Representations of the orthosymplectic

Yangians

Alexander Molev

University of Sydney



Orthosymplectic Yangians



Orthosymplectic Yangians

Consider the Z,-graded vector space CV?" with the canonical

basis ej,er, ..., en1om.



Orthosymplectic Yangians

Consider the Z,-graded vector space CV?" with the canonical

basis ey, es,...,en1om. S€ti' =N +2m—i+1.



Orthosymplectic Yangians

Consider the Z,-graded vector space CV?" with the canonical

basis ey, es,...,en1om. S€ti' =N +2m—i+1.

The vector e; has the parity = mod 2 and
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Consider the Z,-graded vector space CV?" with the canonical

basis ey, es,...,en1om. S€ti' =N +2m—i+1.

The vector e; has the parity = mod 2 and

0 for i=m+1,...,(m+1),

The endomorphism algebra End CV? is equipped with

Z,-gradation, the parity of the matrix unit e;; is 7+ 7 mod 2.
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The orthosymplectic Lie superalgebra ospy,,,, is the subalgebra

of glyp,,, spanned by the elements
F;j = Ej — Epy(—1)77 0,0;,
where

1 for i=1,...,N+m,

—1  for i=N+m+1,...,N+2m.
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The permutation operator P takes the form

N+2m B
P= Z €jj eji(_l)] € End (CN|2m ® End (CN|2m.
ij=1
Set

N+2m
Q=Y ej®esy(—1)7 60 € EndCV*" @ End CVP".
ij=1

The R-matrix associated with ospy s, is the rational function in u

given by
0 N

k=——m-—1.
u—rK 2

P
Ru)=1——
W=1-"+

[A. B. Zamolodchikov and Al. B. Zamolodchikov, 1979]
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The extended Yangian X(ospy)»,) @s a Z-graded algebra with
generators t ) of parity 74+ 7 mod 2, where 1 <i,j <N +2m

andr=1,2,..., satisfying the following defining relations.
Introduce the formal series
tij(u) = 05 + Zty =€ X(ospyjom) [ 1]
and combine them into the matrix T'(u) = [1;j(u)].
The defining relations are given by the RTT-relation
R(u—v) T\ (u) Tr(v) = To(v) Ty (u) R(u — v).

[D. Arnaudon, J. Avan, N. Crampé, L. Frappat, E. Ragoucy, 03]
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Let A(u) = (Ai(u), ..., A (u)) be an arbitrary tuple of series.

The Verma module M(A(u)) is the quotient of X(ospy»,,) by the
left ideal generated by all the coefficients of the series 7;(u) for

1 <i<j<landi(u) —N(u) for1 <i< 1.

Theorem. The Verma module M(A(«)) is nonzero if and only if

forl <i<m+N/2.
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Hence we can re-define the highest weight by

)‘(u) = ()‘l(u>a ceey )\m+n+1(u))
forN =2n-+1and N = 2n.

The irreducible highest weight representation L(A(u)) of
X(ospyom) is the quotient of the nonzero Verma module

M(X(u)) by the unique maximal proper submodule.

Theorem. Every finite-dimensional irreducible representation of
the Yangian X(ospy»,,) is isomorphic to a unique irreducible

highest weight representation L(A(«)).
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Solution for X(osp,,). Definition. For each « € C, the
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Open problem. Find necessary and sufficient conditions on

A(u) for the representation L(\(u)) to be finite-dimensional.

Solution for X(osp,,). Definition. For each « € C, the

elementary module L(a) = L(A(u)) over the Yangian X(osp;,)
is associated with the highest weight A(u) = (A1 (1), A2 (u)),
Mu)=1+au", Ao(u) = 1.

The solution relies on an explicit construction

of the modules L(«).
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Small Verma modules

Let K be the submodule of M(A(u)) generated by all vectors
A¢ for r>2 and (tgrl) + (o — 1/2)t§r1_1))£ for r>3,

where ¢ is the highest vector.

The small Verma module M(«) is the quotient M(\(u))/K.

Proposition.  The elementary module L(«) is a quotient of the

small Verma module M(«).
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Set Tjj(u) = u(u + a —1/2) t;j(u). These operators on the small

Verma module M(«) are polynomials in u.

For any r,s € Z introduce vectors in M(«) by

§rs = Tzl(—a— r—|—3/2) ...Tzl(—Oz — 1/2)T21(—O¢—|— 1/2)

X Tzl(—a — 5+ 1) .. .Tzl(—Oz — I)TZI(—Oz) &.

Proposition.  For any a € C the vectors &, with 0 < r < s form

a basis of M(«).
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Basis diagram of M(«)

Horizontal levels are osp,-weight spaces:

€00
€o1
€02
€03
€oa
€os
€06
o7

0511
ASE

. 522
o &3

o &5
o &
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> The X(osp,p)-module L(«) is finite-dimensional if and only

if —a =k e Z,. Inthis case,

dim L(—k) = <k ; 2) .
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The module V(u) is finite-dimensional if and only if € Z . In

that case, dim V(u) =2 + 1.

Forany k € Z ;. we have
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Representations of X(osp, )
Notation: for formal series p(u) and v(u) we write
p(u) = v@) or w(u) < pu(u)

if there exists a monic polynomial P(u) in u such that

ul) _ Plu+ 1)
o) Plu)

Recall that A(u) = (A1(u), ..., Apyi1(u)).

Theorem [2023]. The representation L(A(u)) of X(ospy|p,,) is

finite-dimensional if and only if

)\1(14) s /\m+1(u).
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Odd reflections
Definition [2022]. Let a(u) and 3(u) be formal series in u~!,
a(u) = (1+aw ") .. (1+apu ) y(u),
Blu) = (14 Buu™") .. (L + Bpu") v (u),
where a; # 3, for all i,j, and v(u) € 1 + u~'C[[u~"]].
The odd reflection is the transformation
(a(), ) = (8" (w), el (w)),
where
o)y = (14 (cr + D) o (14 (o + D) y(u),
B = (14 (B + D) (14 (B, + D) y(w).
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Representations of X(osp,,; 112,)

Given A(u) = ()\1 (u), ceey )\m(u), )\m+1 (u), e /\m+n+1 (u)),

we can apply a sequence of odd reflections

(A1) Ar () = (AL (), Al (),

(A (), A2 () = (A0, M (w)),

to define the series Al (u).
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Theorem [A. M. and E. Ragoucy 2023]. If the

X(08poy412m)-module L(A(u)) is finite-dimensional, then
A(u) - Ap(u), A1 (@) = -+ = Apn(u)

together with Antn(1/2) = Apgnt1(u/2),

and A (1) = A ).

Conjecture. The conditions are also sufficient.

Theorem. The conjecture holds for
> n=1andanym > 1,

» generic highest weights A(u) with n,m > 1.
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