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Schemes

1.1 Affine Schemes

Let R be a commutative ring. We will define the scheme SpecR as a set, a topological space, and
finally as a locally ringed space. Our goal is for R to be the ring of functions on SpecR.

Definition 1.1.1. We will define the set SpecR to be the set of prime ideals P ⊂ R. Here, note that
R is not a prime ideal and that (0) is prime if R is a domain.

Example 1.1.2. If R = Z, then Spec Z is the set of prime numbers together with 0. If R = k is a
field, then Speck = {(0)}. If R = k[t], then SpecR is the set of irreducible polynomials.

We will place the Zariski topology on SpecR by declaring the closed sets to be V(S) = {p | p ⊃ S}
for any subset S ⊂ R. Some easy properties of V(S) are:

1. If S ⊂ T , then V(S) ⊃ V(T).

2. If a = (S) ⊆ R, then V(S) = V(a).

3. V(S) = ∅ if and only if 1 ∈ (S) and V((0)) = V({0}) = SpecR.

4. Given an ideal a ⊂ R, we have V(a) = V(
√
a).

5. We verify that this forms a topology:

• First, V(
⋃
α Sα) =

⋂
α V(Sα).

• Second, V(a · a ′) = V(a∩ a ′) = V(a)∪ V(a ′).

Proof of all of these is a simple exercise. If R is considered as the set of functions on SpecR,
then for f ∈ R and x = p ∈ SpecR, we need to define f(x). For this, we consider the field of
fractions k(x) = k(p) of R/p. This is called the residue field.

Example 1.1.3. If R = Z and x = (p) for p 6= 0, then k(p) = Z/pZ. If x = (0), then we see that
k(0) = Q.

Now we define f(x) to be the image of f under the map R → R/p → K(R/p) = k(x). Then
clearly {x | f(x) = 0} is the closed subset V(f).

Definition 1.1.4. Given X = SpecR and f ∈ R, we define Xf = X \ V(f) = SpecR[1/f]. These are
called the principal (or distinguished) open subsets.
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Lemma 1.1.5. Principal open subsets form a basis for the Zariski topology and are closed under finite
intersections.

Proof. If U is open, then we can write U = SpecR \ V(S) = V
(∑

f∈S(f)
)

=
⋂
f∈S V(f) =⋃

f∈S SpecR \ V(f), as desired. The proof that principal open subsets are closed under finite
intersection is clear.

Lemma 1.1.6. Let g, fi ∈ R. Then Xg ⊆ Xfi if and only if V(g) ⊃ V(a) = V(
√
a), where a =

∑
(fi).

Proof. We know Xg ⊆
⋃
Xfi if and only if V(g) ⊇

⋂
V(fi), which is equivalent to the right hand

side.

Corollary 1.1.7. If g = 1, then X =
⋃
Xfi if and only if 1 ∈

∑
(fi). In particular, because 1 =

∑
aifi is

a finite sum, and therefore X is a finite union of some of the Xfi . This implies that SpecR is a quasi-compact
topological space.

Definition 1.1.8. Let Y ⊆ SpecR = X. Then define

I(Y) = {f ∈ R | f(x) = 0 for all y ∈ Y}
= {f ∈ R | f ∈ p for all p ∈ Y}

=
⋂
p∈Y

p.

Proposition 1.1.9. 1. For all ideals a ⊂ R, we have I(V(a)) =
√
a.

2. V and I define inverse bijections

{radical ideals} V ,I←−→ {closed subsets of SpecR}.

3. If Y ⊂ SpecR is a subset, then V(I(Y)) = Y, the Zariski closure of Y.

Proof. 1. If f ∈ I(V(a)), then f ∈ p for all p ⊇ a and thus f ∈
√
a.

2. This is left as an exercise.

3. Note that V(b) ⊃ Y if and only if b ⊆
⋂

p∈Y = I(Y).

In particular, we see that in general SpecR has points that are not closed.

1.1.1 A Bit About Classical Varieties Let k be an algebraically closed field and R =
k[t1, . . . , tn].

Definition 1.1.10. A closed algebraic subset of kn (or An(k)) is the common set of zeros V(f1, . . . , fm)
of a finite set of polynomials f1, . . . , fm. Here, all of the same properties of these vanishing sets
from SpecR hold.

Now recall the Nullstellensatz from commutative algebra, which says that if k is a field and B
a finite k-algebra, then B is a field and a finite extension of k.

Corollary 1.1.11. All maximal ideas of k[t1, . . . , tn] are m = (t1 − x1, . . . , tn − xn) for xi ∈ k.

Corollary 1.1.12. There is a bijection between radical ideals of k[t1, . . . , tn] and closed algebraic subsets of
kn given by V and I.
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1.1.2 Back to Affine Schemes

Examples 1.1.13. If R is a PID, then we can write 0 6= f =
∏r
i=1 p

ni
i and therefore the closed

subsets of SpecR are either SpecR or a finite union of closed points. If R is also a local ring, then
SpecR = {(0),m}. If a ⊂ A and consider R = A/a. Then SpecA/a = V(a). If f 6= 0 is not nilpotent,
then SpecRf is the set of prime ideals not containing f, which is (SpecR)f.

Suppose p ∈ SpecR. Then we know that p = V(p) ∼= SpecR/p. This tells us that x ∈ SpecR is a
closed point if and only if it corresponds to a maximal ideal.

Remark 1.1.14. Note that if k is not algebraically closed, kn is different from Speck[t1, . . . , tn].

Example 1.1.15. Let R be a domain. Then we see that (0) ∈ SpecR is a generic point (it is dense).
We will see that it is the unique generic point.

Definition 1.1.16. Let X be a topological space. A closed subset Z ⊆ X is called irreducible if it is
not the union of two proper closed subsets.

Proposition 1.1.17. A closed subset Y ⊆ SpecR is irreducible if and only if I(Y) is prime. Moreover, any
closed irreducible subset has a unique generic point.

Proof. Let Y = V(a) and suppose a =
√
a = I(Y). Then if a = p then p = Y and thus Y is irreducible.

In the other hand, if fg ∈ I(Y), then fg(x) = 0 for all x ∈ Y, and this means either f(x) = 0
or g(x) = 0. This implies that f ∈ p for all p ∈ Y or g ∈ p for all p ∈ Y. Then we can write
Y = (V(f) ∩ Y) ∪ (V(g) ∩ Y) and by irreducibility, we see that Y = V(f) ∩ Y, which implies that
f ∈ I(Y).

To prove the uniqueness of the generic point, we see that if there is more than one, then their
closures are the same, so they contain each other and thus must be the same. For the existence of
the generic point, we know Y = V(p) for a prime ideal p and thus p is the generic point.

Notation 1.1.18. For an irreducible closed subset Y ⊆ SpecR we will denote by ηY the generic
point of Y.

Now recall that a ring R is Noetherian if it satisfies the ascending chain condition of ideals.

Definition 1.1.19. A topological space X is called Noetherian if any of the following conditions
hold:

• Closed subsets satisfy the descending chain condition.

• Open subsets satisfy the ascending chain condition.

• Every open subset is quasi-compact.

Lemma 1.1.20. A ring R is Noetherian if and only if SpecR is Noetherian, and this implies that all open
subsets of SpecR are quasi-compact.

1.1.3 The Structure Sheaf Let X be a topological space and C be a category.

Definition 1.1.21. A presheaf on X is a functor from the opposite category of the poset category of
open sets to C.
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Definition 1.1.22. A presheaf F on X is called a sheaf if for every open subset U ⊆ X and for all
open coverings {Ui} the sequence

F(U)→
∏

F(Ui)⇒
∏

F(Ui ∩Uj)

given by

s 7→ (si) =

(
s

∣∣∣∣
Ui

)
7→ si

∣∣∣∣
Ui∩Uj

7→ sj

∣∣∣∣
Ui∩Uj

is exact. Of course, if C = Ab, then the second arrow can be replaced by (si) 7→ si
∣∣
Ui∩Uj

−

sj
∣∣
Ui∩Uj

. What this means is that given two sections s, s ′ ∈ F(U) that agree on the restrictions,

they s = s ′. Also, if there exist si ∈ F(Ui) such that si
∣∣
Ui∩Uj

= sj
∣∣
Ui∩Uj

then there exists
s ∈ F(U) that globalizes the si.

Now suppose B = {Ui} is a basis of open sets of X. Given F(Ui) for all Ui ∈ B, we need to
check when this defines a (pre)sheaf. Here, on an arbitrary open set V , we will simply define

F(V) = lim←−
V⊃U∈B

F(U).

To check when this presheaf is actually a sheaf, then we only need to check the gluing condition
for U, {Ui} ∈ B.

Now we will define the structure sheaf on X = SpecR. Here, we write OX(Xf) = Rf and
OX(Xg)→ OX(Xf) be given by choosing n such that fn = ag and then writing b

fk
7→ akb

fnk
. Now

we need to check the two gluing conditions. The second is left as an exercise, so we will check the
first.

If b
fk
7→ 0 for all i, then there exist mi such that fmii · b = 0 in R. But then because Xf is

quasi-compact, we can assume the cover is finite and choose n = maxmi. But then because
Xf =

⋃
Xfi , we can write 1 =

∑
aif

n
i and this implies b =

∑
aif

n
i b = 0.

The sheaf OX that we have defined is called the structure sheaf of X.

Definition 1.1.23. The pair (X,OX) is called an affine scheme.

Example 1.1.24. For a field k, the space Speck is a point, but OX is different for different fields.

Example 1.1.25. If X = SpecD for D a DVR with uniformizer t, then Xt = {0}, we see that
OX(Xt) = Dt = K(D).

Proposition 1.1.26. Let X = SpecR.

1. The stalks of OX at p = x ∈ X are given by OX,x = Rp.

2. For any U ⊆ X open, we define OX(U) to be the the set of sp ∈
∏

p∈U Rp such that whenever
U =

⋃
Xfi , there exist si ∈ OX(Xfi) mapping to sp whenever p ∈ Xfi .

Proof. First, the stalk Fx = limU3x F(U) and thus the stalk of the structure sheaf is easily computed
to be the localization. For the second part, we note that

OX(U) = lim←−
Xf⊆U

Rf −→
∏
p∈U

Fp.
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Remark 1.1.27. The same method used to construct OX can be used to associate a sheaf for every
R-module M. Here, we will define M̃(Xf) =Mf =M⊗R Rf. Here, M̃ is a sheaf of OX-modules.
This means that for all U ⊆ X, M̃(U) is an OX(U)-module and the diagram

M̃(U)×OX(U) M̃(U)

M̃(V)×OX(V) M̃(V)

commutes whenever V ⊆ U.

Proposition 1.1.28. HomR(M,N) ' HomOX(M̃, Ñ).

Proof. LetM ϕ−→ N be a map of R-modules. Now on Xf, we have a mapMf
ϕf−−→ Nf by functoriality

of localization, and then we can take limits to get a map on every open set.
In the other direction, let f : M̃ → Ñ be a map of sheaves. Then we simply apply the global

sections functor to obtain a map M→ N. Checking that the two maps defined are inverses is easy
and uses naturality of localiation.

1.2 General Schemes

Definition 1.2.1. A scheme is a locally ringed space (X,OX) such that there exists an open cover

{Ui} of X such that
(
Ui, OX

∣∣
Ui

)
is an affine scheme.

Lemma 1.2.2. Let R be a ring and X = SpecR. Then for any f ∈ R, the schemes
(
Xf, OX

∣∣
Xf

)
, (SpecRf,OSpecRf)

are isomorphic.

Proof. We check that the structure sheaves agree on principal open subsets.

Proposition 1.2.3. Let (X,OX) be a scheme. Then for any open subset U ⊆ X, the pair
(
U, OX

∣∣
U

)
is also

a scheme.

Proof. We need to show there exists an open affine covering of U. It suffices to check for X an
affine scheme, but then U is covered by principal open subsets.

1.2.1 Morphisms of Schemes We will now define morphisms of schemes. Here, this will
be a map of topological spaces that is compatible with the structure sheaves. From this, we will
obtain a locally ringed space. In the category of topological spaces, smooth manifolds, or complex
manifolds, then f : X→ Y is a regular function if and only if the pullback of regular functions is
regular. This tells us that we have a morphism of sheaves OY → f∗OX. In other words, we obtain
a morphism OY(V)→ OX(f

−1(V)) for any open V ⊆ Y.

Definition 1.2.4. A morphism f : (X,OX)→ (Y,OY) of schemes is the data of a continuous map
f : X → Y and a morphism of sheaves OY → f∗OX such that for every point y ∈ Y, the map
OY,y → (f∗OX)y → OX,x is a morphism of local rings. What this means is that the maximal ideal
of OY,y is sent to the maximal ideal of OX,x. In particular, we obtain an extension k(y) ↪→ k(x).

Theorem 1.2.5. Let X be a scheme and R a ring.
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1. The assigment f : X→ SpecR 7→ Γ(f∗) : R→ Γ(X,OX) determines a bijection

HomSch(X, SpecR) = HomCRing(R, Γ(X,OX)).

2. In particular, when X = SpecB this determines an anti-equivalence between the category of affine
schemes and the category of commutative rings

HomSch(SpecB, SpecR) = HomCRing(R,B).

Proof. First we will show that this assignment is injective. First, we will show that f is determined
(set-theoretically) by Γ(f∗) and then we will show that f∗ : OY → f∗OX is determined by this.

First, for x ∈ X, we recall that I(f(x)) = {h ∈ R | f(h(x)) = 0} = (f∗x)
−1mx and this gives us a

prime ideal in R. To find the morphism of sheaves, we will simply consider principal open subsets
SpecRh. Here, we have ring maps

R Γ(X,OX)

Rh Γ(f−1(Yh),OX)

and thus this is uniquely determined.
Now given a map R→ Γ(X,OX), we want to construct a map of schemes. First, we will reduce

to the affine case and then prove the theorem in the affine case. Cover X =
⋃
Uα by affines

Uα = SpecAα. Then given R → Γ(OX) → Γ(Uα,OX) = Aα, we will prove the reduction to the

affine case. For maps R ϕα−−→ we obtain maps SpecAα
fα−→ SpecR, so we want to show that these

glue. It suffices to show that the diagram

R Γ(Uα,OX)

Γ(Uα,OX) Γ(Uα ∩Uβ,OX)

Γ(f∗α)

ϕβ

commutes, which is obvious becayse these maps are all induced by R→ Γ(X,OX)→ Γ(U,OX).
Now given ϕ : A → B, we will construct a map f : SpecB → SpecA. This is given by

p 7→ ϕ−1(p). This is continuous because

f−1(V(a)) = f−1{q ⊇ a}

=
{
p ⊆ B | ϕ−1(p) ⊇ a

}
= {p ⊇ ϕ(a) ·B}
= V(ϕ(a) ·B).

Then we regard B as an A-module via ϕ : A→ B, so B̃ = f∗OX and we simply choose the map of
sheaves to be the map of sheaves Ã = OX → B̃ we defined previously.

Corollary 1.2.6. Spec Z is the terminal object in the category of schemes. This means that every scheme X
has a unique morphism X→ Spec Z.

Proof. Maps X → Spec Z are determined by maps of rings Z → Γ(X,OX), and clearly there is a
unique such map of rings.
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Remark 1.2.7. There is an important variant. Let S be a scheme. Then a scheme X/S is a scheme X
together with a morphism X→ S. If S = SpecR, then we can also write X/R. Of course, we can
define the category of schemes over S, and the terminal object is S.

Proposition 1.2.8. Let X be a scheme and x ∈ X. Then

1. There exists a canonical morphism SpecOX,x
ix−→ X.

2. Let X be a local domain. Then any morphism SpecR→ X that sends 0 7→ x factors uniquely via ix.

Proof. Let p = x ∈ U ⊆∈ X and U = SpecA. Then we have a map A → Ap and clearly in the
category of schemes, we have a commutative diagram

SpecAp SpecA

SpecOX,x X.

=

Of course, we should check that this is independent of the choice of open affine.
For the second part, we have a map OX = j∗OSpecR, which is a map OX,x → OSpecR,m = Rm = R.

The other part of this is an exercise.

Corollary 1.2.9. Let k(x) be the residue field of x. Then there exists a map SpecK→ X given by 0 7→ x if
and only if k(x) ↪→ K.

Remark 1.2.10. The set HomSch(Speck[ε]/ε2, (X, x)) is in bijection with the Zariski tangent space.

Now we will consider some examples. First, let X = SpecA and let a ⊆ A. Then Z =
SpecA/a → SpecA is a homeomorphism onto V(a), and the map A → A/a corresponds to
OX → i∗OZ.

Next, we can consider the ideal an. Here, we note that V(a) = V(an), but the structure sheaves
differ and so we can view SpecA/am → SpecA/am+1 as a closed subscheme.

1.2.2 Gluing Schemes Suppose we are given the following data:

• A set I.

• For i ∈ I, a scheme Ui.

• For all i, j ∈ I an open subset Uij ⊆ Ui

with compatibility conditions in the form of isomorphisms ϕij : Uij → Uij with ϕii = id. We will
also have triple compatibility conditions (cocycle condition).

Proposition 1.2.11. Given the data above, there exists a scheme X and morphisms Ui
ψi−−→ X that

are isomorphisms onto open subsets of X such that ψi(Uij) = ψi(Ui) ∩ψj(Uj) = ψj(Uji) and X =⋃
ψi(Ui).

Example 1.2.12. Let R be a ring. Then we will denote by An
R := SpecR[t1, . . . , tn]. Here, we will

take U1 = A1
R ⊃ U12 = A1

R \ {0} = U21 ⊆ U2 = A1
R and ϕ12 = id. The scheme X = U1 ∪U2 is

known as the affine line with double origin.
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Example 1.2.13. Let R be a ring. Then consider Ui := SpecR
[
x0
xi

, . . . , x̂ixi , . . . , xnxi

]
and Uij ={

xj
xi
6= 0
}
⊆ Uji. Then the scheme is X = PnR .

Definition 1.2.14. Let C be a category and S ∈ C with morphisms X f−→ S, Y
g−→ S. Then the fiber

product Z = X×S Y is the limit of the diagram X
f−→ S

g←− Y.

Remark 1.2.15. If C = Set, then we can write Z = {(x,y) ∈ X× Y | f(x) = g(y)}.

Theorem 1.2.16. Fiber products exist in the category of schemes.

Lemma 1.2.17. If X, Y,S are affine, then X×S Y exists.

Proof. Write X = SpecA, Y = SpecB,S = SpecC. Then A⊗C B is the pushout of A← C→ B, and
then we use the fact that affine schemes are opposite to commutative rings. Now we need to prove
that the universal property holds for all schemes. But this simply reduces to the case of affine
schemes by the next exercise.

Exercise 1.2.18. For all schemes T , there exists an affine scheme Aff(T) that is universal with
respect to morphisms T → SpecA.

Proof of Theorem. First, we note that if U ⊆ X, then if X×S Y exists, then for the map p : X×Y S,
the preimage p−1(U) is the fiber product U×S Y. On the other hand, if X =

⋃
Ui and Ui ×S Y

exist for all i, then X×S Y exists. To see this, we simply use gluing.
Next, suppose S = SpecC, Y = SpecB are affine. Then if X =

⋃
Ui is a cover by open affines

then Ui ×S Y exist for all i, so X×S Y exists. Third, we cover Y =
⋃
Vi by open affines and then

we now have X×S Y for general X, Y.
Finally, we cover S =

⋃
Wi by open affines. Then if we consider Xi = f−1(Wi), Yi = g−1(Wi),

the fiber products Xi ×Wi
Yi = Xi ×S Yi exist, so by gluing twice, we obtain the fiber product

X×S Y.

Remark 1.2.19. X×S Y has an affine open cover by open subsets of the form SpecA⊗C B.

Example 1.2.20. We have an identification An
R = An

Z ×SpecZ SpecR. Similarly, we have An+m
R =

An
R ×SpecR Am

R .

Definition 1.2.21. Let X,S ′ be schemes over S. Then the fiber product X×S S ′ → S ′ is called the
base change of X/S to S ′.

Example 1.2.22. Suppose k ⊂ K is a field extension and X/k is a k-scheme. Then XK = X×Speck
SpecK is a K-scheme.

Fiber products allow us to consider the notion of the preimage of a closed subset. For s ∈ S
and morphism X → S, then the fiber product X×S Speck(s) → Speck(s) is the fiber of X → S
over s.

Example 1.2.23. Consider a closed subscheme SpecA/a = Z ↪→ S = SpecA. Then we may consider
f−1(Z) = X×S Z for some X→ S. We may also consider the intersection of two closed subschemes
Z = SpecA/a,W = SpecA/a ′, which is simply the fiber product Z×SW = SpecA/(a + a ′).

Example 1.2.24. Let k = k and chark 6= 2 and consider the morphism SpecK[x,y, t]/(x2 − yt) =
X → S = Speck[t]. So now for s = (t− a) ∈ Speck[t], we see that Xs = Speck[x,y]/(x2 = ay),
and in particular X0 = Speck[x,y]/x2 is non-reduced.

On the other hand, if we consider X→ Speck[x], we see that X0 is the union of two copies of
A1 intersecting at a point.
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1.3 Quasicoherent Sheaves and Relative Spec

We will relativize the construction of SpecR from a ring R. To do this, we will replace R with a
sheaf of OX-algebras. Recall that if X = SpecR and M is an R-module, then the B-sheaf Xf 7→Mf

defines a sheaf M̃ on X. Then we know that for two R-modules M,N,

HomR−mod(M,N) = HomOX(M̃, Ñ).

This gives us a fully faithful exact functor (̃·) from R-modules to OX-modules.

Theorem 1.3.1. The functor M 7→ M̃ commutes with kernels and cokernels. In particular, it is exact.

Proof. Recall that localization is exact. This implies that if K is the kernel of M→ N, then K̃ is the
kernel of M̃→ Ñ. Next, for the cokernel of M→ N, we note that C̃ and coker(M̃→ Ñ) are both
sheaves extending the same presheaf.

Definition 1.3.2. A R-module M is called finitely presented if there is an exact sequence Rp →
Rq →M→ 0 for p,q > 0.

Proposition 1.3.3.

1. If M is finitely presented, then HomOX(M̃, Ñ) = ˜HomR(M,N).

2. The functor (̃·) commutes with arbitrary direct sums.

Definition 1.3.4. Let X be a scheme. Then a sheaf F of OX-modules is called quasi-coherent if for
all x ∈ X there exists U ⊆ X and an exact sequence

OJX

∣∣∣∣
U

→ OIX

∣∣∣∣
U

→ F

∣∣∣∣
U

→ 0.

Proposition 1.3.5. Let X be a scheme and F and OX-module. Then the following are equivalent:

1. F is quasicoherent;

2. For all affine open U ⊆ X, F
∣∣
U

= M̃ for some OX(U)-module M

3. there exists an affine open cover {Uα} such that F
∣∣
Uα

= M̃α for some OX(Uα)-module Mα.

Proof. Clearly we see that 2 implies 3, so we show that 3 implies 2. Let U ⊆ X be an open affine.
Now we apply the exercise below to get a covering {Ui} such that Ui ⊆ U and Ui ⊆ Uα is
principal in both U,Uα. Therefore F

∣∣
Ui

= Ñi for some OX(Ui)-module Ni. Now if we write

U = SpecR and Ui = SpecRi, we see that if ji : Ui ↪→ U, then (ji)∗F
∣∣
Ui

= Ñi.
Next, the sequence

F →
∏

(ji)∗

(
F

∣∣∣∣
Ui

)
→
∏

(ji)∗

(
F

∣∣∣∣
Ui∩Uj

)
is exact by the sheaf axioms, so we are done because this is really an exact sequence

F →
∏

Ñi →
∏

Ñij.

The implications 3 implies 1 and 1 implies 2 are trivial.
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Exercise 1.3.6. Let X be a scheme, x ∈ X, and x ∈ U,V open subsets. Then there exists an open
x ∈W ⊆ U∩ V such that W is principal in both U and V .

Example 1.3.7. We will consider quasicoherent sheaves on SpecR for R a discrete valuation ring.
Then a sheaf on X = SpecR is a map F(X)

res−−→ F(X \ {0}). Now recall that F is quasicoherent if
and only if it comes from an R-module M, so we see that F(X) =M and F(X \ {0}) is M⊗K.

Remark 1.3.8. Let f : X→ Y be a morphism of schemes. Then f∗OX is a OY-algebra.

Exercise 1.3.9. If X is Noetherian or f is quasicompact and F is quasicoherent, then f∗F is
quasicoherent.

Example 1.3.10. If f : SpecA→ SpecB is a morphism of affine schemes, then f∗M̃ = M̃B and is
thus quasicoherent.

Theorem 1.3.11. Let Y be a scheme and R be a quasicoherent sheaf of OY-algebras. Then there exists a
scheme X = SpecOY R

π−→ Y such that π∗OX = R and for any f : Z → Y and morphism α : R → f∗OZ,

there exists a unique g : Z→ X such that R = π∗OX
α−→ π∗g∗OZ = f∗OZ.

Proof. If Y = SpecA, then write R = R̃ and set X = SpecR, and this has a natural morphism to
SpecA.

In general, cover Y =
⋃
Uα by open affines. Then write R

∣∣
Uα

= R̃α for some OY(Uα)-module.
Then set Xα = SpecRα. To construct a transition map between Xα,Xβ, we simply consider the
restriction Rβ = R(Uβ) → Γ(Uα ∩Uβ,R), and this gives a morphism π−1

α (Uα ∩Uβ) → Xβ and
this factors through the π−1

β (Uα ∩Uβ) because the latter is the fiber product of Uα ∩Uβ and Xβ
over Y. The rest is obvious.

Definition 1.3.12. A morphism f : X→ Y of schemes is called affine if for every U ⊆ Y open affine,
the preimage f−1(U) ⊆ X is affine.

Example 1.3.13. The morphism SpecOY R→ Y is affine.

Proposition 1.3.14. The following are equivalent:

1. f : X→ Y is affine.

2. There exists an open covering Y =
⋃
Uα such that f−1(Uα) is affine.

3. f : X→ Y can be written as SpecOY R→ Y.

Proof. The first implication is by definition and 3 implies 1 by the construction, so assume there
exists an open covering Y =

⋃
Uα by affines such that f−1(Uα) is affine. Set R = f∗OX. By

assumption, this is quasicoherent. Therefore there exists a morphism g that makes

X SpecOY R

Y

g

f

commute. But there exists a covering (the preimages of the Uα) where g is an isomorphism, so g
is an isomorphism.
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Theorem 1.3.15. A scheme X is locally noetherian if for all x ∈ X, there exists an affine neithborhood
SpecR 3 x such that R is a Noetherian ring.

If X is locally noetherian and quasicompact, then it is Noetherian.

Proposition 1.3.16. X is locally Noetherian if and only if for any affine open SpecR ⊆ X, R is Noetherian.
Let X =

⋃
SpecRα where each Rα is Noetherian. Then if SpecR ⊆ X is any affine open, we want to show

that R is Noetherian. But here, we can choose V ⊆ SpecR ∩ SpecRα, which is a principal open subset.
Then V = Spec (Rα)gα is Noetherian, so we can cover SpecR =

⋃
SpecRfα by Noetherian schemes. But

then affines are quasicompact, so this becomes a finite cover and thus SpecR is Noetherian.

Proposition 1.3.17 (Affine Communication Lemma). Let P be a property enjoyed by affine schemes.
Suppose that

1. If A has P, then Af also has P for all f ∈ A.

2. If fi ∈ A such that (f1, . . . , fn) = A, then if Afi have P, so does A.

Then for any scheme X, if P holds for one affine open cover, it holds for all affine open covers.

Proof. Let X =
⋃

SpecAi where the Ai have P. Then there exists V ⊆ SpecA∩ SpecAi such that
V is a principal open subset in both.

Definition 1.3.18. A morphism f : X→ Y of schemes is called locally of finite type if there exist an
open affine cover X =

⋃
Uα and open subsets Vα ⊆ Y such that f(Uα = SpecAα) ⊆ Vα = SpecBα

and Aα is a finitely generated Bα-algebra.

Proposition 1.3.19. A morphism f : X → Y is locally of finite type if and only if for every pair of affine
open sets U ⊆ X,V ⊆ Y such that f(U) ⊆ V , OX(U) is a finitely generated OY(V)-algebra.

Proof. If A is a finitely generated B-algebra, then for all f ∈ A, Af = A[1/f] is also a finitely-
generated B-algebra. Next, if Afi are finitely generated B algebras and (f1, . . . , fn = A), we
will show that A is a finitely-generated B-algebra. Suppose the Afi are generated by aij

f
kj
i

and∑
cifi = 1. We will show that the fi, ci,aij generate A as a B-algebra.

Let r ∈ A. Then in Ari , we see that r = pi(aij)

fNi
, so by finiteness, we can assume that there

exists M > 0 such that fN+M
i r = fMi pi(aij) for all i, j. Now we can write

1 =
∑

cifi =
(∑

cifi

)(N+M)
=
∑

Qi(ci, fi)fN+M
i

and therefore
r =
∑

Qi(ci, ci)fN+M
i r =

∑
Qi(ci, fi)fMi pi(aij),

as desired.

Definition 1.3.20. Let X be a scheme and F sheaf of OX-modules is called

1. Locally of finite type if for all x ∈ X, there exists U 3 x and a surjection OnX

∣∣
U
→ F

∣∣
U
→ 0.

2. Locally of finite presentation if for all x ∈ X, there exists U 3 x open and an exact sequence

OmX

∣∣∣∣
U

→ OnX

∣∣∣∣
U

→ F

∣∣∣∣
U

→ 0.
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3. Locally free if for all x ∈ X, there exists U 3 x and an isomorphism OnX

∣∣
U
' F

∣∣
U

.

Remark 1.3.21. If U = SpecA and F = M̃, then F is locally of finite type if and only if M is a
finitely-generated A-module, locally of finite presentation if and only if M is finitely presented,
and locally free if and only if M ' An.

Definition 1.3.22. Let X be a scheme. An OX-module F is called coherent if F is locally of finite
type and for all U open and morphisms OnX

∣∣
U

α−→ F
∣∣
U

, kerα is of finite type.

Example 1.3.23. Let R =
∏
Rn, where Rn = k[x0, . . . , xn]/(x2

0, x0x1, . . . , x0xn) and X = SpecR.
Then OX is not coherent. Indeed, the map OX

x0−→ OX is not of finite type.

Proposition 1.3.24. A scheme X is locally Noetherian if and only if OX is coherent.

Proposition 1.3.25. Let X be locally Noetherian. The following are equivalent for a sheaf F of OX-modules:

1. F is coherent.

2. F is locally of finite presentation.

3. F is quasicoherent and of finite type.

Proof. Suppose F is quasicoherent and finite type. Then let U = SpecA be an open affine. Then
A is Noetherian, so OnX → F corresponds to An → M on U, and this has finitely-generated
kernel.

Proposition 1.3.26. Let X be locally Noetherian. Then kernels and cokernels of maps between coherent
sheaves are coherent. This means that Coh(X) is an abelian category.

Definition 1.3.27. Let F be a quasicoherent sheaf on a scheme X. For every point x ∈ X, the fiber
of F at x is the k(x)-vector space Fx ⊗OX,x k(x) =: F(x). The rank of F at x is dimk(x) F(x) =: r(x).

Example 1.3.28. Let p ∈ X be a closed point. Then suppose i : Spec(k(p))→ X and let F = i∗k(p).
Then F(x) = 0 if and only if x 6= p and F(p) = k(p).

Lemma 1.3.29 (Nakayama). Let X be a scheme and F be a quasicoherent sheaf locally of finite type. If
F(x) = 0 at x ∈ X, then there exists U 3 x open such that F

∣∣
U

= 0.

Proof. Let SpecA = V 3 x be an affine open neighborhood. Then F
∣∣
V

= M̃. But this means that
Fx ⊗OX,x k(x) = 0, so mxFx = 0, and thus Fx = 0.

Now if m1, . . . ,mk are generators of M as an A-module, then we see that mi ∈ F(V) → Fx.
By finiteness, up to restricting v, we can assume that mi ∈ F(V), and therefore mi = 0, so
F
∣∣
V

= 0.

Corollary 1.3.30. This tells us that Supp(F) ⊆ X is closed.

Corollary 1.3.31. Let X be a scheme and F quasicoherent and locally of finite type. Now choose x ∈ X
and let s1, . . . , sk generate F(x) as a k(x)-vector space. Then there exists and open U 3 x and s̃i ∈ F(U)
lifting the si that generate F

∣∣
U

.
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Proof. Clearly, we can lift the sections, so we consider the cokernel of

OnX

∣∣∣∣
U

α−→ FU → coker(α) =: G→ 0.

We show that G(x) = 0. If we localize at x, then we obtain an exact sequence

OnX,x → Fx → Gx → 0,

and then by right-exactness of the tensor product, we have k(x)n → F(x)→ G(x)→ 0. But now
the map k(x)n → F(x) was surjective, so G(x) = 0.

Proposition 1.3.32 (Upper Semicontinuity). Let x ∈ X and F be quasicoherent and locally of finite type.
Then

1. The function rk : X→ Z sending x 7→ rk(F(x)) is upper semicontinuous.

2. If X is connected, reduced, and locally noetherian, then rk(x) ≡ r if and only if F is locally free of
rank r.

Proof.

1. Let p ∈ X and rk(p) =: r. Then there exists U 3 p with a surjection OrX

∣∣
U
� F

∣∣
U

, so
by exactness of localization and right-exactness of tensor product, we obtain a surjection
k(x)r � F(x) for x ∈ U. This tells us that rk(F(x)) 6 r for all x ∈ U.

2. Assume that x 7→ rk(F(x)) ≡ r. Then for x ∈ X, we can choose SpecA = U 3 x, where A is
Noetherian. Then the exact sequence

0→ G→ OrX

∣∣∣∣
U

� F

∣∣∣∣
U

→ 0

corresponds to
0→ N→ Ar →M→ 0.

Now choose p ∈ SpecA such that Ap is a field and for some (a1, . . . ,ar) ∈ N, at least one
ai /∈ p. Because A is Noetherian and X is reduced, there exist finitely many minimal primes,
and now the sequence

0→ Np → Arp →Mp → 0

is exact and because rk(F(p)) = r, we see that Np = 0.

Remark 1.3.33. Passing to fibers does not preserve injections. For example, if we consider a field k,
then the map 0→ OA1

t−→ OA1 → k(0)→ 0 is exact.

Example 1.3.34. Let X = Speck[t]/t2, we can produce nontrivial sheaves with trivial fibers.

Now let X be a locally Noetherian scheme. Then if F,G are coherent, then F ⊗OX G and
Hom(F,G) is coherent. In addition, any operation from multilinear algebra, in particular symmet-
ric and exterior powers, can be performed on coherent sheaves.

Definition 1.3.35. Let X be a scheme and F be a quasicoherent sheaf of finite type. Then F is
called invertible if it is locally free of rank 1.

Example 1.3.36. Let k be a field and consider An. Then for f ∈ k[t1, . . . , tn], the sheaf (̃f) is
invertible.
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The reason these are called invertible is because if F is invertible, then there exists F ′ such that
F⊗OX F ′ ' OX.

Definition 1.3.37. We will denote the set (although we will see this is a group scheme with
operation the tensor product) of isomorphism classes of invertible sheaves on X by PicX.

1.4 Functor of Points

We will begin a discussion of something that will eventually allow us to define moduli problems.

Example 1.4.1. Let R be a ring and I = (f0, . . . , fn) be an ideal. We may consider the closed
subscheme X := SpecR[t1, . . . , tn]/I ↪→An

R . Then we know that

Hom(SpecA,X) = Hom(R[t1, . . . , tn]/I,A) =
{
(a1, . . . ,an) ∈ An | fj(a1, . . . ,an) = 0

}
for any R-algebra A.

This generalizes to general schemes the idea that for A = k = k, then the closed points of X
are the same as morphisms Speck→ X. Can we recover a scheme X from the functor Hom(−,X)?

Let C = Sch/S for a fixed scheme X. Then for any X ∈ C, consider the functor hX : Cop → Set
defined by hX(−) = HomS(−,X).
Remark 1.4.2. We can perform this construction for any category C. For example, we can recover a
group G as a set from Hom(Z,G). Similarly, a smooth manifold can be recovered (as a set) from
Hom(pt,M).

Example 1.4.3. Let X = An
Z. Then

Hom(T , An
Z) = Hom(Z[t1, . . . , tn], Γ(T ,OT )) = Γ(T ,OT )

n.

Example 1.4.4. Let X = SpecR[t, t−1]. Then we see that

X(T) = Hom(R[t, t−1], Γ(T ,OT )) = Γ(T ,OT )
×.

Observe that for any T , X(T) has the structure of a group, and this procedure will define a group
scheme.

Example 1.4.5. Fix a field k, let X/k, and let K/k be a field extension. Then

Xk(K) = {x ∈ X | k(x) ↪→ K}.

When K = k, then X(k) = {x ∈ X | k = k(x)}.

Example 1.4.6. Let X f−→ S be a scheme. Then XS(S) is the set of sections of f. For example, if
A→ B is a family of abelian varieties over an integral scheme, then MW(π) = AB(K(B)). Note
taker: The most elementary example of this is an elliptic surface, for example a K3 surface or a
rational elliptic surface.

Now we want to relate the functor of points to fiber products. By the universal property of the
fiber product, we see that

XS(T)× YS(T) = (X×S Y)S(T).
Now observe that the assignment X 7→ hX = Hom(−,X) is functorial in X! To see this, note that
Hom(−,−) is functorial in both arguments. This gives us a functor

h : C→ Hom(Cop,Set) X 7→ hX.

After all of this discussion, we have the following question.
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Question 1.4.7. How much information is lost about X after passing to hX?

In fact, we lose no information because the functor X 7→ Hom(−,X) is fully faithful.

Lemma 1.4.8 (Yoneda). Let X, Y ∈ C. Then Hom(X, Y) = Hom(hX,hY). In fact, for any functor
F : Cop → Set, we have Hom(hX, F) ' F(X).

Proof. Let Y ∈ C. Then consider the system of natural transformations ηY : hX(Y) → F(Y). In
particular, if Y = X, we have ηX : hX(X)→ F(X), and in particular the element ηX(idX) ∈ F(X).

Now given ξ ∈ F(X). For every Y ∈ C, we need to define ηY : hX(Y) → F(Y). Given f ∈
Hom(Y,X), we have F(f) : F(X)→ F(Y), so we make the assignment f 7→ F(f)(ξ).

Corollary 1.4.9. To give a morphism of schemes X → Y is the same as giving a natural transformation
hX → hY , which is the same as giving compatible maps XS(T)→ YX(T) for all T/S.

Remark 1.4.10. In fact, it is enough to consider a scheme as a functor on affine schemes.

Now another natural question is the following:

Question 1.4.11. Which functors in Hom(Cop,Set) are of the form hX for some X ∈ C?

Functors of this form are called representable.

Proposition 1.4.12. A functor F is representable if and only if there exists X ∈ C and u ∈ F(X) such that
the map

Hom(Z,X)→ F(Z) f 7→ F(f)(u)

is a bijection.

If F is representable, then X,u are unique up to unique isomorphism.

Proof. Consider Z ′
g−→ Z and suppose f ∈ F(f). Then we assign (f ◦ g) 7→ F(f ◦ g)(u), and this will

make the diagram

hX(Z) F(Z)

hX(Z
′) F(Z ′)

commute.

Example 1.4.13. Let X, Y ∈ Sch/S. Then consider F : Z → HomS(Z,X)×HomS(Z, Y). This is
represented by the fiber product X×S Y with the two projections X×S Y ⇒ X, Y.

We will now give examples of presheaves on the category of schemes over a fixed S.

Example 1.4.14. Consider T 7→ Γ(T ,OT )
×. This is represented by SpecOS OS[t, t

−1] =: Gm,S.

Example 1.4.15. The functor T 7→ (Γ(T ,OT ))
n is represented by An

S = SpecOS OS[t1, . . . , tn].

Example 1.4.16. The functor T 7→ GLn(Γ(T ,OT )) is represented by SpecOS OS[tij, det−1].
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Example 1.4.17 (Projective Space). Fix a positive integer n. Define the functor F : Cop → Set by

Z/S 7→
{

exact sequences On+1
Z � L→ 0 | L invertible

}
.

To check that this is a functor, consider Z ′ f−→ Z. Then pullback defines a map F(Z)→ F(Z ′)
(by right-exactness). In fact, F is represented by PnS . The universal object is the line bundle OPn(1).
We will O(1) as follows:

Let Pn =
⋃
Uα where Uα = SpecR[x0/xα, . . . , x̂α/xα, . . . , xn/xα]. We will set

O(1)
∣∣∣∣
Uα

=
˜1

xα
F[x0/xα, . . . , xn/xα] =

1
xα

OUα .

Then we see that multiplication by xβ/xα carries O(1)
∣∣
Uα

to O(1)
∣∣
Uβ

. Now we will study the
global sections. For any homogeneous linear polynomial L(x0, . . . , xn). Then on each open set we
obtain a map of multiplication by L(xi/xα). Gluing is obvious.

Conversely, suppose OUα
sα−−→ OUα(1) are morphisms that glue. Then the sα are rational

functions, and we can show that they must come from a polynomial of degree 1.
Now choose a basis x0, . . . , xn of Γ(Pn,OPn(1)). Then these define a map On+1

Pn → O(1).
Then for any morphism Z → Pn, we may consider On+1

Z = f∗On+1
Pn � f∗O(1). Now given any

On+1
Z

α−→ L, we view α = (s0, . . . , sn). Then surjectivity implies that Z =
⋃
Zi for Zi = {s(x) 6= 0}.

On each Zi, we see that OZi
si−→ L is surjective and is in fact an isomorphism. Now we will define

Zi → Ui
xj

xi
7→
sj

si
.

By construction, these maps glue, and so we obtain a morphism f : Z→ Pn. We can check that
f∗[On+1

Pn � O(1)] = [On+1
Z � L].

Example 1.4.18. If we precompose On+1
Z

g−→ On+1
Z → L for some g ∈ GLn, we transform the map

Z→ Pn by a projective transformation.

Example 1.4.19 (Grassmannian). We can generalize Pn to the functor

F(Z) =
{
On+1
Z � E | E locally free of rank k

}
and obtain the Grassmannian Gr(k,n+ 1).

Example 1.4.20 (Picard Functor). Consider the “Picard functor” T/S 7→ Pic(XT ) for a given X/S.
This functor is not representable. If it was representable, then F(−) = Hom(−,X), but we know
that U ⊆ Z 7→ Hom(U,X) is a sheaf of sets over Z. However, when we apply this to T 7→ PicXT ,
then there are nontrivial line bundles on XT that come from T . If L is an invertible sheaf on T
such that f∗TL 6∼= OXT , then let T =

⋃
Ui be an open cover such that L

∣∣
Ui

= OUi . But then

PicXT →
∏

PicXUi ⇒ · · ·

sends f∗TL 7→
∏

OXOUi

and so this sequence of sets is not exact.

Instead, we consider the relative Picard functor PicX/S, which is defined by

T 7→ PicXT/f∗T Pic T .

With additional assumptions on X/S (for example projective, integral, etc), we can show that this
functor is representable.
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Example 1.4.21 (Hilbert Scheme). Later, we will define the correct notion of a closed subscheme.
Then for a fixed X/S, we consider the functor

T 7→ {closed subschemes Y ⊆ XT flat over T }.

This is called the Hilb functor.

1.5 Properties of Schemes and Morphisms

Recall that if X is a scheme and U ⊆ X is open, then
(
U, OX

∣∣
U

)
is a scheme. We would like a

similar definition for a closed subscheme.

Definition 1.5.1. A morphism j : Y → X is called an open immersion if j is a homeomorphism
onto an open subset U ⊆ X and the sheaf morphism OX → j∗OY induces an isomorphism
OX
∣∣
U
' j∗OY

∣∣
U

.

Example 1.5.2. The maps An
R → PnR onto the standard open subsets are open immersions.

Similarly, if X =
⋃
Ui, then Ui → X is an open immersion.

Definition 1.5.3. Let X be a scheme. Then a closed subscheme if a pair (Z, I) of a closed subset
Z ⊆ X and a sheaf of ideals I ⊆ OX supported on Z such that (Z,OX/I) is a scheme.

Example 1.5.4. Let X = SpecR and I ⊆ R be an ideal. Then if we take I = Ĩ, then (Z,OX/I) is a
scheme isomorphic to SpecR/I.

Remark 1.5.5. Because OX/I is an OX-module of finite type, we know that suppOX/I is closed,
and thus I determines the closed subset Z ⊆ X.

Example 1.5.6. If X is a scheme and I is a quasicoherent sheaf of ideals, then Z = suppOX/I is a
scheme with structure sheaf OX/I.

To see this, note that because I is quasicoherent, then we can consider an open cover
{Ui = SpecAi} such that I

∣∣
Ui

= Ĩi for ideals Ii ⊆ Ai. But then we see that

suppOX/I∩Ui = supp Ãi/Ii = V(Ii) = SpecAi/Ii.

and therefore the support is covered by affine open schemes Z∩Ui.

Example 1.5.7 (Non-example). Let 0 ∈ A1
k be a closed point and let U = A1

k \ {0} ↪→ A1
k be the

open immersion. Now if j : U ↪→ X is open and F is a sheaf on U, then we can define

j!(F)(V) =

{
F(V) V ⊆ U
0 V 6⊆ U.

One can check that this is a sheaf.
Now we see that j!OU → OX is a sheaf of ideals and OX/j!OU is supported at 0. To see

this, note that (j!OU)x = OX,x away from 0 and the stalk vanishes at 0. But now we know that
Z/OX/j!OU is not a scheme because here Z = {0}. If Z were a scheme, then Z would be affine, but
Γ(Z,OX/j!OU) = k[t](t) is not a field.

The problem in the previous example is that j!OU is not quasi-coherent!

Proposition 1.5.8. Let I ⊆ OX be a sheaf of ideals and Z = suppOX/I. If (Z,OZ) is a closed subscheme,
then I is a quasicoherent sheaf of ideals.



20

Corollary 1.5.9. Any closed subscheme of an affine subscheme is affine.

Remark 1.5.10. Using the fact that quasicoherent sheaves form an abelian category, we see that
I ⊆ OX is quasicoherent if and only if OX/I is quasicoherent.

Proof of Proposition. If U ⊆ X \ Z, then there is nothing to check. If x ∈ Z, then we pass to open
affines x ∈ U ⊆ X.

Definition 1.5.11. A morphism f : Z→ X of schemes is a closed immersion if

1. f is injective and a homeomorphism onto a closed subset of X.

2. The map OX → f∗OZ is surjective.

By definition, we have a bijection

{closed subschemes Z ⊆ X}←→ {closed immersions f : Z→ X}.

Proposition 1.5.12. Let i : Z→ X be a closed immersion. For any U ⊆ X open affine such that U∩Z 6= ∅,
the set i∗(U) = Z∩U is an open affine subset of Z.

Proof. Fix x ∈ Z and let x ∈ U1 ⊆ X be open affine. Then let x ∈ V1 ⊆ Z ∩U be open affine.
Now Z ⊆ V1 is a closed subset of Z (and of U1) and is disjoint from x ∈ Z. Now there exists
α ∈ Γ(U1,OU1) that vanishes on Z \ V1 but not on x.1 But now (U1)α =: U is open affine, and
therefore U∩Z = (U1)α ∩Z = (V1)α.

This means that if U = SpecR, then i : U ∩ Z ↪→ U is a map SpecS → SpecR, and thus

(Z,OZ)
∣∣
V

= (SpecS, S̃). This implies that i∗OZ = S̃. Therefore kerOX → OZ = Ĩ = ˜ker(R→ S) is
quasicoherent and therefore we have proved the bijection between closed subschemes and closed
subschemes.

Corollary 1.5.13. The map f : Z → X is a closed immersion if and only if there exists an affine open
covering {Ui} of X such that f−1(Ui) is affine and Γ(Ui,OUi)→ Γ(f−1(Ui),Of−1(Ui)

) is surjective.

Of course, given a closed subset Z ⊆ X, there may be many different quasicoherent sheaves of
ideals that give Z different scheme structures.

Example 1.5.14. Consider 0 ∈A1
k. Then the possible closed subschemes supported at 0 are given

by Speck[x]/x2 corresponding to ideals (x) ⊇ (t2) ⊇ · · · ⊇ (tn) ⊇ · · · . Note that these Artinian
rings are relevant in deformation theory.

Definition 1.5.15. 1. Let X be a scheme. Then a subscheme of X is a pair (Y,OY) such that Y ⊆ X
is locally closed and if U ⊆ X is the largest open subset of X such that Y ⊆ U is closed, then
Y ⊆ U is a closed subscheme.

2. An immersion f : Y → X is a homeomorphism onto a locally closed subset such that for all
y ∈ Y, the map OX,f(y) → OY,y is surjective.

1Giulia said something about GIT here. I will shamelessly plug the GIT seminar at http://www.math.columbia.edu/
~plei/f20-GIT.html

http://www.math.columbia.edu/~plei/f20-GIT.html
http://www.math.columbia.edu/~plei/f20-GIT.html
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Now we may consider the image of a morphism of schemes. For example, we may have
closed immersions (here, f(Z) is a closed subscheme) and open immersions (here f(Y) is an open
subscheme).

Consider the map A2
k → A2

k given by (x,y) 7→ (x, xy). Then the image of f is not locally
closed, but it is a constructible set. Recall that if X is a topological space, then a constructible set
S ⊆ X is a finite union of locally closed subsets.

Example 1.5.16. Consider A1
k and let K = k(t). Then we have the inclusion of the generic point

SpecK→A1
K.

Definition 1.5.17. Let X, Y be integral schemes. Then a morphism f : X→ Y is called dominant if
f(X) ⊆ Y is dense.

Example 1.5.18. The morphism SpecK→A1
k is dominant. If U ⊆ Y is open, then the inclusion is

dominant. Any surjective morphism is dominant. The map {xy = 1} ⊂A2
k →A1 is dominant.

Exercise 1.5.19. Let f : X→ Y is dominant if and only if f(ηX) = ηY .

Example 1.5.20. If A,B are domains, then SpecA→ SpecB is dominant if and only if B→ A is
injective.

Now if f : X→ Y is dominant, how bad can f(X) ⊆ Y be? When does it contain an open subset?

Theorem 1.5.21 (Chevalley). Let f : X→ Y be a morphism of finite type and Y be Noetherian. Then for
any constructible set S ⊆ X, f(S) ⊆ Y is constructible.

Definition 1.5.22. A morphism f : X → Y is of finite type if it is locally of finite type and quasi-
compact.

Corollary 1.5.23. If f : X→ Y is of finite type, Y is Noetherian, and f is dominant, then f(X) ⊆ Y contains
an open subset.

Example 1.5.24. If X is a Noetherian topological space, then C ⊆ X is constructble if and only if
for all closed irreducible Z ⊆ X, Z∩C contains an open subset of Z or Z∩C ( Z.

Corollary 1.5.25. If f is as above and dominant and X, Y are integral, then f(X) ⊇ U for some open subset
U ⊆ Y.

Proof of Chevalley. Because f is of finite type and Y is Noetherian, there exists a finite cover
X =

⋃
SpecAij and Y =

⋃
SpecBi, where f(SpecAij) ⊆ SpecBi. Then we know Aij is a

finitely-generated Bi-algebra. But then each f(C∩ SpecAij) is constructible, we can assume that
X = SpecR, Y = SpecS are affine. Then we have a morphism of rings S→ R = S[t1, . . . , tk]/I. We
may also assume that

√
I = I because this is a topological statement. In addition, we may also

assume that S is reduced.
Now X → Y factors through An

S , where X ↪→ An
S is a closed immersion. Therefore we can

assume X = An. But then An → SpecS factors as

An
S →An−1

S → · · · →A1
S → SpecS,

and therefore we can assume X = A1
S. Because SpecS is Noetherian, it has finitely many

irreducible components Zi, so now we may assume that S is a domain. After this, we apply the
following lemma.
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Lemma 1.5.26. Let S be a domain and f : A1
S → SpecS. Then for all C0 ⊆ C ⊆ A1

S where C0 ⊆ C is
open and C ⊆A1 is closed and irreducible, there exists an open subset U ⊆ SpecS such that f(C0) ⊇ U
or f(C0)∩U = ∅.

Proof. Let SpecS be integral and η ∈ SpecS be the generic point. Then let K := K(η). Then we
have a commutative diagram

A1
K A1

S

SpecK SpecS.

Using the following exercise, we see that either C→ SpecS is dominant, in which case ηC ∈ Cη 6=
∅, or not, in which case f(C) ⊆ SpecS and thus there exists U ⊆ SpecS such that f(C0) ∩U = ∅.
Now there are two cases:

1. f−1(η) ∩C = A1
K. In this case, choose C = A1

S ⊇ C0 ⊇ (A1
S)g for some 0 6= g = a0t

n +

a1t
n−1 + · · · . Therefore 0 6= a0 ∈ S, so now we show that f(C0) ⊇ Ua0 − SpecSa0 . But here,

for all x ∈ SpecC, we have f−1(x) = Speck(x)[t] = A1
k(x), so

f−1(x)∩C0 ⊇ f−1(x)∩ (A1
S)g =

{
y ∈A1

j(x) | g(y) 6= 0
}

.

But then if x ∈ Ua0 , then a0 6= 0, so g 6= 0. But now

f−1(x)∩C0 ⊇ f−1(x)∩ {g 6= 0}.

But this is nonempty and thus x ∈ f(C0), so Ua0 ⊆ f(C0).

2. f−1(η) ∩C =: Cη ∈ A1
K is a closed point. Then C ⊂ V(p) for some prime ideal, and then

pK[t] = (g) for some irreducible g ∈ K[t]. Up to inverting denominators, we may assume
that g ∈ S[t]. But then C0 ⊆ C ⊆ V(G) ⊆A1

S. Now we see that

f−1(η)∩C0 = f−1(η)∩C = f−1(η)∩ V(g).

But now V(g) \C0 is constructible, so we can write V(g) \C0 =
⋃
Wi as a finite union of

closed irreducible subsets, and f(Wi) ( SpecS. Therefore f(Wi) ⊆ V(α) for some 0 6= α ∈ S.
Now consider SpecS ⊇ Uαa0 3 x:

a) If α(x) 6= 0, then x /∈ f(Wi), so f−1(x)∩ V(g) = f−1(x)∩C0.

b) If a0(x) 6= 0, then g(t) ∈ k(x)[t] is nonzero of positive degree, so V(g) ⊆ A1
k is a

nonempty closed subset.

Therefore, for x ∈ Uα,a0 , we have f−1(x)∩C0 = f−1(x)∩ V(g) 6= ∅, so Uα,a0 ⊆ f(C0).

Exercise 1.5.27. Let f : X → Y with X, Y integral and ηY ∈ Y the generic point. Then XηY is
irreducible.

We will use this to study closed points of schemes X/k of finite type over a field k.

Corollary 1.5.28. Let X be of finite type over a field k. Then x ∈ X is a closed point if and only if k(x) is
an algebraic extension of k.
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Proof. Suppose x ∈ X is closed. Then x ∈ U = SpecR ⊆ X is constructible in U. Then x ∈ U ⊆
An
k →A1

k, and we will denote the coordinates by U
fi−→A1

k. Therefore fi(x) is a constructible set
in A1

k, so it must be a closed point. But then k(fi(x)) is an algebraic extension of k. But then the
extension k ⊆ k(x) by the fi(x) and is thus algebraic.

Now suppose k ⊆ k(x) is algebraic. If x ∈ X is not closed, then there exists x 6= y ∈ {x}.
Then we can choose U 3 x,y open affine, so x is not closed in U. But now x = p ∈ SpecR, so
k ⊆ R/p ⊆ k(x). But then R/p is a finitely generated integral extension of k, so L is a field and
thus p is maximal and x is closed.

Remark 1.5.29. If k is algebraically closed, then closed points are precisely those with residue field
k.

Example 1.5.30. Let A be a local Noetherian ring. If U = X \m, then U satisfies the descending
chain condition for closed subsets, and therefore has closed points. However, none of these points
are closed in X because X has a unique closed point.

Corollary 1.5.31. Let X be a scheme of finite type over k. Then if U ⊆ X is open and x ∈ U, then x is
closed in U if and only if x is closed in X.

Corollary 1.5.32. Let X be of finite type over k. Then

1. For any S ⊆ X closed, the closed points of S are dense in S.

2. X can be reconstructed as a topological space from the set of its closed points.

Proof. Let S ⊆ X be closed. It suffices to show that for all open U ⊆ X, U ∩ S contains a closed
point. Assuming U = SpecR is affine, then S ∩U = V(I) for some ideal I ⊆ R, and the desired
result follows from the existence of maximal ideals.

1.6 More on Varieties

Note: Notes were not taken in great detail for this section.
Let k be an algebraically closed field. We know An(k) = kn. Then we will define affine

algebraic sets to be the common zero set of a set of polynomials. Of course, we can declare the
Zariski topology on An(k). Of course there is a natural correspondence between radical ideals of
k[x1, . . . , xn] and closed subsets of An(k) giving a correspondence between maximal ideals and
points.

Remark 1.6.1. With the Zariski topology, An(k) is a Noetherian topological space.

A morphism of algebraic sets is a map An ⊇ X → Y ⊆ Am that is expressible in terms of
polynomials f = (f1, . . . , fm) ∈ k[x1, . . . , xn]n. Dually, this defines a map

k[y1, . . . ,ym]/I(Y)→ k[x1, . . . , xn] yi 7→ fi(x).

References that use the language of varieties are Chapter 1 of Hartshorne, Shafarevich, Griffiths-
Harris, etc.

Now if X = V(I) ⊆An(k) for a radical ideal I, then we can define

Definition 1.6.2. The affine coordinate ring of X is k[X] = Hom(X, A1(k)) = k[x1, . . . , xn]/I.

Proposition 1.6.3. If X is an affine algebraic set, then k[X] is a reduced finitely-generated k-algebra. In
addition, X is irreducible if and only if k[X] is a domain.
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For any x ∈ X, we define the maximal ideal mx = ker(k[X] evx−−→ k). More generally, if Z ⊆ X is
closed, then I(Z) = {f | f(x) = 0} =

⋂
x∈Zmx. For an ideal I ⊆ K[X], we can define the closed set

V(I). For example, if I = (f), we can define the principal open subsets Xf.
Note that there is an equivalence of categories between irreducible affine algebraic sets and

finitely-generated k-algebras that are domains.

1.6.1 Rational Functions Let X be an irreducible algebraic set in An. We may consider
the field of fractions k(X) of k[X], and this will be called the field of rational functions on X. If
f
g ∈ k(X), we have a map

[f,g] : X→ P1(k),

whatever P1 means. Really, we have a map X 99KA1(k). This is of course regular on Xg.

Remark 1.6.4. If f ′ = fh,g ′ = gh, then f
g = f ′

g ′ in k(X). We see that Xg ⊇ Xg ′ and for all x ∈ Xg ′ ,

the fractions f(x)
g(x) =

f ′(x)
g ′(x) agree.

Lemma 1.6.5. If there exists fg , f
′

g ′ ∈ k(X) such that there exists U ⊆ X where f(x)
g(x) =

f ′(x)
g ′(x) for all x ∈ U,

then f
g = f ′

g ′ .

Proof. Up to multiplying by something in k[X], we may assume g = g ′. But this means that
f ′(x) = f(x) for all x ∈ U, which means V(f− f ′) ⊇ U. By irreducibility of X, we have X = V(f− f ′),
so f = f ′.

We now define a sheaf of regular functions, and we can upgrade affine algebraic sets to ringed
spaces.

Definition 1.6.6. Define the sheaf OX by

OX(U) =
⋂
x∈X

k[X]mx .

It should be obvious what the restriction maps are, and they are injective.

Lemma 1.6.7. If f ∈ k[X], then Γ(Xf,OX) = k[X]f.

Proof. One direction is obvious. In the other direction, if we define a = {h | hg ∈ k[X]} ⊆ k[X], then
we want to show that f ∈

√
a. If we choose representatives g = g1/g2 ∈ OX(Xf), we see that g2 ∈ a.

Thus g2 /∈ mX for x ∈ Xf, so if x ∈ Xf, then x /∈ V(a).

Proposition 1.6.8. A map f : X→ Y is a morphism of irreducible affine algebraic sets if and only if for all
g ∈ k[Y], then g ◦ f ∈ k[X]. Equivalently, f is continuous and induces a morphism of sheaves.

Definition 1.6.9. A locally ringed space (X,OX) is called a prevariety if X is connected and there
exists a finite covering of X by irreducible affine algebraic sets.

Remark 1.6.10. Any prevariety X is Noetherian and irreducible.

Definition 1.6.11. We define the function field of a prevariety (X,OX) to be the fraction field of
OX(U) for any open affine U ⊆ X.

In particular, K(U) is independent of the affine open subset U ⊆ X. In particular, all restrictions
are injective and OX(U)∩OX(V) = OX(U∩ V).
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Definition 1.6.12. If X, Y are prevarieties, then a morphism f : X → Y is a morphism of locally
ringed spaces.

Remark 1.6.13. If f : X → Y is a morphism of prevarieties, then we do not have a pullback of
rational functions in general.

Example 1.6.14. Projective varieties are prevarieties.

Theorem 1.6.15. Let k be algebraically closed. Then there is an equivalence of categories between integral
schemes of finite type over k and prevarieties over k.

Proof. Given a scheme (X,OX), we will consider the prevariety (X(k),OX(k)), where X(k) =
Homk(Speck,X) is the set of closed points. Of course, if SpecA = U ⊆ X is open affine, then U(k)
is an affine algebraic set. Now, we simply define OX(k)(U(k)) = OX(U), and this is a sheaf. We
can view this as functions to k. Equivalently, we see that α−1(OX) coincides locally with the sheaf
of regular functions because X is quasi-compact. Therefore we have defined a prevariety. To see
that this is functorial, note that morphisms of schemes of finite type send closed points to closed
points.

Now in the other direction, given X(k), we will simply aff a generic point ηZ for every
irreducible Z ⊆ X(k). In fact, this defines a functor on topological spaces, called soberification. It
is obvious what the topology should be. Of course, the inclusion α(X(k))→ t(X(k)) is continuous
and induces a bijection of open subsets. But now we note that if X(k) ⊆An is an affine algebraic
set with A = k[X(k)], we note that t(X(k)) = SpecA. Therefore t(X(k)) is covered by finitely many
open affines. Now it remains to check that α∗OX(k) makes t(X(k)) a scheme. But this can be
checked on affines. It is enough to show that if U(k) is an affine algebraic set with A = k(U(k)),
then SpecA = U ⊆ X. But now, by definition, we have

OX(U) = OX(k)(U(k)),

so when U = SpecA, we have OX(U) = A. In addition, we have OX(Uf) = OU(k)(U(k)f) = Af
for all f ∈ k[U(k)], so we are done. To check functoriality, we note that soberification is functorial
and then check that we obtain a map OY → f∗OX from the map on k-points.

Remark 1.6.16. Note that this means that a morphism of (integral) schemes of finite type over k is
determined by its value on closed points.

Remark 1.6.17. Let X be an integral scheme of finite type over k and X(k) be the corresponding
prevariety. Then we have K(X) = OX,η and the field k(X(k)) = Frac(k[U(k)]) for any affine open
k(U(k)), and these are the same field.

1.6.2 Comparison with GAGA Let X be a projective scheme of finite type over C. We may
consider X(C) ⊆ Pn(C). But now we may consider the analytic topology on Pn(C), and so we
may consider the analytic space Xan(C) with a sheaf of holomorphic functions OXan . Of course,
we may still consider the continuous map

γ : Xan(C) ↪→ X.

Next, to a coherent sheaf F, we may consider a coherent analytic sheaf Fan = γ−1F⊗γ−1OX
Oan
X .

Now Serre’s GAGA tells us that this is an equivalence of categories.
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1.6.3 Non-algebraically closed fields We will now consider what happens if k ( k. The
most basic example is A1

k = Speck[t], and the closed points are given by (p(t)) for irreducible
polynomials p(t). Then any finite extension of k that is generated by a single element is the
residue field of a closed point. In particular, for any such field k ′ we obtain a point in A1

k(k
′). For

another example, consider a field extension k ( k ′ with induced morphism X = Speck ′ → Speck.
Then X has no k-points. Returning to affine space, any commutative diagram

Speck ′ An
k

Speck

gives us a k ′-rational point of An
k ×Speck Speck ′ = An

k ′ . In particular, if X = V(f1, . . . , fm) ⊆An
k ,

then X(k ′) =
{
x ∈ (k ′)n | fi(x) = 0, i = 1, . . . ,m

}
. We have a similar statement for Pnk and closed

subschemes.

Remark 1.6.18. If X =
⋃
Ui is a union of open affines, then X(k ′) =

⋃
Ui(k

′).

Remark 1.6.19. A k ′-point x ∈ Xk(X ′) determines a field extension k ⊆ k(x) ⊆ k ′. If σ ∈ Aut(k ′/k),
then we can precompose Speck ′ σ−→ Speck ′ → X to get another k ′-point. In addition, we have
Xk(k

′)σ = Xk(k
σ).

Example 1.6.20. Let X be (locally) of finite type and k be the algebraic closure of k. Then we have
the map

Xk(k)
Σ−→ X (Speck i−→ X) 7→ i(Speck).

From the characterization of the closed points, the image of Σ consists of all closed points. Then
we know that the absolute Galois group G = Aut(k/k) of k acts on Xk(k). But then the G-orbits
of this action are contained in the fibers of Σ and G acts transitively on the orbits, so the fibers are
the G-orbits.

1.6.4 Classical projective geometry We will now consider open and closed prevarieties.

1. An open subprevariety is simply an open subset with the structure sheaf restricted.

2. If X is a prevariety and Z ⊆ X is an irreducible closed subset, we can give Z the structure of
a prevariety. Then if V ⊆ Z is open, we can define

OZ(V) = {f : V → k | locally a restriction of a function on X}.

Note that if Z ⊆ X ⊆An, the structure of Z as a subprevariety of X is the same as the one of
Z ⊆An(k).

Now we will define projective varieties over algebraically closed fields. If we consider the
scheme Pnk , then Pn(k) = (kn+1 \ {0})/k×. Then the open affine charts give us the structure of a
prevariety. Now we define the sheaf of functions to be OPn(U) = OUi(U) when U ⊆ Ui and in
particular if we homogeneize, we have

OPn(U) =

{
ϕ : U→ k | ϕ =

F(x0, . . . , xn)
G(x0, . . . , xn)

, deg F = degG
}

.
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As a consequence, we have k(Pn(k)) = k(Ui) = k(x0, . . . , xn). Now we need to consider the
global regular functions on Pn. NOte that for a prevariety X and U,V open subsets, then
OX(U∪ V) = OX(U)∩OX(V), so

OPn(P
n) = OPn

(⋃
Ui

)
=
⋂

OPn(Ui) =
⋂
k

[
x0

xi
, . . . ,

xn

xi

]
= k.

Remark 1.6.21. Note that if Pn(C) is considered as a complex manifold, then Γ(Pn(C),OXan) = C.
More generally, there are no nonconstant global holomorphic functions on any compact complex
manifold.

Now closed subsets of projective space are given by the vanishing of homogeneous polynomials
Fi. This gives us the definition

Definition 1.6.22. A prevariety is called a projective variety2 to a closed subprevariety of Pn(k).

Definition 1.6.23. A prevariety is called quasiprojective if it is isomorphic to an open subset of a
projective variety.

Remark 1.6.24. The structure of a prevariety does not depend on the embedding in some ambient
space.

We will now consider morphisms between (quasi)-projective varieties.

Proposition 1.6.25. Let Y ⊆ Pn(k) be a quasi-projective variety.

1. Given f0, . . . , fm ∈ k[x0, . . . , xn] homogeneous polynomials of the same degree such that V+(f0, . . . , fm)∩
Y = ∅, then the map

Y → Pm(k) y 7→ [f0(y), . . . , fm(y)]

is a morphism of prevariety. Moreover, if g0, . . . ,gm are homogeneous polynomails of the same degree
with V+(g0, . . . ,gm)∩ Y = ∅, they define the same morphism if and only if gifj = gjfi for all i, j.

2. Conversely, given ϕ : Y → Pm(k) a morphism of prevarieties, then ϕ is locally defined as above.

To prove this result, simply consider the affine open subsets of Pm and the sets Y ∩ {fi 6= 0}.

Remark 1.6.26. Compare this to the statement that Pnk represents the functor taking a scheme X to
the set of isomorphism classes of line bundles L with linearly independent sections s0, . . . , sn.

Proposition 1.6.27. If ∅ 6= V+(f0, . . . , fm) = Z ( Y, then there exists a morphism ϕ : U → Pm(k),
where U = Y \Z. This gives us a rational map Y 99K Pn(k).

Example 1.6.28. The map

An+1(k) \ {0} π−→ Pn(k) (x0, . . . , xn) 7→ [x0, . . . , xn]

is a morphism of prevarieties. Given Z = V+(I) ⊆ Pn(k), define the cone over Z to be C(Z) =
π−1(Z) = V(I) ⊆ An+1(k). On the other hand, if I ⊆ k[x0, . . . , xn] is a homogeneous ideal, then
V(I) = C(V+(I)).

Remark 1.6.29. The cone over Z depends both on Z and on the embedding in projective space.
On the cone over Z, the origin is usually a singular point. Sometimes (for example when Z is a
point) it is not, but in general, the properties of the singularity depend on the properties of the
embedding.

2Note that these are separated. Also consider that if variety = separated prevariety, then separated = pre−1 and thus
we may consider pre−1schemes.
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Example 1.6.30. Consider the map P1 → P2 given by [x,y] 7→ [x,y, 0] with image W1 = {z = 0}
and C(W1) = A2 ⊂A3. Consider the other map P1 → P2 given by [x,y] 7→ [x2, xy,y2] with image
W2 =

{
xz = y2} and cone C(W2). But then W1 ∼=W2 ∼= P1, but W2 has an A1 singularity at the

origin while W1 is smooth.

Suppose g ∈ GL(n + 1). Then the action of g on An+1(k) \ {0} is scaling-invariant, so it
descends to Pn(k). Of course, we have an exact sequence

1→ k× → GL(n+ 1)→ Aut(Pn(k)).

In fact, we will see that Aut(Pn) = PGL(n+ 1).

Remark 1.6.31. The Cremona group of birational transformations of Pn is massive.

If I = (L0, . . . ,Lm), then V+(I) ⊂ Pn is isomorphic to some Pn−m. Therefore, PGL(n+ 1) acts
transitively on the set of m-dimensional linear subspaces in Pn. Of course, this has the structure
of an algebraic variety, the Grassmannian. This represents a functor On+1 � L, where L has rank
m.

A linear subspace is a hyperplane when it is defined by a single equation V+(L), and is a line if
it is isomorphic to P1. We can also define the linear span of Z ⊆ Pn to be

〈Z〉 =
⋂
Z⊆L

L.

For two points p,q, the line containing p,q is denoted pq.

Definition 1.6.32. Points p1, . . . ,pm ∈ Pn are said to be in general position if no (k+ 1) of them lie
on a (k− 1)-plane.

Example 1.6.33. Three points in P2 are in general position if and only if they are not collinear.

Let H = {x0 = 0} ⊆ Pn be a hyperplane and suppose p = [1, 0, . . . , 0] /∈ H. For any closed
subset Z ⊆ H, we can write pZ =

⋃
z∈Z pz ⊆ Pn. This is a closed subset. Thus if Z = V+(I) for

some ideal in k[x1, . . . , xn], then pZ = V+(I ·K[X0, . . . ,Xn]).

Remark 1.6.34. Let L1,L2 ⊆ Pn be linear subspaces. Then 〈L1,L2〉 = P3 if and only if L1 ∩ L2 = ∅.

Example 1.6.35. With the same assumptions as the remark, let Z ⊆ L1. Then L2Z =
⋃
z∈Z 〈L2,Z〉 ⊆

Pn is a closed subset.

Definition 1.6.36. Let F be a homogeneous polynomial of degree e in k[x0, . . . , xn]. Then V+(F) =
X ⊆ Pn is called a hypersurface of degree d. If d = 2, then it is called a quadric.

Example 1.6.37. In P2, the quadrics are either conics (x2 + y2 + z2), a pair of lines (x2 + y2), or a
double line (x2).

In characteristic not equal to 2, we know that if Q = V+(q) is a quadric, then q is given by a
symmetric matrix. But then we know that PGL(n+ 1) acts on k[x0, . . . , xn]d and thus on quadrics
in Pn in a way that preserves the rank. This tells us that Q is irreducible if and only if q has rank
different from 2. If r = rk(q) < n, then Q is an (iterated) cone over a rank r quadric in Pr.

Consider the map P1 v3−→ P3 given by [x,y] 7→ [x3, x2y, xy2,y3]. Clearly the image of v2
satisfies the equations AD = BC,AC = B2,C2 = BD. On the other hand, we can explicitly
construct x,y from the equations in A,B,C,D, so on the open chart W ∩UA, we have the map
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[A,B,C,D] 7→ [A,B]. Similarly, on W ∩UD, we have the inverse [A,B,C,D] 7→ [C,D]. The image
of v3 is called a twisted cubic. It is easy to see that

〈
v2(P

1)
〉
= P3.3

More generally, the degree d Veronese embedding Pn → P(n+dd )−1 is given by

[x0, . . . , xn] 7→ [x
i0
0 x
i1
1 · · · x

in
n ]∑

ik=d
.

Up to PGL(n+ 1), replacing x0, . . . , xd with a different basis of k[x0, . . . , xn]d. In fact, the image is
closed, and if we write vd(Pn) = V+(a), then we know that a is a homogeneous prime ideal.

Example 1.6.38. Consider the degree 2 Veronese embedding v2 : P2 → P5. Then if H is a
hyperplane, H∩ v2(P

2) is the image of a conic in P2.

Example 1.6.39. Let F ∈ K[x0, . . . , x1]d and let X = V+(F). Then there exists a hyperplane in

P(n+dd )−1 such that H∩ vd(Pn) = V+(F). This tells us that Pn \X is affine.

Note the following facts:

1. If k is a field and X, Y are k-schemes (locally) of finite type over k, then X×k Y is (locally) of
finite type over k.

2. If k = k, then X, Y are integral if and only if X×k Y are integral. At the level of closed points,
we note that X(k)× Y(k) = (X×k Y)(k).

Now observe that the product of projective spaces is a projective variety. Define the map

Pn ×Pm → P(n+1)(m+1)−1 [. . . , xi, . . .], [. . . ,yj, . . .] 7→ [. . . , xiyj, . . .].

This is called the Segre embedding. If the (n+ 1)× (m+ 1) matrix of coordinates is given by Zij,
then the image of the Segre embedding is given by the vanishing of the 2× 2 minors. For example,
we note that the Segre embedding

P1 ×P3 → P3 [x,y], [u, v] 7→ [xu, xv,yu,yv]

has image {AD = BC}, which is a smooth quadric. In fact, the images of P1 × {p}, {p}×P1 give us
two families of lines on Q.

1.7 Dimension

Dimension is a topological property.

Definition 1.7.1. Let X be a topological space. Then we define the dimension of X to be

dimX := sup {` | X0 ) · · · ) X`},

where each Xi is a closed irreducible subset of X.

We will define the dimension of a scheme to be the dimension of its underlying topological
space. If X = ∅, then we set dimX = −∞.

Warning 1.7.2. Even for a Noetherian scheme X, we can have dimX =∞. There is an example of
Nagata in Vakil’s notes or as tag 02JC in the Stacks project.

3In fact, there is something even stronger than this, but I can’t remember it right now.

https://stacks.math.columbia.edu/tag/02JC
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It is easy to see that if X = SpecA, then dimX = dimA.

Example 1.7.3. Let A be a principal ideal domain such that A is not a field. Then all chains of
prime ideals are given by 0 ⊆ (t), and thus dimA = 1.

Example 1.7.4. If A is a ring and p0 ( · · · ( p` is a chain of prime ideals, then in A[t] as have the
chain of ideals

p0A[t] ( · · · ( p`A[t] ( (p`, t),

and thus dimA[t] > dimA+ 1. If A is Noetherian, then this is an equality.

Lemma 1.7.5. Let X be a topological space.

1. If Y ⊆ X has the subspace topology, then dim Y 6 dimX. If X is irreducible and dimX <∞, then
this inequality is strict.

2. If X =
⋃
Uα is an open covering, then dimX = supα dimUα.

3. If X =
⋃
Xi is a union of irreducible components, then dimX = sup dimXi.

4. If X is a scheme, then dimX = supx∈X dimOX,x.

Lemma 1.7.6. The first three properties are obvious. Now if X =
⋃

SpecAα is a cover by affines, then we
know dimX = supα dimAα. But now we know that for any prime ideal p, ht(p) = dimAp, so we are
done.

Corollary 1.7.7. If Y ↪→ X is a closed immersion, then dim Y 6 dimX. If X is integral and Y ( X, then
dim Y < dimX.

Example 1.7.8. Let A be a ring. Then dimA = 0 if and only if all prime ideals are maximal. If
A is Noetherian, then this holds if and only if A is Artinian, which is equivalent to A being the
product of its localizations.

Definition 1.7.9. A morphism SpecB→ SpecA is integral if A→ B is an integral map of rings.

Recall that B is a finite A-module if and only if ϕ is integral and B is a finitely-generated
A-algebra. Recall that for integral morphisms if q1 ⊆ q2 are prime ideals of B such that q1 ∩A =
q2 ∩A, then q1 = q2. Of course, integral morphisms of rings also satisfy going-up and going-down.
The geometric interpretation of this is

Proposition 1.7.10. Let SpecB→ SpecA be an integral morphism with A ⊂ B. We already know that f
is closed and surjective. The three properties of integral morphisms of rings imply that dimB = dimA.

Definition 1.7.11. Let X be a topological space and Z ⊆ X be closed and irreducible. Then we will
define

codimX(Z) := sup {` | z = z` ( · · · ( Z0},

where each Zi is a closed irreducible subset of X.

Example 1.7.12. If X = SpecA and Z = V(p), then codimX(Z) = ht(p) = dimAp.

Example 1.7.13. Let X be a scheme and Z ⊆ X be closed and irreducible. Then

codimX(Z) = sup
U∩Z6=∅

{codimU(Z∩U)} = sup
Uα

dimOX,ηZ∩Uα .

Remark 1.7.14. We always have the inequality dimZ+ codimX Z 6 dimX. Equality holds if all
maximal chains of closed irreducible subsets have the same length.
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Definition 1.7.15. A topological space X is called catenary if all maximal chains of closed irreducible
subsets have the same length.

Example 1.7.16. If A is a DVR over a field k with m = (t), then dim SpecA[x] > 2. It is easy to
see that the ideals m1 = (tx− 1) and m2 = (t, x) are both maximal, so if Zi = V(mi), we know
dimZi = 0. However, we see that codimX(Z2) > 2 while codimX(Z1) = 1 because m1 is principal.

Theorem 1.7.17. Let X be an integral scheme locally of finite type over k.

1. There is an equality dimX = tr.degk(η). Moreover, X is catenary.

2. For all closed points x ∈ X, dimX = dimOX,x.

3. If X, Y are finite type over k with Y integral and f : Y → X is dominant, then dim Y > dimX.

4. If f : Y → X is a quasi-finite morphism of schemes of finite type over k, then dim Y 6 dimX.

Remark 1.7.18. Let A be a discrete valuation ring over k and X = SpecA. Then Speck t
Speck(ηX)→ SpecA is a bijection on points, but dim(Speckt Speck(ηX)) = 0 < dimX = 1.

The proof of the Theorem will require Noether normalization:

Theorem 1.7.19 (Noether normalization lemma). Let A 6= 0 be a finitely generated integral k-algebra.
Then there exists t1, . . . , td ∈ A such that the morphism k[t1, . . . , td]→ A is injective and integral.

Proof of Theorem 1.7.17.

1. Let X =
⋃

SpecA where A is a finitely generated k-algebra. Now we only need to prove
the statements for SpecA. By Noether normalization, there exists t1, . . . , td such that
k[t1, . . . , td] ↪→ A and X = SpecA→ Ad

k is a finite morphism. Therefore dimX = dim Ad
k ,

so we need to prove that dim Ad = d. Clearly we have dim An > n, so suppose we have a
maximal chain

(0) = p0 ( p1 ( · · · ( pm.

Choose some nonzero f ∈ p1. Up to passing to an irreducible factor, we may assume
that f is irreducible. Therefore we can replace p1 with (f). Now we may consider X =
Speck[x1, . . . , xn]/(f), and then its fraction field has transcendence degree n − 1, so by
induction we may assume that dimX = n− 1.

Now we will prove that X is catenary. It suffices to prove that if Z ( X = SpecA is a maximal
proper closed irreducible subset, then dimZ = n− 1. If X π−→An

k is the morphism obtained
from Noether normalization, then we consider π(Z) ( An. By going-down, we know π(Z)
is maximal, so we have now reduced to proving the statement for An. But then W = V(Q)
for some prime ideal Q, so let f ∈ Q be nonzero. If g is an irreducible factor, then maximality
of W implies that Q = (g). But then the desired statement about dimension is simply a
statement about the transcendance degree of k[x1, . . . , xn]/f.

2. We can reduce to the case where X = SpecA. Then we know dimX = dimA = dimAm for
any maximal ideal x = m ∈ SpecA because X is catenary.

3. Let y ∈ Y satisfy f(y) = ηX and set Z := {y}. Therefore Z→ X is dominant, so ηZ → ηX, so
we have an extension k(ηX) ⊆ k(ηZ) and therefore dimX 6 dimZ 6 dim Y.

4. We reduce to the affine case. Up to passing to the closure of the image, we may assume f is
dominant. Then we have f : SpecA→ SpecB and then f−1(ηY) is a finite set, and in fact is a
0-dimensional scheme of finite type over k(ηY). In particular, ηX is a closed point of ηY , and
thus the field extension k(ηY) ⊆ ηX is finite. This means that dim Y 6 dimX.
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Here is a general statement about unique factorization domains A with SpecA = X. If Z ⊆ X
is a closed subset all of whose components have codimension 1, then Z = V(f) for some f ∈ A.
The converse also holds. If we remove the assumption of unique factorization, then the converse
is still true by Krull’s principal ideal theorem.

To prove the statement for a Noetherian UFD, then there are finitely many irreducible compo-
nents Z1, . . . ,Zs and if Zi = V(fi), then Z = V(

∏
fi). Therefore we can assume Z is irreducible,

but then every height 1 prime ideal is principal.
In the other direction, we may assume that f is irreducible. If there exists a prime ideal

0 ⊆ p ⊆ (f), then we can assume that ht(p) = 1 by the Noetherian assumption. But then we know
p is principal, so p = (f ′), and this implies that f | f ′ and thus (f) = (f ′). Thus ht((f)) = 1.

Remark 1.7.20. A Noetherian domain A is a UFD if and only if every prime ideal of height 1 is
principal.

Remark 1.7.21. Let Q = V(xy = z2) ⊂A3
k. Then V(z) has two irreducible components, and each

line cannot be cut out by a principal ideal.

Theorem 1.7.22 (Krull principal ideal theorem). Let A be Noetherian and f ∈ A be nonzero. Let p 3 f
be a minimal prime ideal containing f. Then ht(p) 6 1. In fact, if f is not a zero divisor, then ht(p) = 1.

Remark 1.7.23. If X is locally of finite type, we can prove Krull by Noether normalization and the
UFD property.

Theorem 1.7.24. Let X be locally Noetherian and f ∈ Γ(X,OX). Then every irreducible component of V(f)
has codimension 0 or 1.

Corollary 1.7.25. Let X be locally Noetherian and f1, . . . , fr ∈ Γ(X,OX). Then every irreducible component
of V(f1, . . . , fr) has codimsion at most r.

Proof. We may assume that X = SpecA is affine with A Noetherian. We will induct on r. When
r = 1, then this is just Krull’s principal ideal theorem. Now consider V(f1, . . . , fr−1) ⊇ V(f1, . . . , fr)
and now let Z ⊆ V(f1, . . . , fr) be an irreducible component. Then let W ⊆ V(f1, . . . , fr−1) be
an irreducible component containing Z. By induction, we know W ∩ V(fr) ⊇ Z. Then every
irrreducible component of W ∩ V(fr) has codimension 0 or 1 in W, so it has codimension at most
r in X. Therefore, codimX(Z) 6 r.

1.8 Separated Morphisms

Definition 1.8.1. A topological space X is Hausdorff if ∆ ⊆ X×X is closed.

Remark 1.8.2. A scheme X is almost never Hausdorff.

Theorem 1.8.3. In the topological definition, we are taking the product topology on X × X and set-
theoretically we have the Cartesian product.

For schemes, we can consider the fiber product X×S X endowed with the Zariski topology as
a scheme.
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Definition 1.8.4. Let π : X → S be a morphism. Then π is separated if the morphism δπ : X×S X
determined by the identity on each copy of X is a closed immersion.

X

X×S X X

X S

id

id

δπ

A scheme X is separated if X→ Spec Z is separated, and π : X→ S is called quasi-separated if δπ is
quasi-compact.

Definition 1.8.5. A morphism f : X→ Y is a locally closed immersion if f is a closed immersion into
some open subset U ⊆ Y. Equivalently, f is a homeomorphism onto a locally closed subset of Y
and OY,f(x) → OX,x is surjective.

Example 1.8.6. Any morphism π : X = SpecA → SpecB = Y is separated. Here, we note that
X×Y X = SpecA⊗B A, and the natural morphism A⊗B A→ A is surjective.

Proposition 1.8.7. Let π : X→ S be a morphism of schemes. Then δπ : X→ X×S X is always a locally
closed immersion.

As a consequence, π : X→ S is separated if and only if δπ(X) ⊆ X×S X is closed.

Remark 1.8.8. Note that if π is separated, then it is quasi-separated.

Proof of Proposition. Let S =
⋃
Vβ be a cover by open affines and X =

⋃
Uαβ be a cover by open

affines such that f(Uαβ) ⊆ Vβ. Write Vβ = SpecBβ and Uαβ = SpecAαβ. Now we set

U =
⋃
Uαβ ×Vβ Uαβ =

⋃
SpecAαβ ⊗Bβ Aαβ.

Note that X→ U is closed because SpecAαβ → SpecAαβ ⊗Bβ Aαβ is a closed immersion.

Proposition 1.8.9. Affine morphisms are separated because morphisms of affine schemes are separated.

Example 1.8.10. Being separated is local on the target.

Corollary 1.8.11. Closed immersions are separated.

Example 1.8.12. Open immersions are separated.

Lemma 1.8.13. If π : X→ S is separated, then for all open affines U,V ⊆ X that map to a common affine
open subset of S, then U∩ V is affine and OX(U)⊗Z OX(V)� OX(U∩ V).

Example 1.8.14. We have U∩ V = U×S V ∩ δπ(X) = δ−1
π (U×S V).

Proof. We can assume that S = SpecR is affine. Write U = SpecA,V = SpecB. Then we know
that U ∩ V → U×S V = SpecA⊗R B is a closed immersion. Therefore, we have a surjection
A⊗Z B� A⊗R B� OX(U∩ V).

Proposition 1.8.15. Let S = SpecR. Then π : X → S is separated if and only if for all U,V ⊆ X open
affines, U ∩ V is affine and OX(U)⊗R OX(V) → OX(U ∩ V) is surjective. Equivalently, there exists a
covering of X by open affines such that the conditions hold.
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Corollary 1.8.16. Let S = SpecR. Then PnS → S is separated.

Recall that closed immersions are preserved under base change. This follows from stability of
affine morphisms and the fact that the tensor product is right exact.

Proposition 1.8.17. Being separated and quasi-separated are preserved under base change.

Proof. Let f : Y ′ → Y be separated. Let X→ Y be a morphism and X ′ → X be the base change of f.
Now consider the Cartesian diagram

X ′ X ′ ×X X ′

Y ′ Y ′ ×Y Y ′.

∆

Because the bottom arrow is a closed immersion, so is the top arrow. The proof for the quasi-
separated case is similar.

Proposition 1.8.18. Being separated (or quasi-separated) is closed under composition. If f : X→ Y,g : Y →
Z are separated, then so is h = g ◦ f.

Proof. Consider Xi
fi−→ Y → Z for i = 1, 2. Then we want to show that the diagram

X1 ×Y X2 X1 ×Z X2

Y Y ×Z Y

ε

γ

∆

is Cartesian. Note that ε is the morphism X1 ×Y X2 ⇒ Xi → Y and γ is constructed using the
universal property for X1 ×Z X2 ⇒ Xi → Z. Now consider a scheme T with diagram

T

X1 ×Y X2 X1 ×Z X2

Y Y ×Z Y.

ϕ

ψ γ

ε

∆

Now a map ϕ : T → X1×Z X2 is given by ϕ = (ϕ1,ϕ2), and we know that (f1 ◦ϕ, f2 ◦ϕ2) = (ψ,ψ).
But now the universal property of the fiber product gives us the desired result.

Exercise 1.8.19. Open immersions are separated.

Corollary 1.8.20. Quasi-projective schemes are separated.

Proof of Proposition. The square in the following diagram is Cartesian

X X×Y X X×Z X

Y Y ×Z Y

∆

(f,f)

∆

and thus all horizontal arrows are closed immersions.
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Proposition 1.8.21. Let f : X→ Y be quasi-compact and quasi-separated and F be a quasicoherent sheaf
on X. Then f∗F is quasicoherent.

Consider a morphism f : X → Y of S-schemes. Then we define the graph morphism Γf : X →
X×F Y.

Proposition 1.8.22. Let f : X→ Y be a morphism of S-schemes.

1. Γf : X→ X×S Y is locally closed.

2. If Y → S is separated, then Γf : X×S Y is closed.

Proof. Consider the Cartesian diagram

X X×S Y

Y Y ×S Y.

Γf

(f,id)

∆

Because ∆ is a (locally) closed immersion, so is Γf.

Now let f,g⇒ Y be two morphisms of S-schemes. We define the equalizer to be the limit of
this diagram if it exists. We need a scheme structure on the equalizer, and in the diagram

X Y ×S Y

(f,g)−1(∆Y) Y,

(f,g)

∆

we see that the equalizer is simply Y ×(Y×SY) X ⊆ X. This is a locally closed subscheme. Proving
that this is actually the equalizer is simply and we simply note that (f ◦ ρ,g ◦ ρ) factors through

Y
∆−→ Y ×S Y and therefore factors through the fiber product Y ×(Y×SY) X.

Example 1.8.23. Consider the morphisms f,g : A1 ⇒ A1 given by x 7→ 0, x 7→ x2. Then the
diagrams of (schemes, rings) are

Eq A1 Eq k[t]

A1 A2 k[t] k[x,y]

∆

(f,g)

x 7→0
y7→t2

x,y7→t

and it is easy to see that Eq = Speck[t]/t2.

Corollary 1.8.24. Let f,g : X⇒ Y be a morphism and X be reduced and Y separated. Suppose there exists
a dense open U ⊆ X such that f

∣∣
U

= g
∣∣
U

. Then f = g everywhere on X.

Proof. We know U ⊆ Eq(f,g) is closed because Y is separated, and thus Eq(f,g) = X.

Example 1.8.25. The affine line with two origins is not separated! Note that the inclusions of the
two copies of A1 coincide on A1 \ {0}, but globally are different morphisms.
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Example 1.8.26. Consider the maps Speck[x]/x2 ⇒ Speck[x]/x2 given by the identity and killing
the maximal ideal. These agree set-theoretically but are different as morphisms of schemes.

We return to rational functions on integral schemes of finite type over an algebraically closed
field k. More generally, if X is a reduced locally Noetherian scheme, we say that

Definition 1.8.27. A rational function on X is an equivalence class of (U, f), where U ⊆ X is dense
and open and f ∈ OX(U). We declare (U, f) ∼ (U ′, f ′) if f, f ′ agree on U∩U ′.

Definition 1.8.28. We say f is regular at x ∈ X if there exists a representative (U, f) such that x ∈ U.

Lemma 1.8.29. If {(U, f)} is a rational function, there is a maximal open subset of regular points. This is
called the domain of definition.

Proof of this is simply the sheaf axioms. Now the set of rational functions on X form a ring. If
X = SpecA, this is the total ring of fractions of A. If X is integral, this is k(ηX).

Example 1.8.30. On X = Speck[x,y]/xy, we see that 1
(x−1) (y− 3) is a rational function but 1

x(y−3)
is not.

Now let X be reduced and Y be a scheme.

Definition 1.8.31. A rational map f : X 99K Y is an equivalence class of pairs (U, f) where U ⊆ X
is open and dense and f : U → Y is a morphism. We declare (U, f) ∼ (U ′, f ′) when there exists
V ⊆ U∩U ′ open and dense such that f, f ′ agree on V .

In particular, if Y is separated, then we can take V = U∩U ′.

Example 1.8.32. Consider Pn 99K Pn−1 given by projection from a point. This sends [x0, . . . , xn] 7→
[x1, . . . , xn] and is defined everywhere except [1, 0, . . . , 0].

Example 1.8.33. Consider the map P2 99K P2 given by [x,y, z] 7→
[

1
x , 1
y , 1
z

]
. This is called the

Cremona transformation and is defined everywhere besides [1, 0, 0], [0, 1, 0], [0, 0, 1].

Example 1.8.34. The graph of the rational map P2 99K P1 given by projection from a point is
simply the blowup of P2 in a point.

Lemma 1.8.35. The set of regular points of a rational map is open. If Y is separated, then there exists a
morphism f : Ureg → Y representing the rational map.

Definition 1.8.36. Let f : X 99K Y be a rational map over S with Y separated. Then let U ⊆ X be
the set of regular points. Then the graph of f is the closed subscheme Γf ⊆ X×S Y given by the
closure of f

∣∣
U

. In fact, the graph is independent of the dense open subset U chosen.

Definition 1.8.37. A rational map f : X 99K Y over S is called dominant if there exists a representative
(U, f) such that f : U→ Y is dominant.

Example 1.8.38. The map Pn →An is dominant (choose a distinguished open subset, then take
the identity to A1).

Definition 1.8.39. Let X, Y be reduced. A rational map f : X 99K Y is called birational if it is
dominant and there exists a rational dominant map g : Y 99K X that is inverse to f as rational
maps.

Proposition 1.8.40. Let X, Y be reduced and f : X 99K Y over S be birational. Then there exist dense open
subsets U ⊆ X,V ⊆ Y such that f

∣∣
U

: U→ V is an isomorphism.
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Proof. Let g : Y 99K X be the inverse. Then we may assume that U,V are affine. Next, if we write
Z = Y \ V , then we can replace U by an open affine in U \ f−1(Z). Thus we can assume X, Y are

affine. Call U ′ := f−1(V), Then U ′ f−→ V
g−→ X. This means that g ◦ f is the inclusion of U ′ in V .

Now clearly we may replace V with g−1(U ′) =: V ′, and now f,g are inverse on U ′,V ′.

Example 1.8.41. Let f : X 99K Y be a rational map. Then the projection π : Γf → X is birational, and
the maximal open subset where ρ = π−1 is defined the domain of definition of f.

Example 1.8.42. Consider A2 99K P1 given by (x,y) 7→ [x,y]. Then the graph is the blowup Bl0 A2

of A2 at the origin.

1.9 Proper Morphisms

Definition 1.9.1. A morphism f : X → Y is called proper if f is of finite type, separated, and
universally closed (closed and being closed is preserved under base change).

Example 1.9.2. Closed immersions are proper. Clearly they are finite type (because they are affine
of the form A→ A/I), separated, and clearly universally closed because closed immersions are
closed and stable under base change.

Example 1.9.3. The map A1 → Speck is closed, but not universally closed. For example, the map
A2 = A1 ×k A1 →A1 is not closed (take the closed subset defined by xy = 1).

Example 1.9.4. Let f : X→ Y be an integral morphism. Then f is affine and thus separated. Also,
integral morphisms are closed and stable under base change, so f is universally closed. Then f is
of finite type if and only if it is finite, so finite morphisms are proper.

Proposition 1.9.5. Being proper is stable under base change, stable under composition, and local on the
target.

Remark 1.9.6. Let P be a property of a morphism of schemes that is stable under base change and
composition. Suppose closed immersions satisfy P. Then for all morphisms f : X→ Y, if X→ X
has P and Y → X is separated, then f has P.

Proof. Note that f : X
Γf−→ X×S Y → Y. Then X×S Y → Y has P, and Γf is a closed immersion

(because Y is separated) and thus has P, so f has P.

Remark 1.9.7. The property P can be taken to be proper, separated, closed immersion, etc.

Proposition 1.9.8 (Image of proper to separated is proper). Let f : X→ Y be a surjective morphism
and suppose X is proper and Y is separated of finite type. Then Y is proper.

Proof. We only need to check that Y → S is universally closed. We show that Y → S is closed.
Because f is surjective, then for Z ⊆ Y, we know Z = f(f−1(Z)), so the image of Z in S is closed.
To show that f is universally closed, we simply base change the entire diagram.

Remark 1.9.9. We can eliminate the condition that f is surjective by replacing Y with the scheme-
theoretic image of f.

Proposition 1.9.10. Let X be a reduced scheme and f : X→ Y be a morphism. Then the scheme theoretic
image coincides with the closure of the set-theoretic image.

Proposition 1.9.11. Let X be a proper connected reduced scheme over a field k. Then k ⊆ Γ(X,OX) is
integral. If k is algebraically closed, then Γ(X,OX) = k.
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Proof. Let f ∈ Γ(X,OX). Then we can view f : X→A1. This is proper, so f(X) is a closed connected
reduced subscheme of A1. Thus it suffices to show that f(X) 6= A1, but this is simply because
A1 is not proper (despite being separated of finite type). Thus f(X) must be a closed point, so
the map k[t] → Γ(X,OX) factors through k(f(X)). But then f(X) = V(p(t)) for some irreducible
polynomial p, so f also satisfies p.

Theorem 1.9.12. Let R be a ring. Then PnR → SpecR is proper.

Proof. We already know Pn is finite type and separated, so we need to show it is universally
closed. Therefore it suffices to prove that PnZ is universally closed (because being proper is
preserved by base change). Now we need to show that Pn ×Z X→ X is closed for all schemes X.
In fact, we can check this locally, so we only need to show that PnA → SpecA is closed.

1.10 Proj construction

We want to think of Pn as Proj(k[x0, . . . , xn]) under some definition of Proj. This construction
should work for any graded ring R =

⊕
i>0 Ri. Then there is an irrelevant ideal R+ =

⊕
i>0 Ri.

We will define ProjR as a set as the set of all graded prime ideals p ⊆ R such that p 6⊇ R+. Now
we want to consider ProjR has a topological space, and we may consider the Zariski topology as
in the case of SpecR.

Lemma 1.10.1. Let a ⊆ R be a homogeneous ideal. Then
√
a is the intersection of all homogeneous prime

ideals containing a and V(a) = ∅ if and only if
√
a = R+.

Finally we are ready to define ProjR as a locally ringed space. For any f ∈ R, define
Uf := (ProjR)f = ProjR \ V(f).

Lemma 1.10.2. The sets {Uf}f∈Rk,k>1 form a basis for the topology of ProjR.

Remark 1.10.3. We have an isomorphism Uf = (ProjR)f ' SpecR(f), where R(f) is the degree zero
localization of R at f. Here, the maps are given by

f /∈ p 7→ pRf ∩ R(f)

and

SpecR(f) 3 Q 7→
⊕{

x ∈ Rk |
xdeg f

fk
∈ Q

}
.

Finally we are able to describe the structure sheaf on each open subset. Here, we simply define
OProjR((ProjR)f) = R(f), and so we need to check the gluing axioms.

1. Let f,gi ∈ R+ be homogeneous and suppose (ProjR)f =
⋃
(ProjR)gi . This is the same as

f ∈
√∑

giR, so there exists n such that fn =
∑
aigi for some ai ∈ R.

2. If (ProjR)f ⊆ (ProjR)g, then fn = a · g and thus there exists a canonical map R(g) → R(f).

3. We have
⋃
(ProjR)gi = ProjR if and only if for all homogeneous primes p not containing the

irrelevant ideal, there exists gi /∈ p. This is equivalent to V(
∑
giR) = ∅, which is equivalent

to
√∑

giR = R+.
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Now we not only obtain the structure sheaf but also a sheaf M̃ associated to any graded
R-module M =

⊕
k>0Mk. In particular, ProjR is a scheme. If R = R0 ⊕ R+, then there is of course

a natural continuous map ProjR→ SpecR0. Note that we have a commutative diagram

R Rf

R0 R(f)

Remark 1.10.4. If R is finitely generated as an R0-algebra, then π : ProjR→ SpecR0 is of finite type.

Proposition 1.10.5. The map π : ProjR→ SpecR0 is separated.

Proof. Apply the criterion that if U,V ⊆ X is open affine, then U ∩ V is affine and OX(U)⊗R
OX(V) → OX(U ∩ V) is surjective implies that f is separated. Now apply this to distinguished
open subsets.

We would like to define functoriality for this construction. Let R,S be graded rings and
ϕ : S→ R be a morphism of graded rings. Can we define a map ProjR→ ProjS?

Example 1.10.6. Let S = k[x1, . . . , xn]
ϕ
↪→ R = k[x0, . . . , xn]. Then ProjR = Pn and ProjS = Pn−1.

This is not defined globally because (x1, . . . , xn) ∩ S = S+ is the irrelevant ideal. Instead, we
consider V(ϕ(S+)) = Z, and then we obtain a morphism ψ : ProjR \Z→ ProjS. In fact, here we
obtain projection from a point.

Remark 1.10.7. ψ is an affine morphism.

Example 1.10.8. If ϕ(S+) = R+, then Z 6= ∅, so we have a morphism ProjR→ ProjS.

Example 1.10.9. For example, if ϕ is surjective, then kerϕ is a homogeneous ideal and in fact we
have ProjR = ProjS/kerϕ ⊆ ProjS, and the last inclusion is a closed immersion.

Example 1.10.10. The morphism k[x0, . . . , xn]
ϕ−→ k[x, t] = R given by xi 7→ sn−iti defines the

Veronese embedding.

Example 1.10.11. Suppose R is finitely generated as an R0-algebra by finitely many elements in
degree 1. Then we have a surjection R0[x1, . . . , xn]� R, and thus ProjR is a closed subscheme of
PnR0

.

Now we would like to consider what happens under base change. Let R = R0 ⊕ R+ and
consider a morphism S0 → R0. Then we can consider the scheme ProjR×R0 SpecS0. Alternatively,
we may consider the graded ring R ′ = R⊗R0 S0 =

⊕
Ri ⊗R0 S0. Of course we have a morphism

ProjR ′ → ProjR×R0 SpecS0, and in fact on open subsets, this defines an isomorphism.
As a corollary, let X be a scheme and R =

⊕
Ri be a sheaf of graded algebras with Ri

suasicoherent for all i > 0. Then there exists a scheme ProjOX(R) → X such that over an affine
open SpecA where Ri = Ri, we have ProjA

⊕
Ri → SpecA.

Example 1.10.12. If F is a finitely generated quasicoherent sheaf, then we may consider R =⊕
SymnF. Then we write PX(F) := ProjOX

(R). In particular, if F = OX ⊗ V , we obtain PX(V
∨).

Now if R is a graded ring, we can consider the ring R(d) =
⊕
k>0 Rkd, where Rkd now has

degree k. Then we have an inclusion ProjR → ProjR(d). But then if R+ 6⊂ p, we know that if
pkd ⊇ Rkd, we know that Rk ⊆ p for all k > 0. In particular, we obtain an honest morphism
ψ : ProjR→ ProjR(d). We can check on principal open subsets that ψ is an isomorphism.
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Corollary 1.10.13. Let R,R ′ be rings such that R0 = R ′0 and there exists N such that⊕
k>N

Rk '
⊕
k>N

R ′k,

then ProjR ' ProjR ′.

Proof. Replace R,R ′ with R(d),R ′(d) for sufficiently large d.

Now let R,S be graded rings with R0 = S0. Now of course we have the fiber product

ProjR×R0 ProjS ProjR

ProjS SpecR0.

Then if R ′ =
⊕
Ri ⊗R0 Si, we can show that ProjR ′ = ProjR×R0 ProjS.

Theorem 1.10.14. For any graded ring R, the morphism ProjR→ SpecR0 is closed.

This follows from the fact that Pn → SpecR0 is universally closed and ProjR ⊆ Pn is a closed
immersion.

Exercise 1.10.15. Up to taking R(d) for an appropriate d, we can assume that R is finitely generated
in degree 1.

Proof. We want to show that π : PnA → SpecA is closed. Let Z = V(I). If p is such that Pn
k(p) ∩

V(I) = ∅, then there exists an open subset U 3 p of SpecA such that π−1(U) ∩ V(I) = ∅. If
I = (f1, . . . , fk), then f1, . . . , fk have no nontrivial solutions in k(p)[x0, . . . , xn]. The idea here is to
use Nakayama.

We now want to consider sheaves on X := ProjR. We want a theory such that OX = R̃. More
generally, for any graded R-module M, define the sheaf M̃ by

M̃(Xf) =M(f) =M⊗R R(f).

This gives an exact functor, which is not faithful.

Remark 1.10.16. Compare this to the affine case where we had an equivalence of categories.

Remark 1.10.17. The grading is important for this construction. We can construct the sheaves
(M(d))k =Md+k, and in particular, we have the sheaf R̃(d) =: OX(d).

Proposition 1.10.18. If R is finitely generated in degree 1, the sheaves OX(d) are locally free of rank 1.

Proof. We know that X =
⋃
f∈R1

Xf. For f ∈ R1, we know R̃(1)(Xf) = R(1)(f), which consists of
elements of the form h

fn , where degh = 1 + n. This implies that multiplication by f defines an
isomorphism R(f) → R(1)(f).

Remark 1.10.19. Note that multiplication gives a map R→ R(1), which after sheafification gives us
a map OX → OX(1). Combining these, we obtain a map R1 → Γ(X,OX(1)). However, we cannot
say much about this map in general. All of this can be generalized to Rd → Γ(X,OX(d)).
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Remark 1.10.20. Consider R = A[x0, . . . , xn] and write ProjR = PnA =
⋃
Ui. We can write OX(1)

in terms of Cech cocycles. On each Ui, we have maps OX
∣∣
Ui

xi−→ OX(1)
∣∣
Ui

. On overlaps, the
transitions are given by xj/xi, so we obtain OX(1) by gluing copies of OX with these gluing
functions.

Proposition 1.10.21.

1. For all graded modules M and d ∈ Z, M̃(d) ∼= M̃⊗OX OX(d).

2. For all m,n, OX(n)⊗OX OX(m) ' OX(n+m). In particualr, when m = −n, we have OX(n)
∨ =

OX(−n).

This is proved by considering the maps M⊗R R(1)→M(1). Similarly to above, we also have

maps Md → Γ(X, M̃(d)) for all d ∈ Z.

Definition 1.10.22. For any sheaf F of OX-modules, define the graded module

Γ∗(F) =
⊕
d∈Z

Γ(X,F(d)),

which is a graded Γ∗(OX)-module. For a graded module M, we obtain a module Γ∗(M̃).

Proposition 1.10.23. If R = A[x0, . . . , xn], then R = Γ∗(R̃). Therefore, for all d > 0, we have Rd =
A[x0, . . . , xn]d ' Γ(PnA,O(d)).

Proposition 1.10.24. Let F be a quasicoherent sheaf on X = ProjR. Then there exists a natural isomor-

phism F = Γ̃∗(F).

Corollary 1.10.25. Any closed subscheme of X = ProjR is defined by some graded ideal I ⊆ R.

Remark 1.10.26. If we replace R = R ′ =
⊕
i>0 Rid, we know X = ProjR ϕ−→ ∼ProjR ′ = Y, and

ϕ∗O(1) = O(d).

Remark 1.10.27. Let R→ S be a morphism of graded algebras of degree 0. Then we have a map
ProjS ⊇ V ϕ−→ ProjS, and ϕ∗(O(1)) = O(1).

We may also define global versions of this on an arbitrary scheme S. Let R =
⊕

Ri be a graded
OS-algebra. We assume that R is generated as an R0-algebra by R1. This gives us a morphism
ProjS(R) =: X

π−→ S. Also, we have a natural surjection S∗R1 � R, so we have an embedding
X ↪→ PR1. Now if M is a quasicoherent graded R-module, we obtain a module M̃ on X. If
M = R(d), we have R̃(d) =: Oπ(d).

Proposition 1.10.28. If E is locally free over S, then PE = ProjS(S
∗E)

π−→, and π∗OPE(d) = S
dE.

Remark 1.10.29. If L is a line bundle, then PE = P(E⊗L).

Now recall that HomSch(X, PnZ) is in bijection with the set of surjections On+1
X � L for

line bundles L. Now if we consider ProjR, where R is finitely generated in degree 1, then we
obtain a map OPn ⊗ R1 � OPn(1), so we obtain a map R1 → Γ(X,L). Now we want to consider
HomS=SpecR0(X, ProjR) for arbitrary R.

Theorem 1.10.30. The set HomS(X, ProjS∗R1) is in bijection with the set of invertible sheaves L on X
equipped with a map R1

ϕ−→ Γ(X,L) which globally generate L. The bijection is given by L = f∗(O(1))
and R1 = Γ(O(1))→ Γ(X, f∗(O(1))).
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Proof. Given a line bundle L on X and ϕ : R1 → Γ(X,L) which globally generates L, write
R1 3 f 7→ sf ∈ Γ(X,L). Then we know X =

⋃
Xsf . Locally, we have the section OX

s−→ L, so
L
∣∣
Xs

= OX
∣∣
Xs

. To define f : X → ProjR =: P, we define it locally. In fact, we give morphism
Xsf → Pf = SpecR(f). This is equivalent to giving a morphism R(f) → Γ(Xsf ,OX). But this is
simply given on R1 by f 7→ 1, and so the map S∗(R1)→ Γ(Xsf ,OX) factors through (S∗R1)f, and
thus we have a map (S∗R1)(f) → Γ(Xsf ,OXsf ).

Remark 1.10.31. The map f is uniquely determined by L and ϕ, and thus gluing is given by this
uniqueness.

Remark 1.10.32. Given a surjection S∗R1 � R which induces ProjR ↪→ ProjS∗R1, a map X →
Proj(S∗R1) factors through ProjR if and only if the map R1 → Γ(X,L) satisfies the property that
S∗R1 → Γ∗L factors through R.

Theorem 1.10.33. Let f : X → S be a morphism of schemes and R = S∗R1 be a quasicoherent graded
OS-algebra. Then HomS(X, ProjS R) is in bijection with the set of line bundles L on X equipped with a
surjection ϕ : f∗R1 � L.

Corollary 1.10.34. Let E→ X be locally free. Then sections of PE→ X are in bijection with surjections
E→ L, where L is a line bundle on X.

Example 1.10.35. Let X = PnA and f : OX ↪→ OX(1) for f ∈ A[x0, . . . , xn]1. If we tensor with OX(−1),
we obtain a map f : OX(−1) ↪→ OX. This realizes OX(−1) as an ideal sheaf of OX associated to f.
Of course, the scheme associated to this ideal sheaf is V(f).

Example 1.10.36. Let X be locally factorial and Z ⊆ X be a codimension 1 subscheme. Then the
ideal sheaf IZ is locally principal.

Now let X be a scheme, L be a line bundle, and s0, . . . , sn ∈ Γ(X,L). This defines a rational
map X 99K Pn. We would like to put a scheme structure on X \U =: Z.

Definition 1.10.37. The base locus Bs(s0, . . . , sn) ⊆ X is the closed subscheme defined by the
following ideal sheaf. Write V := 〈s0, . . . , sn〉 ⊆ Γ(X,L). Then we obtain a morphism V ⊗OS

ev−→ L.
Tensoring with L−1, we obtain a map V ⊗L−1 → OX. Now we define the ideal sheaf IV ⊆ OX to
be the image of this morphism.

We would like to now modify X such that we can define an actual morphism X→ Pn. Before
we do the construction, we give some examples.

Example 1.10.38. Suppose that the ideal sheaf I is invertible and locally principal. If L = OPn(1)
and s0 = x1, then the base locus is V(x1). Up to passing from L to L⊗ I, we may assume that the
line bundle is globally generated by V , so our map extends.

We are now ready to consider blowups of closed subschemes Y ⊆ X. Here, X is a scheme and
Y ⊆ X to be a closed subscheme with ideal sheaf I. Write R =

⊕
n>0 J

n

Definition 1.10.39. The blowup of X along Y is the scheme ProjX(R)
π−→ X.

Note that π is proper. Now note that if f : X → Y, and I ⊆ OY is an ideal sheaf, the map
f∗I→ f∗OY = OX is not injective, but we can consider the image, which is an ideal sheaf that we
will call f−1I.
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Example 1.10.40. Consider the map A2 → A2 given by k[s, t]→ k[x,y] given by (s, t) 7→ (x, xy).
Then

f∗(s, t) = (s, t)⊗k[s,t] k[x,y]→ k[x,y]

is not injective, because f−1(s, t) = (x).

Remark 1.10.41. If I is quasicoherent, so it f−1I.

Remark 1.10.42. If X f−→ Y and IZ ⊆ OY is the ideal of a closed subscheme Z, then f−1(Z) has ideal
f−1IZ.

Example 1.10.43. We will consider the blowup of 0 ∈A2
k. Here, if A := k[x,y], then the blowup

X ⊆ P1
A2 is defined by (xT = yS), where P1

A2 = ProjA[S, T ]. Now we want to check what f−1(x,y)
is, and we can do this locally. If we consider the chart US = Speck[x,y, t], then X∩US is given
by tx = y. Thus f−1(x,y)

∣∣
US

= (x). On the other hand, on the chart UT , we have the equation
x = ys, so f−1(x,y)

∣∣
UT

= (y). In fact, X = Bl0 A2
k. To see this, we know that

Bl0 A2 = ProjR R =
⊕
n>0

(x,y)n = Projk[x,y](S, T)/(xT = yS).

Theorem 1.10.44. Let X, Y, I be as above. Then write BlY X =: X̃
π−→ X and set U = X \ Y.

1. π induces an isomorphism π : π−1(U)→ U.

2. The sheaf f−1I ⊆ O
X̃

is invertible and corresponds to O
X̃
(1).

Proof. On X \ Y = U, I is trivial, so R
∣∣
U

=
⊕

OU = OU[T ], so we are done. This proves the first
part. For the second part, note J ·R =

⊕
n>1 J

n = R(1).

Remark 1.10.45. If I is locally principal (thus locally trivial), then in fact BlY X = X.

Remark 1.10.46. When we have PnA = ProjA[x0, . . . , xn], O(1) has sections A[x0, . . . , xn]1, and here
O(−1) ⊆ O is an ideal sheaf. Here something was said about self intersections of exceptional
divisors on surfaces (if you blow up a smooth point, you get a curve with self intersection −1).

We know that f−1I is a locally principal ideal sheaf on X̃. If E ⊆ X̃ is the subscheme defined
by f−1I, then f−1(Y) = E. Because IE is locally principal, then E

∣∣
U

= (fu) is a closed subscheme
of codimension at most 1 for any open subset U ⊆ X̃, and the codimension is 1 if fu is not a
zero divisor. Later, we will see that E has pure codimension 1 and is a Cartier divisor, called the
exceptional divisor.

We will check this affine locally on X. We may assume that X = SpecA and R =
⊕
In. Then

let (x1, . . . , xr) = I, so X̃ =
⋃
Uxi . Now we have a map

ϕ : A[T1, . . . , Tr]�
⊕
n>0

In = R,

and we always have the relations xiTj = xjTi for all i, j. On Uxi = SpecR(xi), we still have a
morphism A[T1, . . . , Tr](Ti) � R(xi). Now we consider IR(xi) and note that

R(xi) = A⊕ I ·
1
xi
⊕ I2 1

x2
i

⊕ · · ·

Because xj = xiϕ
(
Tj
Ti

)
, it follows that IR(xi) is generated by xi and is thus principal. Now we

need to show that xi is not a zero divisor, but this is clear by the localization process.
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Proposition 1.10.47. If X is integral, so is X̃. Also, if X→ S is separated or proper, so is X̃→ S. Finally,
if X→ S if X is Noetherian, then I is coherent, and X̃ is also Noetherian.

Returning to extending morphisms, let X be integral and L be an invertible sheaf. Then
choose s0, . . . , sn ∈ Γ(X,L) and write V = 〈s0, . . . , sn〉 ⊆ Γ(X,L). Then let Y be the base locus
and IY = [V ⊗L−1 � IY ⊆ OX] be the ideal sheaf. Then we would like to extend the morphism
U := X \ Y → Pn. Last time, we saw that we could extend the morphism if IY was an invertible
sheaf. Now let X̃ = BlY X and π : X̃→ X. But now we have a surjection V ⊗ π∗L−1 � π−1IY onto
an invertible sheaf, so we obtain a surjection V ⊗O

X̃
� π−1IY ⊗ π∗L, and so now we obtain a

regular morphism X̃→ PnS . Note that we also write π−1IY = O
X̃
(−E).

Exercise 1.10.48. We have an identification of X̃ with the graph of X 99K Pn.

Theorem 1.10.49 (Universal property of blowups). Let X, Y, I, X̃ π−→ X be as before. Then for all
f : Z→ X such that f−1IY ⊆ OZ is an invertible sheaf, then there exists a unique g : Z→ BlY X making
the diagram

Z BlY X

X

g

f

π

commute.

Proof. We use the characterization of morphisms to ProjR. Here, a map X → ProjS∗R1 was an
invertible sheaf L on X and a surjection 〈∗R1 → L. If R is generated by R1, then we need this
surjection to factor through 〈∗R.

Now set L = f−1IY . By definition, there exists a surjective morphism f∗IY → L, so of course
we obtain a morphism

S∗f∗IY → R→ L.

This gives us the morphism Z→ X̃ = ProjR→ X. The proof of uniqueness is omitted.

Corollary 1.10.50. Consider π : BlY X =: X̃→ X. Then for all f : Z→ X, let Z̃→ Z be the blowup of Z
along f−1IY , then there exists f̃ : Z̃→ X̃ lifting f.

Remark 1.10.51. If f is a closed embedding, then so is f̃. When this is the case, then Z̃ is called the
proper transform of Z in X̃.

Corollary 1.10.52. If Z is integral and Z ⊆ X is a closed embedding, then Z̃ = π−1(X \ Y)∩Z ⊆ X̃.

Exercise 1.10.53. Consider proper transforms of nodal cubic curves in Bl0 A2.

Now let E be the exceptional divisor of π−1(Y) under the blowup π : X̃→ X. Then we know

E = Proj
(
R

∣∣∣∣
Y

)
= ProjR⊗OX OY = ProjR/IY ·R =

⊕
n>0

In/In+1.

For example, the exceptional divisor of Bl0 A2 →A2 is

E = Proj
⊕

(x,y)n/(x,y)n+1 = Projk[s, t] = P1.

More generally, the blowup Bl0 An has exceptional divisor Pn−1.
Now let A be a Noetherian ring and I ⊆ A be an ideal. Suppose I is generated by a regular

sequence of length r.
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Lemma 1.10.54. If I is generated by a regular sequence of length r, then I/I2 is a free A/I-module of rank
r, and ⊕

n>0

In/In+1 = S∗I/I2.

Definition 1.10.55. Let X be a Noetherian scheme and Y ⊆ X be a closed subscheme. Then Y is
called locally complete intersection of codimension r if IY is locally generated by a regular sequence
of length r.

Example 1.10.56. Let X = SpecA where A is a unique factorization domain. Then Y ⊆ X of
codimension 1 is a locally complete intersection.

Example 1.10.57. If E ⊆ X̃ is the exceptional divisor of a blowup, then E is a locally compelte
intersection.

Example 1.10.58. The twisted cubic is locally a complete intersection.

Proposition 1.10.59. Let X be Noetherian and Y ⊆ X be locally complete intersection of codimension r.
Then

• I/I2 is a locally free coherent sheaf of rank r;

• The map E = RI/I2 → Y is a Pr−1-bundle.

Remark 1.10.60. Locally on X̃ ⊆ PnX this is defined by fiTj = fjTi, where I = (f1, . . . , fr).

1.11 Projective morphisms and (very) ample line bundles

Definition 1.11.1. A morphism f : X → Y is called projective if X ' ProjY R for some R =
⊕

Ri,
where R is a quasicoherent graded algebra, R0 = OY , and R is finitely generated in degree 1, so
R1 is locally of finite type.

This is equivalent to the existence of a factorization f : X ↪→ PF → Y, where F is a quasicoherent
sheaf locally of finite type. If either of these conditions are satisfied, X is said to be projective over
Y.

Remark 1.11.2. If f : X → Y is projective, then on X we have a line bundle L = O(1) = R̃(1).
Conversely, if there exists L and a quasicoherent sheaf R1 of finite type with f∗R1 � L such that f
factors as X ↪→ ProjY S

∗R1 → Y, then f is projective.

Example 1.11.3. Blowups are projective if X is Noetherian and I is coherent.

Example 1.11.4. Clearly closed embeddings are projective.

Remark 1.11.5. Projective morphisms are proper and stable under base change.

Warning 1.11.6. Hartshorne defines projective morphisms as being X ↪→ PnY → Y. This is strictly
stronger than our definition.

Definition 1.11.7. If Y is quasicompact, then f : X→ Y is called quasiprojective if it can be factored
as a quasicompact embedding followed by a projective morphism.

Remark 1.11.8. Projective morphisms are separated and proper. Also, there exists some invertible
sheaf L = i∗OPF(1).

Now we want consitions for an invertible sheaf L on X to define an immersion X→ PF.
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Definition 1.11.9. Let f : X→ Y be a morphism of finite type with Y Noetherian. Then L is called
very ample over Y if there exists a coherent sheaf F on Y such that f factors via an immersion as
f = X ↪→ PF → Y such that L = i∗OPF(1).

Remark 1.11.10. If Z ⊂ X is a closed subscheme and L is very ample, then so is i∗L.

Example 1.11.11. Let f be as above. Then OPF(1) is very ample over Y.

Remark 1.11.12. This is a relative notions. If X = BlxP2, then OX(1) is very ample over P2 but not
ample over Speck (?).4

Remark 1.11.13. If f is proper, then the morphism X→ PF is necessarily a closed immersion.

Remark 1.11.14. Vakil defines the notion of being very ample only for proper morphisms. There is
yet another different definition in Görtz-Wedhorn, but I cannot be bothered to copy it.

Remark 1.11.15. By definition, if there exists a very ample L, then f is separated.

Definition 1.11.16. Let X be Noetherian and L be an invertible sheaf on X. Then L is ample if
there exists n0 such that F⊗Ln is globally generated for all n > n0 and all coherent F.

Example 1.11.17. If X = SpecA is affine, then any invertible sheaf is ample.

Proposition 1.11.18. Let X be a quasicompact and quasiseparated scheme, L be a line bundle, F quasico-
herent, and f ∈ Γ(X,L).

1. Let s ∈ Γ(X,F) such that s
∣∣
Xf

= 0. Then there exists n > 0 such that fns = 0 in Γ(X,F⊗Ln).

2. Let t ∈ Γ(Xf,F). Then there exists n > 0 such that fnt lifts to a section of F⊗Ln.

Theorem 1.11.19 (Serre). Let F be quasicoherent on X = ProjR, where R is finitely generated in degree 1.
Then there exists n0 > 0 such that for all n > n0, F(n) is generated by a finite number of global sections.

Proof. By assumption, ProjR is quasicompact and quasiseparated. Also. Now F = M̃i on Xfi , and
these are all finitely generated. There are also finitely many fi, so we can choose generators and
lift to F⊗O(n).

Remark 1.11.20. The sheaf OProjR(1) is ample.

Lemma 1.11.21. The following are equivalent for a Noetherian scheme X:

1. L is ample.

2. There exists n > 0 such that Ln is ample.

3. Ln is ample for all n > 0.

This means that ample line bundles form a cone. They are invariant under passing to positive
powers. Now here is a useful fact. Let R be as above and assume R0 is Noetherian. Then for all F
quasicoherent on X, Γ∗F is finitely presented over R0.

Corollary 1.11.22. Let f : X→ Y be a projective morphism with Y Noetherian. then for all F coherent on
X, f∗F is coherent on Y.

In general the pushforward of a coherent sheaf is not coherent (consider open immersions).

4Giulia deleted this remark during the lecture.
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Proposition 1.11.23 (Coherent extension). Let X be Noetherian and F be quasicoherent on X. Suppose
U ⊆ X is open and GU ⊂ F

∣∣
U

is a coherent subsheaf. Then there exists a coherent subsheaf G ⊂ F such
that G

∣∣
U

= GU.

Corollary 1.11.24. Let X be Noetherian, U ⊆ X be open and L be ample on X. Then L
∣∣
U

is ample.

Proof. For all F coherent on U, j∗F is quasicoherent on X. Then use coherent extension to construct
an extension F on X extending F. If F⊗Ln is globally generated, so is F⊗Ln

∣∣
U

.

Proof of proposition. Consider the partially ordered set {(GW ,W)} of coherent extensions of W
ordered in the obvious way. Then by Zorn, there exists a maximal element, and after reducing to
the affine case, we can see that the maximal element is defined on all of X.

Proposition 1.11.25. Let X be Noetherian (or qcqs) and L be an invertible sheaf. Then the following are
equivalent:

1. L is ample.

2. For all coherent ideals I, there exists n0 > 0 such that I⊗Ln is globally generated for all n > n0.

3. The open subsets of the form Xf, f ∈ Γ(X,Ln) for some n > 0 form a basis for the topology of X.

4. There exists n0 and f1, . . . , fN ∈ Γ(X,Ln0) such that Xfi are affine and X =
⋃
Xfi .

Proof.

1 implies 2: This is by definition.

2 implies 3: Let U ⊆ X be open, x ∈ U be a closed point, and Y = X \U have the reduced structure.
Finally let IY ⊆ OX be the ideal sheaf of Y. Then there exists n such that IY ⊗Ln is globally
generated. Thus if f ∈ Γ(X, IY ⊗Ln), so Xf ⊆ U.

3 implies 4: By quasicompactness, there exists n such that f1, . . . , fn ∈ Γ(X,Ln) are such that
X =

⋃
Xfi . Then Xfi ⊆ Ui are affine and L

∣∣
Ui

= OUi . Thus Xfi is a principal open subset
of an affine, so it is affine.

4 implies 1: This is the exact same proof as Serre’s theorem.

Proposition 1.11.26. Let X be quasicompact and quasiseparated and L be ample. Then write R =⊕
Γ(X,Ln). Then X→ Spec Γ(X,OX) factors through the open immersion X ↪→ ProjR.

Theorem 1.11.27. Let f : X→ SpecA be of finite type with A Noetherian and L be an invertible sheaf on
X. Then L is ample if and only if there exists n > 0 such that Ln is very ample. Moreover, if this is the
case, then the immersion X ↪→ PF can be taken to be X ↪→ PNA .

Proof. Assume Ln is very ample. Then there exists F coherent and also ON+1
X � F, so we obtain

an immersion j : X ↪→ PNA . But now if F is coherent on X, we can apply coherent extension to find
a coherent subsheaf F ⊂ j∗F on X. Finally i∗F is coherent on PN, so L is ample.

Conversely, if L is ample, then there exist s1, . . . , sr ∈ Γ(X,Ln) such that X =
⋃
Xsi with

Xsi = SpecBi affine. Also note that Bi is a finitely generated A-algebra. Now let bij be generators
of Bi over A. Then there exists N such that tij = sNi bij lift to Γ(X,LN). Now we have finitely
many sections sNi , tij ∈ Γ(X,Ln), and these define a regular morphism ψ : X → Pm. On each
Xsi → (Pm)Ti , we see that the map A[T1, . . . , Tr](Ti) → Bi is surjective. Thus ψ is a closed
immersion into an open subset of Pn.
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Remark 1.11.28. If X is quasicompact and quasiseparated, i : Z→ X is a quasicompact immersion,
then the pullback of an ample line bundle is ample.

Theorem 1.11.29. Let X be proper over an algebraically closed field k Now let s0, . . . , sn ∈ Γ(X,L) and
set V = 〈s0, . . . , sn〉. Then V defines a closed immersion if and only if

1. V separates closed points. This means for all x 6= x ′ there exists s ∈ V such that s(x) = 0, s(x ′) 6= 0.

2. V separates tangent directions. This means that for a closed point x and a tangent vector t ∈ TxX,
there exists s ∈ V such that x ∈ Supp s but t /∈ TxV(s).5

Theorem 1.11.30. Let f : X→ Y be a quasiseparated morphism of finite type with X, Y Noetherian. The
following are equivalent:

1. Ln is very ample for some n > 0.

2. There exists an affine open covering {Vi} of Y such that L
∣∣
XVi

is very ample for all i.

3. For all V ⊆ Y affine open, L
∣∣
XV

is ample.

Proof.

1 implies 3: Note that if Ln is very ample, then Ln
∣∣
XV

is very ample, so L
∣∣
XV

is ample.

2 implies 1: We have a morphism ψi : XViP
Ni
Vi

such that ψ∗iO(1) = Lni
∣∣
XVi

. Up to passing to

Veronese embeddings, we may assume ni = n. Then we have a surjection f∗ONi+1
Vi

� Ln
∣∣
Vi

.

By the adjoint, we obtain a morphism O
Ni+1
Vi

→ f∗ Ln
∣∣
Vi

. Now the image of this morphism
is coherent, so let Gi be a coherent extension of the Fi to Y. Then we obtain a morphism⊕

Gi → f∗Ln, which gives us f∗
⊕

Gi → Ln. This is surjective because it is surjective on
each XVi . Therefore we obtain a morphism ψ : X ↪→ P

⊕
Gi, and we need to show this is

an immersion. For each i, we have an immersion XVi → PY(Gi). Now up to passing to an
open subset, ψ factors through P

⊕
Gi, and so we need to show that if g ◦ f is an immersion,

so is f. This is left as an exercise.

1.12 Cartier and Weil divisors

Let L be an invertible sheaf. Then there exists an open cover {Ui} of X such that L
∣∣
Ui

ϕi−−→ OUi ,

and on Ui ∩Uj we have an isomorphism OUi∩Uj → OUi∩Uj . Of course, this ϕij ∈ OX(Ui ∩Uj)×.
On Ui ∩Uj ∩Uk, we have ϕijϕjk = ϕik. This is a Čech 1-cocycle. Then inside the set Z1(U,O×X)
we have a subgroup of boundaries B1(U,O×X).

If L = M is an isomorphism of invertible sheaves with cocycles ϕij,ψij, there exist fi ∈
OX(Ui)

× such that ϕij = ψijfif
−1
j . Therefore, we can define the Picard group of a scheme to

be the subgroup of isomorphism classes of line bundles. This is isomorphic to the cohomology
H1(X,O×X).

Now consider sections s ∈ Γ(X,L). This is the same as a morphism s : OX → L, and if X is
integral, this is always injective if s 6= 0. Dualizing, we have an injection L∨ ⊆ OX, so we realize
L∨ as an ideal sheaf. Every section may determine a different embedding L∨ ⊂ OX, and thus a
different closed subscheme of X.

5I copied this from Hartshorne, so it may not be the same as Giulia’s statement.
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Example 1.12.1. Consider O(d) on X = Pn. Then s ∈ Γ(X,O(d)) = k[x0, . . . , xn]d, and we obtain
the exact sequence

0→ O(−d)→ O→ OH → 0,

where H is a degree d hypersurface.

Remark 1.12.2. Let X be proper over a field k and L is very ample. Then if X ↪→ Pn is the embedding
given by L, then s ∈ Γ(X,L) corresponds to a section s ∈ Γ(Pn,O(1)), and V(s) = X∩H, where H
is the hyperplane cut out by s.

Now let X be a scheme. For an open U ⊆ X, consider the set S of elements of Γ(U,OX) that are
not zero divisors and now write K(U) = S−1Γ(U,OX). Now we define a presheaf U 7→ K(U), and
after sheafifying we obtain sheaves K(X),K(X)×.

Example 1.12.3. When X is integral, this is a constant sheaf.

Of course, we have a injection O×X → K×X , and now we have an exact sequence of sheaves

0→ O×X → K×X → K×X/O
×
X → 0.

Example 1.12.4. A Cartier divisor is an element D ∈ Γ(X,K×X/O
×
X).

Concretely, we obtain a collection of compatible pairs (U, f), where U ⊂ X is open and
f ∈ Γ(U,K×X) such that (U, f) ∼ (U ′, f ′) if f ′f−1 ∈ OX(U∩U ′)×. Now to a Cartier divisor D,

we can consider Supp(D) = {x | Dx 6= 1} =
{
x | fx /∈ O×X,x

}
. Now if D = {(Ui, fi)}, {(Ui,gi)}, we

denote D± E the Cartier divisor defined by
{
(Ui, fig

±1
i )
}

.

Definition 1.12.5. A Cartier divisor is called principal if it is in the image of Γ(X,L×X) given by
D = (X, f). Here, we write D = (f). Two Cartier divisors are called linearly equivalent if D−E = (f)
is principal.

Definition 1.12.6. A Cartier divisor D is called effective if D = {(Ui, fi)}, where fi ∈ OX(Ui) ∩
K×X(Ui). This is a regular function that is not a zero divisor, and so an effective Cartier divisor
defines an ideal sheaf ID ⊆ OX. Clearly this is locally free of rank 1.

Therefore, we see that effective Cartier divisors are the same as invertible ideal sheaves. Also,
we will write D > E if and only if D− E > 0. Now to a Cartier divisor D we will associate the
sheaf OX(±D) locally defined by f∓1

i . Also, we see that OX(−D) ⊆ OX if and only if D > X, so
we have a group homomorphism from Cartier divisors to the Picard group PicX.

Proposition 1.12.7. This assignment factors through the group of Cartier divisors modulo principal
divisors and in fact, the kernel is precisely the set of principal divisors. If X is integral, the assignment is
surjective.

Proof. If D = (f), where f ∈ Γ(X,K×X), f determines an isomorphism OX → OX((f)). On the other
hand, we need to show that if OX(D) ' OX, then D can be represented by (U, 1). Finally, if X is
integral, then the sheaf K(X) is constant, so if L corresponds to

{
ϕij
}

, then we fix j and think of
fi := ϕij ∈ Γ(Ui,K×X), and then everything will glue.

Proposition 1.12.8. If X is integral and L is invertible, then effective Cartier divisors Cartier divisors
D such that OX(D) = L correspond exactly to nonzero global sections of L modulo invertible functions
Γ(X,O×X). In particular, if X is proper over an algebraically closed field k, then dimk Γ(X,L) <∞.
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Proof. Suppose D > 0. Then OX(−D) ↪→ OX, and tensoring with L, we obtain a section. Con-
versely, given a section, we obtain an invertible ideal sheaf L∨ ⊂ OX, and a Cartier divisor
D.

Now we will consider Weil divisors. Let X be an integral Noetherian scheme. Now a Weil
divisor is a finite sum

∑
aiDi, where ai ∈ Z and Di is an integral subscheme of codimension

1. We need to assume that X is regular in codimension 1. Note that a local Noetherian ring of
dimension 1 is regular if and only if it is a discrete valuation ring.

Definition 1.12.9. Let f ∈ K×(X) and W ⊆ X be a prime divisor. Then OX,W is a discrete valuation
ring, and thus we obtain a valuation vW : K(X)→ Z. Then f is said to have a pole or zero along W
if vW(f) is negative (or positive). Now we define a function Γ(X,K×X) = K×(X) → Z1(X) to the
group of Weil divisors by f 7→

∑
vW(f) =: (f).

Definition 1.12.10. Given f, there exist finitely many prime divisors W such that vW(f) 6= 0.

Definition 1.12.11. A Weil divisor D =
∑
aiWi is called principal if there exists f ∈ K×(X) such

that D = (f).

In fact, we can define a map Γ(X,K×X/O
×
X) → Z1(X) sending principal Cartier divisors to

principal Weil divisors. This induces an injection Pic(X) ↪→ Z1(X)/K×(X). If X is locally factorial,
this is an isomorphism.

Example 1.12.12. Consider Pn. Then it is easy to see that Pic(Pn) = Z (if we think of everything
as a Weil divisor

∑
niYi, then equivalence classes are classified by

∑
ni).
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Cohomology

2.1 Derived Functors

Let A,B be abelian categories and F : A → B be a left exact functor. For example, if X is a
topological space, we can have A be the category of modules, B = Ab, and F = Γ(X,−). This is left
exact but not exact in general.

Example 2.1.1. Let A be a ring and A = ModA. Then HomA(M,−) is left exact.

Example 2.1.2. Let X be a scheme and p 6= q be closed points. Then we have the exact sequence

0→ Ip,q → OX → k(p)⊕ k(q)→ 0.

If X is proper over an algebraically closed field k, then Γ(X,OX)→ k⊕ k cannot be surjective.

Example 2.1.3. If X = SpecA is affine, then Γ(X,−) is exact on Qcoh(X).

Now we will construct a sequence of functors RiF for i > 0 such that R0F = F. In some semse,
this will measure the failure of exactness of F. To do this, we will replace A with the derived
category D(A) of complexes localized at quasi-isomorphisms. I have discussed chain homotopies
and quasi-isomorphisms in my notes for several other courses,1 so I will omit the discussion here.
In order to construct derived functors, we need to replace A ∈ A with a quasi-isomorphic complex
I• of injective objects.

Definition 2.1.4. An object I ∈ A is called injective if HomA(−, I) is exact.

Example 2.1.5. In Vectk, every object is injective.

Exercise 2.1.6. If 0 → A1 → A2 → A3 → 0 is a short exact sequence, then if A is injective, the
sequence is split.

Definition 2.1.7. An abelian category A has enough injectives if for all A ∈ A, there exists an
injective object I and injection A ↪→ I.

An injective resolution of A ∈ A a complex A→ I• that is a long exact sequence. Clearly, A
has enough injectives if and only if injective resolutions always exist.

Lemma 2.1.8. For A ∈ A, any two injective resolutions are quasi-isomorphic.

1For example, see my algebraic topology notes at https://math.columbia.edu/~plei/docs/AT1.pdf.
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If A is a ring, then ModA has enough injectives.

Corollary 2.1.9.

1. Let (X,OX) be a ringed space. Then Mod(X) has enough injectives.

2. Let X be a topological space. Then Ab(X) has enough injectives.

Proof. For all x ∈ X, we have an injective module Ix with Fx ↪→ Ix. But then we obtain an injection

F ↪→
∏
x∈X

(jx)∗Ix.

The target is injective, so we are done. In the second case, simply take the ringed space (X, Z).

Now we may define the right derived functors of F.

Definition 2.1.10. The right derived functors of F are the functors

RiF : A→ B A 7→ Hi(F(I•)).

Alternatively, we may consider the complex RF(A) = F(I•), which is well-defined up to quasi-
isomorphism.

Remark 2.1.11. Because F is left-exact, we H0(F(I)) = R0F(A) = F(A) as desired.

The crucial observation is that this definition does not depend on the choice of injective
resolution.

Example 2.1.12. Let X be a topological space and F = Γ(X,−). Then RiΓ(X,−) =: Hi(X,−) are
called the cohomology functors of X.

Theorem 2.1.13. Let F : A→ B be an exact functor as above. Then

1. The derived functors RiF are well-defined and additive.

2. If 0→ A ′ → A→ A ′′ → 0 is a short exact sequence in A, we have a long exact sequence

· · · → RiF(A ′)→ RiF(A)→ RiF(A ′′)
δi−→ Ri+1F(A ′)→ · · ·

3. Given two short exact sequences and morphism f : A• → B• in A, the diagram

Ri(A ′′) Ri+1(A ′)

Ri(B ′′) Ri+1(B ′)

δ

Rif Ri+1f

δ

commutes.

Example 2.1.14. If I is injective, then RiF(I) = 0 for all i > 0.

Injective resolutions are hard to compute, so we will try construct a resolution that is easier to
compute.

Definition 2.1.15. A ∈ A is called F-acyclic if RiF(A) = 0 for all i > 0.
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Example 2.1.16. Injective objects are acyclic for all left-exact functors.

Proposition 2.1.17. If A→ J• is ann F-acyclic resolution, then RiF(A) = Hi(F(J)).

Proof. Consider the diagram of exact sequences

A J0 J1 · · ·

A I0 I1 · · ·

J0 K1 · · · .

Becuase the Ij are injective, the map J• → I• is a quasi-isomorphism. Next, K• is exact. Because
Ji, Ii are acyclic, so are the Ki. But this means that the the map F(J•) → F(I•) is a quasi-
isomorphism. To complete this, it is an exercise that if C• is an exact complex of acyclic objects,
then F(C•) is exact.

Definition 2.1.18. A sheaf F ∈ Ab(X) is called flasque if for all V ⊆ U the restriction F(U)→ F(V)
is surjective.

Exercise 2.1.19. Let 0 → F ′ → F → F ′′ → 0 be a short exact sequence. If F ′ is flasque, then
Γ(X,F)� Γ(X,F ′′) is surjective.

Example 2.1.20. If (X,OX) is a ringed space, then injective sheaves are flasque.

Proposition 2.1.21. Let X be a topological space and F ∈ Ab(X) be flasque. Then F is Γ(X,−)-acyclic.

Proof. Let 0→ F → I→ G→ 0 be an exact sequence with I injective. Then because F is flasque,
we obtain an exact sequence

0→ Γ(X,F)→ Γ(X, I)→ Γ(X,G)→ 0.

Because Hi(X, I) = 0 for all i > 0, we know H1(X,F) = 0 and Hi(X,G) ' Hi+1(X,F). By induction,
we see that F is acyclic.

Remark 2.1.22. If (X,OX) is a ringed space, cohomology in Mod(X) is the same as cohomology in
Ab(X).

Theorem 2.1.23. Let X be a Noetherian topological space of dimension n. Then Hi(X,F) = 0 for i > n.

Lemma 2.1.24. Let i : Y ↪→ X be a closed immersion. Then Hi(Y,F) = Hi(X, i∗F).

2.2 Cohomology of Noetherian Schemes

Theorem 2.2.1. Let X = SpecA be a Noetherian scheme and F be quasicoherent. Then F is Γ(X,−)-acyclic.
In other words, Hi(X,F) = 0 for all i > 0.

This result is implied by the following proposition:

Proposition 2.2.2. Let I be a injective A=module. Then Ĩ is flasque.
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To prove the theoremm from this proposition, write F = M̃ and let M → I• be an injective
resolution in Mod(A). Then M̃→ Ĩ• is a flasque resolution, so it computes the cohomology.

Corollary 2.2.3. Let X be a Noetherian scheme and F be quasicoherent. Then for F coherent, there exists G
quasicoherent and flasque with F ↪→ G.

Proof. Cover X be affines Ui. Then we have an injection

F ↪→
⊕

jI F

∣∣∣∣
Ui

↪→
⊕

j∗Ĩi.

Theorem 2.2.4 (Serre). Let X be Noetherian. The following are equivalent:

1. X is affine.

2. Hi(X,F) = 0 for all quasicoherent F and i > 0.

3. H1(X, I) = 0 for all coherent ideal sheaves I ⊆ OX.

Proof. Clearly 1 implies 2 implies 3, so now choose p ∈ X a closed point and U 3 p be an open
neighborhood. Then if Y = X \U and Z = Y ∪ p, we have an exact sequence

0→ IZ → Ox → OZ → 0.

From the vanishing of H1 for coherent ideal sheaves, there exists f ∈ Γ(X,OX) such that f(p) 6= 0.
Then Xf ⊆ U is affine, so now we need to show that 〈f1, . . . , fk〉 = Γ(X,OX).

2.3 Čech cohomology

Let X be a topological space and U = {Ui}i∈I and fix an ordering of I. Then let F ∈ Ab(X). For all
p > 0, define the sheaf

Cp(U,F) =
∏

i1<···<ip

F

∣∣∣∣
Ui1∩···∩Uip

and the group
Cp(U,F) =

∏
F(Ui0 ∩ · · · ∩Uip).

Now we may define a complex by

d : Cp(U,F)→ Cp+1(U,F) si0...ip 7→
p+1∑
j=0

(−1)j si0...ip

∣∣∣∣
···

.

Example 2.3.1. The kernel of d0 is precisely the global sections.

Exercise 2.3.2. The complex F → C0(U,F)→ C1(U,F)→ · · · is a resolution of F.

Definition 2.3.3. Let X,U,F be as above. Then the Čech cohomology of the covering is defined as

Ȟi(U,F) = Hi(C•(U,F)).

then the Čech cohomology of X is defined as Ȟi(X,F) = lim−→U
Ȟi(U,F).

Now we will compare Čech cohomology and derived functor cohomology.
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1. Flasque sheaves have no higher Čech cohomology. In particular, if F is flasque then
Ȟi(F,F) = 0 for all U and all i > 0.

To see this, note that F
∣∣
U

is flasque, so F → C•(U,F) is a flasque resolution. Therefore the
Čech cohomology is the same as the usual cohomology, so by flasqueness, they must vanish.

2. Let X be a topological space and U be an open covering. Then there exists a functorial map
Ȟi(U,F)→ Hi(X,F).

3. If X is Noetherian and separated, then for every F quasicoherent and open affine cover U,
the map Ȟi(U,F)→ Hi(X,F) is an isomorphism.

Because X is separated, Ui ∩Uj is affine, so if we denote Uα = Ui0 ∩ · · · ∩Uip for any
multi-index α = i0 . . . ip, then we can consider an exact sequence

0→ F → G→ E→ 0.

Because G is quasicoherent and flasque, it has no derived functor cohomology and no Čech
cohomology. Because the Uα are affine, then

0→ F(Uα)→ G(Uα)→ E(Uα)→ 0

is exact, so we obtain an exact sequence

0→ C•(U,F)→ C•(U,G)→ C•(U,E)→ 0

of complexes. Now we obtain a long exact sequence in the Hi(X,−), so now Hi(X,E) =
Hi+1(X,F). Using the snake lemma, we haave the same result for the Čech cohomology.
Because the desired result holds for i = 0, we use induction to obtain it for all i.

2.4 Cohomology of projective schemes

Theorem 2.4.1. Let A be a Noetherian ring and X = PrA.

1. As graded rings,
⊕
H0(X,OX(n)) ' A[x0, . . . , xr].

2. For all n ∈ Z and 0 < i < r, Hi(X,OX(n)) = 0.

3. Hr(X,OX(−r− 1)) = A.

4. The map H0(X,OX(n))×Hr(X,OX(−r− 1 −n))→ Hr(X,OX(−r− 1)) is a perfect pairing.

Remark 2.4.2. The bundle OX(−r− 1) ' ωX is the canonical bundle detΩ1
PnA

=
∧rΩ1

PnA
. Compare

the third result to hr(PrC,ΩrC) = h
r,r(PrC) = 1.

Remark 2.4.3. These are particular instances of Serre duality, which says that when A = k, then

1. Hr(ωX) = k;

2. The map Hom(F,ωX)×Hr(X,F)→ Hr(X,ωX) = k is a perfect pairing;

3. Exti(F,ωX) ' Hr−i(X,F)∨,

which holds when X is a projective scheme over k and ωX is the dualizing sheaf. In nice cases, for
example when X is smooth, ωX is just the canonical bundle.
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The proof of the theorem is a direct computation using Čech cohomology. Now we will state
important finite results for cohomology of coherent sheaves on Noetherian projective schemes.

Theorem 2.4.4 (Serre). Let X→ SpecA be a projective scheme of finite type over A with A Noetherian.
Let F be a coherent sheaf on X and OX(1) be very ample. Then

1. Hi(X,F) is a finitely generated A-module for all i;

2. There exists n0 such that for all i > 0 and n > n0, Hi(X,F(n)) = 0.

Proof. We can reduce this to the case of X = PrA. For i > r, we know Hi(X,F) = 0 because PrA is
covered by r+ 1 affine open subsets and thus Cp(U,F) = 0 for p > r+ 1. For the second part, we
use descending induction on i, using the fact that there exists a surjection ONX (n)� F for n > n0
and what we already know about Hi(OX(n)).

Remark 2.4.5. The n0 depends very much on F. A crucial point in the construction of Hilbert
schemes is to find an n0 that works for any sheaf of ideals IZ as long as we fix the Hilbert
polynomial of Z.

Definition 2.4.6. Let X be projective over k with OX(i) ample and F be coherent. Then define the
Euler characteristic

χ(F) :=
∑

(−1)i dimkHi(X,F).

This is additive on short exact sequences of coherent sheaves.

Definition 2.4.7. The function n 7→ χ(X,F(n)) is a polynomial with rational coefficients, called
the Hilbert polynomial pF(n).

Example 2.4.8. If X = Pr, then pOX(n) = pX(n) =
(
n+r
r

)
.

Exercise 2.4.9. Compute the Hilbert polynomial of a degree d hypersurface Y ⊆ Pr.

Remark 2.4.10. Given F, the coefficients of the Hilbert polynomial pF(n) are important invariants
of F.

Remark 2.4.11. We will see later that the Hilbert polynomial is constant in flat families.

2.5 Higher direct images

Let f : X→ Y be a continuous map of topological spaces. Then f∗ : Ab(X)→ Ab(Y) is left exact. We
also know that Ab(X) has enough injectives, so we may consider the right derived functors.

Definition 2.5.1. The functors Rif∗ : Ab(X)→ Ab(Y) are the higher direct image functors.

Proposition 2.5.2. The higher direct image Rif∗F is the sheaf associated to the presheaf

V 7→ Hi

(
f−1(V), F

∣∣∣∣
f−1(V)

)
.

In particular, Rif∗F
∣∣
V

= Ri
(
f
∣∣
f−1(V)

)
∗

(
F
∣∣
f−1(V)

)
and if F is flasque, then Rif∗F = 0 for all i > 0.

This means that flasque sheaves are f∗-acyclic, so they may be used to compute higher direct images. Also
computing higher direct images is the same in Ab(X) and in Mod(X).
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Proposition 2.5.3. Let f : X→ Y = SpecA with X Noetherian. Let F be quasicoherent. Then Rif∗F =

˜Hi(X,F). Therefore Rif∗F is quasicoherent, and if f is projective with A Noetherian, then Rif∗ preserves
coherent sheaves.

Proposition 2.5.4. Let f : X → Y be a morphism of separated Noetherian schemes, F be quasicoherent
on X, and U = {Ui} be an open affine cover. Let C•(U,F) be the Čech resolution of F. Then Rif∗F '
Hi(f∗C•(U,F)).

Proof. Because Y is separated, for all V ⊆ Y affine, f−1(V)∩Ui is affine. Therefore we may assume
that Y = SpecA is affine. But now

Rif∗F = ˜Hi(X,F)

= ˜Hi(Γ(X,C•(U,F)))

= ˜Hi(Γ(Y, f∗C•(U,F)))

= Hi(f∗C
•(U,F)).

Remark 2.5.5. It is also often useful to use the long exact sequence for right derived functors.

Theorem 2.5.6. Let f : X → Y be a projective morphism of finite type with X, Y Noetherian. Suppose
OX(1) is very ample over Y and let F be coherent on X.

1. There exists n0 such that for n > n0 the map f∗f∗F(n)→ F(n) is surjective;

2. Rif∗F is coherent;

3. There exists n0 such that for all n > n0 and i > 0, Rif∗F(n) = 0 for i > 0.

Proof. Because Y is quasicompact, we may reduce to the affine case.

Now we will consider base change of Rif∗F along general morphisms X ′ → Y.

Proposition 2.5.7. Let X, Y be Noetherian and separated schemes, f : X→ Y be of finite type, and Y ′ be
Noetherian. Suppose F is quasicoherent and let

X ′ X

Y ′ Y

u

f ′ f

v

be Cartesian. Then there exists a base change morphism

v∗Rif∗F → Rif ′∗(u
∗F)

which is an isomorphism if v is flat.

Proof. We may assume Y = SpecA, Y ′ = SpecA ′ are affine. Then Rif∗F = ˜Hi(X,F), so

v∗Rif∗F = ˜Hi(X,F)⊗A A ′ = Hi(C•(U,F))⊗A A ′.
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On the other hand, if we cover X ′ by Ui ×A SpecA ′ =: U ′i, then C•(U ′,u∗F) = u∗C•(U,F) and
C•(U ′,u∗F) = C∗(U,F)⊗A A ′. Therefore we obtain a map

Hi(C•(U,F))⊗A A ′ → Hi(C•(U,F)⊗A A ′)

which is an isomorphism if A→ A ′ is flat.

Remark 2.5.8. If y ∈ Y is a point, then y → Y is in general not flat, so it is not easy to compare
(Rif∗F)y and Hi(Xy,Fy).

Example 2.5.9. Let C be a smooth curve over k that is irrational. Then consider π = p2 : C×C→ C
and let L = OC×C(Σ−∆) where Σ = p0 ×C and ∆ is the diagonal. Then π∗L is torsion free on C
and thus locally free. However,

(π∗L)p =

{
OC p = p0

OC(p− p0) 6= OC p 6= p0
.

Therefore the rank of H0(C, (π∗L)p) changes.

Remark 2.5.10. When f : X→ Y is flat, we will see some criteria to understand what happens.

2.6 Flatness and base change

Definition 2.6.1. Let f : X→ Y be a morphism of schemees. then F is flat over Y if for all x ∈ X the
stalk Fx is a flat OY,f(x)-module. If OX is flat over Y, then f is said to be a flat morphism.

Here are some important results about flat morphisms:

1. Flat morphisms of locally Noetherian schemes are equidimensional. This means that for all
x ∈ X, dimx(Xy) + dimy Y = dimx X. To prove this, use going down.

2. If X is integral of dimension 1 and Y is regular, then f is flat if and only if it is dominant. In
fact, without assuming that X is integral, f is flat if and only if every associaated point of X
dominates Y.

3. If Y is regular of dimension 1, p is a closed point, and U := Y \ p, then for all XU ⊆ PnU flat
over U, there exists a flat limit XU : X→ Y sending Xp to p.

Now for any morphism f : X→ Y, we know that the Čech resolution C•(U,F) computes Rif∗F,
and this is compatible with base change to an open subset of Y or with flat base change. For an
arbitrary base change, the Čech resolution does not work, but if F is flat over Y, we can cook up a
complex that computes cohomology compatibly with base change.

Theorem 2.6.2. Let f : X→ Y be a projective morphism of Noetherian schemes with Y = SpecA. Let F be
coherent on X. Then there exists a finite complex of finitely generated projective A-modules

0→ K0 → K1 → · · · → KN → 0

such that for all A→ A ′, there exists a natural isomorphism Hi(X ′,u∗F) = Hi(K• ⊗A A ′), where

X ′ X

SpecA ′ SpecA.

u

f ′ f

v
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Corollary 2.6.3. There exists a complex K̃• of locally free coherent sheaves such that

Rif ′∗u
∗F ' Hi(u∗K̃•).

Remark 2.6.4. The proof of this only uses coherence of Rif∗F which holds more generally for
proper morphisms.

Corollary 2.6.5. The map y 7→ dimk(Y)Hi(Xy,Fy) is upper semicontinuous. In addition, y 7→
χ(Xy,Fy) is locally constant.

Proof. Note that

hi(Xy,Fy) = hi(K• ⊗ k(y))
= dim ker(di ⊗ k(y)) − dim Im(di−1 ⊗ k(y))
= dimKi ⊗ k(y) − dim Im diy − dim Im di−1

y ,

and the last two terms are lower semicontinuous because the Kj are locally free. For the second
part, note that

χ(Fy) =
∑

(−1)i dimKiy − rk(diy) − rk(di−1
y )

=
∑

(−1)i dimKiy

=
∑

(−1)irk(Ki),

which is locally constant on Y.

Corollary 2.6.6. The Hilbert polynomial is constant in flat families.

Corollary 2.6.7. Assume that Y is reduced. The following are equivalent:

1. The map y 7→ dimHi(Xy,Fy) is constant.

2. The sheaf Rif∗F is locally free and Rif∗F⊗ k(y)→ Hi(Xy,Fy) is an isomorphism.

Moreover, if these conditions are satisfied, then

Ri−1f∗F⊗ k(y)→ Hi(Xy,Fy)

is also an isomorphism.

Proof. Use the following two facts:

1. If F is coherent on Y, then dimk(y)(F⊗ k(y)) ≡ r if and only if F is locally free of rank r.

2. If F,G are locally free on Y and ϕ : F → G is a morphism such that rk(ϕy) = r for all y, then
locally on Y, there exists a splitting F = F1 ⊕F2,F = G1 ⊕ G2 with all Fi,Gi locally free such
that

ϕ =

(
0 ψ
0 0

)
with ψ : F2 → G1 an isomorphism.

Corollary 2.6.8. Let Y be reduced. If Hi(Xy,Fy) = 0 for all y ∈ Y, then Rif∗F = 0.
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Corollary 2.6.9. Let Y be reduced. If Rif∗F = 0 for all i > i0, then Hi(Xy,Fy) = 0 for all i > i0 and
y ∈ Y.

In fact, we can prove a stronger result.

Theorem 2.6.10. Let f : X→ Y be a projective morphism of fintie type between Noetherian schemes. Let F
be flat over Y. Then

1. If ϕiY : R
if∗F⊗ k(y)→ Hi(Xy,Fy) is surjective at y, then it is an isomorphism at y and the same

is true in a neighborhood of y ∈ Y.

2. If ϕiy is surjective, then the following are equivalent:

a) ϕi−1
y is also surjective;

b) Rif∗F is locally free in a neighborhood of y.

Corollary 2.6.11. If Hi(Xy,Fy) = 0 for all y ∈ Y, then ϕiy is surjective for all y, and thus ϕiy is an
isomorphism, so (Rif∗F)y = 0. This implies that Rif∗F = 0 around y, and thus ϕi−1

y is also surjective.

Exercise 2.6.12. Let X, Y be Noetherian and f : X → Y be flat and proper. Suppose that for all
y ∈ Y, Xy ' Pn

k(y). If L is invertible such that L
∣∣
Xy

= OXy for all y ∈ Y, then there exists an
invertible sheaf M such that L = f∗M.

Hint: Set M = f∗L and prove that f∗f∗L→ L is an isomorphism.

Exercise 2.6.13. Let X be Noetherian and connected. Show that Pic(X×PnZ) ' PicX×Z.
Hint: Show that the map PicX× Pic Pn → Pic(X×Pn) is an isomorphism.
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