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Schemes

1.1 Affine Schemes

Let R be a commutative ring. We will define the scheme SpecR as a set, a topological space, and
finally as a locally ringed space. Our goal is for R to be the ring of functions on SpecR.

Definition 1.1.1. We will define the set SpecR to be the set of prime ideals P C R. Here, note that
R is not a prime ideal and that (0) is prime if R is a domain.

Example 1.1.2. If R = Z, then SpecZ is the set of prime numbers together with 0. If R=k is a
field, then Speck = {(0)}. If R = k[t], then SpecR is the set of irreducible polynomials.

We will place the Zariski topology on Spec R by declaring the closed sets to be V(S) ={p [p O S}
for any subset S C R. Some easy properties of V(S) are:

. IfSCT,then V(S) D V(T).
. If a=(S) CR, then V(S) = V(a).
. V(S) =0if and only if 1 € (S) and V((0)) = V({0}) = SpecR.

—_
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4. Given an ideal a C R, we have V(a) = V(y/a).
5. We verify that this forms a topology:

 First, V(Uy Sa) =Ny V(S«).

e Second, V(a-a’)=V(ana')=V(a)uV(a’).

Proof of all of these is a simple exercise. If R is considered as the set of functions on SpecR,
then for f € R and x = p € SpecR, we need to define f(x). For this, we consider the field of
fractions k(x) = k(p) of R/p. This is called the residue field.

Example 1.1.3. If R = Z and x = (p) for p # 0, then k(p) = Z/pZ. If x = (0), then we see that
k(0) = Q.

Now we define f(x) to be the image of f under the map R — R/p — K(R/p) = k(x). Then
clearly {x | f(x) = 0} is the closed subset V(f).

Definition 1.1.4. Given X = SpecR and f € R, we define X¢ = X\ V(f) = SpecR[1/f]. These are
called the principal (or distinguished) open subsets.
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Lemma 1.1.5. Principal open subsets form a basis for the Zariski topology and are closed under finite
intersections.

Proof. If U is open, then we can write U = SpecR\ V(S) = V(X ;cs(f)) = Nses VI(F) =
Utes SpecR\ V(f), as desired. The proof that principal open subsets are closed under finite
intersection is clear. O

Lemma 1.1.6. Let g,f; € R. Then Xy C X¢, if and only if V(g) D V(a) = V(\/a), where a = 3 _(f3).

Proof. We know Xg4 C |J X, if and only if V(g) 2 [ V(f;), which is equivalent to the right hand
side. 0

Corollary 1.1.7. If g =1, then X = |J Xy, if and only if 1 € }_(f3). In particular, because 1 = ) _ a;f; is
a finite sum, and therefore X is a finite union of some of the X¢,. This implies that Spec R is a quasi-compact
topological space.

Definition 1.1.8. Let Y C SpecR = X. Then define

[(Y)={feR|f(x) =0forally €Y}
={feR|fepforallpeY}

“N»

pey
Proposition 1.1.9. 1. For all ideals a C R, we have 1(V(a)) = /a.

2. V and 1 define inverse bijections
{radical ideals} XA {closed subsets of SpecR}.

3. If Y C SpecR is a subset, then V(1(Y)) =Y, the Zariski closure of Y.
Proof. 1. If f € I(V(a)), then f € p for all p D a and thus f € \/a.
2. This is left as an exercise.

3. Note that V(b) D Yif and only if b C ﬂpeY =1I(Y).

In particular, we see that in general SpecR has points that are not closed.
1.1.1 A Bit About Classical Varieties Let k be an algebraically closed field and R =
klty, ..., tal.

Definition 1.1.10. A closed algebraic subset of k™ (or A™(k)) is the common set of zeros V(fy, ..., fm)
of a finite set of polynomials fy, ..., fm. Here, all of the same properties of these vanishing sets
from SpecR hold.

Now recall the Nullstellensatz from commutative algebra, which says that if k is a field and B
a finite k-algebra, then B is a field and a finite extension of k.

Corollary 1.1.11. All maximal ideas of k[ty,...,tn] are m = (t; —xq,...,tn —xn) for x; € k.

Corollary 1.1.12. There is a bijection between radical ideals of k[t, ..., tn] and closed algebraic subsets of
k™ given by V and 1.



1.1.2 Back to Affine Schemes

Examples 1.1.13. If R is a PID, then we can write 0 # f = [[{_; p;* and therefore the closed
subsets of SpecR are either SpecR or a finite union of closed points. If R is also a local ring, then
SpecR ={(0),m}. If a C A and consider R = A/a. Then Spec A/a = V(a). If f # 0 is not nilpotent,
then Spec Ry is the set of prime ideals not containing f, which is (SpecR);.

Suppose p € SpecR. Then we know that p = V(p) = SpecR/p. This tells us that x € SpecRis a
closed point if and only if it corresponds to a maximal ideal.
Remark 1.1.14. Note that if k is not algebraically closed, k™ is different from Specklty, ..., tn].

Example 1.1.15. Let R be a domain. Then we see that (0) € SpecR is a generic point (it is dense).
We will see that it is the unique generic point.

Definition 1.1.16. Let X be a topological space. A closed subset Z C X is called irreducible if it is
not the union of two proper closed subsets.

Proposition 1.1.17. A closed subset Y C Spec R is irreducible if and only if 1(Y) is prime. Moreover, any
closed irreducible subset has a unique generic point.

Proof. Let Y = V(a) and suppose a = v/a = I(Y). Then if a = p then p = Y and thus Y is irreducible.
In the other hand, if fg € I(Y), then fg(x) = 0 for all x € Y, and this means either f(x) = 0
or g(x) = 0. This implies that f € p forall p € Yor g € p for all p € Y. Then we can write
Y = (V(f)NnY)U (V(g)NY) and by irreducibility, we see that Y = V(f) NY, which implies that
fel(Y).

To prove the uniqueness of the generic point, we see that if there is more than one, then their
closures are the same, so they contain each other and thus must be the same. For the existence of
the generic point, we know Y = V(p) for a prime ideal p and thus p is the generic point. O

Notation 1.1.18. For an irreducible closed subset Y C SpecR we will denote by ny the generic
point of Y.

Now recall that a ring R is Noetherian if it satisfies the ascending chain condition of ideals.

Definition 1.1.19. A topological space X is called Noetherian if any of the following conditions
hold:

* Closed subsets satisfy the descending chain condition.
* Open subsets satisfy the ascending chain condition.
¢ Every open subset is quasi-compact.

Lemma 1.1.20. A ring R is Noetherian if and only if Spec R is Noetherian, and this implies that all open
subsets of Spec R are quasi-compact.

1.1.3 The Structure Sheaf Let X be a topological space and € be a category.

Definition 1.1.21. A presheaf on X is a functor from the opposite category of the poset category of
open sets to C.



Definition 1.1.22. A presheaf J on X is called a sheaf if for every open subset U C X and for all
open coverings {Ll;} the sequence

FU - [[Fun) = [[Fuiny)

sw(sﬂ—(s )Hsi
Uy

— Sj
is exact. Of course, if € = Ab, then the second arrow can be replaced by (s;i) — s;

given by

uiQUj

winy

‘umuj o

S |u- Aw. - What this means is that given two sections s, s’ € F(U) that agree on the restrictions,
1 )

they s = s’. Also, if there exist s; € F(U;) such that s;
s € F(U) that globalizes the s;.

‘umuj = Si’uimu,- then there exists

Now suppose B = {U;} is a basis of open sets of X. Given F(Ul;) for all U; € B, we need to
check when this defines a (pre)sheaf. Here, on an arbitrary open set V, we will simply define

F(V)= lim J(U).
Paininiy
voues
To check when this presheaf is actually a sheaf, then we only need to check the gluing condition
for U, {U;} € B.

Now we will define the structure sheaf on X = SpecR. Here, we write Ox(Xf) = R¢ and
Ox(Xg) — Ox(X¢) be given by choosing n such that f™* = ag and then writing f% > %. Now
we need to check the two gluing conditions. The second is left as an exercise, so we will check the
first.

If f% — 0 for all i, then there exist m; such that f{“i -b = 0 in R. But then because Xy is
quasi-compact, we can assume the cover is finite and choose n = maxm;. But then because
X¢ = JX¢,, we can write 1 = ) a;f]* and this implies b =} a;f{'b =0.

The sheaf Ox that we have defined is called the structure sheaf of X.

Definition 1.1.23. The pair (X, Ox) is called an affine scheme.
Example 1.1.24. For a field k, the space Speck is a point, but O is different for different fields.

Example 1.1.25. If X = SpecD for D a DVR with uniformizer t, then X; = {0}, we see that
Ox(Xt) = Dy = K(D).

Proposition 1.1.26. Let X = SpecR.
1. The stalks of Ox at p =x € X are given by Ox x = Rp.

2. For any U C X open, we define Ox(U) to be the the set of sy € [[,cy Ry such that whenever
U = U Xy,, there exist s; € Ox(X¢,) mapping to s, whenever p € Xg,.

Proof. First, the stalk Fx = limy 55 F(U) and thus the stalk of the structure sheaf is easily computed
to be the localization. For the second part, we note that

Ox(U) = 1{&1 Ry — H Fp.
XrCu peu



Remark 1.1.27. The same method used to construct Ox can be used to associate a sheaf for every
R-module M. Here, we will define M(X¢) = M = M ®g R¢. Here, M is a sheaf of Ox-modules.
This means that for all U C X, M(U) is an Ox(U)-module and the diagram

M(U) x Ox(U) — M(W)

l l

M(V) x Ox(V) —— M(V)

commutes whenever V C U.

Proposition 1.1.28. Homg (M, N) ~ Homg, (M, N).

Proof. Let M %5 N be a map of R-modules. Now on X, we have a map M¢ 21Ny by functoriality
of localization, and then we can take limits to get a map on every open set.

In the other direction, let f: M — N be a map of sheaves. Then we simply apply the global
sections functor to obtain a map M — N. Checking that the two maps defined are inverses is easy
and uses naturality of localiation. O

1.2 General Schemes

Definition 1.2.1. A scheme is a locally ringed space (X, Ox) such that there exists an open cover
{U;} of X such that (Ui, OX‘u-) is an affine scheme.

Lemma 1.2.2. Let R be a ring and X = SpecR. Then for any f € R, the schemes (Xf, Ox ‘Xf), (Spec R¢, Ospec Ry )
are isomorphic.

Proof. We check that the structure sheaves agree on principal open subsets. O

Proposition 1.2.3. Let (X, Ox) be a scheme. Then for any open subset U C X, the pair (U, Ox |u) is also
a scheme.

Proof. We need to show there exists an open affine covering of U. It suffices to check for X an
affine scheme, but then U is covered by principal open subsets. O

1.2.1 Morphisms of Schemes We will now define morphisms of schemes. Here, this will
be a map of topological spaces that is compatible with the structure sheaves. From this, we will
obtain a locally ringed space. In the category of topological spaces, smooth manifolds, or complex
manifolds, then f: X — Y is a regular function if and only if the pullback of regular functions is
regular. This tells us that we have a morphism of sheaves Oy — f.Ox. In other words, we obtain
a morphism Oy (V) — Ox(f~1(V)) for any open V C Y.

Definition 1.2.4. A morphism f: (X, Ox) — (Y, Oy) of schemes is the data of a continuous map
f: X = Y and a morphism of sheaves Oy — f,Ox such that for every point y € Y, the map
Oyy — (f*(‘)x)y — Ox x is a morphism of local rings. What this means is that the maximal ideal
of Oy y is sent to the maximal ideal of Ox .. In particular, we obtain an extension k(y) < k(x).

Theorem 1.2.5. Let X be a scheme and R a ring.



1. The assigment f: X — SpecR — I'(f*): R — T'(X, Ox) determines a bijection
Homgh (X, SPeC R) = HomCRing(Rr X, 0x)).

2. In particular, when X = Spec B this determines an anti-equivalence between the category of affine
schemes and the category of commutative rings

Homsp, (Spec B, Spec R) = HomcRing (R, B).

Proof. First we will show that this assignment is injective. First, we will show that f is determined
(set-theoretically) by I'(f*) and then we will show that f.: Oy — f.Ox is determined by this.

First, for x € X, we recall that I(f(x)) = {h € R| f(h(x)) =0} = (1“,’2)_1111X and this gives us a
prime ideal in R. To find the morphism of sheaves, we will simply consider principal open subsets
Spec Ry,.. Here, we have ring maps

R —— (X, 0x)

| |

Rp —— T(f71(Yn), Ox)

and thus this is uniquely determined.

Now given a map R — I'(X, Ox ), we want to construct a map of schemes. First, we will reduce
to the affine case and then prove the theorem in the affine case. Cover X = |JUy by affines
Uy = Spec A«. Then given R — I'(Ox) — I'Ugy, Ox) = Ay, we will prove the reduction to the

affine case. For maps R 2% we obtain maps Spec A « fa, SpecR, so we want to show that these
glue. It suffices to show that the diagram

I(f*
R — ) ruy, 0x)

Jee |
r(u(X/OX) — r(uamuﬁrox)
commutes, which is obvious becayse these maps are all induced by R — I'(X, Ox) — I'(U, Ox).

Now given ¢: A — B, we will construct a map f: SpecB — SpecA. This is given by
p — @ 1(p). This is continuous because

f1(V(a) = Yq 2 a}
={pcBle 'm0}
={p 2 ¢(a) B}
=V(p(a)-B).

Then we regard B as an A-module via ¢: A — B, so B = f,Ox and we simply choose the map of
sheaves to be the map of sheaves A = Ox — B we defined previously. O

Corollary 1.2.6. Spec Z is the terminal object in the category of schemes. This means that every scheme X
has a unique morphism X — Spec Z.

Proof. Maps X — Spec Z are determined by maps of rings Z — T'(X, Ox), and clearly there is a
unique such map of rings. O



Remark 1.2.7. There is an important variant. Let S be a scheme. Then a scheme X/S is a scheme X
together with a morphism X — S. If S = SpecR, then we can also write X/R. Of course, we can
define the category of schemes over S, and the terminal object is S.

Proposition 1.2.8. Let X be a scheme and x € X. Then

1. There exists a canonical morphism Spec Ox X,

2. Let X be a local domain. Then any morphism Spec R — X that sends 0 — x factors uniquely via i.

Proof. Let p = x € U Ce X and U = Spec A. Then we have a map A — A, and clearly in the
category of schemes, we have a commutative diagram

Spec A, —— Spec A

- |

SpecOx x — X.

Of course, we should check that this is independent of the choice of open affine.
For the second part, we have a map Ox = j«Ogpec r, Whichis a map Ox x — OspecR,m = Rm = R.
The other part of this is an exercise. O

Corollary 1.2.9. Let k(x) be the residue field of x. Then there exists a map Spec K — X given by 0 — x if
and only if k(x) — K.

Remark 1.2.10. The set Homg, (Specklel/ e2,(X,x)) is in bijection with the Zariski tangent space.

Now we will consider some examples. First, let X = SpecA and let a C A. Then Z =
SpecA/a — Spec A is a homeomorphism onto V(a), and the map A — A/a corresponds to
Ox — 14 Oz.

Next, we can consider the ideal a™. Here, we note that V(a) = V(a™), but the structure sheaves
differ and so we can view Spec A/a™ — Spec A/a™*! as a closed subscheme.

1.2.2 Gluing Schemes Suppose we are given the following data:
e Asetl
e For i€ I, ascheme Uj.
* Porall i,j € T an open subset U;; C U;

with compatibility conditions in the form of isomorphisms @y;: U; — Ui; with @ = id. We will
also have triple compatibility conditions (cocycle condition).

Proposition 1.2.11. Given the data above, there exists a scheme X and morphisms U; & X that
are isomorphisms onto open subsets of X such that \;(Uy;) = bi(Ug) Nbs(U;) = P;(Usq) and X =
Ui (Uy).

Example 1.2.12. Let R be a ring. Then we will denote by AR = SpecRlty, ..., tn]. Here, we will
take U; = A%z D Up = A%Q \{0} =Uy C U, = A%z and @1 = id. The scheme X = U; U U, is
known as the affine line with double origin.
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Example 1.2.13. Let R be a ring. Then consider U; = SpecR[z—?,...,%,..., ’;—ﬂ and Uy =
{% # O} C Uji. Then the scheme is X = IPy.

Definition 1.2.14. Let € be a category and S € € with morphisms X 55, Y 2 S, Then the fiber
product Z = X x s Y is the limit of the diagram X Lsdy.

Remark 1.2.15. If € = Set, then we can write Z ={(x,y) € X x Y| f(x) = g(y)}
Theorem 1.2.16. Fiber products exist in the category of schemes.
Lemma 1.2.17. If X,Y, S are affine, then X xs Y exists.

Proof. Write X = SpecA,Y = SpecB, S = Spec C. Then A ®¢ B is the pushout of A < C — B, and
then we use the fact that affine schemes are opposite to commutative rings. Now we need to prove
that the universal property holds for all schemes. But this simply reduces to the case of affine
schemes by the next exercise. O

Exercise 1.2.18. For all schemes T, there exists an affine scheme Aff(T) that is universal with
respect to morphisms T — SpecA.

Proof of Theorem. First, we note that if U C X, then if X xg Y exists, then for the map p: X xvy S,
the preimage p~H(U) is the fiber product U xs Y. On the other hand, if X = [JU; and U; x5 Y
exist for all i, then X xg Y exists. To see this, we simply use gluing.

Next, suppose S = Spec C,Y = Spec B are affine. Then if X = |JU; is a cover by open affines
then U; xg Y exist for all i, so X xg Y exists. Third, we cover Y = | V; by open affines and then
we now have X xs Y for general X, Y.

Finally, we cover S = |JW; by open affines. Then if we consider X; = 71 WL), Yy = g1 (W),
the fiber products X; xy, Yi = X x5 Y; exist, so by gluing twice, we obtain the fiber product
X xgY. O

Remark 1.2.19. X xs Y has an affine open cover by open subsets of the form Spec A ®¢ B.

Example 1.2.20. We have an identification AR = A} Xgpec z SpecR. Similarly, we have ART™ =
AR XspecrR AR

Definition 1.2.21. Let X, S’ be schemes over S. Then the fiber product X xs S” — S’ is called the
base change of X/S to S'.

Example 1.2.22. Suppose k C K is a field extension and X/k is a k-scheme. Then Xy = X Xgpeck
SpecK is a K-scheme.

Fiber products allow us to consider the notion of the preimage of a closed subset. For s € S
and morphism X — S, then the fiber product X xg Speck(s) — Speck(s) is the fiber of X — S
over s.

Example 1.2.23. Consider a closed subscheme Spec A/a = Z — S = Spec A. Then we may consider
f~1(Z) = X x5 Z for some X — S. We may also consider the intersection of two closed subschemes
Z =SpecA/a,W = SpecA/a’, which is simply the fiber product Z xs W = SpecA/(a+a’).

Example 1.2.24. Let k = k and char k # 2 and consider the morphism SpecK[x, y, t]/ (x? —yt) =
X — S = Specklt]. So now for s = (t — a) € Specklt], we see that Xs = Spec kix,yl/(x* = ay),
and in particular Xy = Speck[x, yl/ x2 is non-reduced.

On the other hand, if we consider X — Speck[x], we see that Xy is the union of two copies of
A intersecting at a point.
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1.3 Quasicoherent Sheaves and Relative Spec

We will relativize the construction of SpecR from a ring R. To do this, we will replace R with a
sheaf of Ox-algebras. Recall that if X = SpecR and M is an R-module, then the B-sheaf X¢ — My

defines a sheaf M on X. Then we know that for two R-modules M, N,

Homg_mod (M, N) = Homg, (M, N).

This gives us a fully faithful exact functor (-) from R-modules to Ox-modules.
Theorem 1.3.1. The functor M +— M commutes with kernels and cokernels. In particular, it is exact.

Proof. Recall that localization is exact. This implies that if K is the kernel of M — N, then K is the

kernel of M — N. Next, for the cokernel of M — N, we note that C and coker(ﬂ — N) are both
sheaves extending the same presheaf. O

Definition 1.3.2. A R-module M is called finitely presented if there is an exact sequence RP —
RY9 - M — 0 forp,q > 0.

Proposition 1.3.3.

e~

1. If M is finitely presented, then Hom, (M,N) = Homg (M, N).

2. The functor (-) commutes with arbitrary direct sums.
Definition 1.3.4. Let X be a scheme. Then a sheaf ' of Ox-modules is called quasi-coherent if for

all x € X there exists U C X and an exact sequence

I
okl — ok

—>3"‘ — 0.

u u u

Proposition 1.3.5. Let X be a scheme and F and Ox-module. Then the following are equivalent:

1. Fis quasicoherent;
2. For all affine open U C X, fﬂu = Mfor some Ox (U)-module M
3. there exists an affine open cover {Uy} such that ?’U‘x = Mafor some Ox (Uq )-module M.

Proof. Clearly we see that 2 implies 3, so we show that 3 implies 2. Let U C X be an open affine.
Now we apply the exercise below to get a covering {U;} such that U; C U and U; C Uy is

principal in both U, Uy. Therefore F }u- = ﬁi for some Ox(Uj)-module N;. Now if we write
U = SpecR and U; = Spec R, we see that if j;: U; — U, then (ji)*ﬂu_ = Ni.

Next, the sequence
%HM(&"‘ >%H(m*<&" )
Uy uiﬁu]‘

is exact by the sheaf axioms, so we are done because this is really an exact sequence

The implications 3 implies 1 and 1 implies 2 are trivial. O
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Exercise 1.3.6. Let X be a scheme, x € X, and x € U,V open subsets. Then there exists an open
x € W C UNV such that W is principal in both U and V.

Example 1.3.7. We will consider quasicoherent sheaves on SpecR for R a discrete valuation ring.
res

Then a sheaf on X = SpecR is a map F(X) — F(X\{0}). Now recall that F is quasicoherent if
and only if it comes from an R-module M, so we see that F(X) = M and F(X\{0}) is M ®@ K.

Remark 1.3.8. Let f: X — Y be a morphism of schemes. Then f,0x is a Oy-algebra.

Exercise 1.3.9. If X is Noetherian or f is quasicompact and J is quasicoherent, then f,J is
quasicoherent.

Example 1.3.10. If f: Spec A — SpecB is a morphism of affine schemes, then f.M = Mg and is
thus quasicoherent.

Theorem 1.3.11. Let Y be a scheme and R be a quasicoherent sheaf of Ovy-algebras. Then there exists a
scheme X = Specy R I Y such that m,.0x = R and for any f: Z — Y and morphism o: R — .07,

there exists a unique g: Z — X such that R = m,,Ox =, .g+«0z = . 0z7.

Proof. If Y = Spec A, then write R = R and set X = SpecR, and this has a natural morphism to
SpecA.

In general, cover Y = |J Uy by open affines. Then write fR|ua = ﬁ(x for some Oy (U )-module.
Then set Xy = SpecRy. To construct a transition map between Xy, Xg, we simply consider the
restriction Rg = R(Ug) — F(Ua NUg,R), and this gives a morphism 7t H U n Up) — Xp and
this factors through the 7y 1(Ux NUp) because the latter is the fiber product of Uy NUg and Xg
over Y. The rest is obv1ous O

Definition 1.3.12. A morphism f: X — Y of schemes is called affine if for every U C Y open affine,
the preimage f~1(U) C X is affine.

Example 1.3.13. The morphism Specy, R — Y is affine.
Proposition 1.3.14. The following are equivalent:
1. f: X — Y is affine.
2. There exists an open covering Y = |J Uy such that 1 (Ug) is affine.

3. f: X = Y can be written as Specy R — Y.

Proof. The first implication is by definition and 3 implies 1 by the construction, so assume there
exists an open covering Y = |JUq by affines such that f~!(Uy) is affine. Set R = f.Ox. By
assumption, this is quasicoherent. Therefore there exists a morphism g that makes

X —3 Specy, R

commute. But there exists a covering (the preimages of the Uy) where g is an isomorphism, so g
is an isomorphism. O
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Theorem 1.3.15. A scheme X is locally noetherian if for all x € X, there exists an affine neithborhood
SpecR > x such that R is a Noetherian ring.

If X is locally noetherian and quasicompact, then it is Noetherian.

Proposition 1.3.16. X is locally Noetherian if and only if for any affine open SpecR C X, R is Noetherian.
Let X = |JSpec R« where each Ry is Noetherian. Then if SpecR C X is any affine open, we want to show
that R is Noetherian. But here, we can choose V C Spec R N Spec Ry, which is a principal open subset.
Then V = Spec (R«) g is Noetherian, so we can cover Spec R = |JSpec R¢,, by Noetherian schemes. But
then affines are quasicompact, so this becomes a finite cover and thus Spec R is Noetherian.

Proposition 1.3.17 (Affine Communication Lemma). Let P be a property enjoyed by affine schemes.
Suppose that

1. If A has P, then Ay also has P for all f € A.
2. If fy € A such that (fq,...,fn) = A, then if A, have P, so does A.
Then for any scheme X, if P holds for one affine open cover, it holds for all affine open covers.

Proof. Let X = JSpec A; where the A; have P. Then there exists V C Spec A N Spec A; such that
V is a principal open subset in both. O

Definition 1.3.18. A morphism f: X — Y of schemes is called locally of finite type if there exist an
open affine cover X = | J U and open subsets V, C Y such that f(Ux = Spec Ay) € Vi = Spec By
and A is a finitely generated B y-algebra.

Proposition 1.3.19. A morphism f: X — Y is locally of finite type if and only if for every pair of affine
open sets U C X,V C Y such that f(U) C V, Ox(U) is a finitely generated Ov (V)-algebra.

Proof. If A is a finitely generated B-algebra, then for all f € A, A¢ = A[l1/f] is also a finitely-
generated B-algebra. Next, if A¢, are finitely generated B algebras and (fy,...,fn = A), we

will show that A is a finitely-generated B-algebra. Suppose the A, are generated by QTI; and
f.

1

>_cifi = 1. We will show that the f;, ci, aj; generate A as a B-algebra.
pilay)
i

exists M > 0 such that f?*Mr = f{\/lpi(aij) for all i,j. Now we can write

1= Z Cifi = (Z Cifi

Let r € A. Then in A, we see that r = , 50 by finiteness, we can assume that there

)(N+M

- Z Qilcy, f) N M
and therefore
r=3Y Qilcy,c)fN ™ Mr=3% Qilcy, fi)fMpilay),
as desired. n
Definition 1.3.20. Let X be a scheme and JF sheaf of Ox-modules is called
1. Locally of finite type if for all x € X, there exists U > x and a surjection 0%|, — F|, — 0.

2. Locally of finite presentation if for all x € X, there exists U 3 x open and an exact sequence

o — O

u

%3” — 0.

u u
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3. Locally free if for all x € X, there exists U > x and an isomorphism OQ‘U ~F |u.

Remark 1.3.21. If U = SpecA and J = M, then 7 is locally of finite type if and only if M is a
finitely-generated A-module, locally of finite presentation if and only if M is finitely presented,
and locally free if and only if M ~ A™.

Definition 1.3.22. Let X be a scheme. An Ox-module J is called coherent if JF is locally of finite
type and for all U open and morphisms O%|, 597 | ker « is of finite type.

Example 1.3.23. Let R = [[Rn, where R, = k[xo,...,xn]/(x%,xom,...,xoxn) and X = SpecR.
Then Ox is not coherent. Indeed, the map Ox 2% 9y is not of finite type.

Proposition 1.3.24. A scheme X is locally Noetherian if and only if Ox is coherent.

Proposition 1.3.25. Let X be locally Noetherian. The following are equivalent for a sheaf I of Ox-modules:
1. T is coherent.
2. F is locally of finite presentation.

3. JF is quasicoherent and of finite type.

Proof. Suppose F is quasicoherent and finite type. Then let U = Spec A be an open affine. Then
A is Noetherian, so O — J corresponds to A™ — M on U, and this has finitely-generated
kernel. O

Proposition 1.3.26. Let X be locally Noetherian. Then kernels and cokernels of maps between coherent
sheaves are coherent. This means that Coh(X) is an abelian category.

Definition 1.3.27. Let J be a quasicoherent sheaf on a scheme X. For every point x € X, the fiber
of JF at x is the k(x)-vector space Fx ®O0x x k(x) = F(x). The rank of J at x is dimy () F(x) = r(x).

Example 1.3.28. Let p € X be a closed point. Then suppose i: Spec(k(p)) — X and let F = 1. k(p).
Then F(x) = 0 if and only if x # p and F(p) = k(p).

Lemma 1.3.29 (Nakayama). Let X be a scheme and F be a quasicoherent sheaf locally of finite type. If
F(x) =0at x € X, then there exists U > x open such that S"|u =0.

Proof. Let Spec A =V > x be an affine open neighborhood. Then |v = M. But this means that
Fx @Oy x k(x) =0, so myFy =0, and thus F, = 0.

Now if my, ..., my are generators of M as an A-module, then we see that m; € F(V) — Jx.
By finiteness, up to restricting v, we can assume that m; € F(V), and therefore m; = 0, so
Fly =o0. O

Corollary 1.3.30. This tells us that Supp(F) C X is closed.
Corollary 1.3.31. Let X be a scheme and F quasicoherent and locally of finite type. Now choose x € X

and let s1, ..., sy generate F(x) as a k(x)-vector space. Then there exists and open U > x and s; € F(U)
lifting the s; that generate fﬂu,
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Proof. Clearly, we can lift the sections, so we consider the cokernel of

O%| 5 Fy — coker(x) = G — 0.
u

We show that G(x) = 0. If we localize at x, then we obtain an exact sequence
Xx = Ix = 9x =0,

and then by right-exactness of the tensor product, we have k(x)™ — F(x) — §(x) — 0. But now
the map k(x)™ — F(x) was surjective, so §(x) = 0. B

Proposition 1.3.32 (Upper Semicontinuity). Let x € X and J be quasicoherent and locally of finite type.
Then

1. The function rk: X — Z sending x — rk(F(x)) is upper semicontinuous.

2. If X is connected, reduced, and locally noetherian, then rk(x) = v if and only if F is locally free of
rank .

Proof.

1. Let p € X and rk(p) = 1. Then there exists U > p with a surjection O§<|u — 5"|u, SO
by exactness of localization and right-exactness of tensor product, we obtain a surjection
k(x)" = F(x) for x € U. This tells us that rk(F(x)) < v for all x € U.

2. Assume that x — rk(F(x)) = r. Then for x € X, we can choose Spec A = U > x, where A is
Noetherian. Then the exact sequence

0—3— 0%

—»ff’ —0

u u

corresponds to
0—-N—=>A">M—=0.

Now choose p € Spec A such that A is a field and for some (ay,...,ar) € N, at least one
a; ¢ p. Because A is Noetherian and X is reduced, there exist finitely many minimal primes,
and now the sequence

0= Ny = A, - My =0
is exact and because rk(J(p)) = r, we see that N, = 0. O

Remark 1.3.33. Passing to fibers does not preserve injections. For example, if we consider a field k,
then the map 0 — O 1 5 Op1 — k(0) — 01is exact.

Example 1.3.34. Let X = Spec k[t]/t?, we can produce nontrivial sheaves with trivial fibers.

Now let X be a locally Noetherian scheme. Then if J,§ are coherent, then ¥ ®¢, § and
Hom(F,§) is coherent. In addition, any operation from multilinear algebra, in particular symmet-
ric and exterior powers, can be performed on coherent sheaves.

Definition 1.3.35. Let X be a scheme and F be a quasicoherent sheaf of finite type. Then ¥ is
called invertible if it is locally free of rank 1.

Example 1.3.36. Let k be a field and consider A™. Then for f € kl[ty,...,tn], the sheaf (f) is
invertible.
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The reason these are called invertible is because if J is invertible, then there exists 7/ such that
TR0y T "'~ Ox.

Definition 1.3.37. We will denote the set (although we will see this is a group scheme with
operation the tensor product) of isomorphism classes of invertible sheaves on X by Pic X.

1.4 Functor of Points

We will begin a discussion of something that will eventually allow us to define moduli problems.

Example 1.4.1. Let R be a ring and I = (fy,...,fn) be an ideal. We may consider the closed
subscheme X := SpecR(ty, ..., tn]/I = AR. Then we know that

Hom(Spec A, X) = Hom(R[ty, ..., tn]/LA) = {(a1,...,an) € A™ | fj(ay,..., an) =0}
for any R-algebra A.

This generalizes to general schemes the idea that for A =k = %k, then the closed points of X
are the same as morphisms Spec k — X. Can we recover a scheme X from the functor Hom(—, X)?

Let € = Sch 5 for a fixed scheme X. Then for any X € €, consider the functor hx: C°F — Set
defined by hx(—) = Homs(—, X).

Remark 1.4.2. We can perform this construction for any category €. For example, we can recover a
group G as a set from Hom(Z, G). Similarly, a smooth manifold can be recovered (as a set) from
Hom(pt, M).

Example 1.4.3. Let X = A7. Then
Hom(T, A%) =Hom(Zlty,...,tn],T(T,07)) =T(T, 01)™
Example 1.4.4. Let X = SpecR[t, t~1]. Then we see that
X(T) = Hom(R[t, t 1, (T, O7)) = I'(T, O7) .

Observe that for any T, X(T) has the structure of a group, and this procedure will define a group
scheme.

Example 1.4.5. Fix a field k, let X/k, and let K/k be a field extension. Then
Xk (K) ={x € X| k(x) = K}
When K =k, then X(k) ={x € X| k = k(x)}.
Example 1.4.6. Let X I, S be a scheme. Then Xs(S) is the set of sections of f. For example, if
A — B is a family of abelian varieties over an integral scheme, then MW/(m) = Ag(K(B)). Note

taker: The most elementary example of this is an elliptic surface, for example a K3 surface or a
rational elliptic surface.

Now we want to relate the functor of points to fiber products. By the universal property of the
fiber product, we see that
Xs(T) x Ys(T) = (X x5 Y)s(T).

Now observe that the assignment X — hx = Hom(—, X) is functorial in X! To see this, note that
Hom(—, —) is functorial in both arguments. This gives us a functor

h: € — Hom(C°P, Set) X — hx.

After all of this discussion, we have the following question.
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Question 1.4.7. How much information is lost about X after passing to hx?
In fact, we lose no information because the functor X — Hom(—, X) is fully faithful.

Lemma 1.4.8 (Yoneda). Let X,Y € C. Then Hom(X,Y) = Hom(hx, hy). In fact, for any functor
F: C°P — Set, we have Hom(hyx, F) ~ F(X).

Proof. Let Y € C. Then consider the system of natural transformations ny: hx(Y) — F(Y). In

particular, if Y = X, we have nx: hx(X) — F(X), and in particular the element nx (idx) € F(X).
Now given & € F(X). For every Y € €, we need to define ny: hx(Y) — F(Y). Given f €

Hom(Y, X), we have F(f): F(X) — F(Y), so we make the assignment f — F(f)(&). O

Corollary 1.4.9. To give a morphism of schemes X — Y is the same as giving a natural transformation
hx — hy, which is the same as giving compatible maps Xs(T) — Yx(T) for all T/S.

Remark 1.4.10. In fact, it is enough to consider a scheme as a functor on affine schemes.

Now another natural question is the following:
Question 1.4.11. Which functors in Hom(CP, Set) are of the form hx for some X € C?
Functors of this form are called representable.

Proposition 1.4.12. A functor F is representable if and only if there exists X € € and u € F(X) such that
the map
Hom(Z,X) — F(Z) f = F(f)(u)

is a bijection.

If F is representable, then X, u are unique up to unique isomorphism.

Proof. Consider Z’ 9, Z and suppose f € F(f). Then we assign (fo g) — F(fo g)(u), and this will
make the diagram

hx(Z) —— F(Z)

| |

hx(Z') —— F(Z')

commute. O

Example 1.4.13. Let X,Y € Sch,s. Then consider F: Z — Homg(Z,X) x Homg(Z,Y). This is
represented by the fiber product X xs Y with the two projections X xs Y = X, Y.

We will now give examples of presheaves on the category of schemes over a fixed S.
Example 1.4.14. Consider T+ I'(T,O1)*. This is represented by Specy Os [t,t7 Y = Gms.

Example 1.4.15. The functor T — (I'(T, O1))™ is represented by AY = Specos Oglty, ..., tal.

Example 1.4.16. The functor T — GL.(I'(T, O7)) is represented by SpecoS Osltyj, det™1].
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Example 1.4.17 (Projective Space). Fix a positive integer n. Define the functor F: C°P — Set by

Z/S — {exact sequences O3 — £ 0L invertible}.

To check that this is a functor, consider Z’ 1. Z. Then pullback defines a map F(Z) — F(Z')
(by right-exactness). In fact, F is represented by IPy. The universal object is the line bundle Opn (1).
We will O(1) as follows:

Let P™ = |J Uy where Uy = SpecRIxg/Xw, - -+, X/ Xets - - - » X /X ). We will set

—~

1 1
O(l)’ = —FIxo/Xets -+ » Xn /Xl = —0u,-
Uy X X
Then we see that multiplication by xg /x« carries O(l)‘uoc to O(1) ’uﬁ' Now we will study the

global sections. For any homogeneous linear polynomial L(xy,...,xn). Then on each open set we
obtain a map of multiplication by L(x;/x«). Gluing is obvious.

Conversely, suppose Oy, RLN Oy, (1) are morphisms that glue. Then the sy are rational
functions, and we can show that they must come from a polynomial of degree 1.

Now choose a basis xg, ..., xn of I'(P™,Opn(1)). Then these define a map Oﬁ}il — O(1).
Then for any morphism Z — IP™, we may consider OTZ‘H = f*Oﬁ,‘?fl — f*O(1). Now given any
O’Z1+1 X £, we view o = (sq,...,sn). Then surjectivity implies that Z = |J Z; for Z; = {s(x) # 0}.
On each Z;, we see that Oz, 2 Lis surjective and is in fact an isomorphism. Now we will define

Zi — Ui Xf) — i
X 8
By construction, these maps glue, and so we obtain a morphism f: Z — P™. We can check that
O — 0(1)] = (031! — £].
Example 1.4.18. If we precompose OTZ‘H EN OTZ"+1 — L for some g € GL;;, we transform the map

Z — P™ by a projective transformation.

Example 1.4.19 (Grassmannian). We can generalize IP™ to the functor
F(Z) = {OE+1 — & | € locally free of rank k}

and obtain the Grassmannian Gr(k,n + 1).

Example 1.4.20 (Picard Functor). Consider the “Picard functor” T/S — Pic(X7) for a given X/S.
This functor is not representable. If it was representable, then F(—) = Hom(—, X), but we know
that U C Z — Hom(U, X) is a sheaf of sets over Z. However, when we apply this to T — Pic X,
then there are nontrivial line bundles on Xt that come from T. If £ is an invertible sheaf on T
such that f1£ # Ox,, then let T = [JU; be an open cover such that £ |u_l = Oy,. But then

PicXt — [ [PicXy, = -+
sends 5L — ] Oxou. and so this sequence of sets is not exact.
Instead, we consider the relative Picard functor Picx /s, which is defined by
T +— Pic Xy /f7 PicT.

With additional assumptions on X/S (for example projective, integral, etc), we can show that this
functor is representable.
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Example 1.4.21 (Hilbert Scheme). Later, we will define the correct notion of a closed subscheme.
Then for a fixed X/S, we consider the functor

T — {closed subschemes Y C Xt flat over T}.

This is called the Hilb functor.

1.5 Properties of Schemes and Morphisms

Recall that if X is a scheme and U C X is open, then (U, Ox |u) is a scheme. We would like a
similar definition for a closed subscheme.

Definition 1.5.1. A morphism j: Y — X is called an open immersion if j is a homeomorphism
onto an open subset U C X and the sheaf morphism Ox — j.Oy induces an isomorphism
O><|u = j*OY|u'

Example 1.5.2. The maps Ay — Py onto the standard open subsets are open immersions.
Similarly, if X = |J U, then U; — X is an open immersion.

Definition 1.5.3. Let X be a scheme. Then a closed subscheme if a pair (Z,7J) of a closed subset
Z C X and a sheaf of ideals J C Ox supported on Z such that (Z, Ox/J) is a scheme.

Example 1.5.4. Let X = SpecR and I C R be an ideal. Then if we take J = T, then (Z,0x/J) is a
scheme isomorphic to Spec R/I.

Remark 1.5.5. Because Ox/J is an Ox-module of finite type, we know that supp Ox/J is closed,
and thus J determines the closed subset Z C X.

Example 1.5.6. If X is a scheme and J is a quasicoherent sheaf of ideals, then Z = supp Ox/J is a
scheme with structure sheaf Ox/J.
To see this, note that because J is quasicoherent, then we can consider an open cover

{U; = Spec A;} such that .’J|ui = Ti for ideals I; C A;. But then we see that

—_~—

supp Ox/INU; =supp Ai/li = V(I;) = SpecAi/L;.
and therefore the support is covered by affine open schemes Z N U;.

Example 1.5.7 (Non-example). Let 0 € Ai be a closed point and let U = ,All< \ {0} — Ai be the
open immersion. Now if j: U — X is open and J is a sheaf on U, then we can define

i F) V) = {?(V) vcu

0 VU

One can check that this is a sheaf.

Now we see that j;Oy — Ox is a sheaf of ideals and Ox/jiOy is supported at 0. To see
this, note that (j;Oy ), = Ox x away from 0 and the stalk vanishes at 0. But now we know that
Z/0x/j10y is not a scheme because here Z = {0}. If Z were a scheme, then Z would be affine, but
NZ,0x/5:104u) = k[t](t) is not a field.

The problem in the previous example is that j;Oy, is not quasi-coherent!

Proposition 1.5.8. Let I C Ox be a sheaf of ideals and Z = supp Ox/J. If (Z,0z) is a closed subscheme,
then J is a quasicoherent sheaf of ideals.
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Corollary 1.5.9. Any closed subscheme of an affine subscheme is affine.

Remark 1.5.10. Using the fact that quasicoherent sheaves form an abelian category, we see that
J € Ox is quasicoherent if and only if Ox/J is quasicoherent.

Proof of Proposition. If U C X\ Z, then there is nothing to check. If x € Z, then we pass to open
affines x € U C X. O

Definition 1.5.11. A morphism f: Z — X of schemes is a closed immersion if
1. fis injective and a homeomorphism onto a closed subset of X.
2. The map Ox — .0z is surjective.
By definition, we have a bijection
{closed subschemes Z C X} <— {closed immersions f: Z — X}.

Proposition 1.5.12. Let i: Z — X be a closed immersion. For any U C X open affine such that UNZ # (),
the set i*(U) = ZN W is an open affine subset of Z.

Proof. Fix x € Z and let x € U; C X be open affine. Then let x € V; C ZN U be open affine.
Now Z C Vj is a closed subset of Z (and of U;) and is disjoint from x € Z. Now there exists
o € I'(Uy, Oy, ) that vanishes on Z\ V; but not on x.1 But now (U;) « = U is open affine, and
therefore UNZ = (Uy) ,NZ = (V1) . O

This means that if U = SpecR, then i: UNZ — U is a map SpecS — SpecR, and thus

(Z, OZ)‘V = (SpecS$, g). This implies that 1,07 = S. Therefore ker Ox =0z = I= ker(R — S) is
quasicoherent and therefore we have proved the bijection between closed subschemes and closed
subschemes.

Corollary 1.5.13. The map f: Z — X is a closed immersion if and only if there exists an affine open
covering {U;} of X such that £=1(Uy) is affine and T'(Uy, Ou;) — INCaa O (Ui)) is surjective.

Of course, given a closed subset Z C X, there may be many different quasicoherent sheaves of
ideals that give Z different scheme structures.

Example 1.5.14. Consider 0 € Al. Then the possible closed subschemes supported at 0 are given
by Specklx] /X2 corresponding to ideals (x) 2 (t3) D --- D (t") D ---. Note that these Artinian
rings are relevant in deformation theory.

Definition 1.5.15. 1. Let X be a scheme. Then a subscheme of X is a pair (Y, Oy) such that Y C X
is locally closed and if U C X is the largest open subset of X such that Y C U is closed, then
Y C U is a closed subscheme.

2. An immersion f: Y — X is a homeomorphism onto a locally closed subset such that for all
y €Y, the map Ox () — Oy,y is surjective.

1Giulia said something about GIT here. I will shamelessly plug the GIT seminar at http://www.math.columbia.edu/
~plei/f20-GIT.html


http://www.math.columbia.edu/~plei/f20-GIT.html
http://www.math.columbia.edu/~plei/f20-GIT.html
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Now we may consider the image of a morphism of schemes. For example, we may have
closed immersions (here, f(Z) is a closed subscheme) and open immersions (here f(Y) is an open
subscheme).

Consider the map A? — A2 given by (x,y) — (x,xy). Then the image of f is not locally
closed, but it is a constructible set. Recall that if X is a topological space, then a constructible set
S C X is a finite union of locally closed subsets.

Example 1.5.16. Consider A} and let K = k(t). Then we have the inclusion of the generic point
SpecK — AL.

Definition 1.5.17. Let X, Y be integral schemes. Then a morphism f: X — Y is called dominant if
f(X) C Y is dense.

Example 1.5.18. The morphism SpecK — A]l< is dominant. If U C Y is open, then the inclusion is
dominant. Any surjective morphism is dominant. The map {xy =1} C A2 — A is dominant.

Exercise 1.5.19. Let f: X — Y is dominant if and only if f(nx) =ny.

Example 1.5.20. If A, B are domains, then Spec A — Spec B is dominant if and only if B — A is
injective.

Now if f: X — Y is dominant, how bad can f(X) C Y be? When does it contain an open subset?

Theorem 1.5.21 (Chevalley). Let f: X — Y be a morphism of finite type and Y be Noetherian. Then for
any constructible set S C X, f(S) C Y is constructible.

Definition 1.5.22. A morphism f: X — Y is of finite type if it is locally of finite type and quasi-
compact.

Corollary 1.5.23. If f: X — Y is of finite type, Y is Noetherian, and f is dominant, then f(X) C Y contains
an open subset.

Example 1.5.24. If X is a Noetherian topological space, then C C X is constructble if and only if
for all closed irreducible Z C X, ZN C contains an open subset of Zor ZNC C Z.

Corollary 1.5.25. If f is as above and dominant and X,Y are integral, then £(X) 2 U for some open subset
ucy.

Proof of Chevalley. Because f is of finite type and Y is Noetherian, there exists a finite cover
X = USpecAji; and Y = (JSpecB;, where f(SpecAy;) C SpecB;. Then we know Ajj is a
finitely-generated B;-algebra. But then each f(C N Spec Aj;j) is constructible, we can assume that
X =SpecR,Y = SpecS$ are affine. Then we have a morphism of rings S — R = S[ty, ..., tx]/I. We
may also assume that /I = I because this is a topological statement. In addition, we may also
assume that S is reduced.

Now X — Y factors through AY, where X < AY is a closed immersion. Therefore we can
assume X = A™. But then A™ — Spec S factors as

IS %A’Sﬁl — .- — A% — SpecS,
and therefore we can assume X = AL. Because Spec$ is Noetherian, it has finitely many

irreducible components Z;, so now we may assume that S is a domain. After this, we apply the
following lemma.
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Lemma 1.5.26. Let S be a domain and f: Als — SpecS. Then forall Co C C C Als where Cy C C is
open and C C AL is closed and irreducible, there exists an open subset U C Spec S such that f(Co) D U
or f(Co)NU = 0.

Proof. Let SpecS be integral and 1 € Spec S be the generic point. Then let K := K(n). Then we
have a commutative diagram
Al —— A}

l l

Spec K —— SpecS.

Using the following exercise, we see that either C — Spec S is dominant, in which case ¢ € Cy, #
(), or not, in which case f(C) C Spec S and thus there exists U C Spec S such that f(Cp) N'U = 0.
Now there are two cases:

1. flm)ncC = A%(' In this case, choose C = Als D CyD (Als)g for some 0 # g = apt™ +
apt" 14 ..., Therefore 0 # ag € S, so now we show that f(Cp) 2 Ugq, — SpecSq,. But here,
for all x € Spec C, we have f1(x) = Speck(x)[t] = /Alqu), SO

NG 2 N (ad)g = {y € A}, 1T) #0}.
But then if x € Ug,, then @y # 0, so g # 0. But now
1 (x)NCo 2 F(x)N{g # 0}
But this is nonempty and thus x € f(Cp), so Uq,  f(Co).
2. flm)nC= C, € ZA}< is a closed point. Then C C V(p) for some prime ideal, and then

pK[t] = (g) for some irreducible g € K[t]. Up to inverting denominators, we may assume
that g € S[t]. But then C; € C C V(G) C Ag. Now we see that

flmNCo=Ff"'mnC=Ff"mnV(g.
But now V(g) \ Cy is constructible, so we can write V(g) \ Cyg = |JW; as a finite union of

closed irreducible subsets, and f(W;) C SpecS. Therefore f(W;) C V(«) for some 0 # « € S.
Now consider SpecS 2 Uygq, > x:

a) If x(x) # 0, then x ¢ f(W;), so f~1(x) N V(g) = f~1(x) N Cp.

b) If ap(x) # 0, then g(t) € k(x)[t] is nonzero of positive degree, so V(g) C A]l< is a
nonempty closed subset.

Therefore, for x € Uy,q,, we have f~1(x) N Co = f~1(x) N V(g) # 0, s0 Ug,a, < f(Co). O

Exercise 1.5.27. Let f: X — Y with X,Y integral and ny € Y the generic point. Then X, is
irreducible.

We will use this to study closed points of schemes X/k of finite type over a field k.

Corollary 1.5.28. Let X be of finite type over a field k. Then x € X is a closed point if and only if k(x) is
an algebraic extension of k.
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Proof. Suppose x € X is closed. Then x € U = SpecR C X is constructible in U. Then x € U C

AL — Ai, and we will denote the coordinates by U AN A]l(. Therefore fi(x) is a constructible set
in A]ld so it must be a closed point. But then k(fi(x)) is an algebraic extension of k. But then the
extension k C k(x) by the fj(x) and is thus algebraic.

Now suppose k C k(x) is algebraic. If x € X is not closed, then there exists x # y € {x}).
Then we can choose U > x,y open affine, so x is not closed in U. But now x = p € SpecR, so
k € R/p C k(x). But then R/p is a finitely generated integral extension of k, so L is a field and
thus p is maximal and x is closed. O

Remark 1.5.29. If k is algebraically closed, then closed points are precisely those with residue field
k.

Example 1.5.30. Let A be a local Noetherian ring. If U = X\ m, then U satisfies the descending
chain condition for closed subsets, and therefore has closed points. However, none of these points
are closed in X because X has a unique closed point.

Corollary 1.5.31. Let X be a scheme of finite type over k. Then if U C X is open and x € U, then x is
closed in U if and only if x is closed in X.

Corollary 1.5.32. Let X be of finite type over k. Then
1. Forany S C X closed, the closed points of S are dense in S.
2. X can be reconstructed as a topological space from the set of its closed points.

Proof. Let S C X be closed. It suffices to show that for all open U C X, U NS contains a closed
point. Assuming U = SpecR is affine, then SNU = V(I) for some ideal I C R, and the desired
result follows from the existence of maximal ideals. O

1.6 More on Varieties

Note: Notes were not taken in great detail for this section.

Let k be an algebraically closed field. We know A™(k) = k™. Then we will define affine
algebraic sets to be the common zero set of a set of polynomials. Of course, we can declare the
Zariski topology on A™ (k). Of course there is a natural correspondence between radical ideals of
k[x1,...,xn] and closed subsets of A™(k) giving a correspondence between maximal ideals and
points.

Remark 1.6.1. With the Zariski topology, A™(k) is a Noetherian topological space.

A morphism of algebraic sets is a map A™ O X — Y C A™ that is expressible in terms of
polynomials f = (f,...,fm) € klx1,...,xn]™. Dually, this defines a map

k[ylr/ym]/I(Y) — k[Xl,...,Xn} Yi — fi(x)'

References that use the language of varieties are Chapter 1 of Hartshorne, Shafarevich, Griffiths-
Harris, etc.
Now if X = V(I) C A™(k) for a radical ideal I, then we can define

Definition 1.6.2. The affine coordinate ring of X is k[X] = Hom(X, Al(k)) = k[xq,...,xnl/L

Proposition 1.6.3. If X is an affine algebraic set, then k[X] is a reduced finitely-generated k-algebra. In
addition, X is irreducible if and only if k[X] is a domain.
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evy

For any x € X, we define the maximal ideal my = ker(k[X] — k). More generally, if Z C X is
closed, then I(Z) = {f | f(x) = 0} = [\ cz mx. For an ideal I C K[X], we can define the closed set
V(I). For example, if I = (f), we can define the principal open subsets Xj.

Note that there is an equivalence of categories between irreducible affine algebraic sets and
finitely-generated k-algebras that are domains.

1.6.1 Rational Functions Let X be an irreducible algebraic set in A™. We may consider
the field of fractions k(X) of k[X], and this will be called the field of rational functions on X. If
g € k(X), we have a map

[f, gl: X — P (K),
whatever P! means. Really, we have a map X --» Al(k). This is of course regular on Xg.
Remark 1.6.4. If f' = fh, g’ = gh, then é = ng/’ in k(X). We see that X4 2 X4/ and for all x € X,

fix) _ f(x)
g(x) — g’(x) asree

the fractions

iotg £ £ ; f(x) _ f(x)
Lemma 1.6.5. If there exists o, 7 € k(X) such that there exists U C X where 90 = 97 (%) forallx e U,
f/

£ f
then g = 9"

Proof. Up to multiplying by something in k[X], we may assume g = g’. But this means that
f’(x) = f(x) for all x € U, which means V(f—f’) D U. By irreducibility of X, we have X = V(f — /),
so f=f". O

We now define a sheaf of regular functions, and we can upgrade affine algebraic sets to ringed
spaces.

Definition 1.6.6. Define the sheaf Ox by

Ox(U) = [ kX],-
xeX
It should be obvious what the restriction maps are, and they are injective.

Lemma 1.6.7. If f € k[X], then T'(X¢, Ox) = k[Xl;.

Proof. One direction is obvious. In the other direction, if we define a = {h | hg € k[X]} C k([X], then
we want to show that f € \/a. If we choose representatives g = g1/g2 € Ox(X¢), we see that g; € a.
Thus gy ¢ mx for x € X¢, so if x € X¢, then x ¢ V(a). O

Proposition 1.6.8. A map f: X — Y is a morphism of irreducible affine algebraic sets if and only if for all
g € k[Y], then g o f € k[X]. Equivalently, f is continuous and induces a morphism of sheaves.

Definition 1.6.9. A locally ringed space (X, Ox) is called a prevariety if X is connected and there
exists a finite covering of X by irreducible affine algebraic sets.

Remark 1.6.10. Any prevariety X is Noetherian and irreducible.

Definition 1.6.11. We define the function field of a prevariety (X, Ox) to be the fraction field of
Ox(U) for any open affine U C X.

In particular, K(U) is independent of the affine open subset U C X. In particular, all restrictions
are injective and Ox (U) N Ox (V) = Ox(UNV).
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Definition 1.6.12. If X, Y are prevarieties, then a morphism f: X — Y is a morphism of locally
ringed spaces.

Remark 1.6.13. If f: X — Y is a morphism of prevarieties, then we do not have a pullback of
rational functions in general.

Example 1.6.14. Projective varieties are prevarieties.

Theorem 1.6.15. Let k be algebraically closed. Then there is an equivalence of categories between integral
schemes of finite type over k and prevarieties over k.

Proof. Given a scheme (X, 0x), we will consider the prevariety (X(k), Ox(x)), where X(k) =
Homy (Speck, X) is the set of closed points. Of course, if Spec A = U C X is open affine, then U(k)
is an affine algebraic set. Now, we simply define Ox ) (U(k)) = Ox(U), and this is a sheaf. We
can view this as functions to k. Equivalently, we see that o 1(Ox) coincides locally with the sheaf
of regular functions because X is quasi-compact. Therefore we have defined a prevariety. To see
that this is functorial, note that morphisms of schemes of finite type send closed points to closed
points.

Now in the other direction, given X(k), we will simply aff a generic point nz for every
irreducible Z C X(k). In fact, this defines a functor on topological spaces, called soberification. It
is obvious what the topology should be. Of course, the inclusion «(X(k)) — t(X(k)) is continuous
and induces a bijection of open subsets. But now we note that if X(k) C A™ is an affine algebraic
set with A = k[X(k)], we note that t(X(k)) = Spec A. Therefore t(X(k)) is covered by finitely many
open affines. Now it remains to check that a.Ox ) makes t(X(k)) a scheme. But this can be
checked on affines. It is enough to show that if U(k) is an affine algebraic set with A = k(U(k)),
then Spec A = U C X. But now, by definition, we have

Ox (W) = Ox (k) (U(k)),

so when U = Spec A, we have Ox(U) = A. In addition, we have Ox (Us) = Oy (i) (U(k)¢) = A¢
for all f € k[U(k)], so we are done. To check functoriality, we note that soberification is functorial
and then check that we obtain a map Oy — f,Ox from the map on k-points. O

Remark 1.6.16. Note that this means that a morphism of (integral) schemes of finite type over k is
determined by its value on closed points.

Remark 1.6.17. Let X be an integral scheme of finite type over k and X(k) be the corresponding
prevariety. Then we have K(X) = Ox ,, and the field k(X(k)) = Frac(k[U(k)]) for any affine open
k(U(k)), and these are the same field.

1.6.2 Comparison with GAGA Let X be a projective scheme of finite type over C. We may
consider X(C) C P™(C). But now we may consider the analytic topology on P™(C), and so we
may consider the analytic space X*"(C) with a sheaf of holomorphic functions Oxan. Of course,
we may still consider the continuous map

v: XM(C) = X.

Next, to a coherent sheaf , we may consider a coherent analytic sheaf 72" =y~ 1F ®@y-10, 0%
Now Serre’s GAGA tells us that this is an equivalence of categories.
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1.6.3 Non-algebraically closed fields We will now consider what happens if k C k. The

most basic example is All< = Speck[t], and the closed points are given by (p(t)) for irreducible
polynomials p(t). Then any finite extension of k that is generated by a single element is the
residue field of a closed point. In particular, for any such field k’ we obtain a point in A (k’). For
another example, consider a field extension k C k’ with induced morphism X = Speck’ — Speck.
Then X has no k-points. Returning to affine space, any commutative diagram

Speck! —— A}

~ |

Speck

gives us a k’-rational point of A} X Spec k Spec k’ = A}, In particular, if X = V(fy,...,fm) € A,
then X(k’) = {x € (/)™ | fi(x) =0,i =1,..., m}. We have a similar statement for P} and closed
subschemes.

Remark 1.6.18. If X = [JU; is a union of open affines, then X(k’) = [J U; (k).

Remark 1.6.19. A k/-point x € Xy (X’) determines a field extension k C k(x) C k’. If 0 € Aut(k’/k),

then we can precompose Speck’ % Speck’ — X to get another k’-point. In addition, we have
Xie(k)7 = X (k).

Example 1.6.20. Let X be (locally) of finite type and k be the algebraic closure of k. Then we have
the map

X (k) 5 X (Speck & X) — i(Speck).

From the characterization of the closed points, the image of ¥ consists of all closed points. Then
we know that the absolute Galois group G = Aut(k/k) of k acts on Xy (k). But then the G-orbits
of this action are contained in the fibers of £ and G acts transitively on the orbits, so the fibers are
the G-orbits.

1.6.4 Classical projective geometry We will now consider open and closed prevarieties.
1. An open subprevariety is simply an open subset with the structure sheaf restricted.

2. If X is a prevariety and Z C X is an irreducible closed subset, we can give Z the structure of
a prevariety. Then if V C Z is open, we can define

0z(V) ={f: V= k| locally a restriction of a function on X}.

Note that if Z C X C A™, the structure of Z as a subprevariety of X is the same as the one of
Z C A™(k).

Now we will define projective varieties over algebraically closed fields. If we consider the
scheme P}, then IP™ (k) = (k™ 1\ {0})/k*. Then the open affine charts give us the structure of a
prevariety. Now we define the sheaf of functions to be Opn (U) = Oy, (U) when U C U; and in
particular if we homogeneize, we have

F(XOI .. -rXTL)

Opn(U):{¢:U—>k@:G(XO o)
77 ML

,degF :degG}.
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As a consequence, we have k(P™(k)) = k(U;) = k(xg,...,xn). Now we need to consider the
global regular functions on P™. NOte that for a prevariety X and U,V open subsets, then
Ox(UUV)=0x(UWNOx(V), so

Opn (P™) = o]Pn(Uui) = () Opn (Uy) :ﬂk[z?f:] — k.

Remark 1.6.21. Note that if P™(C) is considered as a complex manifold, then I'(IP™(C), Oxan) = C.
More generally, there are no nonconstant global holomorphic functions on any compact complex
manifold.

Now closed subsets of projective space are given by the vanishing of homogeneous polynomials
Fi. This gives us the definition

Definition 1.6.22. A prevariety is called a projective variety* to a closed subprevariety of P™ (k).

Definition 1.6.23. A prevariety is called quasiprojective if it is isomorphic to an open subset of a
projective variety.

Remark 1.6.24. The structure of a prevariety does not depend on the embedding in some ambient
space.

We will now consider morphisms between (quasi)-projective varieties.
Proposition 1.6.25. Let Y C IP™ (k) be a quasi-projective variety.

1. Given fy,...,fm € kixo, ..., xn] homogeneous polynomials of the same degree such that V. (fg,...,fm)N
Y = {), then the map
Y—=P™k)  y=Ifoly)..., fm(y)

is a morphism of prevariety. Moreover, if go, . .., gm are homogeneous polynomails of the same degree
with V. (go, ..., 9m) NY = 0, they define the same morphism if and only if gif; = g;f; for all 1,j.

2. Conversely, given @: Y — IP™ (k) a morphism of prevarieties, then ¢ is locally defined as above.

To prove this result, simply consider the affine open subsets of P™ and the sets Y N{f; # 0}.

Remark 1.6.26. Compare this to the statement that [P} represents the functor taking a scheme X to
the set of isomorphism classes of line bundles £ with linearly independent sections sy, ..., sn.

Proposition 1.6.27. If ) # Vi (fy,...,fm) = Z C Y, then there exists a morphism @: U — P™(k),
where U =Y\ Z. This gives us a rational map Y --» P™(k).

Example 1.6.28. The map
AN} S PMK) (X0, %n) > o, X

is a morphism of prevarieties. Given Z = V(I) C P™(k), define the cone over Z to be C(Z) =
m1(Z) = V(I) C A™*1(k). On the other hand, if I C k[xo, ..., xn] is a homogeneous ideal, then
V(I) = C(V4 (D).

Remark 1.6.29. The cone over Z depends both on Z and on the embedding in projective space.
On the cone over Z, the origin is usually a singular point. Sometimes (for example when Z is a
point) it is not, but in general, the properties of the singularity depend on the properties of the
embedding.

2Note that these are separated. Also consider that if variety = separated prevariety, then separated = pre~! and thus
we may consider pre”'schemes.
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Example 1.6.30. Consider the map P! — IP? given by [x,y] — [x,y,0] with image W = {z = 0}
and C(W;) = A% c A3. Consider the other map P! — P2 given by [x,y] — [xz,xy,yz] with image
W, = {xz = yz} and cone C(W;). But then W; =W, = P!, but W, has an A; singularity at the
origin while W; is smooth.

Suppose g € GL(n+1). Then the action of g on A™ML(K)\ {0} is scaling-invariant, so it
descends to IP™ (k). Of course, we have an exact sequence

1— kX = GL(n+1) — Aut(P™(k)).

In fact, we will see that Aut(lP™) = PGL(n+1).
Remark 1.6.31. The Cremona group of birational transformations of IP™ is massive.

If I =(Lo,...,Lin), then V (I) C IP™ is isomorphic to some P ~™. Therefore, PGL(n + 1) acts
transitively on the set of m-dimensional linear subspaces in IP™. Of course, this has the structure
of an algebraic variety, the Grassmannian. This represents a functor O"*! — £, where £ has rank
m.

A linear subspace is a hyperplane when it is defined by a single equation V (L), and is a line if
it is isomorphic to P1. We can also define the linear span of Z C P™ to be

()= L

zZcL
For two points p, q, the line containing p, q is denoted pq.

Definition 1.6.32. Points py,...,pm € P™ are said to be in general position if no (k + 1) of them lie
on a (k—1)-plane.

Example 1.6.33. Three points in P? are in general position if and only if they are not collinear.

Let H = {xo = 0} C IP™ be a hyperplane and suppose p = [1,0,...,0] ¢ H. For any closed
subset Z C H, we can write pZ = | J,., Pz C IP™. This is a closed subset. Thus if Z =V (I) for
some ideal in k[xq,...,xn], then pZ =V, (I-K[X,..., Xn]).

Remark 1.6.34. Let L1, L, C IP™ be linear subspaces. Then (Ly,1,) = IP? if and only if Ly NLy = 0.

Example 1.6.35. With the same assumptions as the remark, let Z C ;. Then L,Z = Uze 7 (Lo, Z) C
IP™ is a closed subset.

Definition 1.6.36. Let F be a homogeneous polynomial of degree e in k[xg, ..., xn]. Then V. (F) =
X C P™ is called a hypersurface of degree d. If d =2, then it is called a quadric.

Example 1.6.37. In P2, the quadrics are either conics (x> +y? + z2), a pair of lines (x*> +y?), or a
double line (x?).

In characteristic not equal to 2, we know that if Q = V. (q) is a quadric, then q is given by a
symmetric matrix. But then we know that PGL(n + 1) acts on k[xy, ..., xn]4 and thus on quadrics
in IP™ in a way that preserves the rank. This tells us that Q is irreducible if and only if q has rank
different from 2. If r = rk(q) < n, then Q is an (iterated) cone over a rank r quadric in IP".

Consider the map P! 22 P? given by [x,yl — [x3,x%y,xy?,y%. Clearly the image of v,
satisfies the equations AD = BC,AC = BZ,CZ = BD. On the other hand, we can explicitly
construct x,y from the equations in A, B, C, D, so on the open chart WN U4, we have the map



29

[A, B, C,D] — [A,B]. Similarly, on W N Up, we have the inverse [A,B, C,D] — [C, D]. The image
of v3 is called a twisted cubic. It is easy to see that (vo(IP!)) = P33

More generally, the degree d Veronese embedding P™ — P(Ma) -1 s given by
o, - xn] = Xt Xy g

Up to PGL(n + 1), replacing xy, ..., xq with a different basis of k[x, ..., xnl4. In fact, the image is
closed, and if we write vq(IP™) = V4 (a), then we know that a is a homogeneous prime ideal.

Example 1.6.38. Consider the degree 2 Veronese embedding v,: P2 — IP°. Then if H is a
hyperplane, HN vo (IP?) is the image of a conic in P2.

Example 1.6.39. Let F € K[xg,...,x1]4 and let X = V (F). Then there exists a hyperplane in
P("a")1 such that HNvg(P™) = V. (F). This tells us that P™ \ X is affine.

Note the following facts:

1. If k is a field and X, Y are k-schemes (locally) of finite type over k, then X xy Y is (locally) of
finite type over k.

2. If k =k, then X, Y are integral if and only if X x} Y are integral. At the level of closed points,
we note that X(k) x Y(k) = (X xy Y)(k).

Now observe that the product of projective spaces is a projective variety. Define the map
P x P™ — P mAl =l L Ly d e L Xy,

This is called the Segre embedding. If the (n+ 1) x (m + 1) matrix of coordinates is given by Z;;,
then the image of the Segre embedding is given by the vanishing of the 2 x 2 minors. For example,
we note that the Segre embedding

P! x P? — P3 [x,yl, w,v] = [xu, xv,yu, yv]
has image {AD = BC}, which is a smooth quadric. In fact, the images of P! x {p},{p} x P! give us
two families of lines on Q.
1.7 Dimension
Dimension is a topological property.
Definition 1.7.1. Let X be a topological space. Then we define the dimension of X to be

dim X :=sup{l|Xo 2 - 2 X¢},

where each X; is a closed irreducible subset of X.

We will define the dimension of a scheme to be the dimension of its underlying topological
space. If X = (), then we set dim X = —o0.

Warning 1.7.2. Even for a Noetherian scheme X, we can have dim X = co. There is an example of
Nagata in Vakil’s notes or as tag 02]JC in the Stacks project.

3In fact, there is something even stronger than this, but I can’t remember it right now.


https://stacks.math.columbia.edu/tag/02JC
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It is easy to see that if X = Spec A, then dim X = dim A.

Example 1.7.3. Let A be a principal ideal domain such that A is not a field. Then all chains of
prime ideals are given by 0 C (t), and thus dim A = 1.

Example 1.7.4. If Ais aring and pg C --- C pg is a chain of prime ideals, then in A[t] as have the
chain of ideals
POALt] S -+ C peAlt] S (pe t),

and thus dim Aft] > dim A 4 1. If A is Noetherian, then this is an equality.
Lemma 1.7.5. Let X be a topological space.
1. If Y C X has the subspace topology, then dim Y < dim X. If X is irreducible and dim X < oo, then

this inequality is strict.
2. If X = U Ug is an open covering, then dim X = sup , dim U.
3. If X =X, is a union of irreducible components, then dim X = sup dim X;.
4. If X is a scheme, then dim X = sup, .y dim Ox x.

Lemma 1.7.6. The first three properties are obvious. Now if X = | Spec A« is a cover by affines, then we
know dim X = sup  dim A «. But now we know that for any prime ideal p, ht(p) = dim Ay, so we are
done.

Corollary 1.7.7. If Y — X is a closed immersion, then dimY < dim X. If X is integral and Y C X, then
dimY < dim X.

Example 1.7.8. Let A be a ring. Then dim A = 0 if and only if all prime ideals are maximal. If
A is Noetherian, then this holds if and only if A is Artinian, which is equivalent to A being the
product of its localizations.

Definition 1.7.9. A morphism Spec B — Spec A is integral if A — B is an integral map of rings.

Recall that B is a finite A-module if and only if ¢ is integral and B is a finitely-generated
A-algebra. Recall that for integral morphisms if ¢q; C q; are prime ideals of B such that q; N A =
q2N A, then q; = qy. Of course, integral morphisms of rings also satisfy going-up and going-down.
The geometric interpretation of this is

Proposition 1.7.10. Let Spec B — Spec A be an integral morphism with A C B. We already know that f
is closed and surjective. The three properties of integral morphisms of rings imply that dim B = dim A.

Definition 1.7.11. Let X be a topological space and Z C X be closed and irreducible. Then we will
define
codimx (Z) =sup{l|z=2, C --- C Zy},

where each Z; is a closed irreducible subset of X.
Example 1.7.12. If X = Spec A and Z = V/(p), then codimx(Z) = ht(p) = dim A,.
Example 1.7.13. Let X be a scheme and Z C X be closed and irreducible. Then

codimx(Z) = sup {codimy (ZNU)}=supdim Ox

MZNUg *
Unz#£0p Uy

Remark 1.7.14. We always have the inequality dim Z 4 codimx Z < dim X. Equality holds if all
maximal chains of closed irreducible subsets have the same length.
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Definition 1.7.15. A topological space X is called catenary if all maximal chains of closed irreducible
subsets have the same length.

Example 1.7.16. If A is a DVR over a field k with m = (t), then dim Spec A[x] > 2. It is easy to
see that the ideals m; = (tx — 1) and my = (t,x) are both maximal, so if Z; = V(m;), we know
dim Z; = 0. However, we see that codimx (Z;) > 2 while codimyx(Z;) = 1 because m; is principal.

Theorem 1.7.17. Let X be an integral scheme locally of finite type over k.
1. There is an equality dim X = tr. deg k(n). Moreover, X is catenary.
2. For all closed points x € X, dim X = dim Ox .
3. If X, Y are finite type over k with Y integral and f: Y — X is dominant, then dimY > dim X.
4. If f: Y — X is a quasi-finite morphism of schemes of finite type over k, then dim Y < dim X.

Remark 1.7.18. Let A be a discrete valuation ring over k and X = SpecA. Then Speck U
Speck(nx) — Spec A is a bijection on points, but dim(Speck U Speck(nx)) =0 < dimX = 1.

The proof of the Theorem will require Noether normalization:

Theorem 1.7.19 (Noether normalization lemma). Let A # 0 be a finitely generated integral k-algebra.
Then there exists t1,...,tq € A such that the morphism k[tq,...,tq] — A is injective and integral.

Proof of Theorem 1.7.17.

1. Let X = |JSpec A where A is a finitely generated k-algebra. Now we only need to prove
the statements for Spec A. By Noether normalization, there exists ti,...,tq such that
klty,...,tq] = A and X = SpecA — Aﬂ is a finite morphism. Therefore dim X = dim A4,
so we need to prove that dim A4 = d. Clearly we have dim A™ > n, so suppose we have a
maximal chain

0)=poSp1 & & pm.
Choose some nonzero f € p;. Up to passing to an irreducible factor, we may assume
that f is irreducible. Therefore we can replace p; with (f). Now we may consider X =
Speckl[xy,...,xnl/(f), and then its fraction field has transcendence degree n —1, so by
induction we may assume that dimX =n—1.

Now we will prove that X is catenary. It suffices to prove that if Z C X = Spec A is a maximal
proper closed irreducible subset, then dimZ = n— 1. If X = AJ' is the morphism obtained
from Noether normalization, then we consider n(Z) C A™. By going-down, we know m(Z)
is maximal, so we have now reduced to proving the statement for A™. But then W = V(Q)
for some prime ideal 9, so let f € Q be nonzero. If g is an irreducible factor, then maximality
of W implies that Q = (g). But then the desired statement about dimension is simply a
statement about the transcendance degree of k[x, ..., xn]/f.

2. We can reduce to the case where X = Spec A. Then we know dim X = dim A = dim A, for
any maximal ideal x = m &€ Spec A because X is catenary.

3. Lety € Y satisfy f(y) =nx and set Z := {y}. Therefore Z — X is dominant, so nz — nx, SO
we have an extension k(1x) C k(nz) and therefore dim X < dimZ < dimY.

4. We reduce to the affine case. Up to passing to the closure of the image, we may assume f is
dominant. Then we have f: Spec A — Spec B and then f~1(ny) is a finite set, and in fact is a
0-dimensional scheme of finite type over k(ny). In particular, nx is a closed point of ny, and
thus the field extension k(ny) C nx is finite. This means that dimY < dim X. O
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Here is a general statement about unique factorization domains A with SpecA = X. If Z C X
is a closed subset all of whose components have codimension 1, then Z = V/(f) for some f € A.
The converse also holds. If we remove the assumption of unique factorization, then the converse
is still true by Krull’s principal ideal theorem.

To prove the statement for a Noetherian UFD, then there are finitely many irreducible compo-
nents Zy,...,Zs and if Z; = V(f;), then Z = V(] ] f). Therefore we can assume Z is irreducible,
but then every height 1 prime ideal is principal.

In the other direction, we may assume that f is irreducible. If there exists a prime ideal
0 C p C (f), then we can assume that ht(p) = 1 by the Noetherian assumption. But then we know
p is principal, so p = ('), and this implies that f | f’ and thus (f) = (f'). Thus ht((f)) = 1.

Remark 1.7.20. A Noetherian domain A is a UFD if and only if every prime ideal of height 1 is
principal.

Remark 1.7.21. Let Q = V(xy = 22) C Ai. Then V(z) has two irreducible components, and each
line cannot be cut out by a principal ideal.

Theorem 1.7.22 (Krull principal ideal theorem). Let A be Noetherian and f € A be nonzero. Let p > f
be a minimal prime ideal containing f. Then ht(p) < 1. In fact, if f is not a zero divisor, then ht(p) = 1.

Remark 1.7.23. 1f X is locally of finite type, we can prove Krull by Noether normalization and the
UFD property.

Theorem 1.7.24. Let X be locally Noetherian and f € T'(X, Ox). Then every irreducible component of V(f)
has codimension 0 or 1.

Corollary 1.7.25. Let X be locally Noetherian and f1, ..., fr € T'(X, Ox). Then every irreducible component
of V(fy,...,fr) has codimsion at most .

Proof. We may assume that X = Spec A is affine with A Noetherian. We will induct on r. When
T = 1, then this is just Krull’s principal ideal theorem. Now consider V(fy,...,f,_1) D V(fy,...,f+)
and now let Z C V(fy,...,f;) be an irreducible component. Then let W C V(fy,...,f._1) be
an irreducible component containing Z. By induction, we know WNV(f;) 2 Z. Then every
irrreducible component of W N V(f;) has codimension 0 or 1 in W, so it has codimension at most
rin X. Therefore, codimyx (Z) < . O

1.8 Separated Morphisms

Definition 1.8.1. A topological space X is Hausdorff if A C X x X is closed.
Remark 1.8.2. A scheme X is almost never Hausdorff.

Theorem 1.8.3. In the topological definition, we are taking the product topology on X x X and set-
theoretically we have the Cartesian product.

For schemes, we can consider the fiber product X xs X endowed with the Zariski topology as
a scheme.
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Definition 1.8.4. Let t: X — S be a morphism. Then 7 is separated if the morphism &,: X xs X
determined by the identity on each copy of X is a closed immersion.

X id

SN

id XxgX — X

L

X——S

A scheme X is separated if X — Spec Z is separated, and 7: X — S is called quasi-separated if 5 is
quasi-compact.

Definition 1.8.5. A morphism f: X — Y is a locally closed immersion if f is a closed immersion into
some open subset U C Y. Equivalently, f is a homeomorphism onto a locally closed subset of Y
and Oy ¢(x) — Ox,x is surjective.

Example 1.8.6. Any morphism 7t: X = Spec A — SpecB = Y is separated. Here, we note that
X xy X =S5SpecA ®p A, and the natural morphism A ®g A — A is surjective.

Proposition 1.8.7. Let mt: X — S be a morphism of schemes. Then 6,: X — X xg X is always a locally
closed immersion.

As a consequence, m: X — S is separated if and only if 0,.(X) C X xg X is closed.

Remark 1.8.8. Note that if 7t is separated, then it is quasi-separated.

Proof of Proposition. Let S =[]V be a cover by open affines and X = | J Uyp be a cover by open
affines such that f(Uyg) C V. Write Vg = SpecBg and Uypg = Spec Ayp. Now we set

U =|JUqp xv, Uap = JSpecAup @B, Anp-
Note that X — U is closed because Spec Aqg — Spec Ayp @B, Aqp is a closed immersion. O
Proposition 1.8.9. Affine morphisms are separated because morphisms of affine schemes are separated.
Example 1.8.10. Being separated is local on the target.
Corollary 1.8.11. Closed immersions are separated.
Example 1.8.12. Open immersions are separated.

Lemma 1.8.13. If m: X — S is separated, then for all open affines U,V C X that map to a common affine
open subset of S, then UNV is affine and Ox (U) ®z Ox(V) — Ox(LLNV).

Example 1.8.14. We have UNV = U x5 VN d.(X) = 51 (U x5 V).

Proof. We can assume that S = SpecR is affine. Write U = Spec A,V = SpecB. Then we know
that UNV — U xsV = SpecA ®g B is a closed immersion. Therefore, we have a surjection
A®zB > A®rB—» O0x(UNV). O

Proposition 1.8.15. Let S = SpecR. Then 7t: X — S is separated if and only if for all U,V C X open
affines, UNV is affine and Ox(U) ®g Ox(V) — Ox(UNV) is surjective. Equivalently, there exists a
covering of X by open affines such that the conditions hold.
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Corollary 1.8.16. Let S = SpecR. Then Py — S is separated.

Recall that closed immersions are preserved under base change. This follows from stability of
affine morphisms and the fact that the tensor product is right exact.

Proposition 1.8.17. Being separated and quasi-separated are preserved under base change.

Proof. Let f: Y/ — Y be separated. Let X — Y be a morphism and X’ — X be the base change of f.
Now consider the Cartesian diagram

X' B X xy X!

! !

Y —— Y xy Y.

Because the bottom arrow is a closed immersion, so is the top arrow. The proof for the quasi-
separated case is similar. O

Proposition 1.8.18. Being separated (or quasi-separated) is closed under composition. If f: X =Y, g: Y —
Z are separated, then so ish = gof.

Proof. Consider X; Ty & Zfori= 1,2. Then we want to show that the diagram

X1 ny2 L) Xl ><2X2
le
Y — 2 o Yx,Y

is Cartesian. Note that ¢ is the morphism X; xy X = X; — Y and vy is constructed using the
universal property for X; xz X, = X; — Z. Now consider a scheme T with diagram

T
(0]

U"Xl ><YX2 L> Xl ><2X2
| |
Y —2 S YxzY.

Now amap @: T — X; Xz Xp is given by ¢ = (@1, ¢2), and we know that (f1 0 @, f20 @2) = (P, ).
But now the universal property of the fiber product gives us the desired result. O

Exercise 1.8.19. Open immersions are separated.
Corollary 1.8.20. Quasi-projective schemes are separated.

Proof of Proposition. The square in the following diagram is Cartesian

X 25 XxyX — XxzX

[ o

Y —2 L YxzY

and thus all horizontal arrows are closed immersions. O
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Proposition 1.8.21. Lef f: X — Y be quasi-compact and quasi-separated and F be a quasicoherent sheaf
on X. Then f,.F is quasicoherent.

Consider a morphism f: X — Y of S-schemes. Then we define the graph morphism T'¢: X —
X XF Y.

Proposition 1.8.22. Let f: X — Y be a morphism of S-schemes.
1. Tg: X = X xs Y is locally closed.
2. If Y — S is separated, then T's: X xg Y is closed.

Proof. Consider the Cartesian diagram

X T X xg Y

l l( £,id)

Y 25 YxgY.

Because A is a (locally) closed immersion, so is I'. O

Now let f,g =2 Y be two morphisms of S-schemes. We define the equalizer to be the limit of
this diagram if it exists. We need a scheme structure on the equalizer, and in the diagram

X — 9 vy

1

(f,9) HAy) —— Y,

we see that the equalizer is simply Y Xy, y) X C X. This is a locally closed subscheme. Proving
that this is actually the equalizer is simply and we simply note that (f o p, g o p) factors through

Y 2 Yx s Y and therefore factors through the fiber product Y x (v, v) X.

Example 1.8.23. Consider the morphisms f,g: A! = A! given by x — 0,x — x%. Then the

diagrams of (schemes, rings) are

Eq —— A! Eq +— klt]
A x,yr—rt]\
Al L9 a2 Kft] —— kfx,y]
y»—)tz

and it is easy to see that Eq = Spec k[t]/t2.

Corollary 1.8.24. Let f, g: X =3 Y be a morphism and X be reduced and Y separated. Suppose there exists
a dense open U C X such that f‘u = g]u. Then f = g everywhere on X.

Proof. We know U C Eq(f, g) is closed because Y is separated, and thus Eq(f, g) = X. O

Example 1.8.25. The affine line with two origins is not separated! Note that the inclusions of the
two copies of Al coincide on A\ {0}, but globally are different morphisms.
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Example 1.8.26. Consider the maps Speck[x]/x? = Speck[x]/x? given by the identity and killing
the maximal ideal. These agree set-theoretically but are different as morphisms of schemes.

We return to rational functions on integral schemes of finite type over an algebraically closed
field k. More generally, if X is a reduced locally Noetherian scheme, we say that

Definition 1.8.27. A rational function on X is an equivalence class of (U, f), where U C X is dense
and open and f € Ox(U). We declare (U, f) ~ (U, f") if f,f’ agree on UNU’.

Definition 1.8.28. We say f is regqular at x € X if there exists a representative (UL, f) such that x € L.

Lemma 1.8.29. If {(U, f)} is a rational function, there is a maximal open subset of reqular points. This is
called the domain of definition.

Proof of this is simply the sheaf axioms. Now the set of rational functions on X form a ring. If
X = Spec A, this is the total ring of fractions of A. If X is integral, this is k(nx).

Example 1.8.30. On X = Specklx, yl/xy, we see that ﬁ (y —3) is a rational function but m

is not.
Now let X be reduced and Y be a scheme.

Definition 1.8.31. A rational map f: X --» Y is an equivalence class of pairs (U, f) where U C X
is open and dense and f: U — Y is a morphism. We declare (U, f) ~ (U’, ') when there exists
V C UNUu’ open and dense such that f, f’ agree on V.

In particular, if Y is separated, then we can take V=UNU".

Example 1.8.32. Consider P™ --» P™~! given by projection from a point. This sends [xo, ..., Xn]
[X1,...,xn] and is defined everywhere except [1,0,...,0l.

[%, %,% . This is called the

Example 1.8.33. Consider the map P2 --» P2 given by [x,y,z] —
Cremona transformation and is defined everywhere besides [1,0,0], (0,1, 0], (0,0, 1].

Example 1.8.34. The graph of the rational map P? --» P! given by projection from a point is
simply the blowup of IP? in a point.

Lemma 1.8.35. The set of reqular points of a rational map is open. If Y is separated, then there exists a
morphism f: U8 — Y representing the rational map.

Definition 1.8.36. Let f: X --» Y be a rational map over S with Y separated. Then let U C X be
the set of regular points. Then the graph of f is the closed subscheme I't C X x Y given by the
closure of f|{,. In fact, the graph is independent of the dense open subset U chosen.

Definition 1.8.37. A rational map f: X --» Y over S is called dominant if there exists a representative
(U, f) such that f: U — Y is dominant.

Example 1.8.38. The map P™ — A™ is dominant (choose a distinguished open subset, then take
the identity to Al).

Definition 1.8.39. Let X,Y be reduced. A rational map f: X --+ Y is called birational if it is
dominant and there exists a rational dominant map g: Y --» X that is inverse to f as rational
maps.

Proposition 1.8.40. Let X,Y be reduced and f: X --» Y over S be birational. Then there exist dense open
subsets U C X,V C Y such that f‘u : U — V is an isomorphism.
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Proof. Let g: Y --» X be the inverse. Then we may assume that U, V are affine. Next, if we write
Z =Y\, then we can replace U by an open affine in U\ f~1(Z). Thus we can assume X, Y are

affine. Call U’ == f~1(V), Then U’ T, v 9 X. This means that g o f is the inclusion of U’ in V.
Now clearly we may replace V with g~(U’) = V’, and now f, g are inverse on U/, V'. O

Example 1.8.41. Let f: X --» Y be a rational map. Then the projection 7: I'r — X is birational, and
the maximal open subset where p = ! is defined the domain of definition of f.

Example 1.8.42. Consider A? --» IP! given by (x,y) + [x,y]. Then the graph is the blowup Bly A?
of A? at the origin.

1.9 Proper Morphisms

Definition 1.9.1. A morphism f: X — Y is called proper if f is of finite type, separated, and
universally closed (closed and being closed is preserved under base change).

Example 1.9.2. Closed immersions are proper. Clearly they are finite type (because they are affine
of the form A — A/I), separated, and clearly universally closed because closed immersions are
closed and stable under base change.

Example 1.9.3. The map A! — Speck is closed, but not universally closed. For example, the map
A? = A xi A' — Al is not closed (take the closed subset defined by xy = 1).

Example 1.9.4. Let f: X — Y be an integral morphism. Then f is affine and thus separated. Also,
integral morphisms are closed and stable under base change, so f is universally closed. Then f is
of finite type if and only if it is finite, so finite morphisms are proper.

Proposition 1.9.5. Being proper is stable under base change, stable under composition, and local on the
target.

Remark 1.9.6. Let P be a property of a morphism of schemes that is stable under base change and
composition. Suppose closed immersions satisfy P. Then for all morphisms f: X — Y, if X — X
has P and Y — X is separated, then f has P.

Proof. Note that f: X E) XxsY = Y. Then X xg Y — Y has P, and I} is a closed immersion
(because Y is separated) and thus has P, so f has P. O

Remark 1.9.7. The property P can be taken to be proper, separated, closed immersion, etc.

Proposition 1.9.8 (Image of proper to separated is proper). Let f: X — Y be a surjective morphism
and suppose X is proper and Y is separated of finite type. Then Y is proper.

Proof. We only need to check that Y — S is universally closed. We show that Y — S is closed.
Because f is surjective, then for Z C Y, we know Z = f (f=1(2)), so the image of Z in S is closed.
To show that f is universally closed, we simply base change the entire diagram. O

Remark 1.9.9. We can eliminate the condition that f is surjective by replacing Y with the scheme-
theoretic image of f.

Proposition 1.9.10. Let X be a reduced scheme and f: X — Y be a morphism. Then the scheme theoretic
image coincides with the closure of the set-theoretic image.

Proposition 1.9.11. Let X be a proper connected reduced scheme over a field k. Then k C T'(X, Ox) is
integral. If k is algebraically closed, then T'(X, Ox) = k.
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Proof. Let f € T'(X,Ox). Then we can view f: X — Al This is proper, so f(X) is a closed connected
reduced subscheme of A'l. Thus it suffices to show that f(X) # Al, but this is simply because
A is not proper (despite being separated of finite type). Thus f(X) must be a closed point, so
the map k[t] — I'(X, Ox) factors through k(f(X)). But then f(X) = V(p(t)) for some irreducible
polynomial p, so f also satisfies p. O

Theorem 1.9.12. Let R be a ring. Then Py — Spec R is proper.

Proof. We already know PP™ is finite type and separated, so we need to show it is universally
closed. Therefore it suffices to prove that IP}; is universally closed (because being proper is
preserved by base change). Now we need to show that P™ xz X — X is closed for all schemes X.
In fact, we can check this locally, so we only need to show that P’y — Spec A is closed. O

1.10 Proj construction

We want to think of IP™ as Proj(k[xo, ..., xn]) under some definition of Proj. This construction
should work for any graded ring R = ;> Ri. Then there is an irrelevant ideal R = €P; - Ri.

We will define ProjR as a set as the set of all graded prime ideals p C R such that p 2 R. Now
we want to consider ProjR has a topological space, and we may consider the Zariski topology as
in the case of SpecR.

Lemma 1.10.1. Let a C R be a homogeneous ideal. Then +/a is the intersection of all homogeneous prime
ideals containing a and V(a) = () if and only if \/a = R,

Finally we are ready to define ProjR as a locally ringed space. For any f € R, define
U == (ProjR); = ProjR\ V(f).

Lemma 1.10.2. The sets {U¢}¢cg, 1 form a basis for the topology of ProjR.

Remark 1.10.3. We have an isomorphism Uy = (ProjR); >~ Spec R¢), where R¢) is the degree zero
localization of R at f. Here, the maps are given by

f%p’—)prﬂR(ﬂ

and

xdeg f
SpeCR(f)BQP—)@ x € Ry | x €Q,.

Finally we are able to describe the structure sheaf on each open subset. Here, we simply define
Oproj r((ProjR)¢) = R(y), and so we need to check the gluing axioms.

1. Let f, g; € R4 be homogeneous and suppose (ProjR), = J (ProjR) 9 This is the same as
f €4/ giR, so there exists n such that f* = }_ a;g; for some aq; € R.

2. If (ProjR); C (Proj R)g, then f™ = a- g and thus there exists a canonical map R(g) — Rf).

3. We have |J (ProjR),, = ProjR if and only if for all homogeneous primes p not containing the
irrelevant ideal, there exists g; ¢ p. This is equivalent to V(}_ g;R) = 0, which is equivalent

to /> giR=R;.
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Now we not only obtain the structure sheaf but also a sheaf M associated to any graded
R-module M = P, >, M. In particular, ProjR is a scheme. If R = Ry @ R, then there is of course
a natural continuous map ProjR — Spec Ry. Note that we have a commutative diagram

R— R¢

[

RQ e R(f)

Remark 1.10.4. If R is finitely generated as an Rp-algebra, then 7: ProjR — Spec Ry is of finite type.
Proposition 1.10.5. The map 7: ProjR — Spec Ry is separated.

Proof. Apply the criterion that if U,V C X is open affine, then U NV is affine and Ox(U) ®r
Ox (V) = Ox(UNV) is surjective implies that f is separated. Now apply this to distinguished
open subsets. O

We would like to define functoriality for this construction. Let R,S be graded rings and
¢@: S — R be a morphism of graded rings. Can we define a map ProjR — ProjS?

Example 1.10.6. Let S = k[xq,...,xn] LR = k[xg,...,xn]. Then ProjR = P™ and Proj$S = Pl
This is not defined globally because (x1,...,xn) NS = S is the irrelevant ideal. Instead, we
consider V(9(S4+)) = Z, and then we obtain a morphism {: ProjR\ Z — ProjS. In fact, here we
obtain projection from a point.

Remark 1.10.7. 1 is an affine morphism.
Example 1.10.8. If ¢(S,) = Ry, then Z # (), so we have a morphism ProjR — Proj S.

Example 1.10.9. For example, if ¢ is surjective, then ker ¢ is a homogeneous ideal and in fact we
have ProjR = Proj S/ ker ¢ C ProjS, and the last inclusion is a closed immersion.

Example 1.10.10. The morphism k[xo, ..., xn] — klx,t] = R given by x; + s™'t' defines the

Veronese embedding.

Example 1.10.11. Suppose R is finitely generated as an Rp-algebra by finitely many elements in
degree 1. Then we have a surjection Rp[x,...,xn] — R, and thus ProjR is a closed subscheme of
PR .

0

Now we would like to consider what happens under base change. Let R = Ry © Ry and
consider a morphism Sy — Ro. Then we can consider the scheme ProjR x g, SpecSy. Alternatively,
we may consider the graded ring R" = R®g, So = P Ri ®g, So. Of course we have a morphism
ProjR’ — ProjR xg, Spec Sy, and in fact on open subsets, this defines an isomorphism.

As a corollary, let X be a scheme and R = @ R; be a sheaf of graded algebras with R;
suasicoherent for all i > 0. Then there exists a scheme ProjOX (R) — X such that over an affine
open Spec A where R; = R;, we have Proj, € R; — SpecA.

Example 1.10.12. If J is a finitely generated quasicoherent sheaf, then we may consider R =
@ Sym™F. Then we write Px (F) = Projy., (R). In particular, if F = Ox ® V, we obtain Px(V").

Now if R is a graded ring, we can consider the ring R(d) = ®k>0 Ry a, where Ry 4 now has
degree k. Then we have an inclusion ProjR — ProjR(d). But then if Ry ¢ p, we know that if
pra 2 Rika, we know that Ry C p for all k > 0. In particular, we obtain an honest morphism
P: ProjR — ProjR(d). We can check on principal open subsets that 1 is an isomorphism.
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Corollary 1.10.13. Let R, R’ be rings such that Ry = R/, and there exists N such that

@Rk’i @RL,

k=N k=N
then ProjR ~ ProjR’.
Proof. Replace R, R’ with R(d), R’(d) for sufficiently large d. O

Now let R, S be graded rings with Ry = Sp. Now of course we have the fiber product

ProjR xg, ProjS —— ProjR

| |

ProjS ————— SpecRy.

Then if R = @ R; ®g, Si, we can show that ProjR’ = ProjR xg, Proj S.
Theorem 1.10.14. For any graded ring R, the morphism ProjR — Spec R is closed.

This follows from the fact that P™ — Spec Ry is universally closed and ProjR C IP™ is a closed
immersion.

Exercise 1.10.15. Up to taking R(d) for an appropriate d, we can assume that R is finitely generated
in degree 1.

Proof. We want to show that 7t: P’y — Spec A is closed. Let Z = V(I). If p is such that ]P{g(p) n

V(I) = 0, then there exists an open subset U > p of Spec A such that ml(Wnv(I = 0. If
I =(fy,..., i), then fq1,..., i have no nontrivial solutions in k(p)[xg, ..., xn]. The idea here is to
use Nakayama. O

We now want to consider sheaves on X := ProjR. We want a theory such that Ox = R. More
generally, for any graded R-module M, define the sheaf M by

M(X¢) =M(s) = M®g Ry).
This gives an exact functor, which is not faithful.

Remark 1.10.16. Compare this to the affine case where we had an equivalence of categories.

Remark 1.10.17. The grading is important for this construction. We can construct the sheaves

(M(d)), = Mg4x, and in particular, we have the sheaf R(d) = Ox(d).

Proposition 1.10.18. If R is finitely generated in degree 1, the sheaves Ox(d) are locally free of rank 1.

Proof. We know that X = Uf€R1 X¢. For f € Ry, we know R(1)(X¢) = R(l)(f), which consists of

elements of the form &, where degh = 1+ n. This implies that multiplication by f defines an
isomorphism R¢) — R(l)m. O

Remark 1.10.19. Note that multiplication gives a map R — R(1), which after sheafification gives us
amap Ox — Ox(1). Combining these, we obtain a map Ry — I'(X, 0x(1)). However, we cannot
say much about this map in general. All of this can be generalized to Rq — I'(X, Ox(d)).
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Remark 1.10.20. Consider R = A[xy, ..., xn] and write ProjR = P = [JU;. We can write Ox(1)
in terms of Cech cocycles. On each U;, we have maps Ox|u_ RN Ox(l)|u_. On overlaps, the

transitions are given by x;/x;, so we obtain Ox(1) by gluing copies of Ox with these gluing
functions.

Proposition 1.10.21.

1. For all graded modules M and d € Z, /EE) =M ®0y Ox(d).

2. Forall m,m, Ox(n) ®n, Ox(m) ~ Ox(n+m). In particualr, when m = —n, we have (‘)X(n)v =

Ox(—n).
This is proved by considering the maps M ®g R(1) — M(1). Similarly to above, we also have
maps Mg — I'(X, M(d)) forall d € Z.

Definition 1.10.22. For any sheaf J of Ox-modules, define the graded module

r.(F) = P r(X,F(d)),
dez

which is a graded T, (Ox)-module. For a graded module M, we obtain a module I',(M).

Proposition 1.10.23. If R = Alxg, ..., xnl, then R = T\ (R). Therefore, for all d > 0, we have Rq =
Alxo, ..., xnlq = T(IPR,0(d)).

Proposition 1.10.24. Let F be a quasicoherent sheaf on X = ProjR. Then there exists a natural isomor-
phism F = T, (F).

Corollary 1.10.25. Any closed subscheme of X = ProjR is defined by some graded ideal 1 C R.

Remark 1.10.26. If we replace R = R’ = @5 Ria, we know X = ProjR £ ~ProjR’ =Y, and
©*0(1) = 0(d).

Remark 1.10.27. Let R — S be a morphism of graded algebras of degree 0. Then we have a map
ProjS DV % Proj S, and ¢*(O(1)) = O(1).

We may also define global versions of this on an arbitrary scheme S. Let R = €@ R; be a graded
Os-algebra. We assume that R is generated as an Rg-algebra by R;. This gives us a morphism
Projg(R) = X =5 S. Also, we have a natural surjection S*®; — R, so we have an embedding
X = PR;. Now if M is a quasicoherent graded R-module, we obtain a module M on X. If

—

M = R(d), we have R(d) = Or(d).
Proposition 1.10.28. If € is locally free over S, then IPE = Projg(S*€) T, and 7, Ope (d) = S9E.

Remark 1.10.29. If £ is a line bundle, then P& = P(& ® £).

Now recall that Homg, (X, IP}) is in bijection with the set of surjections O;(‘H — L for
line bundles £. Now if we consider ProjR, where R is finitely generated in degree 1, then we
obtain a map Opn ® Ry — Opn (1), so we obtain a map Ry — I'(X, £). Now we want to consider
Homg_spec r, (X, Proj R) for arbitrary R.

Theorem 1.10.30. The set Homsg (X, Proj S*Ry) is in bijection with the set of invertible sheaves £ on X
equipped with a map Ry 2 T(X, £) which globally generate L. The bijection is given by £ = *(O(1))
and Ry =T(0(1)) — T'(X, f*(0(1))).
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Proof. Given a line bundle £ on X and ¢: Ry — T'(X,£) which globally generates £, write
Ri > f = s¢ € T(X,£). Then we know X = |JXs,. Locally, we have the section Ox 3 L, s0
L]XS = OX|XS' To define f: X — ProjR = IP, we define it locally. In fact, we give morphism
Xs; — Py = SpecR¢). This is equivalent to giving a morphism Ry — TI'(Xs,, Ox). But this is
simply given on Ry by f — 1, and so the map $*(R;) — I'(Xs,, Ox) factors through (S*R;)¢, and
thus we have a map (S*Rl)(f) — T'(Xs,, Oxsf)- O

Remark 1.10.31. The map f is uniquely determined by £ and ¢, and thus gluing is given by this
uniqueness.

Remark 1.10.32. Given a surjection S*R; —» R which induces ProjR — ProjS*R;, a map X —
Proj(S*Ry) factors through ProjR if and only if the map R; — T'(X, £) satisfies the property that
S*Ry — I L factors through R.

Theorem 1.10.33. Let f: X — S be a morphism of schemes and R = S*Ry be a quasicoherent graded
Os-algebra. Then Homs (X, Projg R) is in bijection with the set of line bundles £ on X equipped with a
surjection @: f*Ry — L.

Corollary 1.10.34. Let €& — X be locally free. Then sections of PE — X are in bijection with surjections
& — L, where L is a line bundle on X.

Example 1.10.35. Let X =P and f: Ox — Ox(1) for f € Alxo, ..., xnl;. If we tensor with Ox (—1),
we obtain a map f: Ox(—1) < Ox. This realizes Ox(—1) as an ideal sheaf of Ox associated to f.
Of course, the scheme associated to this ideal sheaf is V(f).

Example 1.10.36. Let X be locally factorial and Z C X be a codimension 1 subscheme. Then the
ideal sheaf J7 is locally principal.

Now let X be a scheme, £ be a line bundle, and sy,...,sn € I'(X, £). This defines a rational
map X --» P, We would like to put a scheme structure on X\ U = Z.

Definition 1.10.37. The base locus Bs(sg,...,sn) € X is the closed subscheme defined by the
following ideal sheaf. Write V = (sq,...,sn) C T'(X, £). Then we obtain a morphism V ® Os L.
Tensoring with £~1 we obtain a map V® L£~1 = Ox. Now we define the ideal sheaf Jyy C Ox to
be the image of this morphism.

We would like to now modify X such that we can define an actual morphism X — P™. Before
we do the construction, we give some examples.

Example 1.10.38. Suppose that the ideal sheaf I is invertible and locally principal. If £ = Opn (1)
and sg = x1, then the base locus is V(x1). Up to passing from £ to £ ® J, we may assume that the
line bundle is globally generated by V, so our map extends.

We are now ready to consider blowups of closed subschemes Y C X. Here, X is a scheme and
Y C X to be a closed subscheme with ideal sheaf J. Write R = EBH>0 am

Definition 1.10.39. The blowup of X along Y is the scheme Projy (R) = X.

Note that 7 is proper. Now note that if f: X — Y, and J C Oy is an ideal sheaf, the map
f*J = f*Oy = Ox is not injective, but we can consider the image, which is an ideal sheaf that we
will call f~19.



43

Example 1.10.40. Consider the map A% — A2 given by k[s, t] — k[x,y] given by (s, t) — (x,xy).
Then
(s, t) = (s, 1) @y s,4) kX, yl = kx, Y]

is not injective, because (s, t) = (x).
Remark 1.10.41. If J is quasicoherent, so it 17,

Remark 1.10.42. Tf X 25 Y and J 7 C Oy is the ideal of a closed subscheme Z, then f—1(Z) has ideal
f~19,.

Example 1.10.43. We will consider the blowup of 0 € AZ. Here, if A = k[x, y], then the blowup
X C ]P}Q2 is defined by (xT = yS), where ]P}AZ = Proj A[S, T]. Now we want to check what f~1(x,y)

is, and we can do this locally. If we consider the chart Ug = Speck[x, y, t], then X N Ug is given
by tx =y. Thus 1 (x,y)‘us = (x). On the other hand, on the chart Uy, we have the equation

X =ys, SO f_l(x,y)|uT = (y). In fact, X = Blp A]z(. To see this, we know that

BlgA?>=ProjR R = (P (x,y)" =Projklx,yl(S, T)/(xT = y$).
n>0

Theorem 1.10.44. Let X,Y,J be as above. Then write Bly X = X 5 Xand set U =X \Y.
1. minduces an isomorphism T: ni(Uu) - W

2. The sheaf f~13 C O is invertible and corresponds to O¢(1).

Proof. On X\'Y =, J is trivial, so 5€|u =@ Oy = OulT], so we are done. This proves the first
part. For the second part, note J- R = @, 51 I™ = R(1). O

Remark 1.10.45. If J is locally principal (thus locally trivial), then in fact Bly X = X.

Remark 1.10.46. When we have P} = Proj Alxy, ..., xnl], O(1) has sections A[xo, ..., xnl;, and here
O(—1) € O is an ideal sheaf. Here something was said about self intersections of exceptional
divisors on surfaces (if you blow up a smooth point, you get a curve with self intersection —1).

We know that £~17 is a locally principal ideal sheaf on X. If E C X is the subscheme defined
by 717, then f~1(Y) = E. Because Jg is locally principal, then E| | = (fy) is a closed subscheme

of codimension at most 1 for any open subset U C X, and the codimension is 1 if f,, is not a
zero divisor. Later, we will see that E has pure codimension 1 and is a Cartier divisor, called the
exceptional divisor.

We will check this affine locally on X. We may assume that X = Spec A and R = @ I"™. Then

let (x1,...,%x+) =1, s0 X = JUx,. Now we have a map
@:AlT,..., ] » @I =R,
n2=0
and we always have the relations x;T; = x;T; for all i,j. On Uy, = Spec R(x;), we still have a

morphism A[Ty, ..., Ty] (1) — R(x;)- Now we consider IRy, and note that

1 1
Rix) =A@l —alP= .-
(xi) xi X2
Because xj = x; ¢ ( %), it follows that IRy, ) is generated by x; and is thus principal. Now we
need to show that x; is not a zero divisor, but this is clear by the localization process.
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Proposition 1.10.47. If X is integral, so is X. Also, if X — S is separated or proper, so is X - S. Finally,
if X — S if X is Noetherian, then J is coherent, and X is also Noetherian.

Returning to extending morphisms, let X be integral and £ be an invertible sheaf. Then
choose sq,...,sn € T(X,£) and write V = (sg,...,sn) C I'(X,£). Then let Y be the base locus

and Jy = [V® £~ — Jy C Ox] be the ideal sheaf. Then we would like to extend the morphism
U :=X\Y — P". Last time, we saw that we could extend the morphism if Jy was an invertible

sheaf. Now let X = Bly X and 7t: X — X. But now we have a surjection V@ m* £~ — n1Jy onto
an invertible sheaf, so we obtain a surjection V ® O>~< — 19y @ £, and so now we obtain a

regular morphism X — IP¢. Note that we also write 1y =0 <(—E).

Exercise 1.10.48. We have an identification of X with the graph of X --» P™.

Theorem 1.10.49 (Universal property of blowups). Let X,Y,9,X 5 X be as before. Then for all
f: Z — X such that f~1Jy C Oz is an invertible sheaf, then there exists a unique g: Z — Bly X making
the diagram

commuite.

Proof. We use the characterization of morphisms to ProjR. Here, a map X — ProjS*R; was an
invertible sheaf £ on X and a surjection (*R; — £. If R is generated by R, then we need this
surjection to factor through (*R.
Now set £ = f~1Jy. By definition, there exists a surjective morphism f*Jy — £, so of course
we obtain a morphism
S*f* Iy — R— L.

This gives us the morphism Z — X = ProjR — X. The proof of uniqueness is omitted. O

Corollary 1.10.50. Consider 7: Bly X = X — X. Then forall f: Z — X, let Z — Z be the blowup of Z
along £~1Jy, then there exists f: Z — X lifting f.

Remark 1.10.51. If f is a closed embedding, then so is f. When this is the case, then Z is called the
proper transform of Z in X.

Corollary 1.10.52. If Z is integral and Z C X is a closed embedding, then Z=n(X\Y)NZCX
Exercise 1.10.53. Consider proper transforms of nodal cubic curves in Bly A2

Now let E be the exceptional divisor of 7 1(Y) under the blowup 7 X — X. Then we know

E = Proj (fR

) =ProjR®o, Oy =ProjR/Jy - R = 7 /7™,
Y n>0

For example, the exceptional divisor of Blg A2 — A? is
E =Proj P (x,y)"/(x,y)""" = Projkls, t] = P".

More generally, the blowup Bly A™ has exceptional divisor P™ 1.
Now let A be a Noetherian ring and I C A be an ideal. Suppose I is generated by a regular
sequence of length r.
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Lemma 1.10.54. If 1 is generated by a reqular sequence of length v, then 1/1% is a free A /I-module of rank
T, and

@ In/InJrl _ S*I/IZ

n=0

Definition 1.10.55. Let X be a Noetherian scheme and Y C X be a closed subscheme. Then Y is
called locally complete intersection of codimension r if Jy is locally generated by a regular sequence
of length r.

Example 1.10.56. Let X = Spec A where A is a unique factorization domain. Then Y C X of
codimension 1 is a locally complete intersection.

Example 1.10.57. If E C X is the exceptional divisor of a blowup, then E is a locally compelte
intersection.

Example 1.10.58. The twisted cubic is locally a complete intersection.

Proposition 1.10.59. Let X be Noetherian and Y C X be locally complete intersection of codimension .
Then

e /9% is a locally free coherent sheaf of rank v;
 The map E =RI/I?> — Y is a P*1-bundle.

Remark 1.10.60. Locally on X C IP¥ this is defined by f;T; = f;T;, where [ = (fq,..., f;).

1.11 Projective morphisms and (very) ample line bundles

Definition 1.11.1. A morphism f: X — Y is called projective if X ~ Proj, R for some R = P R,
where R is a quasicoherent graded algebra, Ry = Oy, and R is finitely generated in degree 1, so
Ry is locally of finite type.

This is equivalent to the existence of a factorization f: X <— IPF — Y, where J is a quasicoherent
sheaf locally of finite type. If either of these conditions are satisfied, X is said to be projective over
Y.

Remark 1.11.2. If f: X — Y is projective, then on X we have a line bundle £ = O(1) = 3/%?_1/)
Conversely, if there exists £ and a quasicoherent sheaf R; of finite type with f*R; — £ such that f
factors as X < Projy S*Rq — Y, then f is projective.

Example 1.11.3. Blowups are projective if X is Noetherian and J is coherent.
Example 1.11.4. Clearly closed embeddings are projective.

Remark 1.11.5. Projective morphisms are proper and stable under base change.
Warning 1.11.6. Hartshorne defines projective morphisms as being X — Py — Y. This is strictly
stronger than our definition.

Definition 1.11.7. If Y is quasicompact, then f: X — Y is called quasiprojective if it can be factored
as a quasicompact embedding followed by a projective morphism.

Remark 1.11.8. Projective morphisms are separated and proper. Also, there exists some invertible
sheaf £ = I*O]pg(l)

Now we want consitions for an invertible sheaf £ on X to define an immersion X — PF.
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Definition 1.11.9. Let f: X — Y be a morphism of finite type with Y Noetherian. Then £ is called
very ample over Y if there exists a coherent sheaf J on Y such that f factors via an immersion as
f =X < PF — Y such that £ =1*Opg(1).

Remark 1.11.10. If Z C X is a closed subscheme and £ is very ample, then so is i* L.
Example 1.11.11. Let f be as above. Then Op4(1) is very ample over Y.

Remark 1.11.12. This is a relative notions. If X = Bl IP?, then Ox (1) is very ample over IP? but not
ample over Speck (?).4

Remark 1.11.13. If f is proper, then the morphism X — IPF is necessarily a closed immersion.

Remark 1.11.14. Vakil defines the notion of being very ample only for proper morphisms. There is
yet another different definition in Goértz-Wedhorn, but I cannot be bothered to copy it.

Remark 1.11.15. By definition, if there exists a very ample £, then f is separated.

Definition 1.11.16. Let X be Noetherian and £ be an invertible sheaf on X. Then £ is ample if
there exists ng such that F ® L™ is globally generated for all n > ng and all coherent J.

Example 1.11.17. If X = Spec A is affine, then any invertible sheaf is ample.

Proposition 1.11.18. Let X be a quasicompact and quasiseparated scheme, £ be a line bundle, F quasico-
herent, and f € T'(X, £).

1. Let s € T'(X,F) such that s|Xf = 0. Then there exists . > 0 such that f"s =0in I'(X,F L™).
2. Let t € T'(X¢, F). Then there exists 1 > 0 such that f™t lifts to a section of F @ L™.

Theorem 1.11.19 (Serre). Let F be quasicoherent on X = Proj R, where R is finitely generated in degree 1.
Then there exists ng > 0 such that for all n > ng, F(n) is generated by a finite number of global sections.

Proof. By assumption, ProjR is quasicompact and quasiseparated. Also. Now J = M; on X¢,, and
these are all finitely generated. There are also finitely many f;, so we can choose generators and
lift to F ® O(n). O

Remark 1.11.20. The sheaf Opyor(1) is ample.

Lemma 1.11.21. The following are equivalent for a Noetherian scheme X:
1. £ is ample.
2. There exists 1 > 0 such that L™ is ample.
3. L™ is ample for all n > 0.

This means that ample line bundles form a cone. They are invariant under passing to positive
powers. Now here is a useful fact. Let R be as above and assume R is Noetherian. Then for all &
quasicoherent on X, I.J is finitely presented over Ry.

Corollary 1.11.22. Let f: X — Y be a projective morphism with Y Noetherian. then for all F coherent on
X, f.F is coherent on Y.

In general the pushforward of a coherent sheaf is not coherent (consider open immersions).

4Giulia deleted this remark during the lecture.
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Proposition 1.11.23 (Coherent extension). Let X be Noetherian and F be quasicoherent on X. Suppose
U C Xisopenand Gy C F ’u is a coherent subsheaf. Then there exists a coherent subsheaf G C F such

that S|, = Gu.
Corollary 1.11.24. Let X be Noetherian, U C X be open and £ be ample on X. Then £ ’u is ample.

Proof. For all F coherent on U, j.J is quasicoherent on X. Then use coherent extension to construct
an extension J on X extending J. If 7 @ L™ is globally generated, sois ¥ ® L™ ’u‘ O

Proof of proposition. Consider the partially ordered set {(Gw, W)} of coherent extensions of W
ordered in the obvious way. Then by Zorn, there exists a maximal element, and after reducing to
the affine case, we can see that the maximal element is defined on all of X. O

Proposition 1.11.25. Let X be Noetherian (or qcqs) and L be an invertible sheaf. Then the following are
equivalent:

1. L is ample.
2. For all coherent ideals J, there exists ng > 0 such that 3@ L™ is globally generated for all n > ny.
3. The open subsets of the form X¢,f € T(X,L™) for some n > 0 form a basis for the topology of X.
4. There exists ng and fq,...,fn € T(X, L™0) such that X¢,_ are affine and X = (J X,

Proof.

1 implies 2: This is by definition.

2 implies 3: Let U C X be open, x € U be a closed point, and Y = X\ U have the reduced structure.
Finally let Jy C Ox be the ideal sheaf of Y. Then there exists n such that Jy @ £L™ is globally
generated. Thus if f € T'(X,Jy ® L™), so X¢ C UL

3 implies 4: By quasicompactness, there exists n such that fy,...,f, € I'(X,L™) are such that
X = UXs,. Then X¢, C U; are affine and £ |ui = Oy,. Thus Xy, is a principal open subset
of an affine, so it is affine.

4 implies 1: This is the exact same proof as Serre’s theorem. O

Proposition 1.11.26. Let X be quasicompact and quasiseparated and £ be ample. Then write R =
@Tr(X,L™). Then X — SpecT (X, Ox) factors through the open immersion X — ProjR.

Theorem 1.11.27. Let f: X — Spec A be of finite type with A Noetherian and £ be an invertible sheaf on
X. Then £ is ample if and only if there exists 1. > 0 such that L™ is very ample. Moreover, if this is the
case, then the immersion X — PF can be taken to be X — ]PE,

Proof. Assume L™ is very ample. Then there exists J coherent and also O;‘H — J, so we obtain

an immersion j: X < PR But now if J is coherent on X, we can apply coherent extension to find
a coherent subsheaf F C j,F on X. Finally 1. is coherent on PN, so £ is ample.

Conversely, if £ is ample, then there exist sy,...,s; € I'(X,L™) such that X = [JX;, with
Xs; = Spec By affine. Also note that Bj is a finitely generated A-algebra. Now let by; be generators
of B; over A. Then there exists N such that ti; = s{\l by; lift to r'X,£N). Now we have finitely
many sections sN, ti; € I'(X,£™), and these define a regular morphism 1{: X — P™. On each
Xs; — (]Pm)T_l, we see that the map A[le--/Tr](T.l) — Bj is surjective. Thus { is a closed
immersion into an open subset of IP™. O
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Remark 1.11.28. If X is quasicompact and quasiseparated, i: Z — X is a quasicompact immersion,
then the pullback of an ample line bundle is ample.

Theorem 1.11.29. Let X be proper over an algebraically closed field k Now let sg, ...,sn € T'(X, L) and
set V.= {(so,...,Sn). Then V defines a closed immersion if and only if

1. V separates closed points. This means for all x # x' there exists s € V such that s(x) = 0,s(x’) # 0.

2. V separates tangent directions. This means that for a closed point x and a tangent vector t € T X,
there exists s € V such that x € Supp s but t ¢ Ty V(s).?

Theorem 1.11.30. Let f: X — Y be a quasiseparated morphism of finite type with X,Y Noetherian. The
following are equivalent:

1. L™ is very ample for some n > 0.

2. There exists an affine open covering {Vi} of Y such that £ ’Xv- is very ample for all i.

3. Forall V CY affine open, £ |Xv is ample.

Proof.

1 implies 3: Note that if L™ is very ample, then L“‘Xv is very ample, so L‘Xv is ample.

2 implies 1: We have a morphism 1;: X\/i]P\]jii such that p7O(1) = L™ |Xvi' Up to passing to

. I Ni+1
Veronese embeddings, we may assume n; = 1. Then we have a surjection f* Ov~l+ —- Ln
1

Vi
By the adjoint, we obtain a morphism O\N/FH — fo LT ’v* Now the image of this morphism

is coherent, so let §; be a coherent extension of the F; to Y. Then we obtain a morphism
@D Gi — L™, which gives us f* @ G; — L™. This is surjective because it is surjective on
each Xy,. Therefore we obtain a morphism \: X — IP @ §;, and we need to show this is
an immersion. For each 1, we have an immersion Xy, — Py(G;). Now up to passing to an
open subset, 1V factors through IP @ G, and so we need to show that if g o f is an immersion,
so is f. This is left as an exercise. O

1.12 Cartier and Weil divisors

Let £ be an invertible sheaf. Then there exists an open cover {U;} of X such that £ |Ui RaN Ou,,
and on U; N U; we have an isomorphism Oumuj = Ou;nu;- Of course, this @i; € Ox(U; NU;) X,
On U; NU; MUy, we have @@k = @ik. Thisis a Cech 1-cocycle. Then inside the set Z(, O>X<)
we have a subgroup of boundaries B! (U, 05).

If £ = M is an isomorphism of invertible sheaves with cocycles ¢ij,1y;, there exist f; €
Ox(U;)* such that i = Yy fif;l. Therefore, we can define the Picard group of a scheme to
be the subgroup of isomorphism classes of line bundles. This is isomorphic to the cohomology
HL(X, 0%).

Now consider sections s € I'(X, £). This is the same as a morphism s: Ox — £, and if X is
integral, this is always injective if s # 0. Dualizing, we have an injection £V C Ox, so we realize
£V as an ideal sheaf. Every section may determine a different embedding £V C Oy, and thus a
different closed subscheme of X.

5T copied this from Hartshorne, so it may not be the same as Giulia’s statement.
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Example 1.12.1. Consider O(d) on X = P™. Then s € I'(X, 0(d)) = klxo,...,xnl4, and we obtain
the exact sequence
0—-0(—d) - 0—=0yq—0,

where H is a degree d hypersurface.

Remark 1.12.2. Let X be proper over a field k and £ is very ample. Then if X — IP™ is the embedding
given by £, then s € I'(X, £) corresponds to a section s € I'(IP™, O(1)), and V(s) = XN H, where H
is the hyperplane cut out by s.

Now let X be a scheme. For an open U C X, consider the set S of elements of I'(U, Ox) that are

not zero divisors and now write K(U) = S™IT(U, Ox). Now we define a presheaf U — K(U), and
X

after sheafifying we obtain sheaves X (X), K(X)~.
Example 1.12.3. When X is integral, this is a constant sheaf.

Of course, we have a injection 05 — X, and now we have an exact sequence of sheaves
0— 05 = K — K5 /05 — 0.
Example 1.12.4. A Cartier divisor is an element D € I'(X, K% /0%).

Concretely, we obtain a collection of compatible pairs (U, f), where U C X is open and
f e T(U,X%) such that (U, f) ~ (U, ) if =1 € Ox(UNU’)*. Now to a Cartier divisor D,

we can consider Supp(D) = {x | Dx # 1} = {x | fx & O?/X}. Now if D = {(Uy, f{)},{(Uy, g1)}, we
denote D £ E the Cartier divisor defined by {(Ui, i gitl )}.

Definition 1.12.5. A Cartier divisor is called principal if it is in the image of I'(X, £) given by
D = (X, f). Here, we write D = (f). Two Cartier divisors are called linearly equivalent if D — E = (f)
is principal.

Definition 1.12.6. A Cartier divisor D is called effective if D = {(U;, f;)}, where f; € Ox(U;) N
JC>X< (Ui). This is a regular function that is not a zero divisor, and so an effective Cartier divisor
defines an ideal sheaf Jp C Ox. Clearly this is locally free of rank 1.

Therefore, we see that effective Cartier divisors are the same as invertible ideal sheaves. Also,
we will write D > E if and only if D —E > 0. Now to a Cartier divisor D we will associate the
sheaf Ox(£D) locally defined by ffl. Also, we see that Ox(—D) C Ox if and only if D > X, so
we have a group homomorphism from Cartier divisors to the Picard group Pic X.

Proposition 1.12.7. This assignment factors through the group of Cartier divisors modulo principal
divisors and in fact, the kernel is precisely the set of principal divisors. If X is integral, the assignment is
surjective.

Proof. If D = (f), where f € F(X,JC)X(), f determines an isomorphism Ox — Ox/((f)). On the other
hand, we need to show that if Ox (D) ~ Ox, then D can be represented by (U, 1). Finally, if X is
integral, then the sheaf X (X) is constant, so if £ corresponds to {(pij }, then we fix j and think of
fi == @y € N(Uy, X%), and then everything will glue. O

Proposition 1.12.8. If X is integral and L is invertible, then effective Cartier divisors Cartier divisors
D such that Ox (D) = £ correspond exactly to nonzero global sections of £ modulo invertible functions
(X, 0%). In particular, if X is proper over an algebraically closed field k, then dimy T'(X, £) < oc.
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Proof. Suppose D > 0. Then Ox(—D) — Ox, and tensoring with £, we obtain a section. Con-
versely, given a section, we obtain an invertible ideal sheaf £V C Ox, and a Cartier divisor
D. O

Now we will consider Weil divisors. Let X be an integral Noetherian scheme. Now a Weil
divisor is a finite sum ) a;D;, where a; € Z and Dj; is an integral subscheme of codimension
1. We need to assume that X is regular in codimension 1. Note that a local Noetherian ring of
dimension 1 is regular if and only if it is a discrete valuation ring.

Definition 1.12.9. Let f € K*(X) and W C X be a prime divisor. Then Ox v is a discrete valuation
ring, and thus we obtain a valuation vy : K(X) — Z. Then f is said to have a pole or zero along W
if vy (f) is negative (or positive). Now we define a function I'(X, JC;E) = KX (X) = Z1(X) to the
group of Weil divisors by f — > ww/(f) = (f).

Definition 1.12.10. Given f, there exist finitely many prime divisors W such that vy (f) # 0.

Definition 1.12.11. A Weil divisor D = ) a;W; is called principal if there exists f € K*(X) such
that D = (f).

In fact, we can define a map '(X, K% /0%) — Z!(X) sending principal Cartier divisors to
principal Weil divisors. This induces an injection Pic(X) — Z1(X)/K*(X). If X is locally factorial,
this is an isomorphism.

Example 1.12.12. Consider IP™. Then it is easy to see that Pic(IP™) = Z (if we think of everything
as a Weil divisor ) n;Y;, then equivalence classes are classified by ) n;).



Cohomology

2.1 Derived Functors

Let A, B be abelian categories and F: A — B be a left exact functor. For example, if X is a
topological space, we can have A be the category of modules, B = Ab, and F = I'(X, —). This is left
exact but not exact in general.

Example 2.1.1. Let A be a ring and A = Moda. Then Homa (M, —) is left exact.

Example 2.1.2. Let X be a scheme and p # q be closed points. Then we have the exact sequence
0—Jp,q — Ox — k(p)@k(q) — 0.

If X is proper over an algebraically closed field k, then I'(X, Ox) — k @ k cannot be surjective.

Example 2.1.3. If X = Spec A is affine, then I'(X, —) is exact on Qcoh(X).

Now we will construct a sequence of functors RYF for i > 0 such that ROF = F. In some semse,
this will measure the failure of exactness of F. To do this, we will replace A with the derived
category D(A) of complexes localized at quasi-isomorphisms. I have discussed chain homotopies
and quasi-isomorphisms in my notes for several other courses,! so I will omit the discussion here.
In order to construct derived functors, we need to replace A € A with a quasi-isomorphic complex
I* of injective objects.

Definition 2.1.4. An object I € A is called injective if Hom 4 (—,I) is exact.
Example 2.1.5. In Vecty, every object is injective.

Exercise 2.1.6. If 0 — A; — Ay — A3 — 0 is a short exact sequence, then if A is injective, the
sequence is split.

Definition 2.1.7. An abelian category A has enough injectives if for all A € A, there exists an
injective object I and injection A — 1.

An injective resolution of A € A a complex A — I°® that is a long exact sequence. Clearly, A
has enough injectives if and only if injective resolutions always exist.

Lemma 2.1.8. For A € A, any two injective resolutions are quasi-isomorphic.

For example, see my algebraic topology notes at https://math.columbia.edu/~plei/docs/AT1.pdf.
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If A is a ring, then Mod 5 has enough injectives.

Corollary 2.1.9.
1. Let (X,0x) be a ringed space. Then Mod(X) has enough injectives.
2. Let X be a topological space. Then Ab(X) has enough injectives.

Proof. For all x € X, we have an injective module I, with Fx < I. But then we obtain an injection

Fo [T Gx)Ix-

xeX
The target is injective, so we are done. In the second case, simply take the ringed space (X, Z). O
Now we may define the right derived functors of F.

Definition 2.1.10. The right derived functors of F are the functors
R'F:A =B A HYF(I®)).

Alternatively, we may consider the complex RF(A) = F(I*), which is well-defined up to quasi-
isomorphism.

Remark 2.1.11. Because F is left-exact, we HO(F(I)) = ROF(A) = F(A) as desired.

The crucial observation is that this definition does not depend on the choice of injective
resolution.

Example 2.1.12. Let X be a topological space and F = I'(X,—). Then RIN(X,—) = HY(X,—) are
called the cohomology functors of X.

Theorem 2.1.13. Let F: A — B be an exact functor as above. Then
1. The derived functors R'F are well-defined and additive.

2. If0 - A" = A — A" — 0 is a short exact sequence in A, we have a long exact sequence
... 5 RYF(A') = R'F(A) — RYF(A”) 25 RUFIF(AY) = -
3. Given two short exact sequences and morphism f: A®* — B® in A, the diagram

Ri(A//) 45> Ri+1(A/)

lRif J{Ri“ f

commutes.
Example 2.1.14. If I is injective, then RIF(I) =0 foralli > 0.

Injective resolutions are hard to compute, so we will try construct a resolution that is easier to
compute.

Definition 2.1.15. A € A is called F-acyclic if R'F(A) = 0 for all i > 0.
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Example 2.1.16. Injective objects are acyclic for all left-exact functors.
Proposition 2.1.17. If A — J*® is ann F-acyclic resolution, then R'F(A) = H*(F(])).

Proof. Consider the diagram of exact sequences

A Jo J!
[
A 0 It

L

Jo— K ——

Becuase the I are injective, the map J* — I® is a quasi-isomorphism. Next, K® is exact. Because
JL 1t are acyclic, so are the K. But this means that the the map F(J*) — F(I*) is a quasi-
isomorphism. To complete this, it is an exercise that if C® is an exact complex of acyclic objects,
then F(C®) is exact. O

Definition 2.1.18. A sheaf F € Ab(X) is called flasque if for all V C U the restriction F(U) — F(V)
is surjective.

Exercise 2.1.19. Let 0 — 5’ — F — F” — 0 be a short exact sequence. If F’ is flasque, then
I'(X,3) - I'(X,F") is surjective.

Example 2.1.20. If (X, Ox) is a ringed space, then injective sheaves are flasque.
Proposition 2.1.21. Let X be a topological space and F € Ab(X) be flasque. Then F is T'(X, —)-acyclic.

Proof. Let 0 - F — I — § — 0 be an exact sequence with I injective. Then because ¥ is flasque,
we obtain an exact sequence

0->TX3) ->TXI) —-T(X9) —0.

Because H'(X, I) = 0 for all i > 0, we know H!'(X,F) = 0 and H}(X, §) ~ H'*1(X, F). By induction,
we see that J is acyclic. O

Remark 2.1.22. If (X, Ox) is a ringed space, cohomology in Mod(X) is the same as cohomology in
Ab(X).

Theorem 2.1.23. Let X be a Noetherian topological space of dimension n. Then HY (X, F) = 0 for i > n.

Lemma 2.1.24. Let i: Y < X be a closed immersion. Then H'(Y, F) = HY(X, i, F).

2.2 Cohomology of Noetherian Schemes

Theorem 2.2.1. Let X = Spec A be a Noetherian scheme and F be quasicoherent. Then F is T'(X, —)-acyclic.
In other words, H'(X, F) = 0 for all i > 0.

This result is implied by the following proposition:

Proposition 2.2.2. Let 1 be a injective A=module. Then 1 is flasque.
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To prove the theoremm from this proposition, write I = M and let M — I* be an injective
resolution in Mod(A). Then M — I® is a flasque resolution, so it computes the cohomology.

Corollary 2.2.3. Let X be a Noetherian scheme and F be quasicoherent. Then for F coherent, there exists G
quasicoherent and flasque with F — G.

Proof. Cover X be affines U;. Then we have an injection

FoPind| —Pid O
Uy
Theorem 2.2.4 (Serre). Let X be Noetherian. The following are equivalent:
1. X is affine.
2. HY(X, F) = 0 for all quasicoherent F and i > 0.
3. HY(X,9) = 0 for all coherent ideal sheaves J C Ox.

Proof. Clearly 1 implies 2 implies 3, so now choose p € X a closed point and U > p be an open
neighborhood. Then if Y = X\ U and Z = Y Up, we have an exact sequence

0—IJz =05 =0z —0.
From the vanishing of H! for coherent ideal sheaves, there exists f € I'(X, Ox) such that f(p) # 0.
Then Xy C U is affine, so now we need to show that (fq,..., i) = T'(X, Ox). O
2.3 Cech cohomology

Let X be a topological space and U = {U;};.; and fix an ordering of I. Then let J € Ab(X). For all
p = 0, define the sheaf

e F = [

ij<-<ip

Us, NNy,

and the group
CP(UF) =] [F(Uyn---NUy,).

Now we may define a complex by

p+1
d: CP(U,F) = P F)  sigq, = ) (1) sigg,
j=0

Example 2.3.1. The kernel of d° is precisely the global sections.
Exercise 2.3.2. The complex F — (U, F) — CeH(U,F) — - - - is a resolution of F.

Definition 2.3.3. Let X, U, J be as above. Then the Cech cohomology of the covering is defined as
HY (W, 9) = HY(C* (W, 9)).
then the Cech cohomology of X is defined as HY(X, F) = hi% HY(U, F).

Now we will compare Cech cohomology and derived functor cohomology.
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1. Flasque sheaves have no higher Cech cohomology. In particular, if J is flasque then
HY(F,F) =0 for all U and all i > 0.

To see this, note that F |u is flasque, so ¥ — C*(U, J) is a flasque resolution. Therefore the
Cech cohomology is the same as the usual cohomology, so by flasqueness, they must vanish.

2. Let X be a topological space and U be an open covering. Then there exists a functorial map
HY (U, F) = HY(X, T).

3. If X is Noetherian and separated, then for every  quasicoherent and open affine cover U,
the map H'(U, F) — H'(X, F) is an isomorphism.

Because X is separated, U; NUj is affine, so if we denote Uy = U, N---N Uy, for any
multi-index & =1ig...1p, then we can consider an exact sequence

0—-F—=G—-E—=0.

Because § is quasicoherent and flasque, it has no derived functor cohomology and no Cech
cohomology. Because the U are affine, then

0— F(Uy) - G(Ug) = E(Ug) =0
is exact, so we obtain an exact sequence
0—C*(U,F) —»C*(U,9) = C*(U, &) =0
of complexes. Now we obtain a long exact sequence in the HY(X,—), so now H(X, &) =
H*1(X, ). Using the snake lemma, we haave the same result for the Cech cohomology.
Because the desired result holds for i = 0, we use induction to obtain it for all i.
2.4 Cohomology of projective schemes
Theorem 2.4.1. Let A be a Noetherian ring and X = P, .
1. As graded rings, €D HO(X, Ox (1)) ~ Alxg, ..., X
2. Foralln e Zand 0 < i<, HYX,Ox(n)) =0.
3. H' (X, Ox(—r—1)) = A.
4. The map HO(X, 0x (1)) x H" (X, Ox(—r—1—n)) — H"(X,Ox(—r—1)) isa perfect pairing.

Remark 2.4.2. The bundle Ox(—r —1) ~ wx is the canonical bundle det Q1 n = AT Ql n- Compare
the third result to h"(IP¢, Q¢) = h""(Pg) = 1.

Remark 2.4.3. These are particular instances of Serre duality, which says that when A =k, then
1. H(wx) =k;
2. The map Hom(JF, wx) x H' (X, F) = H" (X, wx) = k is a perfect pairing;
3. Exti(F, wy) =~ HH(X, F) ",

which holds when X is a projective scheme over k and wx is the dualizing sheaf. In nice cases, for
example when X is smooth, wx is just the canonical bundle.
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The proof of the theorem is a direct computation using Cech cohomology. Now we will state
important finite results for cohomology of coherent sheaves on Noetherian projective schemes.

Theorem 2.4.4 (Serre). Let X — Spec A be a projective scheme of finite type over A with A Noetherian.
Let J be a coherent sheaf on X and Ox (1) be very ample. Then

1. HY(X, F) is a finitely generated A-module for all i;

2. There exists ng such that for alli > 0 and n > ny, HY(X,F(n)) =0.

Proof. We can reduce this to the case of X =P}, . For i > r, we know HY(X, F) = 0 because P}, is
covered by r + 1 affine open subsets and thus CP (U, F) = 0 for p > r + 1. For the second part, we
use descending induction on i, using the fact that there exists a surjection OQ‘ (n) » Fforn >nyg
and what we already know about HY(Ox(n)). O

Remark 2.4.5. The ny depends very much on F. A crucial point in the construction of Hilbert
schemes is to find an ng that works for any sheaf of ideals J7 as long as we fix the Hilbert
polynomial of Z.

Definition 2.4.6. Let X be projective over k with Ox (i) ample and F be coherent. Then define the
Euler characteristic

X(F) =) (~1)'dimy HY(X, ).
This is additive on short exact sequences of coherent sheaves.

Definition 2.4.7. The function n — x(X, ¥(n)) is a polynomial with rational coefficients, called
the Hilbert polynomial p(n).

Example 2.4.8. If X = P, then po, (n) = px(n) = ("/7).

Exercise 2.4.9. Compute the Hilbert polynomial of a degree d hypersurface Y C IP".

Remark 2.4.10. Given F, the coefficients of the Hilbert polynomial ps(n) are important invariants
of .

Remark 2.4.11. We will see later that the Hilbert polynomial is constant in flat families.

2.5 Higher direct images

Let f: X — Y be a continuous map of topological spaces. Then f,.: 2b(X) — Ab(Y) is left exact. We
also know that Ab(X) has enough injectives, so we may consider the right derived functors.

Definition 2.5.1. The functors Rif,.: Ab(X) — Ab(Y) are the higher direct image functors.

Proposition 2.5.2. The higher direct image R¥f..F is the sheaf associated to the presheaf

flM)I

In particular, R'f.F|,, = Ri<f]f,1(v)> (&‘f,l(v)) and if F is flasque, then R'f,F = 0 for all i > 0.
*

This means that flasque sheaves are f-acyclic, so they may be used to compute higher direct images. Also

computing higher direct images is the same in Ab(X) and in Mod(X).

Vi H! (f—l(V), F
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Proposition 2.5.3. Let f: X — Y = Spec A with X Noetherian. Let F be quasicoherent. Then R, F =

H(X, F). Therefore R\, T is quasicoherent, and if f is projective with A Noetherian, then RYf, preserves
coherent sheaves.

Proposition 2.5.4. Let f: X — Y be a morphism of separated Noetherian schemes, I be quasicoherent
on X, and U = {U;} be an open affine cover. Let C*(U, F) be the Cech resolution of F. Then R*'f,F ~
H' (f.C*(U, T)).

Proof. Because Y is separated, for all V C Y affine, f~!(V) N U; is affine. Therefore we may assume
that Y = Spec A is affine. But now

RY,F = H%)
— Hi(T'(X, e* (1, 5)))

= HYT(Y, f.C*(U, F)))
= HY(f.C* (U, F)).

Remark 2.5.5. It is also often useful to use the long exact sequence for right derived functors.

Theorem 2.5.6. Let f: X — Y be a projective morphism of finite type with X,Y Noetherian. Suppose
Ox (1) is very ample over Y and let F be coherent on X.

1. There exists ng such that for n > ng the map f*f,F(n) — F(n) is surjective;
2. R, F is coherent;
3. There exists ng such that for alln > ng and i > 0, R, F(n) = 0 fori> 0.
Proof. Because Y is quasicompact, we may reduce to the affine case. O
Now we will consider base change of R*f.J along general morphisms X’ — Y.

Proposition 2.5.7. Let X,Y be Noetherian and separated schemes, f: X — Y be of finite type, and Y' be
Noetherian. Suppose F is quasicoherent and let

X 25 X

bl

Y Y5 Y

be Cartesian. Then there exists a base change morphism
VR, F — RYL (W*F)

which is an isomorphism if v is flat.

—_~—

Proof. We may assume Y = Spec A, Y’ = Spec A are affine. Then R'f,F = H}(X, ), so

—_~—

VRYLF = HU(X, F) @4 A’ = HY(C* (U, F)) @4 A
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On the other hand, if we cover X’ by U; x o Spec A’ = U{, then C*(U/, u*F) = u*C*(U,F) and
C*(UW,u*F) = C*(U,TF) ®a A’. Therefore we obtain a map

HI(C* (W) @A A" = HY(C* (U, T) @A A)
which is an isomorphism if A — A’ is flat. O

Remark 2.5.8. If y € Y is a point, then y — Y is in general not flat, so it is not easy to compare
(R‘f*?)y and H'(Xy, Fy).

Example 2.5.9. Let C be a smooth curve over k that is irrational. Then consider m=py: Cx C — C
and let £ = Ocxc (X —A) where £ =pg x C and A is the diagonal. Then 7t,.£ is torsion free on C
and thus locally free. However,

(m.L), = Oc P=Po
Oc(p—po) #0c P #Po
Therefore the rank of HO(C, (ﬂ*L)p) changes.

Remark 2.5.10. When f: X — Y is flat, we will see some criteria to understand what happens.

2.6 Flatness and base change

Definition 2.6.1. Let f: X — Y be a morphism of schemees. then J is flat over Y if for all x € X the
stalk Fy is a flat Oy ¢(,)-module. If Ox is flat over Y, then f is said to be a flat morphism.

Here are some important results about flat morphisms:

1. Flat morphisms of locally Noetherian schemes are equidimensional. This means that for all
x € X, dimy (Xy) + dimy Y = dimy X. To prove this, use going down.

2. If X is integral of dimension 1 and Y is regular, then f is flat if and only if it is dominant. In
fact, without assuming that X is integral, f is flat if and only if every associaated point of X
dominates Y.

3. If Y is regular of dimension 1, p is a closed point, and U := Y'\ p, then for all Xy C IP] flat
over U, there exists a flat limit Xy : X = Y sending X, to p.

Now for any morphism f: X — Y, we know that the Cech resolution C*(U, F) computes R'f..F,
and this is compatible with base change to an open subset of Y or with flat base change. For an
arbitrary base change, the Cech resolution does not work, but if F is flat over Y, we can cook up a
complex that computes cohomology compatibly with base change.

Theorem 2.6.2. Let f: X — Y be a projective morphism of Noetherian schemes with Y = Spec A. Let F be
coherent on X. Then there exists a finite complex of finitely generated projective A-modules

0K skl ...okN =0
such that for all A — A’, there exists a natural isomorphism HY (X', u*F) = HY(K® @ A'), where

X —Yr X

e L

SpecA’ —Y— SpecA.
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Corollary 2.6.3. There exists a complex Ke of locally free coherent sheaves such that
RUF/u*F ~ HY(u*K®).

Remark 2.6.4. The proof of this only uses coherence of R*f,F which holds more generally for
proper morphisms.

Corollary 2.6.5. The map y + dimy v, HY(Xy, Fy) is upper semicontinuous. In addition, y +
X (Xy, Fy) is locally constant.

Proof. Note that
h'(Xy, Fy) = h'(K* @ k(y))
= dimker(d! ® k(y)) — dimIm(d* ' @ k(y))
= dimK' @ k(y) — dimImd}, — dimImd} ',

and the last two terms are lower semicontinuous because the KJ are locally free. For the second
part, note that

X(Fy) =) H)i dim K}, — rk(dy) — rk(d} )
= Z )t dim Kl
= Z )irk(KY),
which is locally constant on Y. 0
Corollary 2.6.6. The Hilbert polynomial is constant in flat families.
Corollary 2.6.7. Assume that Y is reduced. The following are equivalent:
1. The map y > dim H*(Xy, Fy) is constant.
2. The sheaf R*f..F is locally free and R'f..F ® k(y) — H'(Xy, Fy) is an isomorphism.
Moreover, if these conditions are satisfied, then
R @ k(y) = H'(Xy, Ty)
is also an isomorphism.
Proof. Use the following two facts:
1. If & is coherent on Y, then dimy () (F ® k(y)) = v if and only if F is locally free of rank .

2. If 7, G are locally free on Y and ¢: F — G is a morphism such that rk(¢y) = r for all y, then
locally on Y, there exists a splitting F = F1 @ F,, F = 1 @ G, with all F;, G; locally free such

that 0 G
o= (o o)

with {: ¥ — 91 an isomorphism. O

Corollary 2.6.8. Let Y be reduced. If H*(Xy, Fy) = 0 for all y € Y, then R'f,.F = 0.
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Corollary 2.6.9. Let Y be reduced. If R'",.F = 0 for all i > iy, then H*(Xy, Fy) = 0 for all i > iy and
yey.

In fact, we can prove a stronger result.

Theorem 2.6.10. Let f: X — Y be a projective morphism of fintie type between Noetherian schemes. Let F
be flat over Y. Then

1. If(p%(: R, FRk(y) — Hi(Xy,H’y) is surjective at y, then it is an isomorphism at y and the same
is true in a neighborhood of y € Y.

2. If (p}J is sutjective, then the following are equivalent:

a) @yt is also surjective;
b) RYf.F is locally free in a neighborhood of y.

Corollary 2.6.11. Iin(Xy,Sfy) =0forally €Y, then (p}J is surjective for all y, and thus (pb is an
isomorphism, so (RHf,.F )y = 0. This implies that R, F = 0 around y, and thus (p}fl is also surjective.

Exercise 2.6.12. Let X,Y be Noetherian and f: X — Y be flat and proper. Suppose that for all
yey, Xy~ H’L‘(y). If £ is invertible such that L|Xy = Ox, for all y € Y, then there exists an

invertible sheaf M such that £ = f*M.
Hint: Set M = f,£ and prove that f*f,£ — £ is an isomorphism.

Exercise 2.6.13. Let X be Noetherian and connected. Show that Pic(X x IP};) ~ Pic X x Z.
Hint: Show that the map Pic X x PicP™ — Pic(X x P™) is an isomorphism.
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