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Basic Notions

The references we will use in this course are Matsumura’s Commutative Algebra and Serre’s Algèbre
Locale, Multiplicités. There is an English translation of Serre. We will begin with general results on
rings and modules. We will assume all rings are commutative and unital. Recall that and ideal I
of a ring A is prime if and only if A/I is a domain, and I is maximal if and only if A/I is a field.

1.1 Basics of Ideals

Definition 1.1.1. Let I ⊂ A be an ideal. Then the radical
√

I of I is the set
√

I := {x ∈ A | xa ∈ I for some a ∈N}.

Definition 1.1.2. An ideal I ⊂ A is primary if I 6= A and the zero divisors in A/I are nilpotent.
Thus if xy ∈ I and x /∈ I, then yn ∈ I for some n.

Proposition 1.1.3. If Q ⊂ A is primary, then
√

Q is a prime ideal.

Proof. If xy ∈
√

Q, then xnyn ∈ Q. If xn /∈ Q, then y ∈ √q because (yn)a ∈ Q.

Remark 1.1.4. The converse to Proposition 1.1.3 is false in general.

Definition 1.1.5. Let A be a ring. Then the spectrum Spec A of A as a set is the set of prime ideals
of A. We may place the Zariski topology on this set, where the basis of open sets is given by
D f = Spec A \Vf , where Vf is the set of prime ideals containing f .

If ϕ : A→ B is a morphism of rings, the morphism ϕ∗ : Spec B→ Spec A is continuous in the
Zariski topology.

Exercise 1.1.6. In particular, if π : A→ A/I, then π∗ is an embedding.

Exercise 1.1.7. Let I ⊂ A be an ideal. Then let P1, . . . , Pr be ideals of A that are all prime except
possibly two of them. Show that if I 6⊂ Pi for all i, then I 6⊂ ⋃i Pi.

Exercise 1.1.8. Let a1, . . . , ar be ideals of A such that ai + aj = A. Then

1.
⋂

i ai = a1 · · · ar

2. There is an isomorphism of rings A/
⋂

i ai
∼= ∏i A/ai.

3
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1.2 Localization

Let S ⊂ A be a multiplicative subset. The main examples are S f =
{

1, f , f 2, . . .
}

and Sp = A \ p
for a prime ideal p. Then if 0 /∈ S, there is at least one ideal a such that a∩ S = ∅. Denote the set
of such a byMS. Then any maximal element ofMS is a prime ideal in A. Existence of a maximal
element is seen using Zorn’s lemma.

To see that maximal elements of MS are prime ideals, note that (x) + P is not in MS, so if
x, y /∈ P, there exist a, b ∈ A and s, s′ ∈ S such that ax ≡ s mod P and by ≡ s′ mod P. Therefore
abxy /∈ P, so xy is not in P

Lemma 1.2.1. Let nil A be the set of all nilpotent elements. Then

nil A =
⋂

P⊂A
P prime

P.

Proof. One direction is easy, so let x be contained in all prime ideals. Then consider the set Sx. If
0 /∈ Sx, thenMSx is nonempty, so it has a maximal element. This is a prime ideal, which implies
x is not contained in some prime.

Corollary 1.2.2. Let Q be an ideal of A. Then
√

Q is the intersection of all prime ideals containing Q.

Now fix a multiplicative subset S. Then we will define an equivalence relation on A× S. We
write

(a, s) ∼ (b, r)

if there exists t ∈ S such that t(ar− bs) = 0. If A is a domain, then this says that a
s = b

r . Now we
will define the localization S−1 A to be the set of equivalence classes for this relation. Note there is
a natural morphism A→ S−1 A that sends a 7→ a

1 .
Note that the localization has a universal property: If ϕ : A → B is a morphism such that

ϕ(S) ⊂ B×, then ϕ factors uniquely through S−1 A.
Localization gives a map Spec S−1 A → Spec A, and in particular, if S =

{
1, f , f 2, . . .

}
, we

recover the set D f = Spec A f .

1.3 Modules

Let A be a ring. Then an A-module M is an abelian group with an action of A. If M is an
A-module and S ⊂ A is a multiplicative set, then S−1M is the set of equivalence classes for
(m, s) ∼ (m′, s′) if there exists t ∈ S such that t(s′m− sm′) = 0. This is an S−1 A-module.

Lemma 1.3.1. Let M be an A-module. Then the map

M→ ∏
p⊂A

p maximal

Mp

is injective.

Proof. Let x ∈ M be nonzero. Then the annihilator of x is a proper ideal of A, so it is contained in
a maximal ideal. This implies that xp ∈ Mp is nonzero.

Corollary 1.3.2. Let A be a domain. Then A =
⋂

p Ap, where this intersection makes sense inside the
fraction field of A.
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Proof. Apply the previous lemma to M = K/A.

Definition 1.3.3. Let M be an A-module and x ∈ A. Then x is M-regular if the morphism m 7→ xm
is injective. Additionally, if x is A-regular, then it is called regular.

The set S0 of all regular elements in A is multiplicative, and the ring S−1
0 A is called the total

ring of fractions. If A is a domain, then S0 = A \ {0}, and S−1
0 A is the field of fractions.

Definition 1.3.4. A ring A is a local ring if A has only one maximal ideal. In this case, all elements
not in the maximal ideal are units.

Remark 1.3.5. If I ⊂ A is an ideal such that A \ I = A×, then A is a local ring and I its maximal
ideal.

Example 1.3.6. Now let A be a general ring and p ∈ Spec A. Then Ap is a local ring with maximal
ideal pAp.

Definition 1.3.7. Now suppose A, B are local rings. Then a morphism ϕ : A→ B of rings is local
if ϕ(mA) ⊂ mB. This means we have a commutative diagram

(1.1)
A B

kA kB

ϕ

where kA = A/mA is the residue field of A.

Recall that the nilradical is the set of all nilpotent elements, or equivalently the intersection of
all prime ideals. Then the Jacobson radical rad A is defined to be the intersection of all maximal
ideals.

Proposition 1.3.8. Let x ∈ A. Then x ∈ rad A if and only if 1 + xa is a unit for any a ∈ A.

Proof. If (1 + x)A 6= A, then 1 + x is contained in some maximal ideal m f m, which implies 1 ∈ m.
In the other direction, suppose there exists some maximal ideal m such that x /∈ m. Then x is
nonzero in A/M. Thus there exists b such that 1− xb ∈ m, which contradicts the assumption that
1 + xa is a unit for any a.

Lemma 1.3.9 (Nakayama’s Lemma). Let M be a finitely generated A-module. Then let I be an ideal
such that IM = M. Then there exists x ∈ I such that (1 + x)M = 0. In particular, if I ⊆ rad A, then
M = 0.

Proof. We will induct on the number of generators. If M = A.m, then m = xm for some x ∈ I,
and thus (1 − x)m = 0. Now suppose M = Am1 + · · · + Amr. Let M′ = M/Amr. By the
inductive hypothesis, (1 + x)M′ = 0 for some x ∈ I. Therefore (1 + x)M ⊂ Amr, so (1 + x)IM =
(1 + x)M ⊂ Imr. Therefore (1 + x)mr = ymr for some y ∈ I, and thus (1 + x− y)mr = 0. Thus
(1 + x)(1 + x− y)M ⊂ (1 + x− y)Amr = 0.

Corollary 1.3.10. Let N, N′ ⊂ M and I ⊂ A such that M = N + IN′. Then if either

1. I is nilpotent;

2. I ⊂ rad A and N′ is finitely generated,

then M = N.
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Proof. 1. Suppose I is nilpotent. Then

M = N + IN′ = N + IM
= N + I(N + IM)

= N + I2M
...
= N + In M
= N

because I is nilpotent.

2. Let I ⊆ rad A and N′ be finitely generated. Then set M0 = M/N = IN′0, where N′0 is the
image of N′ inside M0. Because N′0 is finitely generated, so is M0. Therefore M0 = IM0 = 0,
so M = N.

Remark 1.3.11. Most of the time, we apply this result when A is local and I is the maximal ideal of
A. In this case, M/mM is a finite-dimensional vector space over A/m.

1.4 Artinian and Noetherian Rings

Definition 1.4.1. We say that an A-module M satisfies the ascending chain condition if any ascending
chain of submodules of M becomes stationary. Similarly, M satisfies the descending chain condition
if any descending chain of submodules becomes stationary. If M satisfies the ascending chain
condition, it is called Noetherian, and if M satisfies the descending chain condition, it is Artinian.

Proposition 1.4.2. Assume we have a short exact sequence of A modules

(1.2) 0 N M P 0.

Then M is Noetherian (resp. Artinian) if and only if N and P are.

Proof. Proving that if M is Noetherian, then N and P are is left to the reader. Now consider a
chain

M1 ⊂ M2 ⊂ · · ·Mn ⊂ · · ·

Then let Pi be the image of the Mi in P and Ni = N ∩Mi. Then we have an exact sequence

0→ Ni → Mi → Pi → 0.

Because (Ni) and (Pi) stabilize, so must Mi from the exact sequence.

Corollary 1.4.3. If A is Noetherian (resp. Artinian), then any finitely generated A-module is Noetherian
(resp. Artinian).

Corollary 1.4.4. Assume A is Noetherian. Then any finitely generated A-module M has a projective
resolution by finite free A-modules. In other worse, there exists an exact sequence

· · · → Fn → Fn−1 → · · · → F1 → F0 → M→ 0

such that each Fi = Ami .
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Proof. Suppose M is finitely generated. Then M = Am1 + · · ·+ Amr, so we have a sequence

Ar ϕ0−→ M→ 0.

Then ker ϕ0 = N0 and F0 = Ar. Then we repeat this process with N0 taking the role of M.

Proposition 1.4.5. An A-module M is noetherian if and only if any submodule of M is finitely generated.

Proof. Let N ⊆ M. Then choose n1 ∈ N. Then if An1 6= N, choose n2 ∈ N \ An1. This process
will stop because M is Noetherian, so N is finitely generated.

Now suppose any submodule is finitely generated. Given a chain

M1 ⊂ M2 ⊂ · · · ⊂ Mn ⊂ · · · ,

set N =
⋃

i Mi. This is finitely generated and is also equal to the first Mi that contains all of the
generators.

This means that a ring A is noetherian if and only if all ideals of A are finitely generated. In
particular, fields and principal ideal domains are Noetherian.

Proposition 1.4.6. Let M be Noetherian and suppose S is a multiplicative subset of A. Then S−1M is
Noetherian.

Proof. Consider the morphism M → S−1M. Then let Ni be a chain of S−1 A-modules in S−1M.
Their preimages Mi form a chain, and they are stationary, so Ni is also stationary.

Theorem 1.4.7. Let A be a Noetherian ring. Then A[X] is Noetherian.

Proof. Let I ⊂ A[X]. Then An ⊂ A be generated by the dominant coefficients of polynomials in I
of degree at most n. Then we can write a ∈ An as a = ∑ αiβi where αi ∈ A and βi a dominant
coefficient of a polynomial of degree at most n in I. Thus the An form a chain of ideals of A that
stabilizer for n ≥ N. Then AN = (β1, . . . , βr). Set Qi = βiXN + · · · ∈ I. If P ∈ I, then there exists
S such that P = QS + R such that Q ∈ AQ1 + · · ·+ AQr and deg R < N.

Therefore P ∈ (Q1, . . . , Qr) + A[X]N−1 ∩ I, so I ⊂ (Q1, . . . , Qr) + A[X]N−1 ∩ I and is thus
finitely generated.

Corollary 1.4.8. Let B be a finitely-generated A-algebra. Then if A is Noetherian, B is also Noetherian.

Corollary 1.4.9. Any finitely generated algebra over a field is Noetherian.

Remark 1.4.10. Suppose A is Noetherian and M an A-module. If M is finitely generated, then M is
Noetherian, but submodules are not necessarily Noetherian. However, they are finitely generated.

Suppose A ⊂ B is an inclusion of rings. Then we say that x ∈ B is integral over A if there exists
a monic polynomial Q ∈ A[t] such that Q(x) = 0.

Proposition 1.4.11. The following are equivalent:

1. x ∈ B is integral over A;

2. A[x] is a finitely-generated A-module;

3. There exists A[x] ⊂ C ⊂ B such that C is a finitely-generated A-module.

4. There exists a faithful A[x]-module M which is finitely generated over A.
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Proof. 1 implies 2 Note that A[x] is generated by 1, x, x2, . . . , xm, where Q has degree m.

2 implies 3 Set C = A[x].

3 implies 4 Choose M = C.

4 implies 1 Write M = Am1 + · · ·+ Amr. M is an A[x]-module, so we can consider x.M ⊂ M.
Then for all i, we have xmi = ∑ aijmj, so if we write consider the matrix T = (aij), then this
matrix represents the map given by multiplication by x. Therefore we have

det(T − xIr) ·

m1
...

mr

 = 0,

so set Q = det(T − xIr). This is monic and Q(x).mi = 0 for all i, and therefore Q(x) acts by
0 on M. Because M is a faithful A[x]-module, we have Q(x) = 0.

Exercise 1.4.12. Let x, y ∈ B ⊃ A. Show that if x and y are integral over A then so are x + y, xy.

Proposition 1.4.13. Let A ⊂ B ⊂ C. Assume that A is Noetherian and that C is a finitely-generated
A-algebra. If C is a finitely-generated B-module, then B is a finitely-generated A-algebra.

Proof. Write C = Bc1 + · · ·+ Bcr. Also, we can write C = A[x1, . . . , xm] for some xi ∈ C. Then
we can write xi = ∑ bijcj and cicj = ∑ bijkck for bij, bijk ∈ B. Then B0 = A[bij, bijk] is a finitely-
generated A-algebra. Any element of C is a polynomial in the xi with coefficients in A, so C is a
finitely-generated B0-module. In particular, B0 is Noetherian. Because B ⊂ C, this implies that B
is a finitely generated B0-module, so it is a finitely-generated A-algebra.

Corollary 1.4.14. Let k be a field and E a finitely-generated k-algebra. If E is a field, then E is a finite
extension of k.

Proof. Let E be a finitely-generated k-algebra. Then there exist x1, . . . , xr ∈ E that are algebraically
independent over k. Then E is algebraic over k(x1, . . . , xr), which is the field of fractions of
k[x1, . . . , xr]. However, this gives an inclusion k ⊂ F ⊂ E, where E is a finitely-generated k-algebra
and E is algebraic over F.

By the proposition, F is a finitely-generated k-algebra. Therefore, we can write F = h[y1, . . . , ys],
where yi =

fi
gi

. Because k[x1, . . . , xn] is a UFD, then we can write

h =
s

∏
i=1

gi + 1 ∈ k[x1, . . . , xn].

h is repatively prime to all of the gi, so 1
h /∈ k[y!, . . . , ys]. This gives a contradiction, so E must be

algebraic over k.

1.4.1 Primary Decomposition in Noetherian Rings

Definition 1.4.15. An ideal a ⊂ A is irreducible if for any decomposition a = b ∩ c, then either
a = b or a = c.

Example 1.4.16. If a is a prime ideal, then a is irreducible. To see this, if a | bc, then a contains
one of b, c, and so either a = b or a = c.
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Remark 1.4.17. Suppose m ⊂ A is a maximal ideal. Then any power mn of m is primary.

Proof. We want to prove that the zero divisors of A/mn are nilpotent. Because m is maximal,
then A/mn is a local ring with maximal ideal m/mn. But then A/mn \m/mn are all units, so
everything in m is nilpotent.

Lemma 1.4.18. If A is Noetherian, then every irreducible ideal is primary.

Proof. Let a ⊂ A be irreducible. Then we can pass to the quotient, so we may asusme a = 0. Let
x, y be nonzero with xy = 0. We want to show that x is nilpotent.

Because A is Noetherian, then there exists n such that Ann xn = Ann xn+1. We want to show
that (xn) ∩ (y) = 0, so choose z = axn = by. Then zx = axn+1 = byx = 0, so a ∈ Ann xn+1 =
Ann xn. However, this means z = 0. Because 0 is irreducible, then (xn) = 0, so xn = 0.

Corollary 1.4.19. If A is Noetherian, then every ideal of A has a primary decomposition. In other words,
we can write I = a1 ∩ · · · ∩ ar, where each ai is primary.

Proof. Let S be the set of ideals with no primary decomposition. If S is nonempty, then S has a
maximal element I. To see this, we can use the fact that A is Noetherian, so any chain of ideals in
S eventually stabilizes. We know that I is not irreducible, we can write I = a∩ b such that I 6= a, b.
In addition, a, b /∈ S, so they have a primary decomposition. This implies that a ∩ b = I has a
primary decomposition.

Remark 1.4.20. This decomposition is not unique. For example, consider I =
〈

x2, xy
〉
⊂ k[x, y].

Then I = 〈x〉 ∩
〈

x2, xy, yn〉 for all n > 0.

1.4.2 Artinian Rings

Proposition 1.4.21. Assume that A is Artinian.

1. Every prime ideal of A is maximal.

2. A has finitely many maximal ideals.

3. The Jacobson radical of A is nilpotent.

Proof. 1. Fix a prime ideal p and consider the domain B = A/p. Choose B 3 x 6= 0 and
consider the decreasing chain (xn) of ideals. This stabilizes, so there exists (xn) = (xn+1),
so we can write xn = xn+1y for some y ∈ B, and therefore 1 = xy because B is a domain.
Therefore x has an inverse, so B is a field. Thus p is maximal.

2. Suppose we have infinitely many maximal ideals p1, . . . , pn, . . . that are pairwise distinct.
Then we form a chain

p1 ⊃ p1p2 ⊃ · · ·
which becomes stationary. Therefore p1 · · · pn ⊂ pn+1, so pn+1 contains some pi. Because
these ideals are maximal, this is a contradiction.

3. Consider I = rad(A) = m1 ∩ · · · ∩mn. Then the chain I ⊃ I2 ⊃ · · · stabilizes, so In = In+1

for some n. Let J = ((0) : In).1 We will show that J = A. If not, let J′ ) J such that J′ is
minimal for this property. Such a J′ exists because A is Artinian.
Let x ∈ J′ \ J and consider the ideal Ax + J By minimality of J′, we see that Ix + J ( J′

(otherwise J = J′ by Nakayama’s lemma). Therefore Ix + J = J, so Ix ⊂ J and thus
x ∈ (J : I). Therefore, In+1x ⊂ In J = (0). This implies Inx = 0, so x ∈ J and thus J′ = J.

1Here, (a : b) = {x ∈ A | xb ∈ a}.



10

Definition 1.4.22. An A-module M is called irreducible if 0 and M are the only submodules of M.

Definition 1.4.23. An A-module M is said to be of finite length if there exists a (finite) decreasing
sequence of submodules

M = M0 ) M1 ) · · · ) Mn+1 = 0

such that Mi/Mi+1 is irreducible for i = 0, . . . , n. In this case, n is actually unique and depends
only on M. We will call n the length of M.

Proposition 1.4.24. Let A be a ring. Then A is Artinian if and only if A is of finite length as an A-module.

Proof. If A is of finite length, then we have a sequence A = M0 ) · · · ) Mn+1 = 0 where
Mi/Mi+1 is irreducible. If a1 ⊃ a2 ⊃ · · · is a decreasing chain of ideals, so ai ∩Mn is a decreasing
chain of ideals. However, each is either Mn or 0, so this chain stabilizes. Similarly, the chain
(Mj ∩ ai)/(Mj+1 ∩ ai) also stabilizes for all j. Therefore, there exists N such that for all i > N,
Mj ∩ ai/(Mj+1 ∩ ai) is constant for all j, so ai is constant for all i > N.

Now suppose that A is Artinian. Choose I = rad(A) = m1 ∩ · · · ∩mm, where the mi are the
maximal ideals of A. Then I is nilpotent, so there exists n > 0 such that

0 = In = mn
1 · · ·mn

m.

Then A = A/In = ∏ A/mn
j by the Chinese remainder theorem, so A/mn

j is clearly a local ring and

is of finite length as an A-module. Note that the A/mj-vector space mi
j/m

i+1
j is finite-dimensional

because A is Artinian. Therefore mi
j/m

i+1
j is of finite length.

Exercise 1.4.25. If there is an exact sequence 0→ N → M→ P→ 0 of A-modules, then M is of
finite length if and only if N and P are of finite length. Moreover, `(M) = `(P) + `(N).

Theorem 1.4.26. A is Artinian if and only if A is Noetherian and dim A = 0.

Proof. If A is Artinian, we have already proved that dim A = 0. By the previous proposition,
because A is of finite length, A is Noetherian. To see this, for a chain a1 ⊂ a2 ⊂ · · · , note that
am ∩Mi/am ∩Mi+1 stabilizes. We can do this for each i, so any increasing chain stabilizes.

Now assume A is Noetherian and has dimension 0. We know that (0) has a primary decompo-
sition, so we can write (0) = q1 ∩ · · · ∩ qr, where each qi is primary. Then mi =

√
qi is a prime

ideal, so it is maximal because dim A = 0. Because A is Noetherian and for all x ∈ mi, xn ∈ qi for
n� 0, so there exists N such that mN

i ⊂ qi for each i. Therefore

mN
1 · · ·mN

r ⊂ q1 · · · qr ⊂ q1 ∩ · · · ∩ qr = 0,

so mN
1 · · ·mN

1 = 0. Therefore, A ∼= A/mN
1 × · · · × A/mN

r . Each A/mN
i is of finite length (because

each m
j
i/m

j+1
i is a finite-dimensional vector space), so A is of finite length.

Proposition 1.4.27. Let A be a Noetherian local ring with maximal ideal m. Then one of the following
holds:

(a) Either mn ) mn+1 for all n, or;

(b) mn = 0 for n� 0 and in this case, A is Artininian.

Proof. If mn = mn+1, then mn = 0 by Nakayama’s lemma. This implies that A = A/mn is of
finite length. Then if p is prime, then mn = (0) ⊂ p, so m ⊂ p. Because m is maximal, m = p, so
dim A = 0.
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Theorem 1.4.28 (Structure Theorem for Artinian Rings). An Artinian ring is uniquely up to isomor-
phism a finite product of Artinian local rings.

Proof. Previously, we proved that A = ∏ A/mN
i . Each of these is a local Artinian ring.
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Linear Algebra of Modules

Proposition 2.0.1. Assume M, N, P are A-modules.

1. The sequence N → M→ P→ 0 is exact if and only if for all A-modules Q, the sequence

0→ Hom(P, Q)→ Hom(M, Q)→ Hom(N, Q)

is exact.

2. The sequence 0→ N → M→ P is exact if and only if for all A-modules Q, the sequence

0→ Hom(Q, N)→ Hom(Q, M)→ Hom(Q, P)

is exact.

Proof. This is left as an exercise.

Remark 2.0.2. In general, if 0→ M→ N → P→ 0 is exact, then

0→ Hom(P, Q)→ Hom(N, Q)→ Hom(M, Q)

0→ Hom(Q, M)→ Hom(Q, N)→ Hom(Q, P)

are exact but the last morphism is not necessarily surjective.

Definition 2.0.3. A module Q is projective if the functor Hom(Q,−) is exact. Here, exact means
that short exact sequences are preserved. Similarly, a module I is injective if the functor Hom(−, I)
is exact.

Proposition 2.0.4. A module Q is projective if and only if Q is a direct factor of a free module. In other
words, there exists a free module F and A-module Q′ such that F = Q⊕Q′.

Proof. Suppose Q is projective. Then there is a surjection π : A(S) → Q → 0. Because Q is
projective, there exists a map θ such that π ◦ θ = id. Therefore A(S) ∼= Q⊕ Q′, where Q′ is the
kernel of π.

On the other hand, if A(S) = Q⊕Q′, then for any diagram of the form

(2.1)
M P 0

Q

we can embed Q in A(S) and then use projectivity of free modules (because Hom(A, M) = M).

12
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Remark 2.0.5. If M is projective and finitely generated, then it is a direct factor of a finite free
module.

Definition 2.0.6. A projective resolution of an A-module M is a right bounded complex

· · · → Pn+1 → Pn → · · · → P0 → 0

of projective modules such that there exists P0 → M such that

· · · Pn+1 → Pn → · · · → P0 → M→ 0

is exact.

Exercise 2.0.7. Show that any module has a projective resolution (Hint: construct a free resolution).
In addition, any two projective resolutions are homotopic.

Definition 2.0.8. kq : Mq → Nq+1 such that φq = dN ◦ kq + kq−1 ◦ dM.

2.1 Tor and Ext Functors

Note that for a complex, we can compute the homology Hq(M•) := ker dq/ Im dq+1. This measures
the defect of the complex from being exact. For functors that are not exact, we can construct
derived functors that measure the defect of exactness. Let F : A-Mod→ A-Mod be right exact. Then
for any M, we can consider a projective resolution P• → M → 0. Applying F to P., then the left
derived functor L•F(M) is defined by L•F(M) = H•(F(P•)).

Proposition 2.1.1. If 0→ M→ N → P→ 0 is exact, then we have a long exact sequence

· → L1F(M)→ LqF(N)→ LqF(P)→ Lq−1F(M)→ · · · → L0F(M)→ L0F(N)→ L0F(P)→ 0.

Recall that the tensor product M⊗ N of two modules M, N is an A-module with a bilinear
map M× N → M⊗ N such that all bilinear maps M× N → P factor through M⊗ N.

Proposition 2.1.2. The functors −⊗ N, Hom(N,−) are an adjoint pair.

Corollary 2.1.3. If N → M→ P→ 0 is exact, then

N ⊗Q→ M⊗Q→ P⊗Q→ 0

is exact.

Definition 2.1.4. A module Q is flat if −⊗Q is exact.

We can defined the left derived functors Torq(Q, M) of the tensor product.

Proposition 2.1.5. Any projective module is flat.

Proof. Clearly free modules are flat, so write Q⊕Q′ = A(S) and then note that the tensor product
distributes over the sum.

Proposition 2.1.6. The following are equivalent:

1. M is flat over A.

2. If N′ ↪→ N, then M⊗ N′ ↪→ M⊗ N.
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3. For all finitely generated ideals I ⊂ A, I ⊗M ↪→ M.

4. For any finitely generated ideals I ⊂ A, Tor1(M, A/I) = 0.

5. For any finitely generated module N, we have Tor(M, N) = 0.

6. For all ai ∈ A and xi ∈ M such that ∑ aixi = 0 there exist y1, . . . , ys ∈ M and bij such that
xi = ∑ bijyj.

Proof. It is clear that 1 is equivalent to 2 implies 3 implies 4 implies 5. The directions 3 implies 2

and 4 implies 3 are left to the reader.

1 implies 6 Choose ai ∈ A, xi ∈ M such that ∑r
i=1 aixi = 0. Then define a map Ar f−→ A by

f (b1, . . . , br) =
r

∑
i=1

aibi

and define K = ker f . Because M is A-flat, we have an exact sequence

0→ K⊗M→ Mr → M.

Then (x1, . . . , xr) ∈ ker f ⊗ idM. Therefore there exists b1, . . . , bs ∈ K and y1, . . . , ys ∈ M
such that

(x1, . . . , xr) =
s

∑
j=1

bj ⊗ yj.

Writing bj = (b1j, . . . , brj), we obtain the identity

r

∑
i=1

bijai = 0

and thus xi = ∑ bjiyj.

6 implies 3 Choose an ideal I ⊂ A. Consider the map 0→ I ⊗M→ M. Then for any element in
the kernel, we can write

∑
i

ai ⊗ xi 7→∑ aixi = 0.

Then we can write xi = ∑ bijyj and so

∑ ai ⊗ xi = ∑ ∑ ai ⊗ bijyj = ∑
(
∑ aibij

)
⊗ yj = 0

and thus I ⊗M→ M is injective.

Let φ : A→ B be a map of rings and let M be a B-module. Define φ to be flat if B is flat as an
A-module.

Proposition 2.1.7. If φ : A→ B is flat and M is a flat B-module, then M is also flat as an A-module.

Proof. Let S be an A-module. Then S⊗A M = S⊗A (B⊗B M) = (S⊗A B)⊗B M. If 0→ N1 → N2
is an exact sequence of A-module, by flatness of B as an A-module, then

0→ N1 ⊗A B→ N2 ⊗A B

is exact. Because M is flat over B, we see that

0→ (N1 ⊗A B)⊗B M→ (N2 ⊗A B)⊗B M

is exact, as desired.
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Now let M be an A-module. Then for any map A
φ−→ B, we can consider the B-module

M(B) := M⊗A B.

Proposition 2.1.8. If M is A-flat, then M(B) is B-flat.

Proof. For a B-module S, write

S⊗B M(B) = S⊗B (M⊗A B)
∼= S⊗B (B⊗A M)
∼= (S⊗B B)⊗A M
∼= S⊗A M.

Thus if 0 → S1 → S2 is exact, then 0 → S1 ⊗A M → S2 ⊗A M is exact because M is A-flat, as
desired.

Proposition 2.1.9. Let S ⊂ A be a multiplicative subset of A. Then the morphism of rings A→ S−1 A is
flat.

The proof is left to the reader. This can be reformulated as M⊗A S−1 A ∼= S−1M.
Now we will give some remarks about the Ext functors. For any left exact functor, we may

define the right derived functors R•F by

RiF(M) = Hi(F(I•))

where M → I• is an injective resolution. Then we will define the right derived functors of
HomA(N,−) by Exti

A(N,−).

Proposition 2.1.10. If M is injective, then Exti
A(N, M) = 0 for all i > 0. Similarly, if N is projective,

then Exti
A(N, M) = 0 for all I > 0.

Remark 2.1.11. We can compute Exti(N, M) using a projective resolution of N.

Proposition 2.1.12. Let A→ B be a morphism of rings and let M, N be A-modules. Then let M(B), N(B)
be their base changes to B. Then we have

Exti
B(M(B), N(B)) = Exti

A(M, N)(B)

and
TorB

i (M(A), N(B)) = TorA
i (M, N)(B)

if B is A-flat.

Proof. This follows from the definition of Ext, Tor using projective resolutions using the following
facts.

1. If M is A-projective, then M(B) is B-projective.

2. Since B is A-flat, for any complex X• of A-modules, then H•(X•(B)) = H•(X•)(B).
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2.2 Flatness

Proposition 2.2.1. Let A be a local ring. Then any finitely generated flat A-module is free. In particular,
free, projective, and flat are equivalent for A-modules.

Proof. We know that free implies projective implies flat. Therefore we will show that if M is flat,
then it is free. Assume that M is finitely generated and A-flat. Let k = A/m be the residue field
of A. Define M = M⊗A k, which is a vector space of finite dimension over k. Then there exists
x1, . . . , xr ∈ M that descend to a basis of M.

Then the map Ar → M, (ai) 7→ ∑ aixi is surjective by Nakayama’s lemma. We will prove
that this map is injective by induction. If r = 1, then suppose ax1 = 0. Then there exist
y1, . . . , ys, b11, . . . , b1s such that

x1 =
s

∑
j=1

bijyj

where abij = 0 for all j = 1, . . . , s. Because x1 6= 0, there exists j such that b1j 6= 0 so b1j is invertible
in A. Thus a = 0.

Now suppose a1x1 + · · ·+ arxr = 0. Then there exist y1, . . . , ys and bij such that

xi = ∑ bijyj

and

∑ ai

bi1
...

bij

 = 0.

Because xr 6= 0, we see that brj 6= 0 for some j and thus bij is a unit. Then a1b1j + · · ·+ arbrj = 0,
so we can write

∑ ai(xi − cixr) = 0.

We know that x1 − c1xr, . . . , xr−1 − cr−1xr are linearly independent over k, so from the induction
a1 = · · · = ar = 0 and thus ar = 0.

Remark 2.2.2. If M is not finitely generated, the proposition is false. An example is given by taking
the field of fractions of a local domain.

When proving the proposition, we in fact proved that

Lemma 2.2.3. If x1, . . . , xr ∈ M with M a flat A-module for A a local ring and x1, . . . , xr are linearly
independent in M⊗A k, then x1, . . . , xr are linearly independent in M.

Proposition 2.2.4. Suppose that A→ B is flat and I1, I2 are ideals of A. Then

1. (I1 ∩ I2)B = I1B ∩ I2B;

2. If I2 is finitely generated, then (I1 : I2)B = (I1B : I2B).

Proof. The proof is a formal consequence of flatness.

1. Consider the exact sequence 0→ I1 ∩ I2 → A→ A/I1 × A/I2. Tensoring with B, we obtain
an exact sequence

0→ (I1 ∩ I2)⊗ B→ B→ B/I1B× B/I2B.

But then (I1 ∩ I2)⊗ B = (I1 ∩ I2)B, but the kernel of the last map is clearly I1B ∩ I2B.
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2. Set I2 = (x1, . . . , xr). Then because

(I1 : I2) =
r⋂

i=1

(I1 : xi A),

it suffices to prove the result for I2 a principal ideal. We have an exact sequence

0→ (I1 : xA)→ A ×x−→ A/I1.

Tensoring by B, we obtain

0→ (I1 : xA)⊗ B→ B→ B/I1B,

and by analysing the kernel, we see that (I1 : xA)B = (I1B : xB). By repeated application of
the previous part, the desired result follows.

Example 2.2.5. We will give an example where the previous proposition is not true in general.
Let A = k[x, y] and B = A/xA = k[y]. Then choose I1 = (x + y), I2 = (y), so I1 ∩ I2 = I1 I2 =
((x + y)y). But then we have (I1 ∩ I2)B = y2B, but I1B ∩ I2B = yB.

Another example is A = k[x, y], B = k[x, y, z]/(xz − y) ∼= k[x, z], I1 = xA, I2 = yA. Here
we can check that (I1 ∩ I2) = (xy), that (I1 ∩ I2)B = x2zB, but I1B ∩ I2B = xzB. Viewing this
geometrically as Spec B→ Spec A, we can check the fiber over (0, 0) and see that the map is not
flat.

Proposition 2.2.6. Let A
ϕ−→ B be a ring homomorphism. The following are equivalent:

1. B is flat over A;

2. BP is flat over Ap for all P ∈ Spec B and p = ϕ−1(P).

3. BP is flat over Ap for any P maximal.

Proof. 1 implies 2: We know that Bp is flat over Ap. But then BP is flat over Bp because it is a
localization. By transitivity of flatness, BP is flat over Ap.

2 implies 3: This is obvious.

3 implies 1: Note that for all P maximal, TorA
i (B, N)P = 0 for i > 0. This implies that

Tor!
i(B, N) = 0, and thus B is flat over A. To get that the first Tor is zero we need to

use the lemma belos.

Lemma 2.2.7. Let ϕ : A→ B be a morphism of rings and choose P ∈ Spec B. Then let p = ϕ−1(P) and
N an A-module. Then TorA

i (B, N) is a B-module and TorA
i (B, N)P = TorAp

i (BP, Np).

Proof. Let X• → N be a projective resolution. Then Tor is computed by the homology of
the complex B ⊗A X•. When we localize, we localize the homology at the B term. However,
Bp⊗A X• = BP⊗Ap

(X•)p, so because Xi is A-projective, then Xp is Ap-projective, and thus (X•)p
is a projective resolution of Np. Thus the complex BP ⊗Ap

(X•)p computes the Tor as desired.

Definition 2.2.8. An A-module N is said to be faithfully flat if

1. N is A-flat;

2. For any sequence P → Q → R of A-modules, if P⊗ N → Q⊗ N → R⊗ N is exact, then
P→ Q→ R is exact.
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Theorem 2.2.9. Let M be an A-module. Then the following are equivalent:

1. M is faithfully flat over A;

2. M is flat and for any nonzero N, M⊗ N 6= 0;

3. M is flat and for all maximal ideals m ⊂ A, m.M 6= M.

Proof. 1 implies 2: Choose the sequence 0 → N → 0. Then tensor with M. If N ⊗M = 0, the
sequence is now exact, then the original sequence is exact, and thus N = 0.

2 implies 3: Consider N = A/m. Then N ⊗M = M/mM 6= 0, so M 6= mM.

3 implies 2: Choose 0 6= x ∈ N and set I = Ann(x) ⊂ m for some maximal ideal m. Then
Ax = A/I, so Ax ⊗ M ∼= M/IM 6= 0. Because Ax injects into N, Ax ⊗ M injects into
N ⊗M, which must be nonzero.

2 implies 1: Consider the sequence P
f−→ Q

g−→ R. Then because M is flat, ker(g ⊗ idM) =
ker(g)⊗M and Im( f ⊗ idM) = Im( f )⊗M. If g ◦ f = 0, then Im(g ◦ f ) = 0, which happens
iff Im(g ◦ f )⊗M = 0. Then Im((g⊗ idM) ◦ ( f ⊗ idM)) = 0.

If P⊗M→ Q⊗M→ R⊗M is exact, then P→ Q→ R is a complex. Finally, we need that
ker g = Im f . By flatness of M, we can tensor to find that ker g/ Im f ⊗M = 0 and then we
see that ker g/ Im f = 0.

Corollary 2.2.10. Let A→ B be a local homomorphism and let M be a finitely-generated B=module. Then
M if flat over A if and only if M is faithfully flat over A.

Proof. Clearly faithfully flat implies flat. Then we need to show that M 6= mA.M. By Nakayama’s
lemma, we know that M⊗ kB 6= 0, so mBM 6= M. In particular, mA M 6= M. In particular, this
implies that item 3 of the previous theorem holds. Thus M is faithfully flat over A.

Remark 2.2.11. This also shows that flat and faithfully flat are equivalent over local rings. Alterna-
tively, we can use the equivalence of flat and free.

Remark 2.2.12. Faithful flatness is transitive. In addition, if A→ B is a morphism of rings, and M
is faithfully flat over A, then M⊗A B is faithfully flat over B.

Proposition 2.2.13. Let M be a faithfully flat B-module which is faithfully flat over A. Then B is faithfully
flat over A.

Proof. Let N be an A-module. Then (B⊗A N)⊗B M = M⊗A N 6= 0 if N 6= 0. This implies that
B⊗A N is nonzero. Now it suffices to show that B is flat over A.

Let (S) be an exact sequence of A-modules. Then if we consider ((S)⊗A M) = (S)⊗A M, this
is exact by flatness of M over A. By faithful flatness of M over B, this implies that (S)⊗A B is
exact.

Proposition 2.2.14. Let A→ B be faithfully flat. Then

1. For any A-module N, the map N → N ⊗A B is injective;

2. If I ⊂ A is an ideal, then IB ∩ A = I;

3. The map Spec B→ Spec A is surjective.

Proof. 1. Let 0 6= x ∈ N. Then Ax⊗ B ↪→ N ⊗ B. Because B is faithfully flat, Ax⊗ B 6= 0.
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2. Recall that B/IB = B⊗ A/I. Then the map A/I → B/IB is injective. Therefore we have a
map A→ B/IB which has kernel I = IB ∩ A.

3. Choose p ∈ Spec A. Then Bp = B⊗A Ap and Ap → Bp is faithfully flat by base change. This
means that pBp ( Bp. Thus if we choose m to be a maximal ideal of Bp containing pBp, we
see that m ∩ Ap ⊃ pAp and thus they are equal by maximality of pAp. Then if we choose
P = m∩ B, we see that

P∩ A = m∩ A
= m∩ Ap ∩ A
= pAp ∩ A
= p.

Thus the image of P is p.

Theorem 2.2.15. Let ϕ : A→ B be a map of rings. The following are equivalent:

1. The map ϕ is faithfully flat.

2. The map ϕ is flat and Spec B→ Spec A is surjective.

3. The map ϕ is flat and for all maximal ideals m of A, there exists some maximal ideal m′ of B such
that ϕ−1(m′) = m.

Proof. 1 implies 2: This is the previous proposition.

2 implies 3: Choose a maximal ideal m ⊂ A. Then there exists P ∈ Spec B such that ϕ−1(P) = m.
But then if m′ is any maximal ideal containing P, we see that ϕ−1(m′) = ϕ−1(P) = m by
maximality of m.

3 implies 1: We want to prove that B 6= mB for any maximal ideal m of A. Then there exists m′

such that ϕ−1(m′) = m. But then B ) m′ ⊃ mB.

Proposition 2.2.16 (Descent). Let A→ B be faithfully flat and M be an A-module. Then

1. M is flat (resp. faithfully flat) if and only if M⊗A B is B-flat (resp. B-faithfully flat).

2. Assume A is a local ring and M is finitely-generated. Then M is free if and only if M⊗A B is B-free.

Proof. 1. Let (S) be an exact sequence. Then (S) ⊗A B is exact, so S ⊗A B ⊗ M ⊗A B =
(S⊗A M)⊗A B is exact. By faithful flatness of B, (S)⊗A M is exact. Now if N 6= 0 is another
A-module, we know that M(B) ⊗ N(B) 6= 0, but this is the same as (M⊗A N)(B), so M⊗A N
is nonzero.

2. Assume that A is local. Then suppose M⊗A B is free. Therefore M⊗A B is faithfully flat.
But then, M is faithfully flat over A, which means that M is free because M is finitely
generated.

Exercise 2.2.17. Let A ⊂ B be integral domains. Assume that A and B have the same field of
fractions. Prove that A ↪→ B is faithfully flat if and only if A = B.
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2.3 More on Integral Dependence

Recall Proposition 1.4.11.

Corollary 2.3.1. Let x1, . . . , xn ∈ B. If each xi is integral over A, then A[x1, . . . , xn] is a finitely-generated
A-module.

Corollary 2.3.2. Let C ⊂ B be the set of integral elements over A. Then C is a subring of B.

Proof. Note that x + y, xy ∈ A[x][y] ∈ A[x, y], which is a finitely-generated A module. Therefore
they are integral over A.

Remark 2.3.3. The ring C is not necessarily finitely-generated over A. For an example, choose
ZZ ⊂ Q.

Definition 2.3.4. Let A ⊂ B. Then we say that B is integral over A if all elements of B are integral
over A.

Corollary 2.3.5. Let A ⊂ B ⊂ C be extensions of rings. Then if B is integral over A and C is integral
over B, then C is integral over A.

Proof of this is left to the reader.

Definition 2.3.6. Let A be an integral domain. We say that A is integrally closed if for all x ∈ K =
Frac A, then x is integral over A if and only if x ∈ A.

Definition 2.3.7. Assume that A ⊂ B is an inclusion of rings. Then the integral closure of A inside
B is the set of all elements of B that are integral over A.

Example 2.3.8. A typical example of this situation is when A is a domain, K is its fraction field,
and L/K is a field extension. Then we can consider the integral closure B of A inside L. In number
theory, if K is a number field, we define its ring of integers OK to be the integral closure of Z in K.

Exercise 2.3.9. If K = Q(ζp), prove that OK = Z[ζp].

Exercise 2.3.10. Let B be an integral domain and A ⊂ B. Prove that the integral closure of A
inside B is integrally closed.

Lemma 2.3.11. Let B be a domain that is integral over A. Then A is a field if and only if B is a field.

Proof. Assume that A is a field. Now choose 0 6= x ∈ B. But then we know that

xn + an−1xn−1 + · · ·+ a0 = 0

for some ai ∈ A and a0 6= 0. But then we have

x−1 = −a−1
0

(
n

∑
i=1

aixi

)
and so x−1 ∈ B.

Now assume that B is a field. Choose 0 6= xinA. Then x−1 ∈ B. This means that x−1 is integral
over A, which means that

a−n + an−1x−(n−1) + · · ·+ a0 = 0

for some ai ∈ A, a0 6= 0. Then if we multiply by an−1, we obtain

a−1 + an−1 + an−2x + · · ·+ a0xn−1 = 0,

which means x−1 ∈ A.
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Corollary 2.3.12. Let A ⊂ B and B be integral over A. Let P ∈ Spec B and p = A ∩P. Then p is
maximal if and only if P is maximal.

Proof. Note that B/P is integral over A/p. Then we apply the lemma to A/p ⊂ B/P.

We can refine this into going-up and going-down. Let φ : A→ B be a morphism of rings and
let φ∗ : Spec B→ Spec A be the induced map of spaces.

Definition 2.3.13 (Going-up). A ring homomorphism φ satisfies the Going-up property if the
following holds:

Let p ⊂ p′ be prime ideals of A and suppose that φ∗(P) = p. Then there exists P′ ⊃ P such
that φ∗(P′) = p′.

Definition 2.3.14 (Going-down). A ring homomorphism φ satisfies the Going-down property if the
following holds:

Let p ⊂ p′ be prime ideals of A. Then let P′ ∈ Spec B satisfy φ∗(P′) = p′. Then there exists
P ⊂ P′ with φ∗(P) = p.

Lemma 2.3.15. The going-down property is equivalent to the following:
For all p ∈ Spec A and P a minimal prime ideal of B containing pB, we have P∩ A = p.

Proof. First suppose that going-down holds. Then choose P be a minimal prime containing pB.
Then p′ = φ−1(P) ⊃ p. If p′ 6= p, then there exists P0 ⊂ P such that ϕ−1(P0) = P, which
contradicts minimality.

Now suppose the other condition holds. Suppose P′ goes to p′ ⊃ p. Then we know that pB ⊂
p′B ⊂ P′. If we fix P0 to be the minimal prime containing pB, then we see that P0 ∩ A = p.

Theorem 2.3.16. If φ : A→ B is flat, then going-down holds.

Proof. Fix p ⊂ p′ and let P′ lie over p′. Then we know that BP′ is flat over Ap′ . Because Ap′ is local
and the map Ap′ → BP′ is local, it is faithfully flat. This implies that the map Spec BP′ → Spec Ap′

is surjective, so there exists P1 ∈ Spec BP′ such that φ−1(P1) = pAp′ .
Now set P := P1 ∩ B. Then we see that

φ−1(P) = φ−1(P1 ∩ B)

= φ−1(P1) ∩ A
= pAp′ ∩ A

= p.

We will see consequences of this result in algebraic geometry.
We will now consider integral ring extensions A ⊂ B.

Theorem 2.3.17 (Cohen-Seidenberg). Suppose A ⊂ B is an integral extension. Then the following hold:

1. The map Spec B→ Spec A is surjective.

2. There are no inclusion relations between the prime ideals of B which are above a fixed prime ideal of
A.

3. Going-up holds for A ⊂ B.

4. If A is local with maximal ideal m, then the prime ideals of B lying over m are precisely the maximal
ideals of B.
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5. Assume further that A and B are integral domains and that A is integrally closed. Then going-down
holds for A ⊂ B.

6. If B is the integral closure of A in a normal extension of field L of K := Frac A, then any two prime
ideals of B lying over the same prime ideal of A are conjugate by an element of Aut(L/K).

Proof. We prove 4, then 1, 2, and 3, then 6, and finally 5.

1. Let p ∈ Spec A. Then Bp = B⊗A Ap is integral over Ap. Applying 4, we obtain the desired
result.

2. Consider Bp again. By 4, because ideals lying over p are maximal, there cannot be inclusion
relations between them.

3. Let p ⊂ p′ and P ∈ Spec B lying over p. Then B/P is integral over A/p. By 1, we know that
Spec B/P→ Spec A/p is surjective. Thus there exists P

′ ∈ Spec B/P lying over p′ = p′/p.
Then we know that P′ = P′/P for some prime ideal P′ of B, and this is the ideal we are
looking for.

4. This is a consequence of Lemma 2.3.15.

5. Write L = Frac B ⊃ K = Frac A. Then let L1 be the normal closure of L/K. Then let p ⊂ p′

in A and P′ in B lie over p′. Then let P1 ⊂ P′1 in B1 the integral closure of A in L1. These
exist thanks to 1 and 3.

Let P′′1 in B1 such that P′′1 ∩ B = P′. Then there exists σ such that P′′1 = σ(P′1) because both
ideals are above p′. Then we can choose

P := σ(P1) ∩ B ⊂ P′′1 ∩ B = P′.

We need to show that P∩ A = p. But this is simply

P∩ A = σ(P1) ∩ A
= σ(P1 ∩ A)

= σ(p)

= p.

6. We know that A is integrally closed in K. Then let L/K be a finite Galois (we can always
reduce to this case) extension and B the integral closure of A in L. Then let P,P′ ∈ Spec B
lie above p ∈ Spec A. We will show there exists σ ∈ Gal(L/K) such that σ(P) = P′.

Suppose that no such σ exists. Then for all σ ∈ Gal(L/K), P′ 6= σ(P). In particular,
P′ 6⊂ σ(P). Then there exists x ∈ P′ which is not in any σ(P) then we see that

y := ∏
σ∈Gal(L/K)

σ(x) ∈ K

is integral over A, so y ∈ A. Also, y /∈ P because x /∈ σ(P), so x ∈ P′ and thus y ∈ P′, so
y ∈ p ⊂ P. This gives a contradiction.

Corollary 2.3.18. Assume that B is integral over A.

1. If P0 ( P1 ( · · · ( Pr is a chain of prime ideals of B, the the pi := Pi ∩ A for a chain of prime
ideals of A.
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2. If p0 ( · · · ( pr is a chain of prime ideals of A, then there exists a chain P0 ( · · · ( Pr of prime
ideals of B above it.

3. If A is integrally closed and B is a domain, then for any chain p0 ( · · · ( pr and Pr ∈ Spec B above
pr, there exists a chain P0 ( · · · ( Pr above the chain in A.

Proof. The proof is clear and left to the reader.

Definition 2.3.19. Let p ∈ Spec A. Then define the height of p by

ht(p) = max {n ≥ 0 | ∃p0 ( · · · ( pn = p}.

Then define the dimension of A by

dim A = max {ht(p) | p ∈ Spec A}.

Corollary 2.3.20. Let A ⊂ B be an integral extension. Then

1. Suppose P ∈ Spec B lies above p ∈ Spec A. Then ht(P) ≤ ht(p).

2. dim A = dim B.

3. If A is integrally closed and B is a domain, then we have ht(P) = ht(p).

Proof. This is an immediate consequence of the previous corollary.

2.4 Associated Primes

Let M be an A-module and p ∈ Spec A.

Definition 2.4.1. We say that p is an associated prime of M if one of the two following equivalent
conditions hold.

1. There exists x ∈ M such that AnnA(x) = p;

2. There is an injection A/p ↪→ M.

We will denote the set of associated primes using the unfortunate notation AssA(M). Then
the set of primes p such that Mp 6= 0 will be denoted SuppA(M).

Proposition 2.4.2. Let p be a maximal element of {Ann(x) | x ∈ M, x 6= 0}. Then p ∈ AssA(M).

Proof. We will show that such a maximal element is actually a prime ideal. Suppose ab ∈ p. Then
p = Ann(x) for some nonzero x, so b.x 6= 0. Then Ann(x) ⊂ Ann(bx) 6= A. By maximality,
Ann(x) = Ann(bx). Because abx = 0, then a ∈ Ann(bx) = p.

Corollary 2.4.3. Let A be Noetherian.

1. M is nonzero if and only if AssA(M) is nonempty.

2. The set of zero divisors for M is the union of the associated primes of M.

Proof. 1. If there is some associated prime, then clearly M 6= 0. In the other direction, the set of
annihilators has a maximal element because A is Noetherian, so there must be an associated
prime.
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2. Let a ∈ Ann(x) for some nonzero x ∈ M. Then Ann(x) ⊂ p is contained in some associated
prime (because it is contained in some maximal element), and thus every zero divisor is
contained in an associated prime. The other direction is obvious.

Lemma 2.4.4. Let S ⊂ A be a multiplicative set and M an A-module. Then

AssA(S−1)M = ϕ∗(AssS−1 A(S
−1M)).

Proof. Let p ∈ AssA(S−1M). Then p = AnnA
x
1 for some x ∈ M, so p∩ S must be empty. Next, we

see that the set {AnnA(sx) | s ∈ S} contains some maximal element m because A is Noetherian.
But then m = AnnA(s0 · x) = p.

On the other hand, if a ∈ p, then ax
1 = 0, which means asx = 0 for some s ∈ S. Then

a ∈ AnnA(sx) ⊂ Ann(s0sx) = Ann(s0x). Thus p ⊂ Ann(s0x). Thus we have shown that

AssA(S−1M) ⊂ ϕ∗AssS−1 A(S
−1M).

The other inclusion is clear.

Theorem 2.4.5. Let A be Noetherian and M and A-module. Then AssA(M) ⊂ SuppA(M) and any
minimal element of SuppA(M) is inside AssA(M).

Proof. Let p ∈ AssA(M). Then A/p injects in M, so we have an injection Ap/pAp ↪→ Mp. Thus
p ∈ SuppA(M).

Now choose a minimal p ∈ SuppA(M). Thus Mp is nontrivial, so there exists a prime ideal
q ⊂ p such that qAp ∈ AssAp

(Mp). Thus Mq = (Mp)qAp
is nonzero, so q ∈ Supp(M). By

minimality, q = p and thus pAp ∈ AssAp
(Mp). Therefore p ∈ AssA(M).

Definition 2.4.6. If p ∈ AssA(M), then p is not necessarily minimal in the support of M. Then
such a prime is called an embedded prime.

Proposition 2.4.7. Let A be Noetherian and M a finitely-generated A-module. Then

1. There exists a chain
0 = M0 ⊂ M1 ⊂ · · · ⊂ Mn = M

such that Mi/Mi−1
∼= A/pi for i = 1, . . . , n and pi ∈ SuppA(M).

2. Given such a sequence, we have AssA(M) ⊂ {p1, . . . , pn}. In particular this set is finite.

Proof. 1. Suppose M 6= 0 Then choose p1 ∈ AssA(M) and let M1 be the image of A/p1 in
M. Then if M/M1 is nonzero, choose p1 ∈ AssA(M/M1) and M2 defined analogously to
M1. This gives a sequence of submodules of M such that A/pi

∼= Mi/Mi−1. Because M is
Noetherian, this sequence becomes stationary. Thus there exists n such that Mn = M.

2. This is a consequence of the next lemma.

Remark 2.4.8. In general the support of a module is not finite.

Lemma 2.4.9. Assume we have an exact sequence of modules 0→ M′ → M → M′′. Then Ass(M) ⊂
Ass(M′) ∪Ass(M′′).

Proof. If p ∈ Ass(M), there exists N ⊂ M such that N ∼= A/p. Then if N ∩M′ = 0, N ↪→ M′′ and
p ∈ Ass(M′′). If the intersection is nonzero, then there exists some nonzero x ∈ N ∩M′ such that
AnnA(x) = p because A/p is a domain. Thus p ∈ Ass(M′).
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Definition 2.4.10. We say that M is coprimary if AssA(M) = {p}.

Definition 2.4.11. Let N ⊂ M. Then we say that N is p-primary if AssA(M/N) = {p}. Alterna-
tively, we say that N belongs to p.

Lemma 2.4.12. A module M is coprimary if and only if M is nonzero and any zero divisor for M is locally
nilpotent (for all x ∈ M, there exists n > 0 such that an.x = 0).

Proof. Suppose that M is coprimary. Now suppose that a ∈ p and x ∈ M. Then Ass(Ax) = {p},
so p is minimal in the support of Ax, which is V(Ann(x)). Therefore, p =

√
Ann(x). Thus for

a ∈ p, an ∈ Ann(x).
In the other direction, let p be the set of locally nilpotent elements with respect to M. This

is clearly an ideal of A. Then let q ∈ AssA(M). Then x ∈ M, so q = Ann(x). Therefore p ⊂ q
because q is a prime ideal. However, q is contained in the set of zero divisors, which is precisely
p.

Remark 2.4.13. Let I ⊂ A be an ideal. Then AssA(A/I) = {p} if and only if the zero divisors of
A/I are locally nilpotent. This is equivalent to I being primary.

Lemma 2.4.14. 1. Let Q1, Q2 ⊂ M be p-primary submodules. Then Q1 ∩Q2 is p-primary.

2. Let N = Q1 ∩ · · · ∩Qr be an irredundant decomposition (i.e. Qi is pi-primary) for distinct pi. Then
AssA(M/N) = {p1, . . . , pr}.

Proof. 1. Note that M/Q1 ∩Q2 injects in M/Q1 ⊕M/Q2. The desired result follows from the
previous lemma.

2. First, note that M/N ↪→ ⊕
M/Qi. Then suppose Ass(M/N) = {p1, . . . , pr}. Then we have

an injection
Q2 ∩ · · · ∩Qr

N
↪→ M/N

and thus Ass((Q1 ∩ · · · ∩Qr)/N) is contained in Ass(M/N). By the exact sequence

0→ N → Q2 ∩ · · · ∩Qr → M/Q1,

we see that Ass(Q2,∩ · · · ∩Qr/N) = {p1}.

Theorem 2.4.15. Let M be a module over a Noetherian ring A. Then for all p ∈ Ass(M), there exists a
p-primary submodule Q(p) ⊂ M such that ⋂

p∈Ass(M)

Q(p) = {0}.

Proof. Fix p ∈ Ass(M). Consider the set

Sp = {N ⊆ M | o /∈ Ass(N)}.

This set is nonempty because 0 ∈ Sp. Next, if Nλ ∈ Sp is a chain, then the module N =
⋃

Nλ is
a submodule of M. In addition, Ass(N) ⊂ ⋃Ass(Nλ). This implies that Sp contains a maximal
element by Zorn’s lemma. Choose such a maximal element Q(p).

We will show that M/Q(p) is coprimary. By the exact sequence

0→ Q(p)→ M→ M/Q(p),
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if p′ ∈ Ass(M/Q(p)), then p′ = p because otherwise A/p′ would inject in M/Q(p) as Q′/Q(p).
Then Ass(Q′) ⊂ Ass(Q(p)) ∪ Ass(Q′/Q(p)), so Q′ ) Q(p), contradicting minimality. Thus
Ass(M/Q(p)) = {p}.

The second part of the claim follows immediately from the fact that Ass (
⋂

Q(p)) =
⋂

Ass(Q(p)) =
∅.

Corollary 2.4.16. Let M be an A-module of finite type. Then any N ⊂ M has a primary decomposition

N = Q1 ∩ · · · ∩Qr

such that

1. The Qi are pi-primary;

2. No Qi can be omitted;

3. This decomposition is irredundant: Ass(M/N) = {p1, . . . , pr}.

Proof. Apply the previous theorem to M/N. Because M/N is of finite type, Ass(M/N) is finite.
Then use the previous lemma.

Exercise 2.4.17. Let A
ϕ−→ B be a morphism of rings and let M be a B-module. Then prove that

ϕ∗(AssB(M)) = AssA(M)

where ϕ∗ : Spec B→ Spec A is the induced map of spaces.
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Dimension Theory

3.1 Graded Rings and Modules

Let A =
⊕

n≥0 An be a graded ring. This means that An · Am ⊂ An+m. Then an A-module M is a
graded module if

M =
⊕
n∈Z

Mn

such that An ·Mm ⊂ Mn+m. We will call Mm the homogeneous elements of degree m on M.
Now let N ⊂ M be a submodule. We say that N is a graded submodule if N =

⊕
N ∩Mm. N

is also called homogeneous. A homogeneous element of M is an element of some Mm. Being a
graded submodule is the same as every element being a sum of homogeneous elements.

Lemma 3.1.1. The following are equivalent:

1. N is a homogeneous submodule.

2. N is generated by homogeneous elements.

3. If x = xr + · · ·+ xn ∈ N for xi ∈ Mi, then for all i, xi ∈ N.

Moreover, if N ⊂ M is homogeneous, then so is M/N, and

M/N =
⊕

m
Mm/Nm.

Proof. The proof is left as an exercise to the reader.

Example 3.1.2. Let k be any ring. Then the ring A = k[x1, . . . , xr] is a graded ring where the
grading is by the degree of each monomial. In particular, A0 = k. Then an ideal I ⊂ A is graded
if I =

⊕
n In where In = I ∩ An. In addition, A/I is a graded ring.

Proposition 3.1.3. Let A be a Noetherian graded ring and M a graded A-module. Then

1. If p ∈ Ass(M), then p is a graded ideal of A and there exists a homogeneous x ∈ M such that
p = Ann(x).

2. One can choose a p-primary graded submodule Q(p) such that 0 =
⋂

p∈Ass(M) Q(p).

27
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Proof. Let x ∈ M and set p = Ann(M). Then write x = xe + xe−1 + · · ·+ x0. Then for f ∈ p, write
f = fr + · · ·+ fs. If f x = 0, then we can write

0 = f x + frxe + ( fr−1xe + frxe−1) + · · ·

and deduce that 0 = frxe = f 2
r xe−1 = · · · . Then f e

r ∈ p, so fr ∈ p. By induction, all fi ∈ o, so p is
graded.

The proof of the second part is simply the following lemma.

Lemma 3.1.4. Let p be a graded prime ideal and Q ⊂ M such that Q is p-primary. Let Q′ ⊂ Q be the
submodule of Q generated by the homogeneous elements of Q. Then Q′ is p-primary.

Proof. This will be proved later.

We will now discuss filtrations of rings. A filtration is a sequence of subgroups

A = J0 ⊃ J1 ⊃ J2 · · ·

such that Jn · Jm = Jn+m. If we set

A′ =
∞⊕

n=0
Jn/Jn+1,

then A′ is a graded ring.
The basic example is Jm = Im for some fixed ideal I ⊂ A. in this case, the filtration is called

the I-adic filtration.

Lemma 3.1.5. Let A be a Noetherian ring and set I ⊂ A. Then

grI A =
∞⊕

n=0
In/In+1

is a Noetherian graded ring.

Proof. Because I is finitely-generated, then I/I2 is a finitely-generated A/I-module. Thus grI(A)
is a finitely-generated A/I-algebra. If x1, . . . , xr is a set of generators of I, then

A/I[x1, . . . , xr]→ grI A

is surjective, so because A/I is Noetherian, so is A/I[x1, . . . , xr] and thus so is grI A.

Let A be an Artinian ring and B = A[x1, . . . , xr] be a graded ring. Then let M be a finitely-
generated graded B-module. Each graded piece Mn is an A-module, so write FM(n) = `A(Mn).
Because M is finitely generated, we have a map

r⊕
i=1

B(di) � M.

Here, B(di) = B as a B-module with the gradation B(d)n = Bn−d. Thus M is generated by
homogeneous elements xdi

of degree di. This gives us the map

r⊕
i=1

Bm−di
↪→ Mm

( fi) 7→
r

∑
i=1

fixdi
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and thus `A(Mm) ≤ ∑r
i=1 `A(Bm−di

). But then Bm is a free A-module, and thus

`A(Bm) ≤
(

r + m− 1
m− 1

)
`(A).

Theorem 3.1.6. Let A, B, M be as above. Then there is a polynomial fM(x) ∈ Q[x] such that

`A(Mn) = fM(n)

for n� 0. This is called the Hilbert-Samuel polynomial for M. The degree of this polynomial will give the
first definition for the dimension of M.

Proof. Say that M satisfies the property P(M) if there exists f ∈ Q(x) such that `(Mn) = f (n) for
n� 0.

1. First, we will show that if N1, N2 ⊂ M and P(M/N1), P(M/N)2 hold, then P(M/N1 ∩ N2)
holds.

2. Second, if N is irreducible, then P(M/N) holds.

If we prove these two things, then we simply use a primary decomposition of 0 ⊂ M. Then the
second statement implies that P(M/Ni) holds and then we simply repeatedly apply the first to
see that P(M) holds.

1. Suppose N = N1 ∩ N2 with N, N1, N2 graded. We then have an exact sequence

0→ N1/(N1 ∩ N2)→ M/(N1 ∩ N2)→ M/N1 → 0

and we know that N1/(N1 ∩N2) = (N1 + N2)/N1 is graded. Then we see that FM/(N1∩N2)
=

FM/N + F(N1+N2)/N1
, so we only need to prove that FN1+N2/N1 exists. But then FN1+N2/N1 =

FM/N2 − FM/N1+N2 and because P(M/N1 + N2) holds, so does P(M/N1 ∩ N2).

2. Let N be irreducible. We know that M′ = M/N is coprimary, so N is p-primary for some
prime ideal p ⊂ B. Write I = (x1, . . . , xm). If I ⊂ p, then M′m = 0 for n � 0. Indeed, if
d is the maximal degree of a system of generators of M′, then M′n+d = In · M′d. On the
other hand, because M′ is p-primary, then elements in p are locally nilpotent. Thus there
exists k � 0 such that pk ·M′d = 0 and thus M′n+d = 0 for n ≥ k. Thus FM/N exists and is
identically zero.

In the second case, I 6⊂ p. Then suppose that x1 /∈ p. Thus x1 is not a zero divisor for M′.
Thus, we have an exact sequence

0→ M′ → x1 → M′ → M′/x1M′ → 0

which then gives

0→ (M/N)n−1 → (M/N)n → (M/N + x1M)n → 0

when restricting to a single graded piece. Thus N ( N + x1M. This implies that fM/N+x1 M
exists because above, we proved that if P(M/N′) holds for any N′ ) N implies that P(M/N)
holds. Then for n ≥ n0, we have `((M/N)m)− `((M/N)n−1) = fM/N+x1 M(n). This implies
that

`((M/N)m) = f (n) + f (n− 1) + · · ·+ `(M/N)n0 .

Then f (n) + · · · + f (n0) = g(n) for some polynomial g of degree deg f + 1 and then
fM/N = g + `((M/N)n0).
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Now let A ⊃ I and M be an A-module with filtration

M0 = M ⊃ M1 ⊃ · · · ⊃ Mn ⊃ · · ·

We say that the filtration is

1. I-admissible if IMn ⊂ Mn+1 for all n� 0;

2. I-acic if IMn = Mn+1 for all n ≥ 0;

3. essentially I-adic if IMn = Mn+1 for n� 0.

Remark 3.1.7. A filtration on M defines a topology on M so that M is a topological group. Here, a
system of neighborhoods of 0 is (Mn)n�0. If

⋂
Mn = 0, then the topology is Hausdorff. If the

filtration is essentially I-adic, then the topology is called the I-adic topology.

Lemma 3.1.8. Let A and I be as before. Let M be an A-module with an admissible filtration. Let
A′ =

⊕∞
n=1 Inxn ⊂ A[x] and

M′ =
⊕

Mn ⊗A Axn =
⊕

Mnxn.

1. M′ is a A′-module.

2. The filtration is essentially I-adic if and only if M′ is a finitely-generate A′-module.

Proof. 1. This is trivial.

2. Note that M′ is a graded A′-module. If M′ is finitely generated, then write M′ = A′m1 +
· · ·+ A′mr. Then we see that M′n = IxM′n−1 for n > max {deg mi}. Thus Mn is essentially
I-adic.

Conversely, if Mn = In−n0 Mn0 for n ≥ n0, then, then it is clear that M′ is generated by
Mn0 xn0 + · · ·+ M1x + M0 and is thus finitely generated.

Theorem 3.1.9 (Artin-Rees). Let A be a Noetherian ring and I ⊂ A. Then let M be a finitely-generated
A-module and N ⊂ M be a submodule. Then there exists r > 0 such that

In M ∩ N = In−r(Ir M ∩ N)

for all n ≥ r.

Proof. Let Mn = In M be the I-adic filtration. Then Nn = In M ∩ N is I-admissible. Then both
N′ ⊂ M′ are both A′-modules. We know that A′ is Noetherian, so because Mn, M′ is finitely
generated. Thus N′ is also Noetherian, so it is also finitely-generated. This implies that Nm is
essentially I-adic, as desired.

Remark 3.1.10. This theorem is saying that the filtration In M ∩ N is essentially I-adic.

Corollary 3.1.11 (Krull Intersection Theorem). Let A, I, M as above.

1. If N =
⋂∞

n=0 In M, then IN = N.

2. If I ⊂ rad(A), then
⋂∞

n=0 In M = 0.

Proof. 1. Note that N ⊂ M. Then apply the Artin-Rees theorem to N = In M ∩ N.

2. Apply Nakayama’s lemma.
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Corollary 3.1.12. Let A be a Noetherian domain and let I ⊂ A be a proper ideal. Then
⋂

n In = 0.

Proof. Let N =
⋂∞

n=0 In. By the previous corollary, IN = N. Then N is finitely generated because
A is Noetherian. Thus there exists x ∈ I such that (1 + x)N = 0, which implies that N = 0
because A is a domain.

Exercise 3.1.13. Let A be Noetherian and M a finitely-generated A-module. Then let I, J be
generated by M-regular elements. Then there exists r > 0 such that (In M : J) = In−r(Ir M : J).
Here, (N : J) = {m ∈ M | Jm ⊂ N}.

3.2 Other Notions of Dimension

Let A be a ring. Then we define the Krull dimension

dim A = sup {ht(p) | p ∈ Spec A}.

Then for any ideal I ⊂ A, define the height of I to be

ht(I) = inf {ht(p) | p ⊃ I}.

Proposition 3.2.1. For any ideal I, we have dim(A/I) + ht(I) ≤ dim A.

Proof. Consider a chain
pd′ ) · · · ) p0 ⊃ I

where d′ = dim(A/I). Then we see that dim A ≥ d′ + ht(p0) ≥ d′ + ht(I), as desired.

Then if M is an A-module, define dim M = dim(A/ AnnA M).

Proposition 3.2.2. Assume that A is Noetherian and M is a finite A-module. Then the following are
equivalent:

1. M is of finite length.

2. A/ AnnA M is Artinian.

3. dim M = 0.

Proof. Clearly conditions 2 and 3 are equivalent. Then M is a quotient of (A/ AnnA M)r, so 2

implies 1. Thus we need to prove that 1 implies 3.
Assume that `(M) < ∞. If we write A′ = A/ AnnA(M), then M is a finite A′-module. If

dim A′ > 0, then there exists p ⊂ A′ that is minimal but not maximal. Then because AnnA′(M) =
0, we have p ∈ V((0)) = Supp(M). But then p ∈ AssA′(M) and thus we have an embedding
A′/p ↪→ M. But then dim M′/p > 0, so `(A′/p) = ∞ and thus `(M) = ∞.

Now let A be a semilocal ring. Let m = Rad A. Then an ideal I ⊂ A is called an ideal of
definition of A if there exists s > 0 such that ms ⊂ I ⊂ m.

Remark 3.2.3. I is an ideal of definition if and only if A/I is Artinian.
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Let A∗ = grI(A) =
⊕∞

n=0 In/In+1 be the graded ring with respect to the I-adic filtration and
let M∗ = grI(M) be the corresponding graded A∗-module. Then if I = (x1, . . . , xi) ⊂ A, define

B = A/I[x1, . . . , xr].

Then we have a map B � A∗, so M∗ is a B-module. Now define χ(M, I, n) := `(M/In M). If M is
a finite A-module, then M/In M is of finite length (because A/In is Artinian) and thus

`(M/In M) = `(M/IM) + `(IM/I2M) + · · ·+ `(In−1M/In M).

Then if `(Is M/Is+1M) is a polynomial in s of degree at most r− 1 for s� 0, then `(M/In M) is a
polynomial of degree at most r for n� 0.

Now if J is another ideal of definition, then there exists s such that Js ⊂ I and thus χ(M, J, ns) ≥
χ(M, I, n). Therefore

d•χ(M, J, n) ≥ d•χ(M, I, n)

and so the degree of χ(M, I, n) is independent of I. Denote this degree by d(M). We know that
d(M) ≥ r, which is the number of generators of I.

Lemma 3.2.4. Assume we have an exact sequence of finite A-modules

0→ M′ → M→ M′′ → 0.

Then d(M) = max {d(M′), d(M′′)} and χ(M, I, n) − χ(M′, I, n) − χ(M′′, I, n) is a polynomial of
degree strictly less that d(M′′).

Proof. For each n we have an exact sequence

0→ M′

In M ∩M′
→ M

In M
→ M′′

In M′′
→ 0.

Then ∆ := χ(M, I, n)− χ(M′′, I, n) = `(M/In M)− `(M′′/In M) = `(M′/In M ∩M′). By Artin-
Rees, there exists r such that M′ ∩ In M = In−r · (M′ ∩ Ir M). But then

χ(M′, I, n− r) ≤ ∆ ≤ χ(M′, I, n)

because χ(M′, I, n)− χ′(M′, I, n− r) has degree strictly less than d(M′), and the desired result
follows.

Lemma 3.2.5. Let A be a Noetherian semilocal ring. Then d(A) ≥ dim A. In particular, dim A < ∞.

Proof. We will induct on d(A). If d(A) = 0, then mn = mn+1 for n � 0. By Nakayama, we see
that mn = 0, so `(A) < ∞ and thus A is Artinian.

Assume that d(A) > 0 and dim A > 0. Let

p0 ⊃ p1 ⊃ · · · ⊃ p` = p

be a chain of prime ideals of length ` > 0. Choose x ∈ p`−1 \ p`. Then dim(A/p+ xA) ≥ `− 1.
Because we have the exact sequence

0→ A/p ×x−→ A/p→ A/p+ xA→ 0,

we have d(A/p) = max(d(A/p), d(A/p+ xA)) and that χ(A/p+ xA, I, n) has degree less than
d(A/p). Therefore

d(A/p+ xA) < d(A/p) ≤ d(A).

By induction, dim(A/p+ xA) ≤ d(A/p+ xA) and thus `− 1 ≤ d(A/p+ xA) ≤ d(A)− 1. This
holds for any chain of ideals, so dim A ≤ d(A).
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Corollary 3.2.6. If A is Noetherian and p ∈ Spec A, then ht(p) < ∞.

Proof. ht(p) = dim Ap < ∞ by the previous lemma.

Lemma 3.2.7. Let A be a Noetherian semilocal ring and M a finite A-module. Choose x ∈ Rad(A). Then
d(M) ≥ d(M/xM) ≥ d(M)− 1.

Proof. Let I ⊂ A be an ideal of definition such that x ∈ I. Then

χ(M/xM, I, n) = `(M/xM + In M) = `(M/In M)− `

(
xM + In M

In M

)
.

Then because x ∈ I, we see that In−1M ⊂ (In M : x), so

`

(
xM + in M

In M

)
≤ `(M/In−1M).

This implies that χ(M/xM, I, n) ≥ χ(M, I, m)− χ(M, I, n− 1), so d(M/xM) ≥ d(M)− 1.

Lemma 3.2.8. Let A and M be as before. Let r = dim M > 0. Then there exists x1, . . . , xr ∈ Rad(A)
such that `(M/x1M + · · ·+ xr M) < ∞.

Proof. Let p1, . . . , pt be the minimal prime ideals containing AnnA(M) such that dim(A/pi) = r.
Because r > 0, then the pi are not maximal and therefore Rad(A) 6⊂ pi. In particular, it is not
contained in

⋃
pi. Choose x1 ∈ Rad(A) \⋃ pi.

If q ⊃ Ann(M/x1X) ⊃ Ann(M) + x1 A is prime and minimal, then q /∈ pi because x1 /∈ pi.
This implies dim A/q ≤ r− 1. By induction, we can then find x2, . . . , xr such that

`(M/x2M + · · ·+ xr M) < ∞,

where M = M/x1M.

Theorem 3.2.9. Let A be semilocal and M a finite A-module. Then d(M) = dim M is the smallest integer
r such that there exists x1, . . . , xr ∈ Rad(A) such that `(M/x1M + · · ·+ xr M) < ∞.

Proof. Choose x1, . . . , xr ∈ m = Rad(A). If `(M/x1M + · · · + xr M) < ∞, then we know that
d(M/x1M + · · · |xr M) ≥ d(M) − r. Then because M/x1M + · · · + xr M has finite length, its
dimsnion is zero and thus r ≥ d(M). Then let r0 be the smallest such integer. By the previous
lemma, we deduce that dim M ≥ r0 ≥ d(M).

We will show that d(M) ≥ dim M. Consider a sequence

M = M0 ⊃ M1 ⊃ · · · ⊃ Mn+1 = 0

such that Mi/Mi+1
∼= A/pi for some prime ideals pi. Then Ass(M) ⊂ {p0, . . . , pn} ⊂ Supp M are

the minimal primes containing AnnA(M), so we see that

d(M) = max {d(A.pi)} ≥ max {dim(A/pi)} = dim(A/ AnnA M).

Remark 3.2.10. If M = A, then d(M) is the smallest integer r such that there exists x1, . . . , xr ∈
Rad(A) such that (x1, . . . , xr) is an ideal of definition.

Corollary 3.2.11. If A is Noetherian and I = (x1, . . . , xr) ⊂ A, then any minimal prime ideal p
containing I has height at most r. In particular, ht(I) ≤ r.
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Proof. First, note that Ap/IAp is Artinian because the image of pAp is both maximal and minimal.
Then `(Ap/x1 Ap + · · ·+ xr Ap) < ∞ and thus ht(p) = dim(Ap) ≤ r.

Now let M be a finitely generated A-module. Define M̂ = lim← M/In M for an ideal of
definition I. We call M̂ the I-adic completion of M.

Corollary 3.2.12. dim M̂ = dim M.

Proof. We know that M̂/In M̂ = M/In M. Thus the two modules have the same Hilbert-Samuel
polynomial.

Corollary 3.2.13. Let A be Noetherian with p ∈ Spec A. Let n be an integer. The following are equivalent:

1. ht(p) ≤ n.

2. There exits I generated by n elements such that p is minimal in V(I).

Proof. 1 implies 2 Suppose that ht(p) ≤ n. Then there exists an ideal of definition J of Ap

generated by n elements. If J =
( x1

s , . . . , xn
s
)
, then I = (x1, . . . , xn) ⊂ p and p is minimal

containing I.

2 implies 1 Let I = (x1, . . . , xn) such that p ⊃ I is minimal. Therefore Ap/IAp is Artinian, so it
has finite length. Thus dim Ap ≤ n, as desired.

Definition 3.2.14. A system of parameters for M is a set of elements x1, . . . , xs ∈ Rad(A) such that

• `(M/x1M + · · ·+ xs M) < ∞;

• s = dim M.

Proposition 3.2.15. Let x1, . . . , xr ∈ Rad(A). Then dim(M/(x1, . . . , xi)M) ≥ dim M − r and we
have equality if and only if x1, . . . , xr belong to a system of parameters for M.

Proof. By induction d(M/xM) ≥ d(M)− 1 for any x ∈ Rad(A). Then we know that

d(M/(x1, . . . , xr)M) ≥ d(M)− r = dim M− r.

Then assume that we have equality. Let y1, . . . , yp be a system of parameters for M/(x1, . . . , xr)M.
Then dim(M/(x1, . . . , xr)M) = p = dim M− r. However, if M = M/(x1, . . . , xr), then

`(M/(y1, . . . , yp)M) = `(M/(y1, . . . , yp, x1, . . . , xr)M) < ∞

and thus y1, . . . , yp, x1, . . . , xr is a system of parameters for M.
Conversely suppose that x1, . . . , xr, y1, . . . , yp is a system of parameters for M. Then

dim(M/(x1, . . . , xr)M) ≥ dim M− r = p,

but we have equality because

0 = d(M/x1, . . . , xr, y1, . . . , yp) ≥ d(M/(x1, . . . , xr)M)− p,

and so p ≥ d(M/(x1, . . . , xr)M).

Now we turn to the case of local Noetherian rings A with maximal ideal m and residue field
k. Then if d = dim A, any ideal of definition has at least d generators. Then let x1, . . . , xd ∈ m
such that `(A/(x1, . . . , xd)) < ∞. Thus I = (x1, . . . , xd) is an ideal of definition and (x1, . . . , xd) is
a system of parameters of A.
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Definition 3.2.16. A local ring A is a regular local ring if there is a system of parameters generating
the maximal ideal of A. Such a system is called a regular system of parameters.

Note that dim A ≤ dimk m/m2 and that A is regular if and only if dim A = dimk m/m2.

Proposition 3.2.17. Let (A,m, k) be a local Noetherian ring. Let (x1, . . . , xd) be a system of parameters of
A. Then dim(A/(x1, . . . , xi)A) = d− i and the image of (xi+1, . . . , xd) in A/(x1, . . . , xi)A is a system
of parameters of this quotient.

3.3 Dimension in the Relative Setting

Consider a morphism A
ϕ−→ B. We have the pullback ϕ∗ : Spec B → Spec A. For p ∈ Spec A, we

have a bijection between (ϕ∗)−1(p) and Spec(Bp/pBp). This latter ring is isomorphic to B⊗ k(p),
where k(p) is the residue field of Ap.

Theorem 3.3.1. Let P ∈ Spec B lie over p. Then

1. ht(P) ≤ ht(p) + ht(P/pP). Equivalently, dim BP ≤ dim Ap + dim(BP/pBP).

2. Equality holds is equivalent to the going-down property for ϕ and in particular if ϕ is flat.

3. If ϕ∗ is surjective and the going-down property holds, then dim B ≥ dim A and ht(I) = ht(IB) for
I ⊂ A.

Proof. 1. Set A = Ap, B = BP. We need to prove that dim B ≤ dim A + dim B/pB, where p is
the maximal ideal of A. Write r = dim A and let x1, . . . , xr be a system of parameters for A.
Then I = (x1, . . . , xr) is an ideal of definition, so pn ⊂ I ⊂ p for some n. Thus pnB ⊂ IB ⊂ pB
and all of these ideals have the same nilradical. Therefore

dim B/OB = dim B/pnB = dim B/pB = s

for some integer s. If y1, . . . , ys is a system of paramaters for B/IB, then x1, . . . , xr, y1, . . . , ys
generate an ideal of definition for B, so r + s ≥ dim B.

2. Let P = P0 ) P1 ) · · · ) Ps be a chain of ideals of B/pB of length s = dim B/pB. Then
for i = 0, . . . , s we know p ⊂ ϕ∗(Pi) and thus ϕ∗(Pi) = p for all i. Now by the Going Down
property we can find

Ps ) · · · ) Pr+s

such that pi = ϕ−1(Ps+i). Thus we have

p = p0 ) p1 ) · · · ) pr

where r = dim A. This gives us the chain

P0 ) · · · ) Pr+s

and thus dim B ≥ r + s.

3. The first inequality follows from 2. Note that dim B = dim A + dim(B/pB) ≥ dim A.

To prove the equality, let P ∈ V(IB) be minimal such that ht(P) = ht(IB). Let p = ϕ∗(P).
Then p ⊃ I and P/pB is minimal, so ht(P/pB) = 0. This tells us that dim BP = dim Ap

and thus ht(P) = ht(p). Thus ht(P) ≥ ht(I).
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Conversely, let p ⊃ I be minimal with ht(p) = ht(I). Let P ∈ Spec B such that ϕ∗(P) = p.
Then P ⊃ pB ⊃ IB and so we may suppose it is minimal for this property. Then we see that

ht(IB) ≤ ht(P) = ht(p) = ht(I)

as desired.

Corollary 3.3.2. Let B ⊃ A be Noetherian rings such that B is integral over A.

1. dim A = dim B;

2. For all P ∈ Spec B, ht(P) ≤ ht(P∩ A).

3. If the going-down property holds, then for any ideal J ⊂ B, have ht(J) = ht(J ∩ A).

Proof. The proof of this is left as an exercise to the reader.

Exercise 3.3.3. Let A
φ−→ B be a morphism of rings and assume that going-down holds for φ. Let

p ⊃ q be prime ideals of A. Prove that dim(B⊗ k(p)) ≥ dim(B⊗ k(q)).

Now we will consider finitely generated extensions of rings. Here B will be a finitely-generated
A-algebra.

Theorem 3.3.4. Let A be Noetherian. Then dim A[X] = dim A + 1.

Proof. Let p ∈ Spec A and let P ∈ Spec B such that P∩ A = p. Choose P to be maximal for this
property. We will show that ht(P/pB) = 1. After localization at p, we may assume that p is
maximal and A is local. Then B/pB = A/p[X], and A/p is a field. Thus B/pB is a PID, so P/pB
is a nonzero principal ideal, so it must have height exactly equal to 1.

Previous we have seen that because B is flat, dim BP = dim Ap + 1, and thus htP = ht(p) + 1,
and we obtain the desired result.

Corollary 3.3.5. 1. dim A[x1, . . . , xm] = dim A + m.

2. If k is a field, then dim k[x1, . . . , xm] = m. Moreover, ht((x1, . . . , xi)) = i.

Proof. We only need to prove the part about the height of (x1, . . . , xi). Then we have

0 ( (x1) ( (x1, x2) ( · · · ( (x1, . . . , xi) ( · · · ( (x1, . . . , xn).

Then clearly ht((x1, . . . , xi)) ≥ i and the inequality cannot be strict because otherwise (x1, . . . , xn)
has height strictly larger than n.

Exercise 3.3.6. Let A be Noetherian, I ⊂ A, and I′ ⊂ A[X]. Suppose I′ = I[X]. Show that
ht(I′) = ht(I).

Theorem 3.3.7 (Noether Normalization). Let A be a finitely generated k-algebra over a field k. Let
a1 ( a2 ( · · · ( ap be a chain of prime ideals of A. Then there exist elements x1, . . . , xm ∈ A algebraically
independent such that:

1. A is integral over B = k[x1, . . . , xm];

2. For all i = 1, . . . , p, there exists an integer h(i) ≥ 0 such that ai ∩ B = (x1, x2, . . . , xh(i)). In
particular, ht(ai) = h(i).
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Remark 3.3.8. Recall that x1, . . . , xm are algebraically independent means that the map k[X1, . . . , Xm]→
A sending Xi 7→ xi is injective.

Proof of Theorem. We will treat the case where A = k[y1, . . . , ym] because any finitely generated
algebra over k which is an integral domain is integral over such a ring. We will prove the result by
induction on m and p. The case when m = 1 is clear because k[y1] is a PID.

We will assume the result is true for m− 1. Now we will form an induction on p. In the case
p = 1, first assume that a1 = (x1), where x1 /∈ k. Then x1 = f (y1, . . . , ym) ∈ k[y1, . . . , ym]. For
i = 2, . . . , m we will introduce xi = yi − yri

1 for some integer ri. We want to choose the ri such that
y1 is integral over k[x1, . . . , xm]. Writing

x1 = f (y1, . . . , ym)

= ∑
p

apyp

= ∑
p

apyp1
1 (x2 + yr2

1 )p2 · · · (xm + yrm
1 )pm ,

we see that f (p) = p1 + r2 p2 + · · · rm pm is the maximal degree of y1 in this expression. Then it is
possible to choose r2, . . . , rm such that f (p) are all distinct, for example ri = ki for k > max {pi},
where the max is taken over all pi that occur in the polynomial.

Then choosing the p for which f (p) is maximal, we can write

x1 = apy
f (p)
1 + ∑

j≤ f (p)
Qj(x)yj

1.

Thus y1 is integral over k[x1, . . . , xm], so yi = xi + yri
1 is integral over k[x1, . . . , xm]. Therefore A is

integral over k[x1, . . . , xm]. Finally, x1, . . . , xm are algebraically independent because otherwise the
transcendance degree of Frac(A) is smaller than m. We now show that a1 ∩ B = (x1). If y ∈ a1 ∩ B,
then write y = b′x1 for some b′ ∈ A. But then b′ ∈ A ∩ Frac(B), so because B is integrally closed,
b′ ∈ B and thus y ∈ Bx1.

For the general case, suppose a1 is generated by more than one element. Choose x1 ∈ a1 \ k
and choose t2, . . . , tm such that A is integral over C = k[x1, t2, . . . , tm] and x1 A ∩ C = Cx1. By the
induction hypothesis on m, there exist x2, . . . , xm such that k[t2, . . . , tm] is integral over k[x1, . . . , xm]
and a1 ∩ k[t1, . . . , tm] ∩ k[x2, . . . , xm] = (x2, . . . , xh). To see this, choose z ∈ a1 ∩ k[x1, . . . , xh]. Then
there exist hj ∈ k[x2, . . . , xm] such that

z =
d

∑
j=1

hjx
j
1

bceause x1 ∈ a1 ∩ k[x1, . . . , xm]. Thus h0 ∈ a1 ∩ k[x1, . . . , xm] = (x2, . . . , xh) and thus z ∈
(x1, . . . , xh). This finishes the case p = 1.

Now we complete the induction on p. Suppose we have a chain of prime ideals a1 ( · · · ( ap
in A. Then we choose t1, . . . , tm such that

• A is integral over k[t1, . . . , tm]

• ai ∩ k[t1, . . . , tm] = (t1, . . . , th(i)) for i ≤ p− 1.

Now we apply the case p = 1 to the ideal ap ∩ k[tr+1, . . . , tm] where r = h(p− 1). Thus there
exist xr+1, . . . , xm such that k[tr+1, . . . , tm] is integral over k[x1, . . . , xm] and ap ∩ k[xr+1 . . . , xm] =
(xr+1, . . . , xh).
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First, it is clear that A is integral over k[t1, . . . , tr, xr+1, . . . , xm]. If we set xi = ti for i ≤ i, then
we will show that

ap ∩ k[x1, . . . , xm] = (x1, . . . , xh).

One direction is obvious from the inductive hypothesis. In the other direction, if we write
y = ∑ ahxh, then because x1, . . . , xr ∈ ap−1 ∈ ap−1 ∩ k[x1, . . . , xm], we see that

a0 ∈ ap ∩ k[xr+1, . . . , xm] = (xr+1, . . . , xh).

Thus y ∈ (x1, . . . , xh), as desired.

Corollary 3.3.9. Let A be an integral domain of finite type over a field k. Then dim A equals the
transcendence degree of the fraction field of A.

Proof. There exist x1, . . . , xm such that A is integral over k[x1, . . . , xm]. Then Frac(A) is algebraic
over k(x1, . . . , xm). On the other hand, we know that dim A = m, which is the transcendance
degree of k(x1, . . . , xm).

Corollary 3.3.10 (Nullstellensatz). Let A be an algebra of finite type over a field k. Then for any maximal
ideal m ⊂ A, A/m is algebraic over k.

Proof. Note that dim A/m = 0, but this is also the transcendence degree over k by the previous
corollary.

Proposition 3.3.11. Let A be an integral domain of finite type over a field k. Then for any prime ideal
p ∈ Spec A, we have ht(p) + dim A/p = dim A.

Proof. Let p ∈ Spec A and hbe its height. Then by Noether normalization, there exist x1, . . . , xm,
where m = dim A, such that A is integral over A′ = k[x1, . . . , xm] and p′ = p ∩ A′ = (x1, . . . , xh).
Then we know that A′/p′ ∼= k[xh+1, . . . , xn]. Because A/p is integral over A′/p′, we see that
dim A/p = dim A′/p′ = n− h. But then ht(p) = ht(p′) = h because A′ is integrally closed and A
is integral over A′. Therefore,

ht(p) + dim A/p = h + n− h = n = dim A.

Remark 3.3.12. Let A be a finitely generated k-algebra. Then for any maximal ideal m ⊂ A, we
know that A/m is an algebraic extension of k. Therefore we have a correspondence of Spec A

Maximal ideals

 −→
satisfying certain algebraic equations

Galois orbits of points in k
n

.

In addition, any prime ideal p defines a subvariety Spec A/p = V(p) of Spec A.

Proposition 3.3.13. Let A, A′ be two finitely-generated k-algebras that are domains. Then for any minimal
prime ideal p ⊂ A⊗k A′, we have dim A⊗k A′/p = dim A + dim A′.

Proof. Choose B, B′ polynomials over k such that A (resp A′) is integral over B (resp B′). Then write
d, d′ = dim A, dim A′. Then A⊗ A′ is torsion free over B⊗ B′. Then because p ⊂ Spec(A⊗ A′)
is minimal, we see that B⊗ B′ ∩ p = 0. Therefore A⊗ A′/p is integral over B⊗ B′ and thus the
desired result follows using integrality.

Remark 3.3.14. We can think of Spec A⊗ A′ as the product Spec A× Spec A′. The proposition says
that irreducible components of the product variety have the expected dimension.
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Proposition 3.3.15 (Hilbert’s Nullstellensatz). Let k be a field, A be a finitely-generated k-algebra and
I ( A be a proper ideal. Then

√
I =

⋂
m⊃I

m maximal
m.

Proof. One direction is obvious because
√

I is the intersection of all prime ideals containing I. Let
a ∈ J =

⋂
m \
√

I. Then S =
{

1, a, a2, . . .
}
∩ I = ∅ and thus S−1 I ⊂ S−1 A is a proper ideal. Thus

there exists a maximal ideal of S−1 A such that S−1 I ⊂ m0. Because S−1 A is a finitely generated
k-algebra, we have

dim(S−1 A/m0) = trdegk S−1A/m0 = 0.

Then writing m = m0 ∩ A, we see that k ⊂ A/m ⊂ S−1 A/m0 and thus dim A/m = 0 and therefore
m ⊃ I is maximal. However, a /∈ m by hypothesis, which gives us a contradiction.

3.4 Rings of Dimension 1

Definition 3.4.1. A local ring A is called a discrete valuation ring if it is a principal ideal domain
and has a nonzero prime ideal.

This prime ideal is naturally maximal becuase if p ⊂ m ⊂ A given by (a) ⊂ (b), then we know
a = bs for some s ∈ A, but then s ∈ p, so s = as′ and thus a = bas′, so bs′ = 1. In particular,
dim A = 1.

Definition 3.4.2. A discrete valuation on A is a surjective function v : A∗ → Z such that

• v(xy) = v(x) + v(y);

• v(x + y) ≥ min {v(x), v(y)}.

We define v(0) = ∞.

If A is a DVR, then choose x 6= 0. We define v(x) = sup {n ≥ 0 | x ∈ (πn)}, where π generates
the maximal ideal of A. Then v(x) is well-defined because

⋂
0(π

n) = 0 by the Krull intersection
theorem. We can extend this valuation to K = Frac A by v(x/y) = v(x)− v(y).

Proposition 3.4.3. If K is a field and v : K∗ → Z is a valuation, then A = {x ∈ K | v(x) ≥ 0} ∪ {0} is
a discrete valuation ring.

Proof of this is left as an exercise.

Example 3.4.4. Consider the ring Z(p) where p is a prime number. Then for any x
y with y coprime

to p, define vp

(
x
y

)
to be the maximal power of p dividing x.

Now let k be a field and let k[[T]] be the ring of formal power series in T. Then any series
a0 + a1T + · · · is invertible iff a0 6= 0, and thus any element is a product of Tn and a unit for some
n. Thus v(F) is the degree of the first monomial with nonzero coefficient.

Proposition 3.4.5. Let A be a ring. Then the following are equivalent:

1. A is a DVR.

2. A is a local noetherian ring and mA is generated by an element π which is not nilpotent.
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Proof. One direction is clear. If A is a DVR, then it is a domain, and thus the generator of the
prime ideal is not nilpotent.

In the other direction, suppose m = (π). Then by the Krull intersection theorem,
⋂

n(π
n) = 0.

Then for 0 6= x ∈ A, there exists a maximal n such that x ∈ (πn), so x = πnu for some u ∈ A×.
But then for y ∈ A, y 6= 0, write y = πmv for v ∈ A×. Thus xy = πm+nuv 6= 0 because π is not
nilpotent. Therefore A is a domain and thus is a DVR.

Proposition 3.4.6. Let A be a local Noetherian ring. Then A is a DVR if and only if

1. A is integrally closed;

2. A has a unique nonzero prime ideal.

Proof. One direction is clear. In the other direction, assume A is integrally closed and has a unique
nonzero prime. First, we note that A must be local and m 6= 0. Then if we write

m′ = {x ∈ K | xm ⊂ A} ⊃ A,

this is an A-module. If we write y ∈ m, then ym′ ⊂ A and thus m′ ⊂ Ay−1. This implies that m′

is finitely generated. Then we have m ⊂ mm′ ⊂ A. We will show that this cannot equal m by
contradiction.

Let x ∈ m′. Then xm ⊂ m and thus x is integral over A. Because A is integrally closed, x ∈ A.
Thus m′ = A. Now we set S =

{
1, x, x2, . . .

}
. Then S−1 A = K because it has no nonzero prime

ideals. If we choose z ∈ A \ 0, then we can write 1
z = y

xn for some n ≥ 0. This tells us that xn ∈ (z).
Because m is finitely generated, we see that mN ⊂ (z). Then let N0 be the smallestt integer such
that mN0 ⊂ (z) ⊂ m and let y ∈ mN0−1 \ (z). Then we have my ⊂ mN0 ⊂ (z) and thus y

z ∈ m′. This
implies that m′ ) A and thus mm′ = A. Therefore we can write

1 = ∑ xiy−1
i

where xi ∈ m, yi ∈ m′. Therefore there exists i such that xiy−1
i /∈ m and thus y−1

i m = A. Therefore
m = (yi) is a principal ideal, so A is a DVR.

Proposition 3.4.7. Let A be a Noetherian domain. The following are equivalent:

1. For all 0 6= p ∈ Spec A, the localization Ap is a discrete valuation ring.

2. A is integrally closed and of dimension 1.

Proof. 1 implies 2: Let x ∈ K be integral over A. But then x ∈ Ap for all p 6= 0 and thus
x ∈ ⋂p 6=0 Ap = A. Being of dimension 1 is easy. If 0 6= p ⊂ m ⊂ A, we localize at m and see
that pAm = mAm, so p = m.

2 implies 1: For all p, we know that Ap is integrally closed. Because it has dimension 1, it must
be a DVR.

Definition 3.4.8. A ring A is called a Dedekind domain if it is a domain satisfying the properties of
the previous proposition.

Example 3.4.9. Z is a Dedekind domain. It is clearly a domain, having dimension 1 follows from
being a PID, and being integrally closed is obvious. More generally, any principal ideal domain is
a Dedekind domain.
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Example 3.4.10. Let A be a Dedekind domain and K = Frac(A). Then let L/K be a finite extension
and B be the integral closure of A in L. Then B is a Dedekind domain. In particular, if K is a
number field, then its ring of integers OK is a Dedekind domain.

Here is another example of this. Let k be a field and A = k[x], k = k(X). Then if L/K is a field
extension and B is the integral closure of A in L, then Spec B→ Spec A is a smooth affine curve
with a map to A1.

Remark 3.4.11. All smooth curves can be obtained in this way (of taking the integral closure of
some ring). Also, normalization resolves all singluarities of curves.

Definition 3.4.12. A fractional ideal a ⊂ K = Frac(A) is an A-submodule of finite type.

Note that for a, b nonzero fractional ideals, then a · b is a fractional ideal.

Proposition 3.4.13. If A is a Dedekind domain, then the set of nonzero fractional ideals form an abelian
group.

Proof. It is easy to see that the multiplication is associative and commutative. Now we need to
show that inverses exist. For a ⊂ K a fractional ideal, we need to find another fractional ideal b
such that ab = A. Set

b = a−1 := {x ∈ K | x · a ⊂ A}.

Clearly we know that for 0 6= x ∈ a, we have a=1 ⊂ x−1 A and thus a−1 is of finite type. Then for
any prime ideal p we know that ap · bp = (a · b)p, and thus a−1

p = (a−1)p. Therefore we have

(a · a−1)p = ap · a−1
p = Ap,

and thus a · a−1 = A.

Now if A is a Dedekind domain and 0 6= p 6= p′ ⊂ A, then p+ p′ = A, so pp′ = p ∩ p′. This
implies that for any 0 6= a ⊂ A that p · a ( a because otherwise p = A.

Lemma 3.4.14. If x ∈ A is nonzero, then there are only finitely many maximal ideals p such that x ∈ p.

Proof. Let x ∈ p. Then a−1 ⊂ x−1 A, so if x ∈ p1, p2, . . . for infinitely many maximal ideals, then

x ∈ p1 ) p1p2 ⊃ · · · ⊂
n

∏
i=1

pi ⊃ · · ·

is a strictly decreasing infinite chain of ideals containing x. Thus we have

p−1
1 ⊂ p−1

1 p−1
2 ⊂ · · · ⊂

n

∏
i=1

p−1
i ⊂ · · · ⊂ x−1 A,

but this is impossible because x−1 A is Noetherian.

Remark 3.4.15. For any nonzero ideal I ⊂ A, there are only finitely many prime ideals p such that
I ⊂ p.

Definition 3.4.16. Let p be a maximal ideal of A. Then let vp(I) be the np such that IAp = ω
np
p Ap.

Thus I ⊂ pnp but I 6⊆ pnp+1.



42

Corollary 3.4.17. Let I be a fractional ideal of A, where A is a Dede,ind domain. Then

I = ∏
p

pvp(I).

Proof. If we denote the product by J, then Ip = Jp for all p and thus I = J.

Remark 3.4.18. This corollary gives the primary decomposition of an ideal in a Dedekind domain.
In number theory, this replaces the prime factorization of an integer.

3.5 Depth

Let A be a ring and M be an A-module. Then for a1, . . . , ar ∈ A, write a = (a1, . . . , ar) ⊂ A.

Definition 3.5.1. The sequence a1, . . . , ar is an M-regular sequence if it satisfies the following:

1. ai is not a zero divisor of M/(a1, . . . , ai−1)M for i = 1, . . . , r.

2. a ·M ( M. Therefore we have

a1M ( (a1, a2)M ( · · · ( (a1, . . . , ar)M.

Lemma 3.5.2. Assume that a = (a1, . . . , ar) is M-regular and let m1, . . . , mr ∈ M such that ∑r
i=1 aimi =

0. Then mi ∈ a ·M for all i.

Proof. We will induct on r. If r = 1, then a1m1 = 0 implies m1 = 0. Now assume a1m1 + · · ·+
armr = 0 implies that armr = 0 in M/(a1, . . . , ar−1)M. Then there exists n1, . . . , nr−1 such that
mr = a1n1 + · · ·+ ar−1nr−1, and thus

r−1

∑
i=1

ai(mi + arni) = 0.

Thus mi + arni ∈ (a1, . . . , ar−1)M and thus mi ∈ (a1, . . . , ar)M.

Theorem 3.5.3. Assume that (a1, . . . , ar) is an M-regular sequence. Then for any integers n1, . . . , nr, the
sequence an1

1 , . . . , anr
r is M-regular.

Proof. It is sufficient to prove that an
1 , a2, . . . , ar is an M-regular sequence. We will induct on n.

Assume that an−1
1 , . . . , a2, ar is M-regular. First, multiplication by an

1 is clearly injective.
Now if an

1 , a2, . . . , aj−1 is M-regular, then let m ∈ M such that

ajm = an
1 m1 + · · ·+ aj−1mj−1.

By induction on n, we can write

m = an−1
1 m′1 + · · ·+ aj−1m′j−1.

Multiplying this by aj and combining the two equations, we obtain

0 = an−1
1 (a1m1 − ajm′1) + a2(m2 − ajm′2) + · · ·+ aj−1(mj−1 − ajm′j−1).

By the previous lemma, we see that a1m1 − ajm′1 ∈ (an−1
1 , . . . , aj−1)M. Therefore, ajm′1 ∈

(a1, . . . , aj−1)M, so m′1 ∈ (a1, . . . , aj−1)M. This implies that m ∈ (an
1 , . . . , aj−1)M.
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Definition 3.5.4. The sequence (a1, . . . , ar) is said to be M-quasi-regular if one of the following
equivalent conditions holds:

• For all F(x1, . . . , xr) ∈ M[x1, . . . , xr] = A[x1, . . . , xr]⊗A M homogeneous of degree n such
that F(a1, . . . , ar) ∈ In+1M, this implies that F(x1, . . . , xr) ∈ IM[x1, . . . , xr], where I =
(a1, . . . , ar).

• If F(x1, . . . , xr) ∈ M[x1, . . . , xr] is homogeneous and such that F(a1, . . . , ar) = 0, then F ∈
IM[x1, . . . , xr]

• The map

M/IM[x1, . . . , xr]→ grI M =
∞⊕

n=0
In M/In+1M, F 7→ F(a1, . . . , ar)

is an isomorphism.

Lemma 3.5.5. Assume that (a1, . . . , ar) is M-quasi-regular and x ∈ A. Then if (IM : x) = IM, then
(In M : x) = In M for all n ≥ 1.

Proof. We will induct on n. Suppose that m ∈ (In M : x). Then xm ∈ In M ⊂ In−1 and thus
m ∈ In−1M. Therefore there exists g(X1, . . . , Xr) homogeneous of degree n− 1 such that m =
g(a1, . . . , ar). This implies that xg(X1, . . . , Xr) ∈ M[X], so

xg(a1, . . . , ar) = xm ∈ In M

and then quasi-regularity gives us that xg(X1, . . . , Xr) ∈ IM[X]. This implies that

g(X1, . . . , Xr) ∈ (IM : X)[X] = IM[X],

as desired.

Proposition 3.5.6. Using the same notation, if (a1, . . . , ar) is M-regular, then it is M-quasi-regular.
Conversely, if (a1, . . . , ar) is M-quasi-regular and M, M/a1M, . . . , M/(a1, . . . , ar)M are Hausdorff in
the I-adic topology, then (a1, . . . , ar) is M-regular.

Proof. First we prove that regular implies quasi-regular by induction on r. Clearly r = 1 is obvious.
Suppose g(x1) ∈ M[x] is homogeneous of degree n. Then if g(a1) ∈ an+1M

1 , we have an+1
1 m′ = an

1 m
and thus an

1 (m− a1m′) = 0. By regularity, we have m = a1m′ and thus g(x1) ∈ a1M[x1].
For the inductive step, suppose that (a1, . . . , ar) is regular. Then we know that (a1, . . . , ar−1) is

M-quasi-regular, so now choose F(x1, . . . , xr) ∈ M[x1, . . . , xr] homogeneous of degree q and such
that F(a1, . . . , ar) = 0. Then we can write

F(x1, . . . , xr) = G(x1, . . . , xr−1) + xr H(x1, . . . , xr)

where H is homogeneous of degree q− 1. Then G(a1, . . . , ar−1) ∈ Iq
0 M, where I0 = (a1, . . . , ar−1).

This implies that ar H(a1, . . . , ar−1) ∈ Iq
0 M, which implies that H(a1, . . . , ar−1) ∈ (Iq

0 M : ar).
Because a1, . . . , ar−1 is quasi-regular and a1, . . . , ar is regular, we have (I0M : ar) = I0M. This
implies that (Iq

0 M : ar) = Iq
0 M and thus H(a1, . . . , ar) ∈ Iq

0 M. Then H(a1, . . . , ar) = h(a1, . . . , ar−1)
where h is homogeneous of degree q. Now let

g(x1, . . . , xr−1) = G(x1, . . . , xr−1) + arh(x1, . . . , xr−1).
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Because g(a1, . . . , ar−1) = F(a1, . . . , ar) = 0, we see that g(x1, . . . , xr−1) ∈ I0M[x1, . . . , xr−1] by
induction. We conclude that G ∈ IM[x1, . . . , xr−1]. Because H ∈ I0M[x1, . . . , xr], we have
F ∈ IM[x1, . . . , xr].

Now in the other direction, we will induct on r. If r = 1, assume that a1 is M-quasi-regular.
We need to show that m 7→ a1m is injective. Suppose that a1m = 0. Then if we consider the
polynomial g0(x) = m, we see that a1g0(a1) = 0 and thus x1g0(x1) ∈ a1M[x1]. This means
that g0(x1) ∈ a1M[x1] and thus m ∈ a1M. Then there exists g1 homogeneous of degree 1
such that m = g1(a1). Then we see that x1g1(x1) ∈ IM[x1] and thus g1(x1) ∈ IM[x1], so
m = g1(a1) ∈ I2M. Then there exists g2 ∈ M[x1] homogeneous of degree 2 such that m = g2(a1).
Then a1m = a1g2(a1) = 0, so we deduce that x1g2(x1) ∈ IM and thus g2(x1) ∈ IM. Evaluating at
a1, we see that m ∈ I3M. In particular, we see that m ∈ ⋂n≥1 In M = 0, where the last equality
uses the Hausdorff condition, and thus m = 0.

Now for the induction, we know that a1 is M-regular. We need to show that (a2, . . . , ar)
is M/a1M-regular. This follows from the inductive hypothesis if we check that (a2, . . . , ar is
M/a1M =: M)-quasi-regular. Choose F(x2, . . . , xr) ∈ M[x2, . . . , xr] homogeneous of degree n
such that F(a2, . . . , ar) ∈ a1M. Then we can write F(a1, . . . , ar) = a1m, so let i be such that
m ∈ Ii M. Then let G ∈ M[x1, . . . , xr] be homogeneous of degree i and satisfy m = G(a1, . . . , ar).
Then the polynomial

F(x2, . . . , xr)− x1G(x1, . . . , xr)

vanishes at (a1, . . . , ar). If i < n− 1, then a1G(a1, . . . , ar) = F(a2, . . . , ar) ∈ In M ⊂ Ii+2M. But
then x1G(x1, . . . , xr) is homogeneous of degree i + 1 and thus x1G(x1, . . . , xr) ∈ IM[x1, . . . , xr] by
quasi-regularity. This implies that

m = G(a1, . . . , an) ∈ Ii+1M.

We can repeat this until m ∈ In−1M and G is of degree n− 1. Then

g(x) = F(x2, . . . , xr)− x1G(x1, . . . , xr)

is homogeneous of degree n and g(a1, . . . , ar) = 0. This implies that g(x1, . . . , xr) ∈ IM[x1, . . . , xr]
and thus F(x2, . . . , xr) ∈ IM[x2, . . . , xr]. Thus

F(x2, . . . , xr) ∈ IM[x2, . . . , xr].

Then (a2, . . . , ar) is M-quasi-regular, so they are M-regular by induction.

Remark 3.5.7. For A Noetherian and M of finite type, regular and quasi-regular are equivalent.

Definition 3.5.8. Let I ⊂ A be an ideal and M and A-module. Then the I-depth of M is the
(possibly infinite) length of the longest M-regular sequence in I.

Before we continue, recall that Ext• are the right derived functors of Hom and are computed by
taking projective resolutions of the first argument or injective resolution of the second argument.
In particular, if 0→ A→ B→ C → 0 is an exact sequence, we have an exact sequence

· · · → Exti(M, A)→ Exti(M, B)→ Exti(M, C)→ Exti+1(M, A)→ · · ·

and similarly,

· · · → Exti(C, N)→ Exti(B, N)→ Exti(A, N)→ Exti+1(C, N)→ · · ·

Theorem 3.5.9. Assume that A is Noetherian, M a finite A-module, and I ⊂ A an ideal such that
IM 6= M. Let m ∈ Z>0. Then the following are equivalent:
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1. Extn(N, M) = 0 for all i < n and any finitely A-module N such that supp(N) ⊂ V(I).

2. Exti(A/I, M) = 0 for all i < n.

3. Exti(N, M) = 0 for all i < n for some finite A-module N such that supp(N) = V(I).

4. There exists a M-regular sequence (a1, . . . , an) of length n inside I.

Proof. Clearly 1 implies 2 implies 3. Now we prove 3 implies 4 implies 1.

3 implies 4: Assume that Hom(N, M) = 0. If I does not contain any M-regular element, then
I ⊂ ⋃p∈Ass M p and thus I ⊂ p for some p ∈ Ass(M). Then A/p ↪→ M, which is equivalent
to Ap/pAp ↪→ Mp. On the other hand, we know p ∈ V(I) = supp(N), so Np 6= 0. By
Nakayama, we see that Np ⊗ k(p) 6= 0, and thus HomAp

(Np, Mp) 6= 0, but this is simply
HomA(N, M)p. Thus Hom(N, M) 6= 0 and thus there exists a1 ∈ I that is M-regular. Then
we have an exact sequence

0→ M→ M→ M/a1M→ 0.

Writing M1 = M/a1M, we have proved the case n = 1 and now proceed by induction on n.
Applying Extn(N,−) to the above exact sequence, we have the exact sequence

· · · → Exti(N, M)→ Exti(N, M1)→ Exti+1(N, M)

and deduce that Exti(N, M1) = 0 for i < n− 1. Applying the case n− 1 to M1, we obtain an
M1-regular sequence a2, . . . , an ∈ I and thus (a1, . . . , an) is M-regular.

4 implies 1: We will induct on n. We have a sequence a1, . . . , an ∈ I that is M-regular. Then set
M1 = M/a1M, so we have an exact sequence

0→ M→ M→ M1 → 0.

Then choose N such that supp(N) ⊂ V(I). Then we have an exact sequence

Exti−1(N, M1)→ Exti(N, M)→ Exti(N, M).

If i < n, then i− 1 < n− 1. By the inductive hypothesis, this implies that Exti −1(N, M1) = 0.

Thus the map Exti(N, M)
×a1−−→ Exti(N, M) is injective, so because supp(N) ⊂ V(I), we have

I ⊂
√

Ann(N). Thus there exists m such that am
1 ∈ Ann(N). From the exact sequence, we

know Exti(N, M)
×am

1−−→ Exti(N, M) is injective, which means that Exti(N, M) = 0.

Definition 3.5.10. If A is a local Noetherian ring and M is an A-module, then we define the depth
of M to be

depth(M) := m-depth of M.

This is the same as the maximal length of an M-regular sequence in m.

Corollary 3.5.11. Let A be local Noetherian and M be a finitely-generated A-module. Then depth(M) =

n if and only if there exists a M-regular sequence a1, . . . , an such that Exti(k, M) = 0 for all i < n and
Extn(k, M) = Hom(k, M), where M = M/(a1, . . . , am)M and k = A/m.
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Proof. We know that the equivalence of 2 and 4 from the theorem implies the corollary except for
Extn(k, M) = Hom(k, M), but this fact be proved by induction on n using the fact that

0→ M
×a1−−→ M→ M/a1M→ 0

is exact because this implies that Extn−1(k, M/a1M) = Extn(k, M). This gives the desired result.

Lemma 3.5.12. Let A be a local Noetherian and M, N finite A-modules. Then if k = depth(M) and
r = dim(N), then Exti(N, M) = 0 for all i < k− r.

Proof. We use induction on r. For the case r = 0, we know that supp(N) = {m} and this follows
by the previous theorem. Now for the inductive hypothesis, we may assume that N = A/p and
dim A/p = r. This is possible because we can consider a filtration on N with successive quotients
of the form A/pi with dim A/pi ≤ r. We know that m 6= p, so there exists x ∈ m \ p, and this x is
N-regular. Then we have the exact sequence

0→ N ·x−→ N → N′ → 0,

where N′ = N/xN. Because x is not in any minimal prime ideal of A/p, we know that r′ :=
dim N′ < dim A/p. By induction, we know that Extj(N′, M) = 0 for k < k− r′. Now if i < k− r,
we know that i + 1 < k− r′ and thus Exti+1(N′, M) = 0. Now considering the exact sequence of
Ext groups, we have

Exti(N′, M)→ Exti(N, M)→ Exti(N, M)→ Exti+1(N′, M)

and thus Exti(N, M)/x Exti(N, M) = 0 and thus Exti(N, M) = 0 by Nakayama’s lemma.

Remark 3.5.13. If N, M are finitely-generated, then Exti(N, M) is also finitely-generated.

Theorem 3.5.14. Let A be local Noetherian and M be a finitely-generated A-module. Then for all
p ∈ Ass(M), we have depth M ≤ dim A/p.

Proof. We know A/p ↪→ M, so Hom(A/p, M) 6= 0. Thus 0 ≥ depth M − dim A/p by the
lemma.

Corollary 3.5.15. Let A be local Noetherian. Then depth A ≤ dim A.

In general, this inequality is strict, so we will later study the rings for which this is an equality.

Lemma 3.5.16. Let A be a local Noetherian ring. Then let M be a finitely-generated A-module and
(a1, . . . , ar) be an M-regular sequence. Then dim M/(a1, . . . , ar) <= dim M− r.

Proof. We prove this by induction on M. It suffices to do this for r = 1, so choose x ∈ A an M-
regular element. We know that dim M/xM ≥ dim M− 1 for any x ∈ A, so we need to prove this
is an equality. Then we know supp(M/xM) = supp(M) ∩V(x), and thus x is not contained in
any minimal prime ideal in supp(M) by regularity. Therefore supp(M/xM) does not contain any
minimal ideal of V(Ann(M)) = supp(M). In particular, this means that dim M/xM < dim M, as
desired.

Lemma 3.5.17. Let M, N be finitely-generated A-modules. Then supp(M⊗N) = supp(M)∩Supp(N).
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Proof. Let p ∈ Supp(M) ∩ Supp(N). Then Mp, Np 6= 0. By Nakayama, we have Mp ⊗ k(p) 6= 0
and Np ⊗ k(p) 6= 0 where k(p) = Ap/pAp. This implies that

Mp ⊗ k(p)⊗k(p) ⊗Np ⊗ k(p) 6= 0

and therefore Mp ⊗ kpNp = (M⊗A N)p 6= 0. Thus supp(M) ∩ supp(N) ⊂ supp(M⊗ N). Note
that for N = A/xA, we have supp(M/xM) = supp(M) ∩V(x) because M⊗ N = M/xM.
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Geometric Aspects of Commutative Algebra

4.1 Cohen-Macaulay Rings and Modules

Let A be a local Noetherian ring and M be a finitely-generated A-module.

Definition 4.1.1. Recall that dim M ≥ depth M. Then M is Cohen-Macaulay if dim M = depth M.

Theorem 4.1.2. Let A be local Noetherian and M be finitely generated.

1. If M is Cohen-Macaulay, then for any p ∈ Ass(M), depth M = dim A/p.

2. If f ∈ A is M-regular and M′ = M/ f M, then M is Cohen-Macaulay if and only if M′ is.

3. If M is Cohen-Macaulay, then for all p ∈ Spec A, Mp is Cohen-Macaulay and depthp M =
depthAp

Mp.

Proof. 1. Let M 6= 0 and dim M = depth M. Then let p ∈ Ass(M) ⊂ supp(M). This implies
that dim A/p ≤ dim M, but also dim A/p ≥ depth(M) = dim M.

2. Let f be M-regular. Then we know depth M/ f M = depth M − 1 (this follows from the
Theorem 3.5.9, applying Ext(k,−) to the exact sequence 0→ M→ M→ M/ f M→ 0). But
then we proved earlier that dim M/ f M = dim M − 1, and thus M is C-M if and only if
M/ f M is C-M.

3. Let p ∈ supp(M). Then p ⊃ Ann(M) and Mp 6= 0. But then if x1, . . . , xr ∈ p is M-regular
where r = depthp M, then x1, . . . , xr ∈ pAp is Mp-regular by exactness of localization. This
implies that depth Mp ≥ r = depthp M. We know that dim Mp ≥ depth Mp, so we need
to prove that r = dim Mp. We do this by induction on depthp M. If r = 0, then we know
Hom(A/p, M) 6= 0. Thus there exists p′ ⊃ p such that A/p′ ↪→ M, so p′ ∈ Ass M. By
minimality of associated primes, we have p′ = p. Now dim Mp′ = 0 because p is maximal in
Ap and minimal in supp(M).

Now in general, assume depthp(M) > 0. Let a ∈ p be M-regular. Thus a is Mp-regular,
so set M1 = M/aM. We know that dim(M1)p = depthp M1 by the inductive hypothesis.
This implies that dim Mp = depthp M because dim(M1)p = dim Mp − 1 and depthp M1 =
depthp M− 1.

Theorem 4.1.3. Let A be local Noetherian and Cohen-Macaulay. Then

48
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1. For all proper ideals I ( A, we have ht(I) + dim A/I = dim A.

2. For all P ⊃ Q prime ideals, then ht(P)− ht(Q) = ht(P/Q), where the last height is taken in A/Q.

3. Let x1, . . . , xr ∈ m. Then the following are equivalent:

a) x1, . . . , xr are A-regular.
b) ht(x1, . . . , xi) = i for all i ≤ r.
c) ht(x1, . . . , xr) = r.
d) There exists xr+1, . . . , xn ∈ m with n = dim A such that x1, . . . , xn is a system of parameters

for A.

Proof. We will first prove 3 and then use this to prove 1 and 2.

a implies b: We already know that ht(x1, . . . , xi) ≤ i. First, we know that x1 does not belong to
any minimal prime ideal of A because x1 is A-regular. Thus ht(x1) = 1. Then in A/x1, the
sequence x1, . . . , xr is A/x1-regular, and thus ht(x2, . . . , xi) = i− 1. Thus we can find

pi ) pi−1 ( · · · ) p1 ⊃ (x1)

such that pi ) · · · ) p1 ) 0. This implies that ht(pi) ≥ 1 and thus ht(x1, . . . , xr) ≥ i.

b implies c: This is trivial.

c implies d: Assume r < dim A. Then there exists xr+1 ∈ m that does not belong to any minimal
prime ideal containing (x1, . . . , xr). Therefore ht(x1, . . . , xr+1) = r + 1 and then we can find
xr+2, . . . , xn such that ht(x1, . . . , xn) = n. But this implies that I = (x1, . . . , xn) is an ideal of
definition for A and so (x1, . . . , xn) is a system of parameters.

d implies a: Note that so far we have not used the fact that A is Cohen-Macaulay. We show that
a system of parameters is A-regular. Let p ∈ Ass(A). Then dim A/p = n. This implies that
p is minimal and therefore x1 6= 0 in A/p because otherwise x1, . . . , xn would be a system
of parameters in A/p. But then this means x1 /∈ p for all p ∈ Ass(A). This implies that x1
is A-regular, and thus A/x1 A is Cohen-Macaulay of dimension n− 1. On the other hand,
x2, . . . , xn is a system of parameters for A/x1 A and the desired result follows by induction.

Now we will prove 1 and 2.

1. Let I ( A be an ideal with height ht(I) = r. Then we can choose a1 . . . , ar ∈ I such that
ht(a1, . . . , ar) = r. By 3a, this means that a1, . . . , ar is A-regular and thus r ≤ depthI(A). On
the other hand, if we have b1, . . . , bs ∈ I an A-regular sequence, we see that s ≤ ht(I). This
tells us that ht(I) = depthI A. But then recall that

ht(I) = inf {ht(p) | p ⊃ I}

and that
dim A/I = sup {dim A/p, p ⊃ I}.

This means we can assume that I = p is a prime ideal with p = r. In this case, we know that
Ap is Cohen-Macaulay and

ht(p) = dim Ap = depthp(A)

so there exists x1, . . . , xr ∈ I an A-regular sequence such that A/(x1, . . . , xr) is Cohen-
Macaulay of dimension n− r. Then p is minimal in A/(x1, . . . , xr) because otherwise we
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would be able to fine xr+1 ∈ p which is not a zero divisor in A/(x1, . . . , xr) and then
depth(p) ≥ r + 1. This implies

dim A/p = dim A/(x1, . . . , xr) = n− r

and thus dim A/p+ ht(p) = n− r + r = n = dim A.

2. Suppose P ⊃ Q are prime ideals. We know AP is Cohen-Macaulay. Then we know that
dim AP = ht(QAP) + dim(AP/QAP) by 1 for AP. But then we have the desired result
because dim AP = ht(P), ht(QAP) = ht(Q), and dim(AP/QAP) = ht(P/Q).

4.2 Normal and Regular Rings

Let A be a domain and K = Frac(A). If x ∈ K, we say that it is almost integral if there exists a ∈ A
such that axm ∈ A for all n ≥ 1.

Remark 4.2.1. Clearly if x is integral, then x is almost integral. Also, if x is almost integral and A
is Noetherian, x is integral.

To prove the first part, write

xN = a0 + a1x + · · ·+ aN−1xN−1.

Then choose a such that axi ∈ A for i ≤ N − 1 and then by induction we have axi ∈ A for i ≥ n.
To prove the second part, note that if axi ∈ A for all a ≥ 1, then A[x] ⊂ a−1 A. Because A

is noetherian, then A[x] is a finitely-generated A-module and then use the characterization of
integral elements over a ring.

Definition 4.2.2. We say that A is a normal domain (rep. completely normal domain) if every integral
element (resp. almost integral element) of K over A belongs to A.

Remark 4.2.3. Thering A is normal if and only if Ap is normal for all prime ideals p. Additionally,
for any normal ring A, all localizations S−1 A are normal.

We also note that if A is normal (resp. completely normal) then so is A[x] when A is Noetherian.
The proof is easy and uses the fact that K[x] is a UFD and is thus completely normal. Then for
f ∈ K(x) is almost integral, it belongs to K[x] and then we write

f = arxr + · · ·+ a0

where ai ∈ K. Then there exists Q ∈ A[x] such that Q f n ∈ A[x] for all n ≥ 1 and thus αdan
r ∈ A

for all n ≥ 1, where Q = αdxd + · · ·+ α0. This means that ar is almost integral and therefore
ar ∈ A. Then f − arxr is almost integral and finally we proceed by induction to see that f ∈ A[x].

Now we consider the normal rings of dimension 1.

Proposition 4.2.4. Let A be a local Noetherian ring. Then the following are equivalent:

1. A is a discrete valuation ring.

2. A is normal and dim A = 1.

3. A is normal and there exists 0 6= a ∈ m such that (a) is m-primary.

4. The maximal ideal m of A is principal.

Proof. We will proceed quickly.
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1 implies 2: This was done previously.

2 implies 3: Note that m is the only prime ideal containing (a) because A has dimension 1 and is
a local domain. This means that (a) is m-primary.

3 implies 4: We know that m ∈ Ass(A/(a)) and thus m = AnnA(x) for some 0 6= x ∈ A/aA. If
x ∈ A is a lift of x, then xa−1 /∈ A. However, we know that m · x ⊆ (a), so mxa−1 ⊂ A. This
tells us that m ( mxa−1 is a strict inclusion because otherwise xa−1 is integral over A and
thus xa−1 ∈ A. Therefore mxa−1 = A, so there exists t ∈ m such that txa−1 = 1 and thus
tA ⊂ m 3 y and thus y = txa−1y = t(xa−1y), where xa−1y ∈ A, and thus y ∈ tA, so m = tA
is principal.

4 implies 1: If m = (t), then we know that ⋂
n≥0

mn = 0

and so for all x 6= 0 there exists m such that x = utm where u ∈ A×, and thus A is a
DVR.

Now let A be a ring and I ⊂ A such that
⋂

n In = (0) and A is I-separated. Then for all
0 6= a ∈ A, there exists n such that a ∈ In \ In+1. Then define a∗ to be the class of a in In/In+1 and

A∗ = grI(A) =
∞⊕

n=0
In/In+1.

Theorem 4.2.5. Let A, I be as before. Then

1. If A∗ is a domain, then so is A.

2. If A is Noetherian and I ⊂ rad(A), then if A∗ is a normal domain, so is A.

Proof. 1. Choose a, b ∈ A nonzero. Then a∗, b∗ 6= 0 and so a∗b∗ 6= 0 because A∗ is a domain.
This means that if a ∈ In \ In+1, b ∈ Iq \ Iq+1, we know that ab ∈ In+q \ In+q+1 and thus
ab 6= 0.

2. Let x ∈ K be integral over A. Write x = a
b where a, b ∈ A. Then A/bA is Noetherian and

therefore by the Krull intersection theorem this is the same thing as⋂
n≥0

In + bA = bA.

To show that x ∈ A, we will prove that a ∈ bA or that a ∈ In + bA for all n ≥ 0. If
a ∈ In−1 + bA, then we know that a = a′ + bs, where a′ ∈ In−1 and s ∈ A. Then we know
that because a

b is integral, so is a′
b . Then we may assume that a ∈ In−1 and a

b is almost
integral. Then there exists c ∈ A such that cam ∈ bm A for all m ≥ 1 and thus because
a∗ 6= 0, we know that (a∗)m = (am)∗ 6= 0 and thus c∗(a∗)m ∈ (b∗)m A. Because A∗ is
Noetherian and normal, it is completely normal, and thus a∗

b∗ ∈ A∗ and thus a∗ = b∗d∗ for
some 0 6= d ∈ A. This means that a− bd ∈ IN+1 for N such that a ∈ IN \ IN+1. But we
know this for N = n− 1, and thus a− bd ∈ In, so a ∈ In + bA.

Recall that if A is local Noetherian, we say that A is regular if there exists a system of parameters
that generates the maximal idea m of A.
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Theorem 4.2.6. Let A be local Noetherian, m be its maximal ideal, and k be the residue field. Then A is
regular if and only if

grm(A) ∼= k[x1, . . . , xd],

where d = dim A.

Proof. Assume that A is regular. Then m = (x1, . . . , xd) is a system of parameters because
dimk m/m2 = dim A = d. Therefore we have a map

k[x1, . . . , xd] −→ grm(A) Q(X1, . . . , Xn) 7→ Q(x1, . . . , xd).

This map is clearly surjective, so we need to show that it is injective. If Q 6= 0 is in the kernel, then
let q = deg Q. Then (Q) ⊂ ker. We know that

`(A/mn+1) ≤
(

n + d
d

)
−
(

n− q + d
d

)
and thus dim A = d(A) ≤ d− 1, a contradiction.

Now assume that grm(A) ∼= k[x1, . . . , xd]. By definition, this means that d(A) = d. Also
dimm/m2 is the dimension of the space of homogeneous polynomials of degree 1, so dimm/m2 =
d. Thus A is regular.

Corollary 4.2.7. Let A be a local Noetherian ring. Then the following are equivalent:

1. A is a discrete valuation ring.

2. A is a normal ring of dimension 1.

3. A is regular of dimension 1.

Proof. We have seen before that 1 is equivalent to 2 which implies 3. To prove that 3 implies
1, we need to show that A is a domain. But then grm(A) ∼= k[X] is a domain and thus A is a
domain.

Corollary 4.2.8. If A is regular, then A is a normal domain.

Theorem 4.2.9. Let A be a regular local Noetherian ring and (x1, . . . , xd) be a regular system of parameters.
Then

1. A is a normal domain.

2. x1, . . . , xd is an A-regular sequence and A is Cohen-Macaulay.

3. The ideal pi = (x1, . . . , xi) is a prime ideal of height i and A/pi is regular of dimension d− i.

4. If p ∈ Spec(A) and A/p is regular, then there exists a system of parameters y1, . . . , yd such that
p = (y1, . . . , yi) and dim A/p = d− i.

Proof. We prove each part.

1. We already proved that the graded ring grm(A) is a normal domain.

2. Use the previous theorem. Recall that k[x1, . . . , xd] ' grm(A). This means that x1, . . . , xd
is an A-quasi-regular sequence. Because A is Noetherian, then x1, . . . , xd is an A-regular
sequence. This implies that

d ≤ depth(A) ≤ d

and thus A is Cohen-Macaulay.
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3. The previous implies that dim A/(x1, . . . , xi) = d− i. Then the ideal m = m/pi is generated
by the d− i elements xi+1, . . . , xd and these form a system of parameters. By definition,
A/pi is regular.

4. Write m = m/p. Then let i ≤ d such that dimm/m2 = d − i. This means that i =
dim(p+m2)/m2, so we can choose y1, . . . , yi ∈ p such that y1, . . . , yi is a basis of (p+m2/m2).
We then complete this to a basis of m/m2. Thus y1, . . . , yd is a regular system of parameters
for A, and is thus is regular sequence. Then p′ = (y1, . . . , yi) ⊂ p is a prime ideal and
dim A/p′ = d− i. But then dim A/p = p− i because A/p is regular by assumption, so we
must have p = p′.

We now return to some definitions.

Definition 4.2.10. Let M be an A-module. Then p ∈ Ass(M) is called an embedded prime if it is
not minimal in the support.

Recall that if M is Cohen-Macaulay, then for any p ∈ Ass(M), then dim A/p = dim M.
Therefore M has no embedded primes.

Definition 4.2.11. Let I be an ideal of A. We say that I is unmixed if for all p ∈ Ass(A/I) we have
ht(p) = ht(I). Note this implies that A/I has no embedded primes.

Definition 4.2.12. We say that the unmixed theorem holds for A if for all I = (a1, . . . , ar) with
r = ht(I), then I is unmixed.

Remark 4.2.13. This is equivalent to saying that for all I = (x1, . . . , xr) of height ht(I) = r, A/I has
no embedded primes.

To see this, note that if A/I has no embedded primes, choose a minimal Q ∈ Ass(A/I). We
know that ht(Q) ≤ r because Q is minimal containing I. However, this is at least

inf {ht(p) | p ⊃ I} = ht(I) = r.

Theorem 4.2.14. Let A be Noetherian. Then A is Cohen-Macaulay if and only if the unmixed theorem
holds for A.

Proof. Suppose that the unmixed theorem holds for A. Let p be a prime ideal. Then we know
r = ht(p) = dim Ap, so we can choose a1, . . . , ar ∈ p such that ht((a1, . . . , ai)) = i. However, if A
satisfies the unmixed theorem, then ai+1 is not in any prime ideal of Ass(A/(a1, . . . , ai)). Here,
we use the fact that A/(a1, . . . , ai) has no embedded primes because (a1, . . . , ai) is unmixed. Thus
a1, . . . , ar is an A-regular sequence and is also Ap-regular. This implies that r ≤ depth(Ap) ≤
dim Ap = ht(p) = r and thus Ap is Cohen-Macaulay.

Now assume that A is Cohen-Macaulay. Then if I = (a1, . . . , ar) has height r, then a1, . . . , ar
is an A-regular sequence. Thus A/(a1, . . . , ar) is Cohen-Macaulay and thus has no embedded
primes, so (a1, . . . , ar) is unmixed.

Returning to normal domains, we have the following result:

Theorem 4.2.15. Let A be a Noetherian normal domain. Then any nonzero principal ideal is unmixed and

A =
⋂

ht(p)=1

Ap.

In particular, A is Cohen-Macaulay if dim A ≤ 2.
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Proof. Let 0 6= a ∈ A. To show that (a) is unmixed, we need to show that ht((a)) = 1. Let
p ∈ Ass(A/(a)). Then p = AnnA(b) for some b 6= 0. This means that

p = {x ∈ K | xb ⊂ (a)}

=

{
x ∈ K | xb

a
∈ A

}
.

This means that
p−1 = {y ∈ K | yp ⊂ A}

and thus we can replace A by Ap. This implies that p−1 Ap 6= Ap, so

pAp ⊂ p−1 Ap · pAp ⊂ Ap.

Then one of these two inclusions is an equality, so if the first inclusion is an equality, we know
that elements of p−1 Ap are integral over Ap and thus p−1 Ap ⊂ Ap because A is a normal domain.
This is impossible, so p−1 Ap · pAp = Ap and thus pAp is a principal ideal. Therefore Ap is a DVR,
so ht(p) = 1. Thus (a) is unmixed.

Now we will prove that A is the intersection of the localizations at the height 1 prime ideals.
One direction is obvious, so now let b

a ∈
⋂

ht(p)=1 Ap. Then if b
a /∈ A, we know that A/(a) 6= 0 and

thus there exists p such that Ass(A/(a)) 6= ∅. We know that ht(p) = 1, so Ap 6= p = Ann(b), a
contradiction with the fact that b

a ∈ Ap.

4.3 Homological Theory

Lemma 4.3.1. Let A be a ring and M be an A-module. Then

1. M is projective if and only if Ext1
A(M, N) = 0 for all A-modules N.

2. M is injective if and only if Ext1
A(A/I, M) = 0 for all ideals I ⊂ A.

Proof. We only need to prove the second part. One direction follows from the direction, so now
suppose we have 0 → N → N′ injective. We need to show that Hom(N′, M) → Hom(N, M) is
surjective. Consider the set

S =
{

N ⊂ Q ⊂ N′ | Hom(Q, M) � Hom(N, M)
}

.

We will show that N′ ∈ S . First, S contains a maximal element N1 by an application of Zorn’s
lemma. If Nα is a chain, then

⋃
α Nα ∈ S . Now we show that N1 = N′. Otherwise, there exists

x ∈ N′ \ N1 and set N2 = N1 + Ax ⊂ N′. This gives an exact sequence

0→ N1 → N2 → A/I → 0.

Now we apply the functor Hom(−, M) and we see that Hom(N2, M) � Hom(N1, M) because
Ext1(A/I, M) = 0. But this implies that N2 ∈ S and this contradicts maximality of N1.

Definition 4.3.2. Let A be a ring and M an A-module. Then we define the projective dimension
proj. dim M to be the length of the shortest projective resolution of M. Equivalently, we define the
injective dimension inj. dim M to be the length of the shortest injective resolution of M.

Lemma 4.3.3. Let n be a positive integer. Then the following are equivalent:

1. All A-modules M have projective dimension at most n;
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2. All A-modules M of finite type have projective dimension at most n;

3. All A-modules M have injective dimension at most n;

4. Extn+1
A (M, N) = 0 for all A-modules M, N.

Proof. Clearly 1 implies 2.

2 implies 3: Consider
0→ M→ U0 → U1 → · · · → Un−1 → C → 0

such that U0, . . . , Un−1 are injective. Now we have an exact sequence

0→ M→ U0 → V0 → 0

where V0 is the kernel of U1 → U2. For any ideal I, we know that Extn+1(A/I, M) =

Extn(A/I, V0) because U0 is injective. Now we obtain that Extn(A/I, V0) = Extn−1(A/I, V1)
where V1 = ker(U2 → U3). This implies that

Extn+1
A (A/I, M) = Ext1

A(A/I, C).

By 2, we know that Extn+1(A/I, M) = 0 and therefore C is injective. Thus there is an
injective resolution of M of length n.

3 implies 4: This is trivial.

4 implies 1: The proof is similar to the proof that 2 implies 3.

Corollary 4.3.4. The two numbers

sup
M

(proj. dim M) = sup
M

(inj. dim M)

are equal and are called the global homological dimension of A.

Lemma 4.3.5. Suppose A is Noetherian and M is an A-module of finite type. Then M is projective if and
only if Ext1(M, N) = 0 for all N of finite type.

Proof. Because M is finite type, we can write

0→ K
ψ−→ An → M→ 0

where K is finite type. Then if we apply ExtA(−, K), we see that Ext1(M, K) = 0 and thus
Hom(An, K) → Hom(K, K) is surjective. Thus there exists φ : An → K such that φ ◦ ψ = idK
and thus the exact sequence is split. Thus M is a direct factor of a free module and is thus
projective.

Lemma 4.3.6. Let A be a local Noetherian ring and M be a finite A-module. Then proj. dim M ≤ n if
and only if TorA

n+1(M, k) = 0.
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Proof. Let P• → M→ 0 be a projective resolution of length at most n. Then using this resolution,
we compute Torn+1(M, k) = 0.

In the other direction, first assume that n = 0. If TorA
1 (M, k) = 0, we want to show that M is

projective. Because M is finite type, then there exists Ar � M such that Ar ⊗ k → M⊗ k is an
isomorphism. Applying the −⊗ k functor to

0→ N → Ar → M→ 0,

we obtain the exact sequence

0→ TorA
1 (M, k)→ N ⊗ k→ kr → M⊗ k→ 0

and this implies N ⊗ k = 0. By Nakayama’s lemma, we see that N = 0 and thus M is free. The
general case is similar. We construct

0→ C → Fn → · · · → F0 → M→ 0

where each Fi is projective, and then we see that Tor0(C, k) = · · · = Torn+1(M, k) = 0. This
implies C⊗ k = 0, so C = 0 and thus we have a projective resolution of length n.

Corollary 4.3.7. Let A be Noetherian and M be a finite A-module. Then

1. The projective dimension of M is the supremum of the projective dimensions of Mm for all maximal
ideals m of A.

2. proj. dim M ≤ n if and only if Torn+1(M, A/m) = 0 for all maximal ideals m of A.

Proof. 1. This follows from the fact that Exti
A(M, N)m = Exti

Am
(Mm, Nm) and the fact that for

an A-module M we have M = 0 if and only if Mm = 0 for all m maximal.

2. This follows from 1, the previous lemma, and the fact that Tor commutes with localization.

Lemma 4.3.8. Let A be noetherian. The following are equivalent:

1. gl. dim A ≤ n.

2. proj. dim M ≤ n for all finite A-modules M.

3. inj. dim M ≤ n for all finite A-modules M.

4. Extn+1
A (M, N) = 0 for all finite A-modules M, N.

5. TorA
n+1(M, N) = 0 for all finite A-modules M, N.

Proof. We know that 1 is equivalent to 2, which implies 3. We know that 3 implies 4 and 2 implies
5 are trivial. The previous corollary gives us 5 implies 2, so we need to prove that 4 implies 2. Let

0→ C → Fn−1 → · · · → F0 → M→ 0

such that Fi are free of finite type. Then we know that

Ext1(C, N) = · · · = Extn+1
A (M, N) = 0.

This implies that C is projective and thus proj. dim M ≤ n.
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Corollary 4.3.9. We have the local-global identity

gl. dim A = sup
m maximal

gl. dim Am.

Theorem 4.3.10. Let A be local Noetherian with residue field k. Then gl. dim A ≤ n if and only if
TorA

n+1(k, k) = 0. In particular, gl. dim A = proj. dimA k.

Proof. Suppose that Torn+1(k, k) = 0. Thus proj. dim k ≤ n, and thus Torn+1(M, k) = 0 for all M of
finite type. This implies that proj. dim M ≤ n for all finite A-modules M. Thus gl. dim A ≤ n.

Lemma 4.3.11. Let (A,m, k) be local Noetherian and M a finite A-module. Let x ∈ A be an M-regular
element. Then if proj. dim M ≤ ∞, so is proj. dim M/xM and proj. dim M/xM = proj. dim M + 1.

Proof. Let r = proj. dim M < ∞. Then we have the long exact sequence

0→ M→ M→ M/xM→ 0,

so after applying the functor −⊗ k, we know that Tori(M, k) = 0 if i > r. Thus if i > r + 1, then
Tori(M/xM, k) = 0. For i = r + 1, we have an exact sequence

0→ Torr+1(M/xM, k)→ Torr(M, k)→ Torr(M, k)

but x ∈ M annihlates k and thus Torr+1(M/xM, k) ' Torr(M, k) 6= 0, so proj. dim(M/xM) =
r + 1.

Theorem 4.3.12. Let (A,m, k) be a regular local ring of dimension n. Then gl. dim A = n.

Proof. Let x1, . . . , xn be a regular system of parameters. Then we know k = A/(x1, . . . , xn). This
implies that

proj. dim k = n + proj. dim A = n

and thus gl. dim A = n.

Corollary 4.3.13. Let k be a field. Then gl. dim k[x1, . . . , xn] = n.

Proof. Let A = k[x1, . . . , xn]. Then Am
∼= k′[T1, . . . , Tn] for some other field k′ and is thus regular

of dimension n. Thus gl. dim Am = n for all maximal ideals m, and thus gl. dim A = n.

4.4 Koszul Complex

Our goal is to prove the following result:

Theorem 4.4.1 (Serre). A local Noetherian ring is regular if and only if its global dimension is finite.

To do this, we will introduce the Koszul complex. First, recall that if L•, M• are two complexes,
(L• ⊗M•)n =

⊕
i+j=n Li ⊗Mj and the differential satisfies the graded Leibniz rule

d(a⊗ b) = da⊗ b + (−1)|a|a⊗ db .

For x ∈ A, define K(x) =→ 0 → A ×x−→ A → 0 → · · · . We can treat any A-module M as a
complex by putting it in degree 0. Now for x1, . . . , xr ∈ A and M an A-module, define

K(x1, . . . , xr, M) = K(x1)⊗ K(x2)⊗ · · · ⊗ K(xr)⊗M.
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Then for an integer p, we have

Kp(x1, . . . , xr, M) =
⊕

1≤i1≤···≤ip≤r
Mei1,...,ip

∼= M(r
p).

This satisfies

d(mei1,...,rp) =
p

∑
j=1

(−1)j−1xij mei1,...,̂ij ,...,ip
.

Now consider the exact sequence

0→ A→ K(x)→ A[−1]→ 0

Now if C is a complex, write C•(x) = C• ⊗ K(x), so we have a short exact sequence

0→ C• → C•(x)→ C•[−1]→ 0.

This gives us a long exact sequence of modules

· · · → Hp+1(C)→ Hp+1(C(x))→ Hp(C)
δ−→ Hp(C)→ · · ·

By definition of K(x) it is easy to see that δp = (−1)px. As a consequence, if Hp(C•) is trivial,
then so is Hp(C•(x)) for p > 1. In addition, we have

0→ H1(C(x))→ H0(C)
x−→ H0(C)→ H0(C(x))→ 0.

Thus if x is H0(C)-regular, then H1(C(x)) = 0 and H0(C(x)) = H0(C)/xH0(C). If we iterate this,
we have now proven the following result:

Theorem 4.4.2. Let M be an A-module and x1, . . . , xr an M-regular sequence. Then

Hp(x, M) := Hp(K(x1, . . . , xr, M)) = 0

for all p > 0 and H0(x, M) = M/(x1, . . . , xr)M.

Corollary 4.4.3. If x1, . . . , xr is an A-regular sequence, then K(x1, . . . , xr, A) is a finite free resolution of
A/(x1, . . . , xr)A.

Now we will discuss minimal resolutions. Suppose (A,m, k) is a local ring. Then recall from
the homework that u : L → M is called minimal when u ⊗ 1k is an isomorphism. When M is
finite, this is equivalent to u surjective and ker(u) ⊂ mL. We now say that a resolution L• → M

is minimal if Li ⊗ k ' ker(di)⊗ k, where Li
di−→ Li−1. In particular, writing Li = Li ⊗ k, then the

complex
Li → Li−1 → · · ·

satisfies d = 0, so Tori(M, k) = Hi(L•) = Li. Therefore if L• is a minimal resolution of M, then
rk(Li) = dimk Tori(M, k).

Proposition 4.4.4. Now assume A is local Noetherian and M is a finite A-module. Then there exists a
minimal free resolution of M and any two such resolutions are isomorphic.
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Proof. To prove existence, begin with M. Choose a basis e1, . . . , en0 ∈ M of M⊗ k = M. This gives
us a morphism 0→ K0 → An0 → M→ 0 that gives an isomorphism kn ' M. Now K0 is a finite
A-module, so we can construct a minimal An1 → K0 with kernel K1. Iterating this procedure, we
have a minimal resolution.

To prove uniqueness, if L•, L′• are minimal free resolutions, we will construct a map

L• M

L′• M

id

that makes this diagram commute. In degree zero, we have f0 : L0 → L′0 where f 0 is an isomor-
phism, so L0 ∼= L′0 = An. Thus det f0 ∈ A×, so f0 is an isomorphism. The rest follows by iterating
this procedure.

Lemma 4.4.5. Let F• → M be a complex such that

1. Fp is a finite free A-module for all p;

2. F0 → M is surjective.

3. d(Fi) ⊂ mFi−1 for all i > 0 and induces a surjection Fi ↪→ m/m2 ⊗ Fi−1 = m⊗ Fi−1.

Then rkA(Fi) ≤ dimk Tori(M, k).

Proof. Consider a minimal free resolution L• → M of M. Because free implies projective, we can
find a map

F• M

L• M.

id

Then the map F0 → L0 must be injective because F0 ↪→ M and L0 ' M. Therefore, we can split
L0 ∼= F0 ⊕ F′0. In particular, this means that rkA(F0) ≤ rkA(L0).

Now we have a diagram

F1 mF0

L1 mL0

where we have mL0 = mF0 ⊕mF′0, so downstairs we now have

F1 m⊗ F0

L1 m⊗ L0

and therefore F1 → L1 is surjective. This gives us a splitting L1 = F1 ⊕ F′1 and thus iterating this,
we obtain the desired result.
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Theorem 4.4.6. Let (A,m, k) be a local Noetherian ring and let s = dimm/m2. Then

rk Tori(k, k) ≥
(

s
i

)
.

In particular, Tori(k, k) 6= 0.

Proof. Write Fi := Ki(x1, . . . , xs; A) where x1, . . . , xs ∈ m is a basis for m/m2. Thus we have
F0 = A → H0(x, A) = A/(x1, . . . , xs) = k. Thus the F• satisfies the first two hypotheses of the
previous lemma, so we check the third one. Here, we have

d
(
∑ λi1,...,ip ei1,...,ip

)
=

s

∑
j=1

(−1)jxj
(
∑
)
λi1,...,̂ij ,...,ip

ei1,...,̂ij ,...,ip
.

Reducing modulo m, because x1, . . . , xs is a basis of m = m/m/m2, we see that this differential is
injective. Now we can apply the previous lemma to obtain the desired result.

We are now ready to prove the theorem of Serre.

Proof of Theorem 4.4.1. We proved one direction last time. Now set s = dimm/m2. We know that
Tors(k, k) 6= 0 and thus s ≤ gl.dimA = proj.dimA(k). On the other hand, by the Auslander-
Buchsbaum formula, we have

proj.dimA(k) + depth k = depth A

and because depth k = 0, we see that dim A ≥ depth A ≥ s. However, we know that s ≥ dim A,
and thus s = dim A = depth A, so A is regular.

Corollary 4.4.7. Let A be a regular local ring and choose p ∈ Spec A. Then Ap is regular.

Proof. This requires showing that Ap has finite global dimension. If M is an Ap-module, then
M is an A-module. Then if F• → M is a projective resolution of M of length at most dim A,
exactness of localization tells us that (F•)Ap

→ M is an Ap-projective resolution of M. Thus
proj.dimAp

(M) < dim A, so Ap has finite global dimension.

4.5 Unique Factorization

Recall that a unique factorization domain, or a UFD, is a domain A such that every element has a
unique factorization into irreducibles (up to multiplication of irreducibles by units). Here, π 6= 0
is irreducible if π = ab implies a or b is a unit. For example, when A = Z, the irreducibles are
precisely the prime numbers.

Exercise 4.5.1. If A is Noetherian, then any element can be written as a product of irreducibles.

We say that two irreducibles π, π′ are equivalent if (π) = (π′). Then for each equivalence class,
we can choose one representative, and the unique factorization means that if

u′πn′1
1 · · ·π

n′r
r = uπn1

1 · · ·π
nr
r ,

then u = u′ and ni = n′i.

Lemma 4.5.2. A Noetherian domain is a UFD if and only if (π) is a prime ideal for all irreducibles π.
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Proof. Suppose ab ∈ (π). Then if a = u ∏i π
ni
i , b = v ∏i π

ni
i where π = π1, we know that

n1 + m1 ≥ 1, so at least one of them is at least 1, and thus either a ∈ (π) or b ∈ (π).
In the other direction, we will prove that Gauss’s lemma is satisfied. This says that if π | ab

and π - a, then π | b. This implies that our domain is a UFD, and is equivalent to (π) being a
prime ideal for all units.

Lemma 4.5.3. Let A be a Noetherian domain. Then A is a UFD if and only if every prime ideal of height 1
is principal.

Proof. Suppose A is a unique factorization domain. Then let p be a prime ideal of height 1.
Because p 6= 0, there exists a = uπn1

1 · · ·π
nr
r . Thus there exists an irreducible π such that π ∈ p,

and thus because 0 ( (π) ⊂ p and ht(p) = 1, we see that (π) = p.
In the other direction, we will show that for any irreducible π ∈ A, the ideal (π) is prime. Let

p be a minimal prime ideal containing (π). We know that ht(p) ≤ 1, and thus ht(p) = 1. But then
we know that p = (α), so π = αβ for some β ∈ A. But because π is irreducible, this means that α
or β is a unit, and we know α is not a unit, so β is a unit and thus (π) = (α) = p.

Lemma 4.5.4. Let A be Noetherian and x 6= 0 such that (x) is a prime ideal. Then Ax = A[x−1] is a
UFD if and only if A is.

Proof. Suppose A is a UFD. Clearly Ax us a UFD. In the other direction, Then if

a = uxnπn1
1 · · ·π

nr
r = uxπn1

1 · · ·π
nr
r = u′xn′π

n′1
1 · · ·π

n′r
r = u′xπ

n′1
1 · · ·π

n′r
r ,

we must have ux = uxn, u′x = u′xn′ , then we obtain u = u′, n = n′.

Theorem 4.5.5. Let A be a local Noetherian regular ring. Then A is a UFD.

Proof. We induct on dim A. If dim A = 0, then A is a field. If dim A = 1, then A is a DVR and the
result is clear.

For the inductive step, choose x ∈ m \m2. Then (x) is a prime ideal, and we want to show that
Ax is a UFD. Choose a prime ideal p′ of height 1 in Ax. We will show that p′ is principal. Write
p = p′ ∩ A, so p′ = pAx. Then because A is regular, it has finite global dimension, and thus p has
a finite projective resolution

0→ Fn → Fn−1 → · · · → F0 → p→ 0,

where Fi = Ami . Now for any prime ideal p ⊂ Ax, we have (Ax)p = Ap∩A. This implies that if
x /∈ p ∩ A, then m 6= p ∩ A and thus ht(p ∩ A) < dim A. Then we know that Ap∩A is regular, so
we can apply the inductive hypothesis and it is thus a UFD. Then we know that

proj. dimAx
(p′) = sup

p⊂Ax

(proj. dim(Ax)p
p′p)

and so because p′p is principal, it is free of rank 1 and thus has projective dimension 0. Thus p′ is a
projective Ax-module, and so we have an exact sequence

0→ F′n → · · · → F′1 → F′0 → p′ → 0
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where F′i = Ami
x . Then we decompose this into short exact sequences

0→ K′0 → F′0 → p′ → 0

0→ K′1 → F′1 → K′0 → 0
...

0→ F′n → F′n−1 → K′n−2 → 0.

Because p′ is projective, the exact sequences split and all K′i are projective. Therefore⊕
i even

F′i =
⊕

i odd

⊕p′.

Writing the first direct sum as F and the second as G, we have F = G ⊕ p′. Thus F, G are free
Ax-modules, and rank F = rank G + 1. Write rank G = r. Now we have

∧r+1 F =
∧r G ⊗ p′

because
∧i p′ = 0 if i > 1 (after localization, we obtain a free module of rank 1). In particular, we

have Ax ∼=
∧r+1 F = p′ and thus p′ is free of rank 1 as an Ax-module, so it is a principal ideal.

Definition 4.5.6. Let A be a Noetherian ring. We say that A is regular if for all p ∈ Spec A, Ap is a
local Noetherian regular ring.

4.6 Criterion for Normality

Let A be a ring, k ≥ 0 an integer, and consider the conditions

(Rk): For all p ∈ Spec A such that ht(p) ≤ k, then Ap is regular.

(Sk): For all p ∈ Spec A, depth(Ap) ≥ inf(k, ht(p)).

Theorem 4.6.1. Let A be a Noetherian ring. Then A is normal if and only if (S2) and (R1) hold.

Before we prove this, we will prove several lemmas.

Lemma 4.6.2. The ideal (0) is unmixed if and only if (S1) holds. In other words, for all p ∈ Spec A, we
have depth(Ap) ≥ inf(1, ht(p)).

Proof. Assume that (0) is unmixed and let p ∈ Spec A with ht(p) ≥ 1. Then (0) is also unmixed
in Ap, so Ass(Ap) ∼= {q ( p | q minimal}. Therefore there exists x ∈ pAp \

⋃
q qAp. Thus x is not

a zero divisor of Ap, so it must be Ap-regular, and thus depth(Ap) ≥ 1.
Conversely, suppose (0) is not unmixed. Let p ∈ Ass(A) with ht(p) ≥ 1. But then pAp ∈

Ass(Ap), and thus pAp is contained in the set of zero-divisors. Thus depth(Ap) = 0.

Corollary 4.6.3. The property (Sk) holds if and only if for all i < k, any A-regular sequence (a1, . . . , ai)
is unmixed. For i = 0, this is saying that (0) is unmixed.

Proof. Use the previous lemma and an induction argument. Also use the fact that depth(Ap/aAp) =
depth(Ap)− 1 and the same for dimension.

Recall that a domain A is normal if it is integrally closed. Also, A =
⋂

m Am, so A is a normal
domain if and only if all localizations at maximal ideals are normal domains.

Definition 4.6.4. A ring A is called normal if and only if for all p ∈ Spec A, Ap is a normal domain.

It is not hard to see that it suffices to check this condition for maximal ideals.
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Corollary 4.6.5. Assume that A is reduced and that (S2) holds. Then

A =
⋂

p∈Spec A
ht(p)=1

Ap.

Here, the intersection is well-defined because the intersection of all minimal prime ideals is {0}.

Proof. Assume that (S2) holds. Then consider α
β ∈

⋂
ht(p)=1 Ap. We will consider the ideal

I =
{

x ∈ A | x α
β ∈ A

}
= Ann(α ∈ A/βA). Therefore we have an embedding A/I ↪→ A/βA

given by x 7→ xα. Assume I 6= A, so A/I 6= 0. Then if Q ∈ Ass(A/I), Q must be of height 1.
Also, because I ⊂ Q, then IQ ⊂ QAQ. However, we know that α

β ∈ AQ. But then this implies that
IQ = AQ, which is a contradiction.

Lemma 4.6.6. Assumes that A satisfies (S1) and (R0). Then A is reduced.

Proof. Choose x ∈ A be nilpotent, so xn = 0 for some n ≥ 1. We will show that x = 0. If
p ∈ Spec A with ht(p) = 0, then by (R0) we know that Ap is a field. This implies that xp = 0, so
there exists s /∈ p such that sx = 0. This implies that Ann(x) 6⊆ p for any minimal prime p.

Now assume that x 6= 0 and let q be a maximal element of the set of ideals {Ann(ax) | a ∈ A}.
Then we know that q is a non-minimal prime ideal, so by (S1), we have depth(Aq) ≥ 1. Also,
q = Ann(y) for some y = ax. Therefore A/q ↪→ A. But this implies that Ext•(Aq/qAq, Aq) 6= 0
and thus depth(Aq) = 0, which is a contradiction.

Proof of Theorem 4.6.1. First assume that A is normal and choose p ∈ Spec A. Then if ht(p) = 0,
we know Ap is a field. If ht(p) = 1, then Ap has dimension 1 and is integrally closed, so it must
be a DVRaand is thus regular. Thus (R1) is satisfied. Now if ht(p) = 2, then Ap is normal of
dimension 2 and is thus Cohen-Macaulay. Therefore, depth(Ap) = 2. If ht(p) > 2, we can choose
q ⊂ p of height 2 and then depth(Ap) ≥ depth(Aq) = 2, so (S2) is satisfied.

Now assume that (R1) and (S2) hold. By the previous lemma, we know that A is reduced. This
embeds A ↪→ Tot(A) = ∏i Ki, where Ki = Frac(A/pi) with p1, . . . , pr the minimal primes of A. It
suffices to prove that A is integrally closed in Tot(A). This is because if εi = (0, . . . , 0, 1, 0, . . . , 0),
then ε2

i = εi and thus εi = A and thus A = ∏r
i=1 A/pi and then each A/pi is a normal domain.

Let x ∈ Tot(A) be integral over A. Then xp ∈ Tot(A)p = Tot(A). Then we know xp is integral
over Ap, so if ht(p) = 1, then Ap is regular, so it is a DVR and is thus integrally closed. Therefore
xp ∈ Ap for all p of height 1. This implies that

x ∈
⋂

ht(p)=1

Ap = A.
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