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Disclaimer

These notes were taken during the lectures using emacs. Any errors are mine and not the speakers’.
In addition, my notes are picture-free (but will include commutative diagrams) and are a mix of
my mathematical style and that of the lecturers. Also, notation may differe between lecturers. If
you find any errors, please contact me at plei@math.columbia.edu.

Description

Graduate level introduction to modern mathematical physics with the emphasis on the geometry
and physics of quantum gauge theory and its connections to string theory. We shall zoom in on a
corner of the theory especially suitable for exploring non-perturbative aspects of gauge and string
theory: the instanton contributions. Using a combination of methods from algebraic geometry,
topology, representation theory and probability theory we shall derive a series of identities obeyed
by generating functions of integrals over instanton moduli spaces, and discuss their symplectic,
quantum, isomonodromic, and, more generally, representation-theoretic significance.

Quantum and classical integrable systems, both finite and infinite-dimensional ones, will be a
recurring cast of characters, along with the other (qq-) characters.
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Classical mechanics

We will be discussing three types of physics in an attempt to create something mathematically
interesting:

• Classical physics;

• Statistical physics;

• Quantum physics;

1.1 Classical physics

1.1.1 Hamiltonian dynamics We will begin with a space of classical states, which is most
commonly known as a phase space. This is a symplectic manifold (M,ω), where dimM = 2m and
ω ∈ Ω2(M) satisfies

dω = 0
ω∧ · · ·∧ω ̸= 0.

This carries a function
H : M→ R,

called a Hamiltonian. Then there is a vector field VH described by

dH = ιVH
ω,

which generates a 1-parameter group gt of symplectomorphisms of M. The evolution law of the
physical system is given by

ẋ = VH(x).

Because gt acts by symplectomorphisms, the graph

Γgt =
{
(m,gt(m))

}
⊂M×M

is a Lagrangian submanifold. Recall that a submanifold L ⊂M of a symplectic manifold is called
Lagrangian if dimL = m and ω|L = 0.
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Exercise 1.1.1. Locally any symplectic manifold is given by M = R2m with the symplectic form

ω =

m∑
i=1

dpi ∧ dqi .

This coordinate system on R2m is unique up to Sp(2m).

Now if V is a vector field such that LieV ω = 0, then dιVω = 0. Thus there locally exists a
Hamiltonian hV . We also need the Hamiltonian vector field to be linear in the local coordinates,
so the Hamiltonian itself must be quadratic.

Example 1.1.2. An important example of a symplectic manifold is T∗B for any smooth manifold
B. There is a 1-form θ on T∗B given by the following formula. If v is a tangent vector at the point
(p,b), then

θ(v) := p(π∗v).

Then ω = dθ is a symplectic form.

Example 1.1.3. Another large class of examples are obtained by symplectic reduction. Here, we
suppose that a symplectic manifold M carries the action of a compact Lie group G by exact
symplectomorphisms. This defines a moment map M µ−→ g∗ by the formula

⟨µ(m), ξ⟩ = hVξ
(m).

There is some ambiguity in the choice of constants, but in the end we obtain a new space

M�G := µ−1(0)/G.

In practice, we want the moment map µ to be equivariant with respect to the coadjoint action on
g∗. Then the manifold M�G has a canonical symplectic form, but this requires a lot of work.

Now consider M = R2m and G = U(1), where we write M = (R2)m and U(1) acts by rotations.
Then the moment map is actually

µ =

m∑
i=1

1
2
(p2

i + q
2
i) − r,

so µ−1(0) is a sphere. We then obtain

R2m �U(1) = S2m−1/U(1) = Pm−1.

We made no use of the complex numbers, so the fact that we obtain a complex manifold will be
viewed as a bonus. The reduced symplectic form is simply r times the Fubini-Study form.

Note that Pm−1 is compact, so the interpretation that phase space records position and
momentum breaks down. In this case, our phase space is called the classical spin phase space, where
the motion is by rotations rather than by translation.

Remark 1.1.4. We will often consider time-dependent Hamiltonians, where ẋ = VH(t)(x).
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1.1.2 Lagrangian mechanics There is another point of view, where dynamics on M are
given by an optimization problem on the space

PM := Map([0, 1],M)

of paths in M. We will consider an action

S[γ] :=

∫
γ
θ−

∫1

0
γ(t)∗H(t)dt ,

where we assume that ω = dθ. If we further require that γ(0) ∈ L0 and γ(1) ∈ L1, our dynamics
are well-defined if L0,L1 are Lagrangian submanifolds. Of course, we are looking for paths were
δS = 0.

1.1.3 Classical field theory Classical field theory should be thought of as an infinite-
dimensional version of classical mechanics, where we study loopified versions of finite-dimensinoal
manifolds. We want to consider integrals

S :=

∫
(Σ,h)

L[ϕ,∂ϕ]volh,

where Σ is the spacetime, h is a metric, and ϕ are the fields. Fields could be one of several options:

• Scalars f : Σ→ X, where X is a Riemannian manifold;

• Connections ∇ on principal bundles

G P

Σ,

called gauge fields;

• The metric h itself, called gravity.

We can introduce more complexity into the problem by varying the action and looking for
solutions of PDEs, introducing boundary to Σ, and other operations. Also note that Lagrangian
mechanics can be interpreted as a 1-dimensional classical field theory.

1.2 Statistical physics

In statistical physics, a point is replaced by a cloud of points, or a probability measure. For
example, the measure could contain the term e−βH, where H was the classical Hamiltonian and
β is a parameter of our distribution (inverse temperature). The system often flows to a stationary
distribution, which is determined by the outside world. In reality, the distribution will have the
form

1
Z
e−βH Z =

∫
M
e−βHω∧ · · ·∧ω

m!
.

This factor Z is called the partition function, and most of our energy is spent on computing this
partition function.
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1.3 Classical physics with multiple times

Suppose we have Hamiltonians H1, . . . ,Hk such that [VHi
, . . . ,VHj

] = 0. Then we obtain dynamics

γ : [0, ε]p →M

and an action

S =

∫
θ−

p∑
k=1

γ∗Hk dtk

defined on paths inside the cube [0, ε]p. The extreme case of this is an integrable system where the
Hi are functionally independent, and the maximum possible value of p is m.

Theorem 1.3.1 (Liouville-Arnold). If the motion is finite (fits in a compact set), then locally M is a
fibration

Tm M

B

such that the Hi factor through B and the VHk
span the rotations on each S1 factor of Tm.

A typical trajectory is a winding of the torus, where if θi are the angle coordinates on Tm,
there is the formula

θi(t) = θi(0) +ωit.

Generically, these paths will have dense image.
In the special case of an integrable system, there are action-angle variables, where the symplectic

form is

ω =

m∑
i=1

dIi ∧ dθi .

The θi are defined up to SL(m, Z) affine transformations. If Ci ∈ H1(T
m, Z) form a basis, then

the Ii are defined by

Ii =
1

2π

∮
Vi

d−1ω.

Here, Ci is transported to other fibers via the Gauss-Manin connection. We should note that the
Ii are not well-defined, but the quantities Ii(b ′) − Ii(b) are well-defined.

Because the Hk are defined on the base B, we can write Hk(I1, . . . , Im). Fixing τ1, . . . , τm ∈ R,
we can flow along

H =

m∑
k=1

τkHk,

we obtain
ωi =

∂H

∂Ii
.

In “reality,” which is non-integrable, consider an approximation

H(I, θ) = H0(I) + εH1(I, θ).

Then we can understand the approximate evolution with respect to H by averaging H1 over Tm.
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1.4 Gauge symmetry

We would now like to discuss the idea of gauge symmetries and gauging in the Lagrangian
formalism. Recall that the phase space (P,ω) carries an action

S[γ] =

∫
γ

d−1ω−

∫
I
γ∗H|dt|,

and we want to consider the effect of an action of a group G on P. The moment map

µ : P → G∗

is equivariant with respect to the coadjoint representation. Note that P �G has a symplectic form
ω̃, and locally P looks like

T∗G× P �G π−→ P �G.

Thus ω restricted to a tubular neighborhood of µ = 0 has the form

π∗ω̃+ (tautological form on T∗G).

Recall that we are looking for extrema of S, and we need to find a path on the quotient space.
We need to enlarge the space of variables to include A ∈ Ω1

I(g). Now we will define

S̃[γ,A] = S[γ] −

∫
I
⟨γ∗µ,A⟩ .

The space of possible A has an infinite-dimensional symmetry generated by

G = Maps(I,G) ∋ g(t)

The action is given by

(g(t)) · (γ(t),A) := (g(t)γ(t), Adg(t)A+ g−1 dg).

Note that A transforms as a connection, not as a 1-form.

Remark 1.4.1. The translation by g−1 dg compensates for the change of d−1ω =
∑
pi dqi under

the action of G.

1.4.1 Rational Calogero-Moser model The first example is called the Calogero-Moser-
Sutherland model. The phase spaces are

P̃ = T∗(RN \∆ or (S1)N \∆)

with the standard form

ω =

N∑
i=1

dpi ∧ dxi .

For any ν ∈ R+, the Hamiltonian is given by

H =

N∑
i=1

1
2
p2
i + ν

2
∑

1⩽i<j⩽N

 1
(xi − xj)2 or

1

4 sin2
(
xi−xj

2

)
.
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These are systems of n particles where they start out very far away from each other, are brought
closer together, and then repel themselves apart again. These turn out to be integrable systems,
and in fact they can be obtained by reduction of a system on a higher-dimensional symplectic
manifold.

Define the unreduced phase space

P = T∗(u(N))× CN.

This is a pair of N×N Hermitian matrices (P,Q) with a vector z ∈ CN. The Liouville form will
be written as

Tr
(

dP∧ dQ+
Tr dz∧ dz†

2
√
−1

)
=

N∑
i,j=1

dPij ∧ dQji +
1

2
√
−1

N∑
i=1

dzi ∧ dz∗i .

Then we may define the Hamiltonians

Hk =
1
k

TrPk.

The flows look like
(P,Q; z) 7→ (P,Q+

∑
k

tkP
k−1; z),

so they clearly commute. This system carries a U(N)×U(1) symmetry, where

(u, c) · (P,Q, z) 7→ (u−1Pu,u−1Qu,u−1z).

Because this preserves the symplectic form, we may perform the symplectic reduction. Becuase
U(n) is not simple, there is a free parameter ν, so the moment map is given by

µ(P,Q, z) = [P,Q] +
√
−1(zz† − ν · 1N).

We only need to solve µ = 0 up toU(N), so we choose a diagonal representative of
{
u−1Qu

}
. Thus,

assume that Q = diag(x1, . . . , xN) is diagonal with x1 ⩾ · · · ⩾ xN. Generically, the inequalities are
strict. Then

µij = Pij(xj − xi) +
√
−1(ziz∗j − νδij).

If i = j, then |zi|
2 = ν, so the remaining U(1)N-action can be used to set zi = z∗i =

√
ν. We can

now compute

Pij = −

√
−1ν

xi − xj

for the non-diagonal elements. We cannot compute the diagonal elements of P, so we obtain

P = diag(p1, . . . ,pN) +

∥∥∥∥ √
−1ν

xi − xj
(1 − δij)

∥∥∥∥N
i,j=1

.

In this form, the Hamiltonians become

H1 =

N∑
i=1

pi

H2 =
1
2

N∑
i=1

p2
i + ν

2
∑
i<j

1
(xi − xj)2 ,
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which is what we wanted. We need to show that ω =
∑

dpi ∧ dxi, so we will compute the
Poisson brackets of various functions. Recall that functions on (P,ω) form a Lie algebra with the
Poisson bracket

{f,g} = ω−1⌞df∧ dg .

We note that

O(P �G) = O(µ−1(0)/G)

= O(µ−1(0))G

= O(P)G/(µ = 0).

The functions we will consider are the resolvents

R(λ) = Tr
1

Q− λ

S(λ) = TrP
1

Q− λ
.

Because the trace is cyclic, we obtain

dR (λ) = −Tr(Q− λ)−1 dQ (Q− λ)−1

= −Tr
[
(Q− λ)2 dQ

]
Therefore

{R(λ),S(µ)} =
∑
i,j

∂R(λ)

∂Qij

∂S(µ)

∂Pji

= −Tr(Q− λ)2(Q− λ)−1

= −
∂

∂λ

(
R(λ) − R(µ)

λ− µ

)
.

On the reduced space, the functions become

R(λ) =

N∑
i=1

1
xi − λ

S(µ) =

N∑
i=1

pi
xi − µ

.

This is equivalent to
{
xi, xj

}
= 0 =

{
pi,pj

}
, so

{
pi, xj

}
= δij.

Note that this system has an alternative presentation where we assume that P = diag(p̃1, . . . , p̃N)
and

Q = diag(x̃1, . . . , x̃N) +

∥∥∥∥ √
−1ν

p̃i − p̃j

∥∥∥∥.

Then the Hamiltonians reduce to

Hk =
1
k

N∑
i=1

p̃ki ,
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and the flows are given by
x̃i(t) = x̃i(0) +

∑
k

tkp̃
k−1
i .

This system is not very interesting, but we could instead consider

H∨
k =

1
k

TrQk

and obtain a system with position and momentum exchanged.

1.4.2 Trigonometric Calogero-Moser (Sutherland) Now consider P = T∗U(N)× CN.
Then we have a triple (P,g; z) where P is Hermitian and g(= exp

(√
−1Q

)
) is unitary. The moment

map is given by
µ(P,g, z) =

√
−1(P− g−1Pg+ zz† − ν · 1N).

We may choose to either diagonalize P as diag(p̃1, . . . , p̃N) or diagonalize g as diag
(
e
√
−1x1 , . . . , e

√
−1xN

)
.

Making the latter choice, we obtain

P = diag(p1, . . . ,pN) +

∥∥∥∥ ν

e
√
−1(xj−xi) − 1

(1 − δij)

∥∥∥∥.

The Hamiltonians in this case are

H1 =
∑
k

pk

H2 =
1
2

N∑
i=1

p2
i +

ν2

4

∑
i<j

1

sin2
(
xi−xj

2

) .

Making the former choice, we obtain another integrable system called the rational relativistic
Calogero-Moser system or the rational Ruijsenaars model. In this model, the Hamiltonians look like

H∨
k =

∑
ex̃i × (rational functions of p̃i).

Here, a relativistic particle in 1 + 1 dimensions has energy and momentum given by

E = m cosh θ = Tr
(
g+ g−1

)
p = m sinh θ = Tr

(
g− g−1

)
,

so E2 − p2 = m2.

1.5 Infinite-dimensional symmetries

We will now replace g = Lie with ĝ = ̂Maps(S1, g), which is a central extension of the space of
maps with commutator given by

[(f1, c1), (f2, c2)] =

(
[f1, f2],

∫
S1

Tr f1 df2

)
.
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Then ĝ∗ is not g but instead

ĝ∗ =
{
k∂+A | A ∈ Ω1

S1(g),k ∈ R
}

with the pairing

⟨k∂+A, (f, c)⟩ = kc+
∫
S1

⟨A, f⟩ .

We will also consider the Lie algebra Maps(R, g), but this requires us to specify some kind of
boundary conditions at ∞. We may also consider L2(R)⊗ g. In the case of S1, note that

c(f1, f2) :=
∫
S1

Tr f1 df2

is a 2-cocycle and that
H2(Lg, R) ∼= R

is 1-dimensional, so this is the only nontrivial cocycle.
The corresponding group is given by the following construction. Define

LG = Maps(S1,G).

Then L̂G is a nontrivial U(1)-bundle

1 → U(1) → L̂G→ LG→ 1.

Note that H2(LG, R) ≃ R. The cohomology H3(G, Z) is nontrivial with a nontrivial class given by

ω :=
i

8π3 Tr
(
g−1 dg

)3
↭ Tr ξ1[ξ2, ξ3] =: c(ξ1, ξ2, ξ3).

Then there is an evaluation map

e : LG× S1 → G (g(t),u) 7→ g(u),

and then ∫
S1
e∗ω ∈ H2(LG, Z)

represents c1(L̂G→ LG). Therefore, we have an identification

L̂G = ̂Maps(D2,G)/Maps((D2,S1), (G, 1)),

where ̂Maps(D2,G) = Maps(D2,G)×U(1) with multiplication

(g1, c1)× (g2, c2) =

(
g1g2, c1c2 exp

i

4π

∫
D2

Trg−1
1 dg1 ∧ dg2

)
.

To embed Maps((D2,S1), (G, 1)) as a normal subgroup, we make use of the fact that π2(G) = 0, so
any map g can be extended to g̃ : B3 → G. Then we define

φ(g) := (g, exp(2πi)g̃∗ω).

The fact that this construction is well-defined is the Polyakov-Wiegmann formula.
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We will now discuss the adjoint and coadjoint actions of L̂G on ĝ, ĝ∗ respectively. Infinitesimally,
we have

(ϕ, 0) · (ξ, c) =
(
[ϕ, ξ],

∫
S1

Trϕdξ
)

.

The action on the dual space is given by

〈
ad∗

ϕ(A,k), (ξ, c)
〉
=

〈
(A,k),

(
[ϕ, ξ],

∫
Trϕdξ

)〉
= k

∫
S1

Trϕdξ+
∫
S1

TrA[ϕ, ξ]

=

∫
S1

Tr ξ(−kdϕ+ [A,ϕ]).

Therefore, we obtain
Ad∗

g(A,k) = (−kdgg−1 − gAg−1, 0).

Note that A
k is a g-connection 1-form on S1.

There is now a natural candidate for a symplectic form, which is

ΩT∗ĝ = δk∧ δc+

∫
S1

Tr δA∧ δξ.

Here, δ is the differential in the space of fields. The moment map µ : T∗ĝ→ ĝ∗ is given by

µ(k, c,A, ξ) = (G(k, c,A, ξ), 0),

where G(k, c,A, ξ) = −kdξ+ [A, ξ]. We will now compute

Pred = µ−1(0)/LG = {(ξ,A,k, c) | −kdξ+ [A, ξ] = 0}/(ξ,A) 7→ (Adg ξ,kdgg−1 + gAg−1).

We will now solve the moment map equation with the assumption that k ̸= 0. We will scale
k = 1, so the equation becomes

dξ+ [A, ξ] = 0.

This is a first order matrix differential equation with periodic coefficients which can be studied
using Floquet-Lyapunov theory. This says that there exists g such that

g−1 dg+ g−1Ag ∈ t ⊂ g

is constant and lies in a maximal Cartan of g. What this means is that we can write

ξ(t) = G(t)ξ0G(t)
−1 G(t) = P exp

∫t
0
A.

These satisfy the equations ĠG−1 = A and G(0) = 1. The monodromy is

GA := G(2π) = P exp
∫2π

0
A.

This must commute with ξ0, so we can bring

A 7→ g−1 dg+ g−1Ag GA 7→ g(0)−1GAg(0).
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Recall that GA can be brought to T ⊂ G and A can be brought to α ∈ t and gA = exp(2πα). There
is still some remaining symmetry by

g(u) = exp(uλ),

where λ ∈ Λ∨ is in the lattice of coroots and u ∈ S1 = R/2πZ is the coordinate. This shifts
α 7→ α+ λ while preserving monodromy. The second kind of remaining symmetry is the Weyl
group W := N(T)/T . Taking their semidirect product, we obtain the affine Weyl group.

If we consider the weight space decomposition of the moment map equation and β is a root of
g, then the equation for this component is

dξβ + ⟨β,α⟩ ξβ = 0.

Because ξβ(u) = e−u⟨β,α⟩, this is generically not 1, so ξβ = 0. Therefore ξ ∈ t, and we obtain

T∗ĝ� LG = (T∗T)/W.

Note that T parameterizes conjugacy classes of P exp
∮
A and that T = t/Λ∨. Unfortunately, the

reduced space is an orbifold, not a manifold.
We will now attempt to remedy this situation by modifying the quotient. Instead of setting the

moment map to be 0, we want to consider an orbit. We want O = PN−1, and if G = SU(N), LG
acts on PN−1 by evaluation at some 0 ∈ S1. We choose z ∈ CN such that z†z = N up to z ∼ zeiα,
and the modified equation is

dξ+ [A, ξ] = δ(u) · (iν(1N − z ◦ z†)).

Remark 1.5.1. While most of the orbits are infinite dimensional, we are taking some limit where A
becomes a distribution on S1 supported on finitely many points.

We first apply Floquet-Lyupanov to make A = diag(a1, . . . ,aN) diagonal with
∑
ai = 0. Then

on each coordinate we obtain

dξij + (ai − aj)ξij =
√
−1δ(u)ν(−zizj)

dξii =
√
−1ν(1 − |zi|

2)δ(u).

Because ξii(+0) = ξii(2π− 0) = ξii(−0) for any 0 ∈ S1, |zi|
2 = 1. Using the maximal torus, we

may force zi = 1. Then we obtain

ξij(u) = e
−u(ai−aj)ξij(+0)

ξij(2π− 0) = e−2π(ai−aj)ξij(+0) = ξij(+0) +
√
−1ν.

Finally, the initial value is

ξij(+0) =
√
−1ν

e−2π
√
−1(ai−aj) − 1

.

Note that this appeared in our study of the Sutherland system.
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Quantum mechanics

2.1 Quantization

The motivation for complexification of our systems is quantization. Recall that if S is the action of
a Lagrangian system, many systems are not described by solving the variational equation

δS = 0

but by meditating on formal path integrals (due to Feynman)∫
PP
e

iS[γ]
 h [Dγ].

The classical system is obtained via stationary phase approximation. Mathematically, this is
ill-defined, but if X is a finite-dimensional manifold, we can consider oscillating integrals

I =

∫
X
e

iS
 h µ.

Here, X is one of many possible cycles in the complexification XC and µ is viewed as a
holomorphic top-degree form, so this is just a period. If dimX = n, then we may consider other Γ
such that ∫

Γ
e

iS
 h µ

converges. These will satisfy
Γ ∈ Hn(X

C,XC
≪),

where

XC
≪ =

{
z | Re

(
iS(z)

 h

)
≪ 0

}
is set to force the integral to converge. These Γ are chosen to flow from critical points of S
(equivalently, of W = iS) in XC into XC

≪. We can construct cycles using Lefschetz thimbles. We can
choose a critical point p which satsifies dW (p) = 0 and then consider the steepest descent flow
for Re

(
W
 h

)
, or in other words

ẋ = −∇Re
(
W
 h

)
,

15
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where the gradient is taken with respect to some metric on XC, and finally take the union Γp of
descending trajectories. If we choose a Hermitian metric, then Im

(
W
 h

)
is actually constant. For a

generic choice of  h, the critical points have different imaginary parts, but in the special settings
we may have Stokes phenomena and wall-crossing behavior of solutions.

Exercise 2.1.1. What happens for W =
∑n

i=1 z
2
i?

2.2 Holomorphic symplectic dynamics

Now let MC be a holomorphic symplectic manifold and consider XC = Maps(S1,MC) and

W =

∫
pdq−βH(p,q)dt .

We will take S1 = R/Z and we want to find points with dW = 0.

Remark 2.2.1. When we quantize everything, we will obtain

Tr e−iβĤ =

∫
e

iS
 h [Dγ].

We obtain the equations

dp
dt

= −β
∂H

∂q

dq
dt

= β
∂H

∂p

If β is real, this is the usual Hamiltonian dynamics, but there may not be real solutions if β is not
real. On the other hand, if β = iβE is purely imaginary (also known as going to Euclidaen time),
then there may be solutions where q is real and p is purely imaginary.

Example 2.2.2. Let M = R2 and

U(q) =
λ

4
(q2 − a2)2,

where λ,a are parameters. This is usually called the Higgs potential. Then the energy is

E =
p2

2
+U(q).

We can see that there is a q 7→ −q symmetry, so near ±a there are two copies of the same physics.
After complexifying, we obtain MC = C2, while the zero set CE of E is a Riemann surface. If we
compactify, we will obtain an elliptic curve with the hyperelliptic form

p2 = 2
(
E−

λ

4
(q2 − a2)2

)
= −

λ

2
(q2 − a2

+)(q
2 − a2

−).

Note that H1(CE, Z) = Z ⊕ Z, so there are two independent cycles corresponding to classically
allowed physics. Also, it is clear that

a2
± − a2 = ±

√
4E
λ

.
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Therefore, this family degenerates to a union of two copies of P1 when E = 0 (and one of our
distinguished cycles is the vanishing cycle) and has another critical point when E = λa4

4 . Now
ω = dq

p is a holomorphic differential on CE, and the Hamilton equation tells us that any

γ : S1 → CE →MC

must satisfies γ∗ω = βdt. Now in the low-energy region, [γ] ∈ H1(CE, Z) can be specified by
two integers:

[γ] = m[A] +n[B],

where [A] is the vanishing cycle and [B] satisfies A∩B = 1. Note B is described up to multiples of
A, so n is well-defined, but m is defined only up to multiples of 2n. We can then find β by the
period integral

β =

∫
S1
γ∗ω

=

∫
γ(S1)

ω

= m

∮
A
ω+n

∮
B
ω,

which are functions of E. Therefore, the E = Em,n(β) for n ∈ Z,m ∈ Z/2nZ satisfy a transcen-
dental equation

β = mωA(E) +nωB(E).

We can solve this equation approximately in the β→ ∞ limit, where

Em,n ≈ λa4

4
e−

βΩ
n eπi

m
n ,

where Ω2 = 2λa2 is the classical period of very small oscillations around the q = a critical point.
This is all obtained by Picard-Lefschetz theory using the fact that

ωB(E) ∼
2π
Ω

1
πi

logE+ · · ·

ωA(E) ∼
2π
Ω

+ · · · ,

where the + · · · can be computed using knowledge of elliptic integrals. The solution where
n = 0 corresponds to classical physics, while the solution where m = 0 corresponds to tunneling
between the two critical points. Therefore, the general (m,n) solution is some superposition of
classical motion and tunneling.

2.3 Algebraic integrable systems

We will now consider the class of systems which generalize the following feature of the previous
example: our manifold (M2n

C ,ωC) has a Lagrangian fibration M2n → Bn to some open subset of
Cn by polarized abelian varieties. These are called algebraic integrable systems. This structure gives
the structure of special Kähler geometry on Bn.

For us, a polarization is simply an integral class t ∈ H2(F, Z), where F = π−1(b). We will now
define action variables (ai,aD,i) on B. If we have γ ∈ H1(Fb, Z), this path can be transported
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canonically over paths connecting b to b ′ that avoid the discriminant locus Ξ. We now obtain a
2-chain in MC covering the path, and we can obtain a number

aγ(b
′) − aγ(b∗) =

∫
2-chain

ωC

for a distinguished choice of b∗. Therefore, we obtain a map

a : B̃n \ Ξ→ H1(Fb∗ , C),

where B̃n \ Ξ is the space of choices (b,γ), where b ∈ Bn \ Ξ and γ is a path connecting b∗ to b
in Bn \ Ξ up to homotopy. The image of a is a Lagrangian with respect to t, where if Ai,Bi is a
basis of 1-cycles in H1(Fb∗ , Z), then t(Ai ∩Bj) = δji. Now because

n∑
i=1

dai ∧ daD,i = 0,

locally there exists F(a) such that

aD,i =
∂F

∂ai
.

Definition 2.3.1. This F is called a prepotential.

Example 2.3.2. One example is the elliptic Calogero-Moser system. Here, let E be an elliptic curve
parameterized by τ ∈ H and consider

MC = (T∗En \∆)/S(n).

Then let pi be the coordinates in the fiber directions and zi be the coordinates on the copies of E
and define

H1 =
∑
i

pi

H2 =
∑
i

1
2
p2
i + ν

2
∑
i<j

℘(zi − zj).

This was proven to be an algebraic integrable system by Krichever (before algebraic integrable
systems were defined). Set

L(z) := diag(p1, . . . ,pn) + ν(1 − δij)
θ(zi − zj + z)θ

′(0)
θ(zi − zj)θ(z)

,

where the theta function is defined by

θ(z) = q
1
8 (eπiz − e−πiz)

∞∏
n=1

(1 − qn)(1 − qne2πiz)(1 − qne−2πiz).

Here, we make the usual substitution q = e2πiτ. This operator satisfies the equations

L(z+ 1) = L(z)

L(z+ τ) = gL(z)g−1
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and has an expansion of the form
L(z) ∼

ν

z
(1 − δij).

Therefore, the spectrum of L(z) forms an n-sheeted cover over E, and in T∗E, if g(C) = n, then

C ∼ n[E] + [F].

Then we will obtain a Lagrangian fibration where the fiber is the Jacobian Jac(C).

2.4 How to compute some path integrals exactly

Recall our setting of a symplectic manifold with Hamiltonian (M,ω,H). We will assume that
there is an action of T ∼= U(1)r with moment map µ : M→ t∗. We will also assume that H is linear
in the moment map, so

H = ⟨µ, ξ⟩ .

Example 2.4.1. Consider M = R2n with Darboux coordinates pi,qi, the standard action of U(1)n,
and moment map given by

µj =
1
2
(p2

j + q
2
j).

Then the Hamiltonian

H =

n∑
i=1

ξiµi

generates an action R ↪→ T which is dense for generic ξ.

If we now assume that M is compact and the fixed points of the T -action are isolated, then to
obtain the statistical-mechanical partition function for some inverse temperature β, we have the
Duistermaat-Heckman formula

Z(β) =

∫
M

ωn

n!
e−βH

=
∑

dHp=0

e−βH(p)

βn
∏n

i=1 ⟨mi(p), ξ⟩
,

where mi(p) are the weights of the T -action on TpM. With these weights, H near p behaves like

H = H(p) +
1
2

r∑
i=1

ξi

n∑
j=1

mij(p
2
j + q

2
j).

Example 2.4.2. If M = S2 and H = cos θ is the cosine of the azimuthal angle, we embed
M ⊂ MC

∼= T∗S2, and the contour corresponding to the south pole goes into the cotangent
directions.

The Duistermaat-Heckman formula can be stated in the setting of T -equivariant cohomology.
If G is a Lie group acting on M, we will consider the Cartan model of equivariant cohomology.

Ω∗
G(M) := Fun(g,Ω∗(M))G,

where we require that
f(Adg−1 ξ) = g∗f(ξ).
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The grading on differential forms is deformed to be

2ξ
∂

∂ξ
+ degΩ∗

DR
.

Then the equivariant differential is defined by

D = dDR + ιV(−),

where V : g → Vect(M) is a linear map. We can now compute

D2 = LieV(−) = 0,

so we set H∗
G(M) to be the cohomology of this complex. We can now compute equivariant

integrals of f ∈ Ω∗
G(M). Note that

∫
M f ∈ Fun(g)G and

Z(ξ) =

∫
M
ftop(ξ) = Z(Adg ξ)

for all g ∈ G. Also note that ∫
M
(Dψ) =

∫
M

dψ = 0.

We will now prove the Duistermaat-Heckman formula. If µ : M→ g∗ is the moment map, we
claim that

D(ω+ µ(−)) = 0.

This follows from the definition of the moment map. We then see that

D(exp(ω+ µ(−))) = 0,

and this is actually a Duistermaat-Heckman integral. If the G-action is free (and G is compact),
then every closed form is exact. Because G is compact, there exists a G-invariant metric. Assuming
that G = T for now, choose some generic ξ ∈ Lie T . Then define

α = g(V(ξ),−) ∈ Ω1(M).

We then obtain
Dα = g(V(ξ),V(ξ)) + 2-form

where the function part is nonzero, and finally if

ψ =
α

Dα
f,

we obtain f = Dψ whenever Df = 0. Now we can replace the integral in the Duistermaat-
Heckmann formula with ∫

Mε +
∑
p

∫
Bε(p)

,

where Mε =M \
⋃

p Bε(p), and finally use Stokes’ theorem to obtain the desired result.
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2.5 Infinite-dimensional generalizations and supersymmetry

Now suppose that M = LN, where (N,g) is a Riemannian manifold. Then define for ξ,η ∈ TρM =
Γ(S1, ρ∗TN), we can define a 2-form by

ω(ξ,η) =
∫
S1
g(ξ,∇tη)dt ,

where ∇t is the Levi-Cevita connection. The Hamiltonian that generates the standard S1-action is

H =

∫
g(ρ̇, ρ̇)dt .

Then the partition function of supersymmetric quantum mechanics on N (index of the Dirac
operator on N) is given by ∫

LN
eω−βH =

∫
N
Â(TN),

where Â is the Â-genus. The term on the right should be viewed as the contribution of non-
isolated components of the fixed locus and can be thought of as Fourier modes of infinitesimal
loops. Of course, there is the question of the role of β in this formula.

2.5.1 The Dirac operator First, associated to the metric g|TxN we have the Clifford algebra,
which is generated by symbols �v for v ∈ TxN = V with the relation

�v ·�u+�u · �v = g(u, v)1.

This is the analogue of the the Heisenberg-Weyl algebra over a symplectic vector space (W,ω),
which is generated by elements ŵ for w ∈W with the relation

ŵ1 · ŵ2 − ŵ2 · ŵ1 = ω(w1,w2) · 1.

The Clifford algebra Cl has irreducible representations, which are called spinors. If we choose
an orthonormal basis {ei} of V , we can write any element as

α+
∑
i

βi�ei +
∑
i<j

γij�ei�ej + · · ·

In addition, we see that the Clifford algebra relation is a deformation of the exterior algebra, so
Cl ∼= Λ∗V as R-vector spaces. The space of quadratic elements of the Clifford algebra is in fact
LieO(V). Because O(V) is not simply connected, representations of its Lie algebra integrate to
Spin(V), which is the universal cover of SO(V) (at least if dimV > 2). The group-like elements
take the form

g = exp
1
2

∑
i<j

γij�ei�ej.

Now we impose a complex structure compatible with the metric and define

ca = �e2a−1 +
√
−1�e2a

c∗a = �e2a−1 −
√
−1�e2a

for a = 1, . . . , ⌊dimV
2 ⌋. These satisfy the relation

cacb + cbca = 0.
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Finally, we define the vector space

S := C |vac⟩ ⊕
⊕
a

Cca |vac⟩
⊕
a<b

Ccacb |vac⟩ ⊕ · · · ⊕ Cc1 · · · c⌊ dimV
2 ⌋ |vac⟩ .

We impose that c∗ |vac⟩ = 0, and in general that c∗ moves to the left. We then define Γ = edimV if
dimV is odd. It satisfies

Γ2 = 1, Γc1 + caΓ = 0, Γc∗a + c∗aΓ = 0.

From now on, we will assume that dimV = 2k.
Note that S is an irreducible representation of C↕, but recall that o(V) is much smaller. It is

spanned by elements of the form cacb, cac∗b, c∗ac∗b. There is a Z/2-valued conserved charge called
(−)F which is preserved by o(V). For S, it is defined by

F |vac⟩ = −
k

2
|vac⟩

F(ca1 · · · cap |vac⟩) = p− k

2
.

Therefore, we can split
S = S+ ⊕ S−

by the parity of the F-charge. Then for any u ∈ V , we have

�u : S± → S∓.

These are called Dirac matrices.
Unfortunately, there is not always a global spinor bundle on N. The obstruction is the

Stiefel-Whitney class
w2(TN) ∈ H2(N, Z/2).

If this is nonzero, then we cannot glue spinors into a vector bundle and thus the manifold N does
not have a spin structure. Therefore, we will now assume that w2(TN) = 0. We will now define
the Dirac operator

��D : Γ(S+) → Γ(S−)

by the local formula

��D :=

dimM∑
i=1

γi∇i.

Here, ∇i is a spin cover of the Levi-Civita connection and γi is the physicist notation for �ei. We
also define ��D∗ to be the same operator applied to S−. The symbol of ��D∗

��D or of ��D��D∗ is given by
the well-known formula ∑

i,j

(γi∂ii)(γ
j∂j) =

1
2

∑
i,j

(γiγj + γjγi)∂i∂j

=
1
2

∑
i,j

gij∂i∂j + · · ·

= ∆+ · · ·
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Because of the analogy with the Laplacian, the spaces HS+ = ker��D and HSi
= ker��D∗ are known

as harmonic spinors. There is a lucky coincidence that if Ĥ =��D��D
∗ +��D

∗
��D, then

Index��D = dim ker��D− dim ker��D∗

= TrH
L2(S)

(−1)Fe−βĤ

= −TrL2(S−) e
−β�D�D∗

+ TrL2(S+) e
−β�D∗�D

for any β > 0. Note here that working on Rn,

TrL2(S) e
−β�D�D∗

≈ Tr eβ∆ ≈
∫

dnpe−βp2
∼

1
β

n
2

.

Now suppose that ψ(k) ∈ Γ(S+) satisfies

��D
∗
��Dψ(k) = εkψ(k).

Then ��Dψ(k) = χ(k) ∈ Γ(S−) satisfies

��D��D
∗χ(k) = εkχ(k).

This tells us that

Tr e−β�D∗�D − Tr e−β�D�D∗
= ker��D− ker��D∗ +

∑
k,εk>0

e−βεk −
∑

k,εk>0

e−βεk

= Index��D.

Note that this cancellation is our first example of supersymmetry. Finally, we take the β→ 0 limit.

2.5.2 The heat kernel If we were considering on flat space the ordinary heat kernel

K(x, x ′,β) =
〈
x
∣∣eβ∆

∣∣x ′〉 ,

then Tr eβ∆ is computed by ∫
LN

[Dx(t)] exp

(
−

1
2

∫β
0
g(ẋ, ẋ)dt

)
.

Note that in flat space, the heat kernel must satisfy the PDE

∂

∂β
K = ∆x ′K = ∆xK.

As β→ 0,
K(x, x ′,β) → δ(n)(x− x ′).

There must also be the integral formula∫
dx ′ K(x, x ′;β1)K(x

′, x ′′;β2) = K(x, x ′′;β1 +β2),

so in fact, it is given by

K(x, x ′;β) = exp
(
−
(x− x ′)2

2β

)
1

(2πβ)n/2 .
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In our curved situation, we obtain the limit

lim
M→∞

∫
dx1 · · ·dxM K

(
x1, x2;

β

M

)
· · · ,

which can be well-approximated by the expression in flat space. Considering instead the loop
space LT∗N, we now obtain∫

LT∗N
[Dx(s)Dp(s)] exp

(
i

∫
pdx−β

∫1

0
g−1(p,p)ds

)
.

Note that the [Dx(s)Dp(s)] carries the term
∏

t
1

(2πβ)
dimM

2
. Also, if we integrate out the p, we

obtain the previous term
1

2β

∫1

0
g(ẋ, ẋ)ds .

2.5.3 Supersymmetric Duistermaat-Heckmann We will now rewrite the integral we
wanted to compute at the beginning of this section in new notation as∫

LN
eΩ+εH.

Here, we rewrite

H =
1
2

∫1

0
g(ẋ, ẋ)ds

Ω =
1
2

∫
S1
gijψ

i∇sψ
j ds ,

where (ψi(s)) ∈ Γ(S1, x∗TN). The ψi satisfy the formula

ψi(s)ψj(s ′) = −ψj(s ′)ψi(s).

Finally, here ε = 1
β is the equivariant parameter for the action of U(1) on the cotangent directions.

Now, the Duistermaat-Heckmann normalized integral (which is not the Atiyah-Singer normal-
ized integral) is ∫

LN
eΩ+εH =

∫
M

1∏
n ̸=0

∏
α

(
nε+ 1

εα
)

=

∫
N

∏
α

πσα/ε

sin(πσα/ε)
,

where xi(t) splits into Fourier modes as

xi(t) = xi0 +
∑
n ̸=0

ξine
2πins

and thus splits
NN/LN =

⊕
n ̸=0

(TN)n,

and α are the Chern roots of TN. This exactly reproduces the Â-genus. The Atiyah-Singer
normalized integral has an extra factor of 1∏

s β
dimM

2
.
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2.6 Duality

There are two main examples: T -duality in 2d sigma-models and S-duality in 4d gauge theories.

2.6.1 p-form generalized gauge theory We will begin with p-form generalized gauge
theory in D spacetime dimensions. For some A ∈ Ωp(MD), define

L =

∫
MD

dA∧ ∗dA .

This is invariant under A→ A+ dB. The space of fields in the R-type theory is given by

AR = ΩP(MD)/dΩp−1(MD) .

In the U(1)-type setting, the space of fields is smaller and is given by

AU(1) = Ω
p(MD)/Ωp

Z(MD),

where Ωp
Z is the space of all p-forms alpha such that∫

Zp
α ∈ Z

for all integral cycles Zp.

Example 2.6.1. When p = 0 and D = 2, then the U(1)-type theory describes maps M2 → U(1).
Locally, these look like A : M2 → R such that A ∼ A+n. Of course, not every manifold is simply
connected. Therefore, the true space of fields is

AU(1) = Maps(M2,U(1)).

This has a decomposition by the topological type as follows. Let t ∈ R be a coordinate with∫
R/Z

dt = 1.

Then the topological type is given by

[f∗ dt] ∈ H1(M2, Z).

In general, we will assume that the curvature form dA is not exact, but instead integral, so

dA ∈ Ωp+1
Z (MD).

This can be achieved on an open cover Uα by choosing

Aα ∈ Ωp(Uα)

such that
Aβ −Aα ∈ Ωp

Z(Uα ∩Uβ).

Then the space of fields is the space of connections on all U(1)-bundles and its connected
components are parameterized by

L = Hp+1(MD, Z).
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The partition function is now given by

Z =

∫
AU(1)

[DA]e
− 1

4g2
∫
MDdA∧∗dA+

∫
θ∧dA∧dA

,

where
θ ∈ ΩD−2(p+1)(MD)

is a closed form.
We may also replace f : M2 → U(1) by functions

f : M2 → T ∼= U(1)n = V/Γ .

We introduce tensors
B ∈ Λ2V∗, G ∈ S2

+V
∗.

In this form, the partition function becomes

Z(G,B,h) =
∫
AU(1)

[DA]e−
∫
MD GijdAi∧∗dAj+

∫
Bij∧dAi∧dAj

,

where dBij = 0 and Bij ∈ ΩD−2(p+1)(MD). We also have

B ∈

{
Λ2V∗ p+ 1 odd
S2V∗ p+ 1 even.

We now want to find the critical points of L, where δL = 0. The equations for A become

d ∗ dAi = 0

for all i. If we set Fi := dAi, the equation becomes

d ∗ Fi = 0,

which are the generalized Maxwell equations. Therefore, we obtain

Z(G,B,h) = N(G,h)
∑

c∈Λ=Hp+1(MD,Γ)

exp
[
−Gij

〈
ci, ∗cj

〉
− i
〈
Bij ∧ c

i ∧ cj
〉]

,

where N(G,h) is a regularized version of

det
Ωp/dΩp−1

(∗d ∗ d)−
1
2

which is defined as follows. Define

ζ∆(p)(s) := Tr
(
−∆(p)

)−s
.

This is defined for Re s≫ 0, and taking the analytic continuation, we define

N(G,h) := exp
1
2
ζ ′∆(0).

We may need to assume that D = 2(p+ 1). For example, if D = 2, then the
〈
ci, ∗cj

〉
term knows

only about the conformal structure of M2. Finally, Hp+1(MD, Γ) is taken modulo torsion.
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2.6.2 Duality The duality is given by inverting

τ := iG+B

when D = 4 and inverting
τ = G+ iB

when D = 2. We may consider transformations of the form

τ 7→ −
1
τ

or more generally
τ 7→ (Cτ+D)−1(Aτ+B),

where (
A B
C D

)
∈

{
O(n,n, Z) D = 2
Sp(2n, Z) D = 4.

Applying Poisson resummation, we obtain∫
c∈ΛR

∑
č∈Λ∗

e2πič(c) exp
[
−

1
2
Gij

〈
ci, ∗cj

〉
+
i

2
Bij
〈
ci, cj

〉]
.

Here, we have the identity ∑
j

Gij ∗ cj +
√
−1Bijcj + 2π

√
−1či = 0

in dimension 2. Note that when D = 2, ∗2 = −1, while when D = 4, ∗2 = +1. In the 4-dimensional
setting, if we define

c± =
c± ∗c

2
,

the relation is
τci − τc+ + 2π

√
−1(č+ + č−) = 0.

Therefore,

c− =
2π

√
−1
τ

č−, c+ = −
2π

√
−1
τ

č+.

The duality must give some reassignment of the degrees of freedom. Locally, if

MD = XD−1 × R,

which is noncompact, we must discuss the Hamiltonian system. The phase space is given by the
stack

T∗[Ωp(XD−1,V)/Ωp(XD−1, Γ)].

The symplectic form is given by∫
XD−1

(δE∧ δA(p)) +

∫
XD−1

Bij ∧ δ(dAi)∧ δAj
(p)

,

Here,
E ∈ ΩD−1−p(XD−1,V∗)
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is the electric field and dA is the magnetic field. Now we can write the Hamiltonian as

H =
1
2

∫
X
GijEi ∧ ∗Ej +

1
2

∫
X
Gij dAi ∧ ∗dAj .

We return to the space of spatial fields A, which has a decomposition into connected compo-
nents indexed by

c ∈ Hp+1(XD−1, Γ)/Tors.

The component corresponding to some c is

Ac = Hp(XD−1,V)/Hp(XD−1, Γ),

which is the space of flat p-connections.
All of this can be understood via the quantum mechanics of a particle on S1. If we define

Hθ =

{
f(t) | f(t+ 2π) = eiθf(t),

∫
|f|2 <∞}

,

then θ is the analogue of (Bij). Then if the standard symplectic form on T∗S1 is given by

dE∧ dt ,

E2 quantizes to −∂2
t = Ĥ, and the spectrum of this operator is given by

En = (n+ θ)2, n ∈ Z.

For example, if En = 0, then n and −n have the same eigenvalues, if θ = 1
2 , then the spectrum is

doubly degenerate, and for any other value of θ the spectrum is simple. Therefore, the duality
exchanges the electric and magnetic fields whenever D = 2(p+ 1).
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Instantons

There are three main approaches:

• Morse theory;

• Twisted supersymmetric σ-models;

• Twisted supersymmetric gauge theory.

These have a Hamiltonian and Lagrangian approach, and the latter will motivate the study of
integrals on moduli spaces of instantons.

3.1 Morse theory

Note that this is not the same as what topologists call Morse theory. Let (M,g) be a compact
Riemannian manifold and f : M → R. Suppose all x such that dfx = 0 have nondegenerate
Hessian, or in other words,

det
(

∂2f

∂xi∂xj

)
̸= 0.

We will consider Ω∗(M) with the differential

D := d + df∧ : Ω∗(M) → Ω∗+1(M).

Using the standard scalar form

(α,β)g =

∫
M
α∧ ∗β,

we define the adjoint
D∗ = d∗ + ι∇f.

Physicists refer to the study of this package as supersymmetric quantum mechanics. Here, the
Hamiltonian is

H = DD∗ +D∗D

= −∆d + Lie∇f + Lie∗∇f + g(∇f,∇f).

29
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Note that kerH ∼= H∗(M), and if Hψ = 0, then

0 = (ψ,Hψ)
= (Dψ,Dψ) + (D∗ψ,D∗ψ),

so we see that Hψ = 0 if and only if DΨ = D∗ψ = 0.
There are also excited states where Hψi = Eiψi for Ei > 0. Then we compute

HDψi = DD
∗Dψi

= D(Hψi −DD
∗ψi)

= D(Eiψi)

= EiDψi,

so the states Dψi, D∗ψi, and DD∗ψi are also eigenstates with eigenvalue Ei.
There is then the following trick. If f 7→ tf and g is fixed for t≫ 0, then

H = −∆g + t2∥∇f∥2 + t(· · · )

where ∥∇f∥2 is a very large potential outside of the critical locus of f. We also have

Dt = e−tf detf

on the ground states, which are isomorphic to H∗(M). More generally, we note that

Dt = d + tdf∧

D∗
t = t−1d∗ + ι∇f.

Ignoring the t−1d∗ term, the Hamiltonian becomes

Lie∇f + t∥∇f∥2 = e−tf(Lie∇f)e
tf.

In the world where f 7→ tf and g 7→ tg, we obtain states

ψ→ e−tfψ =: ψout

ψ→ etfψ =: ψin.

As t→ ∞, we obtain Hin and Hout, which are distributions.

Example 3.1.1. Now consider M = R and f = ωx2

2 . Note in this case we need to use L2 differential
forms. Then we have basic operators

H0 := −∂2
x +ω2x2 +ω

= (−∂x +ωx)(∂x +ωx)

Hi := −∂2
x +ω2x2 +ω

= (∂x +ωx)(−∂x +ωx).

Finally, we set α = ψ(x)dx.
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The spectrum is given in the following way. If Hψ = 0, then the equality (∂x +ωx)ψ = 0
implies that ψ = e−f, which is fine if ω > 0 and bad if ω < 0. Then suppose there is ψn such that
Hψn = n|ω|ψn. Then we obtain

ψn =


(−∂x +ωx)n

(
e−

ωx2
2

)
ω > 0

(∂x +ωx)n−1
(
e

ωx2
2

)
ω < 0.

Then if P is a polynomial,

P(∂x)e
−t|ω|x2

→ P(∂x)δ(x)

as t→ ∞ (here t scales ω). This tells us that H0
in

∼= H1
out are regular functions, while eigenstates

of H∞ are monomials. Similarly, H1
in

∼= H0
out are distributions supported at x = 0, while the

eigenstates of H∞ are those of the form ∂nx δ(x). Observe that

H∞ = Lie
x d

dx
.

Then, note that δ(x)dx is an invariant distribution-valued 1-form. The pairing between the in and
out states must be the usual pairing between functions and distributions.

In higher dimensions, there will be both attracting and repelling states, so we can consider
something like

f =

d−m∑
i=1

x2
i

2
−

d∑
j=d−m+1

x2
j

2

and i the end ψin is a distribution supported on the attracting manifold. This concludes the study
of the local picture.

However, we must consider the compact picture. For example, consider S1 = R ∪∞ where
the Morse function f is attracting at x = 0 and repelling at x = ∞. Then near ∞, the states
corresponding to monomials will look like P.V. xn. Applying x d

dx and expanding

ψ = ψ∞ +
1
x
ψ
(1)∞ + · · ·+ 1

xn+1ψ
(n+1)∞ + · · · ,

then the scaling x → tx, εtotε gives us correction terms of log ε and log t to ψ(n+1)∞ . Here, the
principal value

(xn,ψ) = P.V.
∫

R

xnψdx

is the finite part in the ε-expansion of

∫ 1
ε

− 1
ε

xnψdx .

Therefore, we see that critical points can talk to each other via excited states.
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3.2 σ-models

We will consider maps Σ → (X,ω) from a Riemann surface to a symplectic manifold. We will
also choose an almost complex structure J which is tame with respect to ω. If we consider the
functional

S =
1
2

∫
Σ
g(dϕ , ∗h dϕ) + i

∫
Σ
ϕ∗ω,

its critical points are simply harmonic maps.
In the Hammiltonian formalism, consider M = LX. If ξ ∈ TℓLX, then

df (ξ) =
∫
S1
ω(ξ, ℓ̇).

Note that
g(dϕ , ∗dϕ) = ω(Jdϕ , ∗h dϕ)

and
dϕ =

1 + iJ

2
dϕ+

1 − iJ

2
dϕ .

Then S can be rewritten as

S =

∫
ϕ∗(±ω+ iB) +

∥∥∥∥1 − iJ

2
(∂ or ∂)ϕ

∥∥∥∥2
,

where B is the B-field, satisfying dB = 0. Therefore, the absolute minima are solutions to the PDE

1 − iJ

2
∂ϕ = 0.

Example 3.2.1. Consider X = R2 with the standard symplectic form and complex structure. Let

f =

∫
S1
pdq .

Let t be the loop variable and s be the noncompact direction. Then we obtain the equations

dp
ds

= −
δf

δp
= −

dq
dt

dq
ds

= −
δf

δq
= −

dp
dt

,

which are the Cauchy-Riemann equations. If z = s+ it and w = exp(z), the Cauchy-Riemann
equations give

∂z(q+ ip) = 0.

3.3 4d supersymmetric Yang-Mills

Notes for this section were provided by Davis Lazowski. They are unchanged except for a bit of formatting.
The word symmetry here is actually a confusing one. There are two types of symmetries one

encounters in physics, and one is not a symmetry. Sometimes what we mean by symmetry is a
redundancy; mathematically what that means is that we’re studying a quotient of some space
X by some symmetry G, X/G. This is a local symmetry. The other type of symmetry is a global
symmetry where we really have G acting on the space we are studying X.
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In the case of a local symmetry, platonically there is a space X with action of G, but that space
is not accessible to us. Rather we only can see X/G.

Occasionally, it’s the case that we find there exists Y/H = X/G. We call this a duality.
Because the groups we deal with in physics are typically infinite dimensional groups, for

example Maps(M,G) of a manifold into a finite dimensional group, these groups typically have
lots of normal subgroups. Sometimes rather than the full Maps(M,G), our local symmetry is some
sort of normal subgroup that preserves additional structure: for example, possibly the normal
subgroup that sends certain marked points {xi} of M into certain subgroups {Hi} of G.

The global symmetry will then be whatever is left from Maps(M,G), for example in this case
×iG/Hi.

For example, say we are studying (M,g) a smooth Riemannian 4-manifold, with G a compact
simple Lie group, and a principal G-bundle P over M. Let AP the affine space of G-connections
on P. There is a group gP := Γ(M4,G×Ad P) acting on AP; what we really want to study is the
quotient,

BP := AP/gP

The functional we seek to integrate over BP is∫
BP

[DA]e
− 1

4c2
∫
M TrF∧⋆gF+

iθ
2π

∫
M TrF∧F+...

The measure here is induced from the L2 metric, and Tr refers to the killing form. Our integral
consists of two parts.

• The first is the Yang-Mills action;

• The second is a *topological term* which does not depend on the metric and picks out some
topological equivalence class of principal bundles. We normalise it so that the whole thing
is an integral class.

Since the second term is topological, we know eventually that our integral is equivalent to∑
n∈Z

einθZn

where Zn is the integral taken over bundles of Pontryagin class n.
We could try to write this on a lattice, viewing AP as the edges of a graph and gP as the

vertices. But if you did this naively you would find that the coupling has to go to zero.
Instead, we can try a trick which we started to discuss last time. If we write

F+A =
1
2
(FA + ⋆FA)

The Yang-mills term in the functional is equal to

∥∥F+A∥∥2
+

∫
Tr FA ∧ FA

Then we can rewrite the whole functional as

e
2πiτ(− 1

8π2
∫

TrFA∧FA)− 1
4c2 ∥F+∥2
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Wherein
τ =

ϑ

2π
+

4πi
c2

is some function in the upper half-space.
We could try to study the limit c2 → 0, while keeping τ finite. In that limit the functional goes

to

δ(F+A)e2πiτc2P

Studying the moduli space of MP := {A|F+A = 0}/gP, which we roughly expect to be finite
dimensional because Λ2,+R4 ≃ R3, we can at the very least compute its virtual dimension.

To do so, assume

• A0 is so that F+A0
= 0;

• A = A0 + δA so that F+A0+δA
= d+

A0
δA

• wherein d+
A0

: Ω1(M)⊗ adP → Ω2,+(M)⊗ adP

To the linear level, it suffices to computer ker d+. Since

d+
A0

dA0 =
1
2
(1 + ⋆)d2

A0

The virtual tangent bundle is
Tvir := ker d+

A0
/ Im dA0

which is the first cohomology of the Atiyah-Hitchin-Singer complex:

Ω0 ⊕ adP → Ω1 ⊗ adP → Ω2,+ ⊗ adP

wherein the maps are dA0 , d+
A0

If H0,H2 of this complex don’t vanish, we could have singularities or obstructions and therefore
trouble counting dimension.

3.3.1 “theory of differential forms on MP” We could try to overcome the infinite
dimensionality of the problem by seeking to develop a theory of differential forms on MP, the
space of anti-self dual connections, i.e. those A such that F+A = 0. To do so, we would need some
notion of local coordinates on MP. Let’s first try to do this on the space of connections without
the ASD condition.

Define
Q = dDR

on the space of connections AP. Then

QA = Ψ ∈ Ω1(M)⊗
∏

adP

This is a one-form, hence an ’odd’ object, i.e. a fermion. So Q meaps even to odd and vice versa.
But remember that A := Aµdx

µ is a *redundant* description, because connections related
by gauge transformation are the same. To deal with this, rather than dDR we will deal with
*equivariant differential forms*, and write

Q = dDR + ιV ϕ
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On the Cartan model for equivariant cohomology, so that this differential is an operator on

(Ω•(A× Lie(gP))× Fun(Lie(gP)))
gP

Since H•((M×EG)/G) ≃ H•(M/G), if we want this relation not only at the level of chomology
but also on the actual space of differential forms, it’s enough to study invariant forms, hence why
we’re taking invariants by gP.

This is like passing from M/G→M× g/G, which slightly improves the situation of stabilisers
and therefore the space of equivariant differential forms.

Then,

QA = Ψ(3.1)
QΨ = dAϕ,ϕ ∈ Γ(adP) = Lie(gP)(3.2)
Qϕ = 0(3.3)

The extra factor of the Lie algebra also defines an object ϕ, so that Qϕ = η where Qη = [ϕ,ϕ].
Here ϕ lives in the Lie(gP) inside our forms itself, whilst ϕ lives in the space Fun(gP) we tensor
by. Then

Q = dDR A + ∂ϕ + ιV(ϕ) + ι[ϕ,ϕ]∂ϕ

On the space of gP-invariant forms, Q2 = 0 since Q is just the Lie derivative associated to
transformation along ϕ.

3.3.2 Finite-dimensional model Suppose we are in a similar finite dimensional situation.

• Suppose G acts on a Riemannian manifold (N,g);

• Suppose f ∈ (Ω•(N)⊗ Fun(Lie(G)))G;

• If G acts freely, then there is a well-defined quotient by G. If f is equivariantly closed,it
should correspond go to ϕ ∈ Ω•(N,G).

Remark 3.3.1. Let π : N→ N/G. If ϕ is closed so that ιVπ⋆ϕ = 0 for all ϕ ∈ g, with ϕ ∈ Ω•(N/G).
Further, characteristic classes of our bundleN→ N/G are represented by invariant polynomials

on our Lie algebra, (S•g∨)G. The functions ϕ should somehow correespond to these, ‘it looks too
good to be a coincidence’. This consideration hits on the fact that we likely want to use a metric
when we make this map.

Let’s do what we already did a previously. Using the metric, we can build a one-form:

g(V(Φ), •) := θ ∈ Ω1(N)

It has the following useful property: if Df = 0, we can multiply

f→ feDθ = f(t)e−g(V(ϕ),V(ϕ))+On,ϕ+dgOϕ

This will not change the cohomology class, but it will change the representative. For example,

f→ ϕ
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is given by ∫
g
f(t)eDθ

We can write this as

f(ϕ)∏
a(ϕ

bfab + . . . )
ω1 ∧ · · ·∧ωdimG =

∫
g
f(t)eDθ

In order to not worry about contours, we treat ϕ,ϕ as complex conjugates. There is a canonical
measure on Lie(G),

[dϕ/Vol(G)]

Which is just the Haar measure which we have for free. Insert this into the integral
∫
feDθ as an

additional term by which we integrate out ϕ.
A procedure like this is ‘universal’ in the sense that it produces a differential form on N.

Because all the integrations I’ve done commute with D, this kind of averaging results in a form
which is still equivariantly closed.

The secret of Yang-Mills theory is that it does exactly that: it takes something simple on the
space of connections and does some sort of integration like that to produce a form on the space of
connections

But there’s a second piece, the anti self-dual condition, which we did not consider.
If we have M = s−1(0)/G for some section s of a vector bundle E → N, how do we restrict

differential forms to the vanishing locus of this section? Naively the idea is to just send

f→ δ(s)f

where δ is just a δ function or δ form. To do this properly we need to add on a Koszul complex into
our complex of forms which effectively has s as a differential.

At the level of mysterious formulas, this is achieved in the following way. Extra complexes
imply we have extra fields; introduce the field χ which for our purposes will be the self dual form
χ ∈ Ω2,+(M)⊗

∏
adP. This χ represents the (−1) term in the Koszul complex, so that the Koszul

differential of χ is δχ := F+A = s
Then we have a vector bundle EP over AP with fibres

F = Γ (Ω2,+(M)⊗ adP)

Naively Q2 is d+A, so not zero on the nose. This is fixed in the following way: we define another
field, χ ∈ Ω2,+(M)⊗

∏
adP, and a further field H ∈ Ω2,+(M)⊗ adP, so that

Qχ = H(3.4)
QH = [χ,ϕ](3.5)

Remember also that we had fields

• A a connection on P

• ϕ ∈ Ω0 ⊗ adP

• ψ ∈ Ω4(M)⊗ adP

• η ∈ Ω0 ⊗ adP
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• ϕ ∈ Ω0 ⊗ adP

which is a minimal list of fields for Yang-Mills theory. Q acted on these fields by

• Qχ = H

• QH = [χ,ϕ]

• QA = ψ

• Qψ = dAϕ

• Qϕ = η

• Qη = [ϕ,ϕ]

• Qϕ = 0

Note that for all but ϕ there is a canonical pairing between fields just by their type, called Berezin
measure. This gives us a measure:

[DADψ][DχDH][DϕDη]

[
Dϕ

vol(G)

]
where we have only ‘cheated’ in the last term, whose definition leaves something to be said in the
fully infinite dimensional setting.

Consider the functional

expQ
∫
M

TrX(F+A −
1
2
c2H) + Trψ∧ ⋆dAϕ+ volg Trη[ϕ,ϕ]

We got these terms from looking at our metric g =
∫

Tr(δA∧ ⋆δA) and applying Q to create the
most general supersymmetric or Q-closed functional. This is the same as

exp
∫

TrHF+A − c2
∫

TrH∧ ⋆H−

∫
Tr dAϕ∧ ⋆dAϕ−

∫
Tr
[
ϕ,ϕ

]cvolg + Tr
(
χd+

Aψ+ . . .
)

Since H is quadratic, we could integrate it out.
Also integrating χ,η out represents the Atiyah-Hitchin-Singer complex, because it imposes the

conditions d+
Aψ = 0, d⋆

Aψ = 0, equivalent to ψ ∈ ker d+
A, ψ is orthogonal to Im(dA), which gives

us the first cohomology of the AHS complex.
The zero modes of χ correspond to the second cohomology of the AHS complex, and the

zero modes of η correspond to the first cohomology. It’s something to keep in mind because
zero modes are significant because they drop out of the exponential and so observables ‘have to
provide the missing zero modes’ for the fermionic integrations to be nonzero.

Also, we could determine that the functional implies that ϕ is ‘the curvature of the universal
bundle evaluated at the point x’, but we would need to talk more about this later on.
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3.3.3 When M is not compact There is one important change to the whole story when M
is not compact; in other words, if the metric is such that there is some ‘end’ which is infinitely far
away, the story has to be modified. We don’t need to integrate over all fields, rather we want to
restrict to those where the curvature goes to zero at ∞. Naively that’s because the integral would
be divergent if the curvature was not zero.

Since we want ϕ to approach a constant a, ϕ→ a, such that [a,a] = 0, we only use those gauge
transformations which approach unity sufficiently fast at infinity. The rate at which they go to 1 is
fixed by the requirement that ||dϕ||2 <∞. The result of that is that a finite dimensional group of
those gauge transformations preserved now acts as a global symmetry! Instead of integrals over
the moduli space of instantons of closed differential forms, one passes to equivariant differential
forms for the moduli space of framed instantons, where framed means the vanishing condition
above.
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Gauge-theoretic instanton counting

The difference between mathematicians and physicists is that mathematicians like closed 4-
manifolds while physicists like R4. For mathematical precision, we will let M4 be a compact
Riemannian manifold and P →M be a principal G-bundle for some compact Lie group G. These
are classsified by the second Chern class

k := c2(P) ∈ H4(M4, Z),

which physicists call the instanton charge. We are looking for connections ∇ = d +A whose
curvature satisfies

F∇ = − ⋆ F∇,

which are called instantons. This equation in fact only depends on the conformal class of the
metric.

Being anti-self-dual implies that the connection gives a minimum of the Yang-Mills action

S =

∫
M4

Tr F∇ ∧ ⋆F∇.

If M4 is a complex surface and the metric g is Hermitian, then F0,2
∇ = 0, which is equivalent to

requiring that that ∂2
A = 0. Therefore, any representation E of G gives rise to a holomorphic

vector bundle E on M4. This will come into play later when we cheat by replacing instantons with
torsion-free sheaves.

The moduli space of such instantons is

MP =
{
∇ | F+∇ = 0

}
/GP,

where GP is the group of sections of the associated AdG-bundle acting by

A 7→ g−1Ag+ g−1dg.

For generic metrics g, this is a manifold of dimension

4h∨k−
χ+ σ

2
dimG,

where h∨ is the dual Coxeter number. We should note that even though Mk as a space depends
only on the conformal class of the metric, the metric depends on g itself. It also lives inside the

39
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space AP/GP of all connections on P. Our aim is to understand the infinite-dimensional integral∑
[P],c2(P)=−k

e−ϑk

∫
AP/GP

[DA]e
− 1

4g2 SYM .

Here, ϑ is valued on S1. In the g2 → 0 limit, the asymptotics of the integral should become∑
k

qk
∫
Mk

dµ (1 +O(g)),

where q = e
− 8π2

g2 +iϑ
and the measure is obtained by regularity and determinants of δSYM.

Instead of trying to understand this very complicated measure µ, we can try to study simpler
but still interesting integrals. For examples, Donaldson invariants are defined as integrals over
Mk of cohomology classes associated to 2-cycles Σi and 0-cycles p on M4. The problem is that
Mk is non-compact because of the conformal invariance of the equations leading to delta-function
solutions. Uhlenbeck discovered that via a complicated system of gauge transformations, these
points can be filled in by ideal solutions, so there is the Uhlenbeck compactification

Mk =
{
(∇, x1, . . . , xℓ) | c2(P̃) − c2(P) = ℓ

}
= Mk ∪Mk−1 ×M4 ∪Mk−2 × Sym2M4 ∪ · · · ∪M0 × SymkM4.

4.1 The case of R4

This is the case that physicists are worried about. The problem is of course that R4 is non-compact,
so we can view either R4 = S4 \∞ or R4 = C2 = P2 \ P1∞. There are already interesting solutions
in this case, but because our metric is singular at infinity, we will consider the moduli space

Mframed
k =

{
∇ | F+∇ = 0

}
/G∞

P ,

where G∞
P ⊂ GP is the set of those elements satisfying g(x) → 1 as x→ ∞. This is a hyperkähler

manifold of dimension 4kN when G = SU(N).
It is well-known that this (or a slight modification M̃framed

k ) is a Nakajima quiver variety
corresponding to the quiver data

k

N

J

B2

B1

I

Here, we need to modify the instanton equations to

[B1,B2] + IJ = 0

[B1,B†1] + [B2,B†2] + II
† − J†J = ζ · 1k,

which in algebraic geometry corresponds to changing the value of the moment map.
This moduli space has an instanton interpretation if we replace R4 by a noncommutative R4

ζ,
which has coordinates z1, z2, z1, z2 with commutators

[z1, z1] = −
ζ

2
= [z2, z2].
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In the N = 2 case, we have Mframed
2 = R4 × (R4 \ 0)/Z2 while M

framed
k = R4 × R4/Z2 and

M̃framed
k = R4 × T∗S2.

There is also an action of U(2)× SU(N), where for elements

a =

a1
. . .

aN

 ∈ LieU(N)⊗ C

and

ε =


0 ε1

−ε1 0
0 ε2

−ε2 0

 ∈ LieU(2)⊗ C,

the corresponding vector field is denoted by V(a, ε). Given a choice of

λa,ε = G
M̃
(V(a, ε),−),

the partition function is

Zk =

∫
M̃framed

k

exp
(
−G

M̃
(V(a, ε),V(a, ε))

) 1
(2kN)!

(dλa,ε)
2kN.

This is not the most general formulation, but it is a distilled version of Yang-Mills with some
supersymmetry. It turns out that Zk is actually a rational function of degree −2kN in a and ε.

One generalization of this is

Z(a, ε,Λ) = Zpart ×
∞∑

k=0

Λ2kNZk(a, e),

where
Zpart(a, ε) =

∏
i ̸=j

Γ2(ai − aj; ε1, ε2).

Here, Γ2 has the asymptotics

Γ2(x; ε1, ε2) ∼
∏

n,m⩾1

(x+ ε1n+ ε2m)

and solves the equation
Γ2(x+ ε1)Γ2(x+ ε2)

Γ2(x)Γ2(x+ ε1 + ε2)
= x.

In the limit as ε1, ε2 → 0, we expect the asymptotics

exp
(

1
ε1ε2

F(a,Λ) + · · ·
)

,

so the question now is to evaluate F(a,Λ). In the case when G = SU(N), we can do it by
localization.

A standard computation tells us that

Zk(a, ε) =
∑

(λ(1),...,λ(k))

|λ(1)|+···+|λ(k)|=k

1∏N
i,j=1

(∏
□∈λ(i)(ai − aj + f(ε1, ε2))

)(∏
■∈λ(j)(aj − ai + g(ε1, ε2))

) ,



42

where f and g are defined using the (relative) arms and legs of the two Young diagrams. For
example, when i = j, we end up with f = ε1(arm□ + 1) − ε2leg□ and g = −ε1arm□ + ε2(leg□ + 1).

Treating Zk as a probability measure on the set of Young diagrams, we obtain the observables

Y(x)[λ(1), . . . , λ(N)] =

N∏
α=1

∏
□∈∂+λ(α)(x− aα − c□)∏

■∈∂−λ(α)(x− aα − c■ − ε1 − ε2)
.

This function knows essentially everything about the shape of the diagrams, and its vacuum
expectation is

⟨Y(x)⟩ = 1
Z

∑
λ⃗

Y(x)[⃗λ]µ
λ⃗
(a, ε)Λ2N|⃗λ|.

It satisfies the property that 〈
Y(x+ ε1 + ε2) +

Λ2N

Y(x)

〉
has no poles in x and is in fact a polynomial of degree N. Physically, this is interpreted as an
interaction between two neighboring instanton sectors.

If we send ε1, ε2 → 0, then ⟨Y(x)⟩ = Y(x) we then obtain the algebraic equation

Y(x) +
Λ2N

Y(x)
= T(x),

where the coefficients of T(x) are defined by∮
Ai

x
dY
Y

∼ ai.

This is a hyperelliptic curve.

4.2 Mathematical realization

From now on, we will set G = U(N) and consider the moduli space

M
framed
k (N) =

{
(B1,B2, I, J) | B1,B2 ∈ End(Ck), I : CN → Ck, J : Ck → CN, ADHM

}
/U(k).

Recall that this is a Nakajima quiver variety corresponding to the Jordan quiver. The ADHM
equations are

µ⃗ = (µR,µC,µC) = 0

µR = [B1,B†1] + [B2,B†2] + II
† − JJ† − ζR1k

µC = [B1,B2] + IJ− ζC · 1k.

Here, ζ⃗ = (ζR, ζC, ζC) ∈ R3 = R ⊕ C. It can in fact be rotated to (ζ, 0, 0) by SO(3), so we can
assume ζ > 0. Here, the action of g ∈ U(k) is given by

g(B1,B2, I, J) = (g−1B1g,g−1B2g,g−1I, Jg).

Then M
framed
k (N) has an action of U(N) given by

h(B1,B2, I, J) = (B1,B2, Ih,h−1J),
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and these are symmetries. There is also a U(2)-action given by

U(2) ∋
(
a b

−b a

)
eiγ(B1,B2, I, J) = ((aB11 + bB2)e

iγ, (−bB1 + aB2)e
iγ, I, Je2iγ).

In fact, if we only consider µC, it in fact has GL(2)-symmetry.

We are interested in the fixed points of our U(2)×U(N) action on M
framed
k (N). To be a fixed

point of (u,h) ∈ U(2)×U(N), the tuple β = (B1,B2, I, J) must obey (u,h)β = gu,hβ for some
gu,h ∈ U(k) depending on u,h. It is in fact enough to consider the maximal torus of U(2)×U(N),
so we may assume that

u =

(
eiε1

eiε2

)
, h =

e
ia1

. . .
eiaN

.

Now we obtain
(u× h)(B1,B2, I, J) = (eiε1B1, eiε2B2, Ih,h−1ei(ε1+ε2)J).

To make this compatible with the gauge transformations, the assignment

(eiε, eia) 7→ gε,a

is a group homomorphism, giving a decomposition

Ck =
⊕
λ

Kλ, gε,a|Kλ
= eiλ(ε,a),

where λ(ε,a) is a Z-linear function.
We will now use the Kempf-Ness theorem and solve µC = 0 and then divide by GL(k). Given

a solution, we want g ∈ GL(k) such that (g−1B1g,g−1B2g,g−1I, Jg) solves µR = 0. This is not
always possible, so we need stable solutions in the sense of geometric invariant theory.

Definition 4.2.1. The tuple (B1,B2, I, J) is stable if and only if for all subspaces K ′ ⊂ Ck such that
B1(K

′) ⊂ K ′, B2(K
′) ⊂ K ′, and I(CN) ⊂ K ′, then K ′ = K. Equivalently, C ⟨B1,B2⟩ I(CN) = Ck.

Theorem 4.2.2. We have an isomorphism

µ⃗−1(0)/U(k) = µ−1
C

(0)s/GL(k).

Using this, write CN =
⊕
Nα as the standard decomposition into eigenspaces of the standard

maximal torus of U(N). Then let Iα = I(Nα). Our equations then become

g−1
ε,aIα = eiaαIα

g−1
ε,aB1 = eiε1B1g

−1
ε,a

g−1
ε,aB2 = eiε2B2g

−1
ε,a.

Then C ⟨B1,B2⟩ Iα = Kα is spanned by eigenvectors of g−1
ε,a with eigenvalues eiaαei(pε1+qε2) for

integers p,q ⩾ 0. Note if ψ ∈ Ck satisfies g−1
ε,aψ = λψ, we have

g−1
ε,a(B1ψ) = e

iε1B1(g
−1
ε,aψ) = (λeiε1)(B1ψ).
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We are still interested in the fate of J, and in fact we will see that J = 0, which will imply that
[B1,B2] = 0.

It is sufficient to replace Ck by Kα and CN by C, so we reduce to the case of N = 1. This gives
us

0 = [B1,B2] + IJ,

so taking the trace gives us Tr IJ = 0. Therefore, J(I) = 0, viewing I ∈ Ck. Next, we see that

J(B1I) = TrB1IJ = Tr(B1[B2,B1]) = Tr(B2[B1,B1]) = 0.

Similarly, J(B2I) = 0. This is also true for any powers of B1,B2, and in fact for any polynomial of
B1,B2, so using the fact that I is a cyclic vector for B1,B2, we see that J = 0.

We now see that to each Kα, we obtain an ideal Iα ⊂ C[x1, x2] to be the annihilator of Iα under
the assignment xi 7→ Bi. Thus we can identify

Kα
∼= C[x1, x2]/Iα.

By a standard argument, the action of C× × C× tells us that Iα must be a monomial ideal, and
this corresponds to a partition of kα := dimKα, or equivalently a Young diagram of size kα. The
only thing we know is that

N∑
α=1

kα = k,

so some of the kα could be zero. We will call the α-th partition λ(α) and its components

λ(α) =
(
λ
(α)
1 ⩾ · · · ⩾ λ(α)

ℓα

)
.

We have therefore proven the following theorem:

Theorem 4.2.3. There is a bijection

M
framed
k (N)T =

⊔
λ(1),...,λ(N)∑N
α=1 |λ

(α)|=k

pt.

Example 4.2.4. When k = 1, we have

M
framed
1 (N) = C2 × T∗Pn−1

and the fixed points are given by {0}× (0, . . . , 1, . . . , 0).

4.3 Explicit localization computation

In order to compute our integrals using equivariant localization, we need to compute

TλM
framed
k (N) =

⊕
w

Cw

as a representation of the maximal torus T. Its equivariant Chern character (also the character of
the representation) is given by

Ch(TλM
framed
k (N)) =

∑
w

e
√
−1w(ε1,ε2,a) ∈ Z[q1,q2,h1, . . . ,hN],
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where hα = e
√
−1aα and qi = e

√
−1εi . Then any

(δB1, δB2, δI, δJ) ∈ TλM
framed
k (N)

must satisfy
[B1, δB2] + [δB1,B2] + IδJ = 0

up to
δB1 = [B1,ϕ], δB2 = [B2,ϕ], δI = −ϕI, δJ = Jϕ = 0.

Therefore, TλM
framed
k (N) is the H1 of a complex

T = End(Ck) → End(Ck)⊕ End(Ck)⊕ Hom(CN, Ck)⊕ Hom(Ck, CN) → End(Ck)⊗Λ2C2,

where the two arrows are given by

d1(ϕ) = ([B1,ϕ], [B2,ϕ],−ϕI, Jϕ)
d2(δB1, δB2, δI, δJ) = [B1, δB2] + [δB1,B2] + IδJ+ δIJ.

Lemma 4.3.1. We have H0(T) = H2(T) = 0.

Proof. Suppose γ ∈ kerd1. Then
γ(C[B1,B2]I(C

N)) = 0.

But this space is all of Ck, so γ = 0.
Now suppose there exists γ̃ ∈ End Ck such that

Tr(γ̃d2(β1,β2, i, j)) = 0

for all (β1,β2, i, j). But this implies that

Tr(γ̃I)j+ Tr(Jγ̃)i+ Tr[B1, γ̃]β2 + Tr[B2, γ̃]β1 = 0,

which is exactly d1(γ̃) = 0, which implies γ̃ = 0.

To compute the character, we note that

χλ(q1,q2;w1, . . . ,wn) = ChH1(T)

= −χT(T)

= −
∑

(−1)i ChHi(T)

= −
∑

(−1)i ChCi(T).

We also know that

N := Ch CN =

n∑
α=1

wα

K := Ch Ck =

n∑
α=1

wαKα(q1,q2),

where
Kα(q1,q2) =

∑
(i,j)∈λ(α)

qi−1
1 q

j−1
2 .



46

This also gives us

N∗ =
∑
α

w−1
α

K∗ =
∑
α

w−1
α Kα(q

−1
1 ,q−1

2 ).

We are now able to compute
Ch End(Ck) = KK∗.

It is also easy to see that

ChC1(T) = KK∗(q1 + q2) + NK∗ + KN∗q1q2

and
ChC2(T) = KK∗q1q2,

so
χλ(q1,q2lw1, . . . ,wn) = NK∗ + N∗Kq1q2 − (1 − q1)(1 − q2)KK∗.

This is not obviously a pure character, but taking its dual gives us

χ∗λ = N∗K + NK∗q−1
1 q−1

2 − q−1
1 q−1

2 (1 − q1)(1 − q2)KK∗

= q−1
1 q−1

2 χλ.

Rewriting

χλ =

N∑
α,β=1

wαw
−1Tαβ

β (q1,q2)

and noting that
Tαβ = q1q2T

∗
βα,

we can compute

Tαβ(q1,q2) = T
q1>0
αβ + T

q1⩽0
αβ

= K∗
β +Kαq1q2 − (1 − q1)(1 − q2)KαK

∗
β.

We then see that

(1 − q2)Kα =

ℓ
λ(α)∑
i=1

qi−1
1 (1 − q

λα
i

2 )

(1 − q1)K
∗
β = −q1

λ
(β)
1∑

j=1

q
1−j
2 (1 − q

−λ
(β)t
j

1 ).

Taking only the nonpositive part, we obtain

T
q
⩽0
1

αβ = K∗
β − ((1 − q1)(1 − q2)KαK

∗
β)

q
⩽0
1

=
∑

(i,j)∈λ(β)

q
i−λ

(β)t
j

1 q
λ
(α)
i +1−j

2

=
∑

□∈λ(β)

q
−ℓ

(β)
□

1 q
1+a

(α)
□

2 .
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Putting it all together, we obtain

χλ =

N∑
α,β=1

wαw
−1
β

 ∑
□∈λ(β)

q
−ℓ

(β)
□

1 q
1+a

(α)
□

2 +
∑

□∈λ(α)

q
ℓ
(α)
□ +1

1 q
−a

(β)
□

2

.

We are now able to compute the integrals we wanted as∫
Mk(N)

Ω(4Nk) =

=
∑
|λ|=k

Ω(0)|λ
N∏

α,β=1

∏
λ(β)

(aα − aβ − ε1ℓ
(β)
□ + ε2(1 + a

(α)
□ ))

∏
□∈λ(α)

(aα − aβ + ε1(ℓ
(α)
□ + 1) − ε2a

(β)
□ )

.

We now consider the tautological complex

Sz = [0 → Ck δ1−→ Ck ⊗ C2 ⊕ CN δ2−→ Ck → 0],

which should be thought of as a holomorphic square root of the tangent complex. This is given by
the formulae

δ1(κ) = ((B1 − z1)κ, (B2 − z2)κ, Jκ)
δ2(κ1, κ2,ν) = (B1 − z1)κ2 − (B2 − z2)κ1 + Iν.

In fact, the ADHM equation is equivalent to this being a complex for all z ∈ C2. We see what
happens when z = 0. In this case, we see that if κ̃ ∈ coker δ2, then

κ̃†(B1κ2 −B2κ1 + Iν) = 0

for all (κ1, κ2,ν), so it annihilates all of B1,B2, I, and thus κ̃ = 0. Therefore

H1(S0) = 0.

However, in general, this complex has both H0 and H1. We will compute these over λ. We can
explicitly see that

H0(S0)

is the space of corners. We will compute the character of the H1 using the equation

ChH0(S0) − ChH1(S0) = ChC0(S0) − ChC1(S0) + ChC2(S0)

=
∑
α

wα(Kα −Kα(q1 + q2) − 1 +Kαq1q2)

= −
∑
α

wα(1 − (1 − q1)(1 − q2)Kα).

If we note that
Ch C[q1,q2] =

1
(1 − q1)(1 − q2)

,

we see that
1

(1 − q1)(1 − q2)
−Kα = Ch Iα
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is the character of the ideal corresponding to λ(α). Therefore, the coefficient of wα is simply∑
□∈∂+λ

q□ − q12
∑

□∈∂−λ

q□,

and the first term yields ChH1 while the second term yields ChH0.
To see how this works in practice, fix N = 1. Then I is a codimension k ideal in C[z1, z2]. We

are looking for
f(z1, z2) = z1κ2(z1, z2) − z2κ1(z1, z2) + ν ∈ I,

and this is given by

ν = f(0, 0)

κ1 =
f(0, 0) − f(0, z2)

z2

κ2 =
f(z1, z2) − f(0, z2)

z1
.

4.4 qq-characters

Notation 4.4.1. From now on, we will denote K = Ck and N = Cn.

The main tool for dealing with instanton integrals (equivalently, sums over ensembles of Young
diagrams) is the qq-character. Here, we will have a discrete set S, and the densities µs ∈ C for
s ∈ S must satisfy ∑

s∈S

µs = 1.

For example, we can consider s = (λ(1), . . . , λ(N)). It is important to note that µs depends on

(a1, . . . ,aN, ε1, ε2;Λ),

but we can make choices such that all µs are positive real nnumbers, giving us a probability
measure.

Definition 4.4.2. A function O : S→ C is called an observable if∑
s∈S

µsOs <∞.

Before we continue, we will consider a tautological bundle over instanton moduli spaces,
which we will call K. In fact, it literally corresponds to the Ck in the construction of the Nakajima
variety. Then we are interested in quantities∑∞

k=0Λ
2kN ∫

Mk(N) ci(K)Ξ∑∞
k=0Λ

2kN
∫
Mk(N) Ξ

=
∑
s∈S

µs(a1, . . . ,aN, ε1, ε2,Λ)ci(K)|s,

where

S =

∞⊔
k=0

Nk(N)T.
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We can see that

µs(a, ε,Λ) =

=
1
Z

Λ2ksN−nΞ(k)Ξ|s
N∏

α,β=1

∏
λ(β)

(aα − aβ − ε1ℓ
(β)
□ + ε2(1 + a

(α)
□ ))

∏
□∈λ(α)

(aα − aβ + ε1(ℓ
(α)
□ + 1) − ε2a

(β)
□ )

,

where

Z =
∑
s

Λ2ksN−nΞ(k)Ξ|s
N∏

α,β=1

∏
λ(β)

(aα − aβ − ε1ℓ
(β)
□ + ε2(1 + a

(α)
□ ))

∏
□∈λ(α)

(aα − aβ + ε1(ℓ
(α)
□ + 1) − ε2a

(β)
□ )

normalizes the sum
∑

s µs = 1 and nΞ(k) si the degree of Ξ|s.

Examples 4.4.3.

1. In pure super-Yang-Mills theory, Ξ = 1 and Z is homogeneous in (a1, . . . ,aN, ε1, ε2,Λ);

2. In super-QCD, we set

Ξ =

2N∏
f=1

c(mf,K)

where c denotes the homogeneized Chern polynomial. Here, the input is given by

(a1, . . . ,aN, ε1, ε2,m1, . . . ,m2N,q),

where the mf are the “flavors” and q takes the role of Λ previously.1

3. The N = 2∗ theory, or adjoint super-QCD, is defined by

Ξ = c(m, T∗Mk(N)).

Theorem 4.4.4. The Chern polynomials at the fixed points are given by

c(mf,K∗)|s =

N∏
α=1

∏
(i,j)∈λ(α)

(mf − (aα + ε1(i− 1) + ε2(j− 1))).

Examples 4.4.5. For example, in super-QCD, we obtain

Z =
∑
s

qks

N∏
α=1

2N∏
f=1

∏
(i,j)∈λ(α)

(mf − aα − ε1(i− 1) − ε2(j− 1))

N∏
α,β=1

∏
λ(β)

(aα − aβ − ε1ℓ
(β)
□ + ε2(1 + a

(α)
□ ))

∏
□∈λ(α)

(aα − aβ + ε1(ℓ
(α)
□ + 1) − ε2a

(β)
□ )

.

1The aα are called “colors” in physics. For example, there are six flavors and three colors of quarks in the Standard
Model.



50

This series has a finite radius of convergence and is well-defined for |q| < 1. It also admits a
non-trivial analytic continuation.

In the N = 2∗ theory, we obtain

Z =
∑
s

qks

N∏
α,β=1

∏
□∈λ(α)

ε1(a
(α)
□ + 1) − ε2ℓ

(β)
□ +m

ε1(a
(α)
□ + 1) − ε2ℓ

β
□

∏
□∈λ(β)

−ε1a
(β)
□ + ε2(ℓ

α
□ + 1) +m

−ε1a
(β)
□ + ε2(ℓ

(α)
□ + 1)

.

Remark 4.4.6. We should view q as lying on M0,4, and the points 0, 1,∞ become places where the
curve degenerates.

Instead of the tautological bundle, we may also consider the tautological complex

C = K→ K⊗ C2 ⊕ CN → K⊗Λ2C2,

which defines some K-theory class. Here, we set K to live in degree −1. For any K-theory class

E = [E0 − E1],

we may define its total Chern class by

c(x,E) :=
c(x,E0)

c(x,E1)
.

Definition 4.4.7. The Y(x)-observable is defined by

c(x,C∗) = c(x,N∗)
c(x− ε1,K∗)c(x− ε2,K∗)

c(x,K∗)c(x− ε1 − ε2,K∗)

=

N∏
α=1

(x− aα)
c(x+ ε1,K∗)c(x+ ε2,K∗)

c(x,K∗)c(x+ ε1 + ε2,K∗)
.

We may evaluate it at a general fixed point to obtain

Y(x)|s =

N∏
α=1

(x− aα)
∏

(i,j)∈λ(α)

(x− aα − ε1i− ε2(j− 1))(x− aα − ε1(i− 1) − ε2j)

(x− aα − ε1(i− 1) − ε2(j− 1))(x− aα − ε1i− ε2j)


=

N∏
α=1

∏
∂+λ(x− aα − c□)∏

■∈∂−λ(x− aα − c■ − ε1 − ε2)
,

where c□ = ε1(i− 1) + ε2(j− 1). We can then compute the expected value

⟨Y(x)⟩ = 1
Z

∞∑
k=0

qk
∫
Mk(N)

Y(x)Ξk,

which is a meromorphic function of x with poles at

x = aα + ε1(i− 1) + ε2(j− 1),

where (i, j) lie in a finite set with cardinality at most k at order qk and satisfy 1 ⩽ i, j ⩽ k.
Recall the gamma function

Γ(z) =

∫∞
0

dt
t
tze−t,
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which is defined for Re z > 0 and has an analytic continuation which is meromorphic with first
order poles at the nonpositive integers. We will need the generalization

Γ2(z, ε1, ε2).

Before this, recall that zΓ(z) = Γ(z+ 1) and Γ(1) = 1. Similarly, if we set

Γ1(z, ε) = ε
z
ε Γ
(z
ε

)
,

this satisfies the functional equation

Γ1(z+ ε, ε) = zΓ1(z, ε).

The Barnes 2-gamma function will be defined the functional equation

Γ2(z+ ε1, ε1, ε2)Γ2(z+ ε2, ε1, ε2)

Γ2(z, ε1, ε2)Γ2(z+ ε1 + ε2, ε1, ε2)
= z.

Definition 4.4.8. The fundamental qq-character for A1-theory is defined by

χ(x) := Y(x+ ε1 + ε2) + qP(x)Y(x)
−1,

where

P(x) =

2N∏
f=1

(x−mf).

Definition 4.4.9. The A1 qq-character is defined by the formula

χω1,...,ωw(x) :=
∑

I⊔J={1,...,w}

q♯J
∏
i∈I

Y(x+ωi + ε1 + ε2)
∏
j∈J

P(x+ωj)

Y(x+ωj)

∏
i∈I
j∈J

S(ωiωj),

where

S(x) =
(x+ ε1)(x+ ε2)

x(x+ ε1 + ε2)
.

Remark 4.4.10. This is the beginning of quantum field theory, where we should think about this as
an operator product corresponding to

χ(x+ω1) · · ·χ(x+ωw)

when we make the ωi collide.

Theorem 4.4.11. The expected value 〈
χω1,...,ωw(x)

〉
is an entire function of x.

Sketch of proof for fundamental qq-character. We need to check pole cancellation for the expression

⟨Y⟩ (x+ ε1 + ε2) + qP(x)
〈
Y(x)−1

〉
.

Note that x is a pole if there exists α ∈ {1, . . . ,N} and p,q ∈ Z>0 such that

x = aα + ε1(p− 1) + ε2(q− 1)
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and (p,q) ∈ ∂−λ(α). Therefore, we have

Res ⟨Y(x+ ε1 + ε2)⟩ =
∑

s=(λ(1),...,λ(N))

(p,q)∈∂−λ(α)

µs Res Y(x+ ε1 + ε2).

Considering the other term, we need to compute the residue∑
s

µsqP(aα + ε1(p− 1) + ε2(q− 1))Res
1

Y(x)|s
.

The poles of this expression require (p,q) ∈ ∂+λ(α). All of the combinatorics works out, so it
remains to check that the measures work out, or more precisely that

µ
(λ(1),...λ̃(α),...,λ(N))

Resx=aα+c■
■∈∂−λ̃(α)

= qP(aα + c□)µ(λ(1),...,λ(α),...,λ(N)) Resx=aα+c□

1
Y(x)

.
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