leqslant i \leqslant 1^{\prime}$.

Verma modules

Let $\lambda(u)=\left(\lambda_{1}(u), \ldots, \lambda_{1^{\prime}}(u)\right)$ be an arbitrary tuple of series.
The Verma module $M(\lambda(u))$ is the quotient of $X\left(0^{0_{p}}{ }_{N \mid 2 m}\right)$ by the left ideal generated by all the coefficients of the series $t_{i j}(u)$ for $1 \leqslant i<j \leqslant 1^{\prime}$ and $t_{i i}(u)-\lambda_{i}(u)$ for $1 \leqslant i \leqslant 1^{\prime}$.

Theorem. The Verma module $M(\lambda(u))$ is nonzero if and only if

$$
\begin{aligned}
\lambda_{i}(u) \lambda_{i^{\prime}}\left(u-\frac{N}{2}-\right. & \left.(-1)^{\bar{\imath}}(m-i)+1\right) \\
& =\lambda_{i+1}(u) \lambda_{(i+1)^{\prime}}\left(u-\frac{N}{2}-(-1)^{\bar{\imath}}(m-i)+1\right)
\end{aligned}
$$

for $1 \leqslant i<m+N / 2$.

Hence we can re-define the highest weight by

$$
\lambda(u)=\left(\lambda_{1}(u), \ldots, \lambda_{m+n+1}(u)\right)
$$

for $N=2 n+1$ and $N=2 n$.

Hence we can re-define the highest weight by

$$
\lambda(u)=\left(\lambda_{1}(u), \ldots, \lambda_{m+n+1}(u)\right)
$$

for $N=2 n+1$ and $N=2 n$.

The irreducible highest weight representation $L(\lambda(u))$ of $\mathrm{X}\left(\mathfrak{o s p}_{N \mid 2 m}\right)$ is the quotient of the nonzero Verma module $M(\lambda(u))$ by the unique maximal proper submodule.

Hence we can re-define the highest weight by

$$
\lambda(u)=\left(\lambda_{1}(u), \ldots, \lambda_{m+n+1}(u)\right)
$$

for $N=2 n+1$ and $N=2 n$.

The irreducible highest weight representation $L(\lambda(u))$ of $\mathrm{X}\left(\mathfrak{o s p}_{N \mid 2 m}\right)$ is the quotient of the nonzero Verma module $M(\lambda(u))$ by the unique maximal proper submodule.

Theorem. Every finite-dimensional irreducible representation of the Yangian $\mathrm{X}\left(\mathfrak{o s p}_{N \mid 2 m}\right)$ is isomorphic to a unique irreducible highest weight representation $L(\lambda(u))$.

Open problem. Find necessary and sufficient conditions on
$\lambda(u)$ for the representation $L(\lambda(u))$ to be finite-dimensional.

Open problem. Find necessary and sufficient conditions on
$\lambda(u)$ for the representation $L(\lambda(u))$ to be finite-dimensional.

Solution for $\mathrm{X}\left(\mathbf{o s p}_{1 \mid 2}\right)$.

Open problem. Find necessary and sufficient conditions on
$\lambda(u)$ for the representation $L(\lambda(u))$ to be finite-dimensional.

Solution for $\mathbf{X}\left(\mathfrak{o s p}_{1 \mid 2}\right)$. Definition. For each $\alpha \in \mathbb{C}$, the elementary module $L(\alpha)=L(\lambda(u))$ over the Yangian $X\left(\mathfrak{o s p}_{1 \mid 2}\right)$

Open problem. Find necessary and sufficient conditions on
$\lambda(u)$ for the representation $L(\lambda(u))$ to be finite-dimensional.

Solution for $\mathbf{X}\left(\mathfrak{o s p}_{1 \mid 2}\right)$. Definition. For each $\alpha \in \mathbb{C}$, the elementary module $L(\alpha)=L(\lambda(u))$ over the Yangian $X\left(\mathfrak{o s p}_{1 \mid 2}\right)$
is associated with the highest weight $\lambda(u)=\left(\lambda_{1}(u), \lambda_{2}(u)\right)$,

$$
\lambda_{1}(u)=1+\alpha u^{-1}, \quad \lambda_{2}(u)=1 .
$$

Open problem. Find necessary and sufficient conditions on
$\lambda(u)$ for the representation $L(\lambda(u))$ to be finite-dimensional.

Solution for $\mathbf{X}\left(\mathfrak{o s p}_{1 \mid 2}\right)$. Definition. For each $\alpha \in \mathbb{C}$, the elementary module $L(\alpha)=L(\lambda(u))$ over the Yangian $\mathrm{X}\left(\mathfrak{o s p}_{1 \mid 2}\right)$
is associated with the highest weight $\lambda(u)=\left(\lambda_{1}(u), \lambda_{2}(u)\right)$,

$$
\lambda_{1}(u)=1+\alpha u^{-1}, \quad \lambda_{2}(u)=1 .
$$

The solution relies on an explicit construction of the modules $L(\alpha)$.

Small Verma modules

Small Verma modules

Let K be the submodule of $M(\lambda(u))$ generated by all vectors
$t_{21}^{(r)} \xi \quad$ for $\quad r \geqslant 2 \quad$ and $\quad\left(t_{31}^{(r)}+(\alpha-1 / 2) t_{31}^{(r-1)}\right) \xi \quad$ for $\quad r \geqslant 3$,
where ξ is the highest vector.

Small Verma modules

Let K be the submodule of $M(\lambda(u))$ generated by all vectors
$t_{21}^{(r)} \xi \quad$ for $\quad r \geqslant 2 \quad$ and $\quad\left(t_{31}^{(r)}+(\alpha-1 / 2) t_{31}^{(r-1)}\right) \xi \quad$ for $\quad r \geqslant 3$,
where ξ is the highest vector.

The small Verma module $M(\alpha)$ is the quotient $M(\lambda(u)) / K$.

Small Verma modules

Let K be the submodule of $M(\lambda(u))$ generated by all vectors
$t_{21}^{(r)} \xi \quad$ for $\quad r \geqslant 2 \quad$ and $\quad\left(t_{31}^{(r)}+(\alpha-1 / 2) t_{31}^{(r-1)}\right) \xi \quad$ for $\quad r \geqslant 3$,
where ξ is the highest vector.

The small Verma module $M(\alpha)$ is the quotient $M(\lambda(u)) / K$.

Proposition. The elementary module $L(\alpha)$ is a quotient of the small Verma module $M(\alpha)$.

Set $T_{i j}(u)=u(u+\alpha-1 / 2) t_{i j}(u)$.

Set $T_{i j}(u)=u(u+\alpha-1 / 2) t_{i j}(u)$. These operators on the small
Verma module $M(\alpha)$ are polynomials in u.

Set $T_{i j}(u)=u(u+\alpha-1 / 2) t_{i j}(u)$. These operators on the small
Verma module $M(\alpha)$ are polynomials in u.

For any $r, s \in \mathbb{Z}_{+}$introduce vectors in $M(\alpha)$ by

$$
\begin{aligned}
\xi_{r s}=T_{21}(-\alpha- & r+3 / 2) \ldots T_{21}(-\alpha-1 / 2) T_{21}(-\alpha+1 / 2) \\
& \times T_{21}(-\alpha-s+1) \ldots T_{21}(-\alpha-1) T_{21}(-\alpha) \xi
\end{aligned}
$$

Set $T_{i j}(u)=u(u+\alpha-1 / 2) t_{i j}(u)$. These operators on the small
Verma module $M(\alpha)$ are polynomials in u.

For any $r, s \in \mathbb{Z}_{+}$introduce vectors in $M(\alpha)$ by

$$
\begin{aligned}
\xi_{r s}=T_{21}(-\alpha- & r+3 / 2) \ldots T_{21}(-\alpha-1 / 2) T_{21}(-\alpha+1 / 2) \\
& \times T_{21}(-\alpha-s+1) \ldots T_{21}(-\alpha-1) T_{21}(-\alpha) \xi
\end{aligned}
$$

Proposition. For any $\alpha \in \mathbb{C}$ the vectors $\xi_{r s}$ with $0 \leqslant r \leqslant s$ form a basis of $M(\alpha)$.

Basis diagram of $M(\alpha)$

Basis diagram of $M(\alpha)$

Horizontal levels are $\mathfrak{o s p}_{1 \mid 2}$-weight spaces:

Basis diagram of $M(\alpha)$

Horizontal levels are $\mathfrak{o s p}_{1 \mid 2}$-weight spaces:

Basis diagram of $M(\alpha)$

Horizontal levels are $\mathfrak{o s p}_{1 \mid 2}$-weight spaces:

```
\(\xi_{00} \bullet\)
\(\xi_{01}\) •
\(\xi_{02} \cdot \quad \cdot \xi_{11}\)
\(\xi_{03} \bullet \quad \cdot \xi_{12}\)
\(\xi_{04} \bullet \quad \bullet \quad \xi_{22}\)
\(\xi_{05} \bullet \quad \bullet \quad \xi_{23}\)
\(\xi_{06} \bullet \quad \bullet \quad \bullet \quad \xi_{33}\)
\(\xi_{07} \bullet \quad \bullet \quad \bullet \quad \xi_{34}\)
```

Theorem [2023].

- The $\mathrm{X}\left(\mathfrak{o s p}_{1 \mid 2}\right)$-module $M(\alpha)$ is irreducible if and only if

$$
-\alpha \notin \mathbb{Z}_{+} \text {and }-\alpha+1 / 2 \notin \mathbb{Z}_{+} .
$$

Theorem [2023].

- The $\mathrm{X}\left(\mathfrak{o s p}_{1 \mid 2}\right)$-module $M(\alpha)$ is irreducible if and only if
$-\alpha \notin \mathbb{Z}_{+}$and $-\alpha+1 / 2 \notin \mathbb{Z}_{+}$.
- The $\mathrm{X}\left(\mathfrak{o s p}_{1 \mid 2}\right)$-module $L(\alpha)$ is finite-dimensional if and only if $-\alpha=k \in \mathbb{Z}_{+}$.

Theorem [2023].

- The $\mathrm{X}\left(\mathfrak{o s p}_{1 \mid 2}\right)$-module $M(\alpha)$ is irreducible if and only if
$-\alpha \notin \mathbb{Z}_{+}$and $-\alpha+1 / 2 \notin \mathbb{Z}_{+}$.
- The $\mathrm{X}\left(\mathfrak{o s p}_{1 \mid 2}\right)$-module $L(\alpha)$ is finite-dimensional if and only if $-\alpha=k \in \mathbb{Z}_{+}$. In this case,

$$
\operatorname{dim} L(-k)=\binom{k+2}{2}
$$

Suppose that $-\alpha=k \in \mathbb{Z}_{+}$. The vector $\xi_{0 k+1}$ generates an $\mathrm{X}\left(\mathfrak{o s p}_{1 \mid 2}\right)$-submodule of $M(-k)$:

Suppose that $-\alpha=k \in \mathbb{Z}_{+}$. The vector $\xi_{0 k+1}$ generates an X $\left(\mathfrak{o s p}_{1 \mid 2}\right)$-submodule of $M(-k)$:

Suppose that $-\alpha=k \in \mathbb{Z}_{+}$. The vector $\xi_{0 k+1}$ generates an X $\left(\mathfrak{o s p}_{1 \mid 2}\right)$-submodule of $M(-k)$:

Suppose that $-\alpha=k \in \mathbb{Z}_{+}$. The vector $\xi_{0 k+1}$ generates an $\mathrm{X}\left(\mathfrak{o s p}_{1 \mid 2}\right)$-submodule of $M(-k)$:

- - $\operatorname{dim} L(-3)=\binom{5}{2}=7+3=10$.

For any given $\mu \in \mathbb{C}$ denote by $V(\mu)$ the irreducible highest weight module over $\mathfrak{o s p}_{1 \mid 2}$ generated by a nonzero vector ξ such that $F_{11} \xi=\mu \xi$ and $F_{12} \xi=0$.

For any given $\mu \in \mathbb{C}$ denote by $V(\mu)$ the irreducible highest weight module over $\mathfrak{o s p}_{1 \mid 2}$ generated by a nonzero vector ξ such that $F_{11} \xi=\mu \xi$ and $F_{12} \xi=0$.

The module $V(\mu)$ is finite-dimensional if and only if $\mu \in \mathbb{Z}_{+}$. In that case, $\operatorname{dim} V(\mu)=2 \mu+1$.

For any given $\mu \in \mathbb{C}$ denote by $V(\mu)$ the irreducible highest weight module over $\mathfrak{o s p}_{1 \mid 2}$ generated by a nonzero vector ξ such that $F_{11} \xi=\mu \xi$ and $F_{12} \xi=0$.

The module $V(\mu)$ is finite-dimensional if and only if $\mu \in \mathbb{Z}_{+}$. In that case, $\operatorname{dim} V(\mu)=2 \mu+1$.

For any $k \in \mathbb{Z}_{+}$we have

$$
\left.L(-k)\right|_{\mathcal{O s p}_{1 \mid 2}} \cong \bigoplus_{p=0}^{\lfloor k / 2\rfloor} V(k-2 p)
$$

For any given $\mu \in \mathbb{C}$ denote by $V(\mu)$ the irreducible highest weight module over $\mathfrak{o s p}_{1 \mid 2}$ generated by a nonzero vector ξ such that $F_{11} \xi=\mu \xi$ and $F_{12} \xi=0$.

The module $V(\mu)$ is finite-dimensional if and only if $\mu \in \mathbb{Z}_{+}$. In that case, $\operatorname{dim} V(\mu)=2 \mu+1$.

For any $k \in \mathbb{Z}_{+}$we have

$$
\left.L(-k)\right|_{\text {osp }_{| | 2}} \cong \bigoplus_{p=0}^{\lfloor k / 2\rfloor} V(k-2 p) .
$$

In the example,

$$
\left.L(-3)\right|_{\text {osp }_{1 \mid 2}} \cong V(3) \oplus V(1) .
$$

Now suppose that $-\alpha+1 / 2=k \in \mathbb{Z}_{+}$. The vector $\xi_{k+1 k+1}$ generates an $\mathrm{X}\left(\mathfrak{o s p}_{1 \mid 2}\right)$-submodule of $M(-k+1 / 2)$:

Now suppose that $-\alpha+1 / 2=k \in \mathbb{Z}_{+}$. The vector $\xi_{k+1 k+1}$ generates an $\mathrm{X}\left(\mathfrak{o s p}_{1 \mid 2}\right)$-submodule of $M(-k+1 / 2)$:

Now suppose that $-\alpha+1 / 2=k \in \mathbb{Z}_{+}$. The vector $\xi_{k+1 k+1}$ generates an $\mathrm{X}\left(\mathfrak{o s p}_{1 \mid 2}\right)$-submodule of $M(-k+1 / 2)$:

Now suppose that $-\alpha+1 / 2=k \in \mathbb{Z}_{+}$. The vector $\xi_{k+1 k+1}$ generates an $\mathrm{X}\left(\mathfrak{o s p}_{1 \mid 2}\right)$-submodule of $M(-k+1 / 2)$:

$$
k=1
$$

$L(-1 / 2)$

Representations of $X\left(\mathfrak{o s p}_{1 \mid 2 m}\right)$

Representations of $\mathrm{X}\left(\mathfrak{o s p}_{1 \mid 2 m}\right)$

Notation: for formal series $\mu(u)$ and $\nu(u)$ we write

$$
\mu(u) \rightarrow \nu(u) \quad \text { or } \quad \nu(u) \leftarrow \mu(u)
$$

if there exists a monic polynomial $P(u)$ in u such that

$$
\frac{\mu(u)}{\nu(u)}=\frac{P(u+1)}{P(u)} .
$$

Representations of $\mathrm{X}\left(\mathfrak{o s p}_{1 \mid 2 m}\right)$

Notation: for formal series $\mu(u)$ and $\nu(u)$ we write

$$
\mu(u) \rightarrow \nu(u) \quad \text { or } \quad \nu(u) \leftarrow \mu(u)
$$

if there exists a monic polynomial $P(u)$ in u such that

$$
\frac{\mu(u)}{\nu(u)}=\frac{P(u+1)}{P(u)} .
$$

Recall that $\lambda(u)=\left(\lambda_{1}(u), \ldots, \lambda_{m+1}(u)\right)$.

Representations of $\mathrm{X}\left(\mathfrak{o s p}_{1 \mid 2 m}\right)$

Notation: for formal series $\mu(u)$ and $\nu(u)$ we write

$$
\mu(u) \rightarrow \nu(u) \quad \text { or } \quad \nu(u) \leftarrow \mu(u)
$$

if there exists a monic polynomial $P(u)$ in u such that

$$
\frac{\mu(u)}{\nu(u)}=\frac{P(u+1)}{P(u)} .
$$

Recall that $\lambda(u)=\left(\lambda_{1}(u), \ldots, \lambda_{m+1}(u)\right)$.
Theorem [2023]. The representation $L(\lambda(u))$ of $X\left(\mathfrak{o s p}_{1 \mid 2 m}\right)$ is finite-dimensional if and only if

$$
\lambda_{1}(u) \leftarrow \cdots \leftarrow \lambda_{m+1}(u)
$$

Odd reflections

Odd reflections

Definition [2022]. Let $\alpha(u)$ and $\beta(u)$ be formal series in u^{-1},

$$
\begin{aligned}
& \alpha(u)=\left(1+\alpha_{1} u^{-1}\right) \ldots\left(1+\alpha_{p} u^{-1}\right) \gamma(u), \\
& \beta(u)=\left(1+\beta_{1} u^{-1}\right) \ldots\left(1+\beta_{p} u^{-1}\right) \gamma(u),
\end{aligned}
$$

where $\alpha_{i} \neq \beta_{j}$ for all i, j, and $\gamma(u) \in 1+u^{-1} \mathbb{C}\left[\left[u^{-1}\right]\right]$.

Odd reflections

Definition [2022]. Let $\alpha(u)$ and $\beta(u)$ be formal series in u^{-1},

$$
\begin{aligned}
& \alpha(u)=\left(1+\alpha_{1} u^{-1}\right) \ldots\left(1+\alpha_{p} u^{-1}\right) \gamma(u), \\
& \beta(u)=\left(1+\beta_{1} u^{-1}\right) \ldots\left(1+\beta_{p} u^{-1}\right) \gamma(u),
\end{aligned}
$$

where $\alpha_{i} \neq \beta_{j}$ for all i, j, and $\gamma(u) \in 1+u^{-1} \mathbb{C}\left[\left[u^{-1}\right]\right]$.
The odd reflection is the transformation

$$
(\alpha(u), \beta(u)) \mapsto\left(\beta^{[1]}(u), \alpha^{[1]}(u)\right),
$$

Odd reflections

Definition [2022]. Let $\alpha(u)$ and $\beta(u)$ be formal series in u^{-1},

$$
\begin{aligned}
& \alpha(u)=\left(1+\alpha_{1} u^{-1}\right) \ldots\left(1+\alpha_{p} u^{-1}\right) \gamma(u), \\
& \beta(u)=\left(1+\beta_{1} u^{-1}\right) \ldots\left(1+\beta_{p} u^{-1}\right) \gamma(u),
\end{aligned}
$$

where $\alpha_{i} \neq \beta_{j}$ for all i, j, and $\gamma(u) \in 1+u^{-1} \mathbb{C}\left[\left[u^{-1}\right]\right]$.
The odd reflection is the transformation

$$
(\alpha(u), \beta(u)) \mapsto\left(\beta^{[1]}(u), \alpha^{[1]}(u)\right),
$$

where

$$
\begin{aligned}
& \alpha^{[1]}(u)=\left(1+\left(\alpha_{1}+1\right) u^{-1}\right) \ldots\left(1+\left(\alpha_{p}+1\right) u^{-1}\right) \gamma(u), \\
& \beta^{[1]}(u)=\left(1+\left(\beta_{1}+1\right) u^{-1}\right) \ldots\left(1+\left(\beta_{p}+1\right) u^{-1}\right) \gamma(u) .
\end{aligned}
$$

Representations of $\mathrm{X}\left(\mathfrak{o s p}_{2 n+1 \mid 2 m}\right)$

Representations of $\mathrm{X}\left(\mathfrak{o s p}_{2 n+1 \mid 2 m}\right)$

Given $\lambda(u)=\left(\lambda_{1}(u), \ldots, \lambda_{m}(u), \lambda_{m+1}(u), \ldots, \lambda_{m+n+1}(u)\right)$,

Representations of $\mathrm{X}\left(\mathfrak{o s p}_{2 n+1 \mid 2 m}\right)$

Given $\lambda(u)=\left(\lambda_{1}(u), \ldots, \lambda_{m}(u), \lambda_{m+1}(u), \ldots, \lambda_{m+n+1}(u)\right)$, we can apply a sequence of odd reflections

Representations of $\mathrm{X}\left(\mathfrak{o s p}_{2 n+1 \mid 2 m}\right)$

Given $\lambda(u)=\left(\lambda_{1}(u), \ldots, \lambda_{m}(u), \lambda_{m+1}(u), \ldots, \lambda_{m+n+1}(u)\right)$, we can apply a sequence of odd reflections

$$
\left(\lambda_{m}(u), \lambda_{m+1}(u)\right) \mapsto\left(\lambda_{m+1}^{[1]}(u), \lambda_{m}^{[1]}(u)\right),
$$

Representations of $\mathrm{X}\left(\mathfrak{o s p}_{2 n+1 \mid 2 m}\right)$

Given $\lambda(u)=\left(\lambda_{1}(u), \ldots, \lambda_{m}(u), \lambda_{m+1}(u), \ldots, \lambda_{m+n+1}(u)\right)$, we can apply a sequence of odd reflections

$$
\begin{aligned}
\left(\lambda_{m}(u), \lambda_{m+1}(u)\right) & \mapsto\left(\lambda_{m+1}^{[1]}(u), \lambda_{m}^{[1]}(u)\right), \\
\left(\lambda_{m}^{[1]}(u), \lambda_{m+2}(u)\right) & \mapsto\left(\lambda_{m+2}^{[1]}(u), \lambda_{m}^{[2]}(u)\right),
\end{aligned}
$$

Representations of $\mathrm{X}\left(\mathfrak{o s p}_{2 n+1 \mid 2 m}\right)$

Given $\lambda(u)=\left(\lambda_{1}(u), \ldots, \lambda_{m}(u), \lambda_{m+1}(u), \ldots, \lambda_{m+n+1}(u)\right)$,
we can apply a sequence of odd reflections

$$
\begin{aligned}
&\left(\lambda_{m}(u), \lambda_{m+1}(u)\right) \mapsto\left(\lambda_{m+1}^{[1]}(u), \lambda_{m}^{[1]}(u)\right), \\
&\left(\lambda_{m}^{[1]}(u), \lambda_{m+2}(u)\right) \mapsto\left(\lambda_{m+2}^{[1]}(u), \lambda_{m}^{[2]}(u)\right), \\
& \cdots \cdots \cdots \\
&\left(\lambda_{m}^{[n-1]}(u), \lambda_{m+n}(u)\right) \mapsto\left(\lambda_{m+n}^{[1]}(u), \lambda_{m}^{[n]}(u)\right),
\end{aligned}
$$

Representations of $\mathrm{X}\left(\mathfrak{o s p}_{2 n+1 \mid 2 m}\right)$

Given $\lambda(u)=\left(\lambda_{1}(u), \ldots, \lambda_{m}(u), \lambda_{m+1}(u), \ldots, \lambda_{m+n+1}(u)\right)$,
we can apply a sequence of odd reflections

$$
\begin{aligned}
&\left(\lambda_{m}(u), \lambda_{m+1}(u)\right) \mapsto\left(\lambda_{m+1}^{[1]}(u), \lambda_{m}^{[1]}(u)\right), \\
&\left(\lambda_{m}^{[1]}(u), \lambda_{m+2}(u)\right) \mapsto\left(\lambda_{m+2}^{[1]}(u), \lambda_{m}^{[2]}(u)\right), \\
& \cdots \cdots \cdots \\
&\left(\lambda_{m}^{[n-1]}(u), \lambda_{m+n}(u)\right) \mapsto\left(\lambda_{m+n}^{[1]}(u), \lambda_{m}^{[n]}(u)\right),
\end{aligned}
$$

to define the series $\lambda_{m}^{[n]}(u)$.

Theorem [A. M. and E. Ragoucy 2023]. If the
$\mathrm{X}\left(\mathfrak{o s p}_{2 n+1 \mid 2 m}\right)$-module $L(\lambda(u))$ is finite-dimensional, then

Theorem [A. M. and E. Ragoucy 2023]. If the
$\mathrm{X}\left(\mathfrak{o s p}_{2 n+1 \mid 2 m}\right)$-module $L(\lambda(u))$ is finite-dimensional, then

$$
\lambda_{1}(u) \leftarrow \cdots \leftarrow \lambda_{m}(u), \quad \lambda_{m+1}(u) \rightarrow \cdots \rightarrow \lambda_{m+n}(u)
$$

Theorem [A. M. and E. Ragoucy 2023]. If the
$\mathrm{X}\left(\mathfrak{o s p}_{2 n+1 \mid 2 m}\right)$-module $L(\lambda(u))$ is finite-dimensional, then

$$
\lambda_{1}(u) \leftarrow \cdots \leftarrow \lambda_{m}(u), \quad \lambda_{m+1}(u) \rightarrow \cdots \rightarrow \lambda_{m+n}(u)
$$

together with

$$
\lambda_{m+n}(u / 2) \rightarrow \lambda_{m+n+1}(u / 2),
$$

Theorem [A. M. and E. Ragoucy 2023]. If the
$\mathrm{X}\left(\mathfrak{o s p}_{2 n+1 \mid 2 m}\right)$-module $L(\lambda(u))$ is finite-dimensional, then

$$
\lambda_{1}(u) \leftarrow \cdots \leftarrow \lambda_{m}(u), \quad \lambda_{m+1}(u) \rightarrow \cdots \rightarrow \lambda_{m+n}(u)
$$

together with

$$
\lambda_{m+n}(u / 2) \rightarrow \lambda_{m+n+1}(u / 2),
$$

and

$$
\lambda_{m+n+1}(u) \rightarrow \lambda_{m}^{[n]}(u) .
$$

Theorem [A. M. and E. Ragoucy 2023]. If the
$\mathrm{X}\left(\mathfrak{o s p}_{2 n+1 \mid 2 m}\right)$-module $L(\lambda(u))$ is finite-dimensional, then

$$
\lambda_{1}(u) \leftarrow \cdots \leftarrow \lambda_{m}(u), \quad \lambda_{m+1}(u) \rightarrow \cdots \rightarrow \lambda_{m+n}(u)
$$

together with

$$
\lambda_{m+n}(u / 2) \rightarrow \lambda_{m+n+1}(u / 2),
$$

and

$$
\lambda_{m+n+1}(u) \rightarrow \lambda_{m}^{[n]}(u) .
$$

Conjecture. The conditions are also sufficient.

Theorem [A. M. and E. Ragoucy 2023]. If the
$\mathrm{X}\left(\mathfrak{o s p}_{2 n+1 \mid 2 m}\right)$-module $L(\lambda(u))$ is finite-dimensional, then

$$
\lambda_{1}(u) \leftarrow \cdots \leftarrow \lambda_{m}(u), \quad \lambda_{m+1}(u) \rightarrow \cdots \rightarrow \lambda_{m+n}(u)
$$

together with

$$
\lambda_{m+n}(u / 2) \rightarrow \lambda_{m+n+1}(u / 2),
$$

and

$$
\lambda_{m+n+1}(u) \rightarrow \lambda_{m}^{[n]}(u) .
$$

Conjecture. The conditions are also sufficient.

Theorem. The conjecture holds for

Theorem [A. M. and E. Ragoucy 2023]. If the
$\mathrm{X}\left(\mathfrak{o s p}_{2 n+1 \mid 2 m}\right)$-module $L(\lambda(u))$ is finite-dimensional, then

$$
\lambda_{1}(u) \leftarrow \cdots \leftarrow \lambda_{m}(u), \quad \lambda_{m+1}(u) \rightarrow \cdots \rightarrow \lambda_{m+n}(u)
$$

together with

$$
\lambda_{m+n}(u / 2) \rightarrow \lambda_{m+n+1}(u / 2),
$$

and

$$
\lambda_{m+n+1}(u) \rightarrow \lambda_{m}^{[n]}(u) .
$$

Conjecture. The conditions are also sufficient.

Theorem. The conjecture holds for

- $n=1$ and any $m \geqslant 1$,

Theorem [A. M. and E. Ragoucy 2023]. If the
$\mathrm{X}\left(\mathfrak{o s p}_{2 n+1 \mid 2 m}\right)$-module $L(\lambda(u))$ is finite-dimensional, then

$$
\lambda_{1}(u) \leftarrow \cdots \leftarrow \lambda_{m}(u), \quad \lambda_{m+1}(u) \rightarrow \cdots \rightarrow \lambda_{m+n}(u)
$$

together with

$$
\lambda_{m+n}(u / 2) \rightarrow \lambda_{m+n+1}(u / 2),
$$

and

$$
\lambda_{m+n+1}(u) \rightarrow \lambda_{m}^{[n]}(u) .
$$

Conjecture. The conditions are also sufficient.

Theorem. The conjecture holds for

- $n=1$ and any $m \geqslant 1$,
- generic highest weights $\lambda(u)$ with $n, m \geqslant 1$.

