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1. Introduction

One of the oldest problems in Gromov-Witten theory is to compute the Gromov-
Witten invariants of compact Calabi-Yau threefolds. While there are a variety of
physical methods which have allowed physicists to make spectacular predictions in a
wide range of examples, mathematical progress has often been frustratingly slow due



HIGHER-GENUS GW OF COMPACT CY3 3

to a lack of satisfactory tools to attack the problem with. To illustrate this, we will
briefly outline some developments in mathematics regarding Calabi-Yau threefolds
with h2 = 1 which arise as complete intersections in weighted projective space.

• For complete intersections in projective space, a genus-zero mirror theorem
was proved by Givental in 1996 and Lian-Liu-Yau in 1997 [Giv96; LLY97].
• For complete intersections in weighted projective space, a genus-zero mirror

theorem was proved by Coates-Corti-Lee-Tseng in 2006 in the convex case
and by Jun Wang in 2019 in the non-convex case [CCLT09; Wan20]. The
main difficulty in the non-convex case is the failure of the quantum Lefschetz
theorem [CG07], which is the main tool used in [Giv96; LLY97; CCLT09].
• Meanwhile, a genus-one mirror theorem was proved for the quintic by

Zinger in 2007 and for complete intersections in projective space by Popa in
2010 [Zin09; Pop13]. This used the theory of reduced invariants developed by
Vakil-Zinger and Li-Zinger [VZ08; LZ09], which is a technique of performing
birational modifications to the main component of the moduli space of stable
maps to force the quantum Lefschetz theorem to hold so that computations
can be performed using virtual localization [GP99]. Unfortunately, to
this date no computations have been successfully performed using reduced
invariants since.
• Another way to force the quantum Lefschetz theorem to hold is to consider
the theory of GLSMs [Wit92], which were constructed mathematically by
various authors during the 2010s [FJR18; FK21]. Unfortunately, the virtual
cycle is supported on the moduli space of stable maps to the threefold,
which does not carry a torus action.
• For the quintic, the ambient space of the relevant GLSM is the total space
of OP4(−5). A standard way to gain a torus action is to compactify the
moduli space at infinity and consider relative (or logarithmic) invariants.
This leads to the theory of logarithmic GLSMs, which was introduced by
Chen-Janda-Ruan in 2019 [CJR21]. Before this, Guo-Janda-Ruan used
this theory [CJR23], including still conjectural foundational results [CJRa;
CJRb], to prove a genus-two mirror theorem for the quintic in 2017 (up to
the fact that the moduli space used in their 2017 paper is still not defined)
and to prove the Yamaguchi-Yau finite generation conjecture, holomorphic
anomaly equations, and orbifold regularity (as well as the conifold gap
condition in low genus) for the quintic [GJR17; GJR18].
• Because a GLSM is an enumerative theory of a critical locus in a GIT
quotient, it depends on a stability parameter. We can vary the stability
parameter and construct a master theory following the master space con-
struction of Thaddeus [Tha96]. This leads to the theory of Mixed-Spin-P
fields, which was first constructed by Chang-Li-Li-Liu in 2015 (for the quintic
only) [CLLL19; CLLL22]. Unfortunately, the original theory is impossible
to compute with when g ≥ 2, so a parameter N was introduced by Chang-
Guo-Li-Li in 2018 [CGLL21]. In the same year, Chang-Guo-Li proved the
Yamaguchi-Yau finite generation conjecture, BCOV Feynman rule, and
holomorphic anomaly equations for the quintic threefold [CGL21; CGL19].
These results were generalized to hypersurfaces in weighted projective space
by the author in 2024 [Lei24b; Lei24a].
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• A genus-one mirror theorem for hypersurfaces in weighted projective space
was finally proved in 2024 by the author using the theory of Mixed-Spin-P
fields [Lei24b].
• The Castelnuovo bound was proved in 2022 by Liu-Ruan [LR22] for any
Calabi-Yau threefold satisfying a conjectural Bogomolov-Gieseker-type in-
equality (including the quintic) due to Bayer-Macri-Toda [BMT14] and a
weaker version of the result was proved by Zhiyu Liu in 2024 [Liu24] without
assuming the conjectural inequality. These results were obtained using the
GW/DT correspondence [MNOP06a; MNOP06b], which was proved for com-
plete intersections in products of projective spaces by Pandharipande-Pixton
in 2012 [PP17] and for all Calabi-Yau threefolds by Pardon in 2023 [Par24].

As we can see, two major breakthroughs were made around the year 2018,
when mathematicians discovered ways which make proving results about Gromov-
Witten invariants in arbitrary genus tractable.1 These notes explain how to use
these new ideas to prove the most important conjectures which are provided to
us by physicists, namely the Yamaguchi-Yau finite generation conjecture and the
holomorphic anomaly equations. Part 1 covers the B-model topological string and
the Givental formalism, Part 2 covers log GLSMs, and Part 3 covers Mixed-Spin-P
fields. We will cover both the foundational theory and the calculations in both
approaches – in particular, Section 4 and Section 6 discuss the geometry of the log
GLSM and MSP moduli spaces while Section 5 and Section 7 discuss calculations.

Author’s note. In contrast to the genus zero situation, not much is known about
higher-genus Gromov-Witten theory. This is in part because there are significantly
fewer tools to study higher-genus invariants, and the ones which do exist seem to be
considered extremely inaccessible. It is my sincere hope that these notes can help
make the subject more accessible.

All errors are the sole responsibility of the author. Please email me if you find
any mistakes or typos in these notes.

The names next to section titles indicate that the material in that part of the
notes comes from talks given by that speaker. The notes from the lectures by
Albrecht Klemm were taken partly during the lecture and partly by watching the
videos on the SCGP website, the notes from my lectures are slightly expanded
versions of my lecture notes, and the notes from all other lectures were taken during
the lecture, with some material being provided by the speakers after their lectures.
All references were added after the lectures.

Acknowledgements. I would like to thank Qile Chen, Felix Janda, Sheldon Katz,
Melissa Liu, John Pardon, and Rachel Webb for organizing the program. I would also
like to thank Konstantin Aleshkin, Shuai Guo, Melissa Liu, and Dimitri Zvonkine
for helpful discussions regarding the material in my lectures. Further thanks goes
to Qile Chen for generously providing the notes from his lectures, Felix Janda for
pointing out some subtleties and correcting some errors related to the material in
his lectures, Sheldon Katz for pointing out that the Kähler structure bundle is the
dual of the Hodge bundle, Yang Zhou for making detailed suggestions, and the
Simons Center for posting videos of all of the lectures.

1Considering that the progress had been approximately one genus every decade, the existence
of such breakthroughs is implied by the existence of these notes prior to the year 2027, or really at
all.
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Part 1. Mathematical and physical preliminaries

We begin these notes with discussion of the topological B-model. Using mirror
symmetry, physicists are able to transport questions in Gromov-Witten theory (the
A-model) to the B-model, which lacks a satisfactory mathematical definition. The
benefit of doing this is that it is easier to calculate in the B-model, where genus-zero
invariants are simply period integrals. Using other B-model techniques,2 physicists
are able to make far-reaching predictions about the Gromov-Witten invariants of
Calabi-Yau threefolds. Note that there are proposed mathematical definitions of the
B-model – the analytic approach of Costello-Li [CL12b; Li11] and the categorical
enumerative invariants of Caldararu-Tu [CT24] – but they are extremely difficult to
compute with.

We then proceed to a discussion of the mathematical prerequisites for the calcu-
lations which appear later in these notes. The most important tool for performing
calculations in Gromov-Witten theory is the formalism introduced by Givental in a
highly influential series of papers [Giv01b; Giv01a; Giv04] in the early 2000s. This
formalism allows us to package large formulae, for example coming from virtual
localization, in a compact way, which allows us to reason about higher-genus invari-
ants in a relatively streamlined way. For example, polynomiality of GW generating
series will be a direct corollary of polynomiality of the entries of an R-matrix which
plays a central role in Givental’s formalism.

2. Introduction to the topological B-model (Albrecht Klemm)

2.1. Mirror symmetry and the role of Calabi-Yau threefolds. Let X(Ω, ω)
be a Calabi-Yau n-fold, where here Ω is a holomorphic n-form and ω is a Kähler
form. Recall that this is equivalent to having SU(n) holonomy or to KX = 0. By a
result of Yau [Yau78], there exists a Kähler-Einstein metric g in the class of ω with
vanishing Ricci curvature. For our purposes, we will mostly consider the case when
n = 3.

We will really consider families of Calabi-Yau varieties

X→ X →M(z, t),

where M(z, t) is parametrized by a combination of complex structure moduli z and
Kähler structure moduli tR complexefied by a Neveu-Schwarz harmonic 2-form B to
t. We will denote the fiber by

X(Ωz, ωt).

On the moduli of complex structures M(z), the tangent space H(0,1)(X,TX) has
a basis given by harmonic forms

A(k) = A
(k)j
ı̄

∂

∂xj
dxı̄

for k = 1, . . . , hn−1,1(X). Because we are in the Calabi-Yau setting, contracting
with Ω gives us a basis

χ(k) = A(k)⌟Ω

of Hn−1,1(X). By a theorem of Tian-Todorov [Tia87; Tod89], the moduli space is
unobstructed. The B-model is built from mathematical structures on M(z).

2They also have the advantage of not needing to prove any theorems rigorously.
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There is a moduli space Mg
3 parameterized by δg subject to the condition

Riȷ̄(g + δg) = 0.

To first order, we have
∇ρ∇ρδgµν − 2Rκσµνδgkσ = 0.

The indices with pure Hodge type correspond to harmonic forms in H(0,1)(X,TX)
with components

δgiȷ̄ = gik̄δgk̄ȷ̄
yielding the Kuranishi family over M(z). The mixed indices correspond to real
harmonic (1, 1)-forms, and expanding the Kähler form linearly we obtain

ω =
∑

tkRω
(k)

in terms of real Kähler parameters

Re(tk) = tkR =

∫
C(k)

ω > 0,

which are volumes of holomorphic curves.
The Kähler moduli space M(tR) is the real Kähler cone subject to positivity

conditions from integration over k-dimensional holomorphic submanifolds, namely∫
D(k)

ω∧k > 0.

The bosonic part of the string action contains the harmonic antisymmetric Neveu-
Schwarz background field biȷ̄

Sbos =
1

2πα′

∫
Σ

√
h(habgiȷ̄ +

√
−1biȷ̄εab) ∂σa

xi ∂σb
xȷ̄,

where α′ is the string coupling constant. Its critical values measure complexified
volumes of holomorphic curves by

tk =

∫
Ck

(ω + ib) = Re(t(k)) +
√
−1 Im(t(k)).

Conjecture 2.1. For non-rigid Calabi-Yau threefolds X with h2,1 > 0, there exists
a mirror Calabi-Yau X̂ with h1,1(X̂) = h2,1(x) and h2,1(X̂) = h1,1(X) such that the
moduli spaces satisfy

M[X̂](ẑ) = M[X](t) and M[X̂](̂t) = M[X](z)

and all relevant physical and mathematical structures can be identified using locally
invertible mirror maps

ẑ(t) and t̂(z).

Mirror symmetry identifies Type IIA compactifications on X with Type IIB
compactifications on X̂, and vice versa. Additional Ramond-Ramond background
fields and axio-dilaton fields with modulus j and a extend the moduli spaces as

MIIB[X] = M[X](z)× Q[X](t, j, a)

and
MIIA[X̂] = M[X](̂t)× Q[X̂](ẑ, ĵ, â),

3This is a moduli space of metrics, not the moduli space of smooth genus g curves.
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where Q denotes a quaternionic extension of M. The RR (k + 1)-form fields are
sourced from Dk branes. k is even for Type IIA and odd for Type IIB. The D2m

correspond to coherent sheaves and D2m+1 correspond to special Lagrangian branes.
Here, Q is the 4d N = 2 hyper-multiplet moduli space, and M is the 4d N = 2
vector multiplet moduli space.

One kind of mathematical structure is Hodge numbers. In the traditional picture
of the Hodge diamond, Poincaré duality corresponds to a reflection along the
horizontal axis, Dolbeaut symmetry is a reflection along the vertical axis, and mirror
symmetry is a reflection along a line with slope 1.

Superstring theory is defined by maps

X : Σg → Cβ ⊂ spacetime

weighted by an action S which is a supersymmetric extension of the area of Cβ . It is
easy to quantize the Neveu-Schwarz-Ramond action, and the Green-Schwarz action
incorporates the RR fields. The first quantized theory is defined by a variatonal
integral with partition function

Z(g, b, ϕ) =

∫
DXDhDψferme

i
ℏSNSR(X,h,ψferm,g,b,ϕ).

Superstring theory is Weyl invariant in ten dimensions, or in other words∫
Dh→

∑
g=0

∫
MΣg

µ3g−3,

so we obtain a discrete sum of finite-dimensional integrals. This implies that the
compact part X of the spacetimeM must be a complex threefold. If X is Calabi-Yau,
we obtain an extended (2, 2) world-sheet SCFT, which has four nilpotent operators

Q2
± = Q̄2

± = 0.

The A-twist corresponds to taking

QA = Q− + Q̄+

and the B-twist corresponds to

QB = Q̄− + Q̄+.

The topological A-model yields a cohomological topological theory depending only
on the Kähler structure, while the topological B-model is a homological topological
theory depending only on the complex structure. Mirror symmetry then exchanges
the A-model and B-model.

2.2. The topological A-model and B-model. In the A-model, terms depending
on the complex structure are QA-exact, so the variatinoal integral simplifies to

Z =

∞∑
g=0

∑
β∈H2(X,Z)

g2g−2
s Qβ

∫
Mg(X,β)

1.

Here, we have

Q = e
2πi

∫
Cβ

iω+b
= etβ
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and these holomorphic maps are stationary points of the action. Moreover, taking
the logarithm, we obtain

F(gs, Q) = logZ =
∑
g,β

g2g−2
s Qβrβg =

∞∑
g=0

g2g−2
s Fg(Q),

where rβg are the GW invariants. Rewriting these in terms of GV invariants, we
obtain

F(gs, Q) =
c(t)

λ2
+ ℓ(t) +

∑
g,β

∞∑
m=1

nβg
m

(
2 sin

mgs
2

)2g−2

Qmβ .

In the B-model, the terms depending on the Kähler structure are QB-exact and
the variational integral localizes to constant maps albeit with a nontrivial measure
depending on the complex structure. Mirror symmetry is supposed to be an exact
duality, so we should have〈

O
(0)
i O

(0)
j O

(0)
k

〉
g=0

=

∫
X̂

Ω(z) ∂zi ∂zj ∂zkΩ(z)

= ∂ti ∂tj ∂tkF0(t).

Period integrals

Πij(z) =

∫
Γi

γj(z)

define a nondegenerate pairing between middle homology and cohomology by Stokes’
theorem. This pairing is antisymmetric if n is odd and symmetric if n is even. For
example, if X is a K3 surface, then the lattice H2(X,Z) is

E8(−1)⊕2 ⊕
(
0 1
1 0

)⊕3

.

If n is odd, we can fix an integral symplectic basis Γ = {Aℓ, Bℓ}, which is defined
only up to the action of Sp(bn(X),Z).

Example 2.2. If we consider an elliptic curve p3 = wy2−x(x−w)(x−wz) = 0 ⊂ P2,
then we obtain

Ω(z) =

∮
2 dx ∧ dy

p3
=

dx

y

and

∂zΩ(z) ∼
xdx

y
.

Then the integrals

E1(z) =

∮
A

Ω and E2(z) =

∮
B

Ω

are elliptic integrals. The periods are annihilated by the Picard-Fuchs operator, and
by definition thus satisfy the equation

L

∫
Γ

Ω =

[
(1− z) ∂2z + (1− 2z) ∂z −

1

4

] ∫
Γ

Ω = 0.

The main constraints which govern the periods of a Calabi-Yau n-fold are the
Riemann bilinear relations

e−K = in
2

∫
X

Ω ∧ Ω̄ > 0.
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This defines the exponential of the Kähler potential K(z) for the Weil-Petersson
metric

Giȷ̄ = ∂zi ∂̄z̄ȷ̄K(z)

on M[X](z). There are also holomorphic bilinear relations∫
X

Ω ∧ ∂kℓkΩ =

{
0 k < n

Cℓn(z) ℓ = n

which follow from Griffiths transversality [Gri68a; Gri68b]. Here, the integrand in
the left hand side are arbitrary combinations of derivatives of Ω with respect to the
zi. We will see later that these give rise to propagators, the holomorphic anomaly
equations, and other structures. The Cℓn(z) are rational functions labelled by ℓn up

to permutations.They are also determined by differential ideals LΠ⃗ also determine
the Cℓn(z) up to normalization.

Remark 2.3. In terms of the periods Π⃗, if we write them in a basis compatible with
the intersection form Σ, the quantities in the relations may be written as∫

X

Ω ∧ Ω̄ = Π⃗†ΣΠ⃗ and

∫
X

Ω ∧ ∂kℓkΩ = −Π⃗†Σ∂kℓkΠ⃗.

2.3. The quintic. Consider the mirror quintic W , which is given by the equation

p̂5 =

4∑
i=0

x5i − 5z−
1
5

4∏
k=0

zi = 0 ⊂ P̂4.

The period vector Π(z) (with an appropriate choice of integral cycles) fulfills the
Picard-Fuchs equation[

θ4 − 55z

(
θ +

1

5

)(
θ +

2

5

)(
θ +

3

5

)(
θ +

4

5

)]
Π(z) = 0,

where θ = z d
dz .

We want to find a basis where the monodromies around the singular points are
integral symplectic matrices, so we look at the Riemann symbol and see that it is
given by

P



0 5−5 ∞ ∗
0 0 1

5

0 1 2
5 z

0 2 3
5

0 1 4
5


.

Here, z = 0 is a point of maximal unipotent monodromy, z =∞ is the orbifold (or
Landau/Ginzburg, or Gepner) point, and z = 5−5 is the conifold point. At a point
of maximal unipotent monodromy, we can expand the mirror map and go to the
large volume limit point in the A-model.

Using special geometry, Bryant and Griffiths [BG83] showed that the periods
may actually be expressed using a prepotential F as

∫
B0

Ω∫
B1

Ω∫
A0

Ω∫
A1

Ω

 =


F0

F1

X0

X1

 =


2F0 − t ∂tF0

∂tF0

1
t

 .
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These correspond to triple logarithmic, double logarithmic, analytic, and logarithmic
solutions, respectively. Using this, we can make the identification

F(z) = F0(t(z)),

where the mirror map is given by

t =
X1

X0
= log(z) + O(z).

This was generalized to multi-parameter models by Hosono et. al [HKTY95], who
related the classical terms to CTC Wall data κ = D3 and σ = κ mod 2

2 in the
formula

F = −κ
6
+
σ

2
t2 +

c2 ·D
24

t+
χ(M)

2

ζ(3)

(2πi)3
− 1

(2πi)3

∑
β ̸=0

nβ0 Li3(Q
β).

Later, we will use this to find the integral symplectic basis without calculating any
monodromy.

We now turn our attention to calculating the numbers nβg . We already saw the
genus-zero invariants, but we are also interested in the higher-genus ones. Some
invariants in low genus and degree are given in Table 1.

Table 1. Low genus GV invariants of the quintic.

g d = 1 d = 2 d = 3 d = 4 d = 5

0 2875 609250 317206375 242467530000 22930588887625
1 0 0 609250 3721431625 12129909700200
2 0 0 0 534750 75478987900
3 0 0 0 8625 −15663750
4 0 0 0 0 49250
5 0 0 0 0 1100
6 0 0 0 0 10

Physical predictions were made by Candelas et al. [COGP92] for g = 0, Bershadsky
et al. [BCOV94] for g ≤ 3, and Huang et al. [HKQ09] for g ≤ 53. The numbers
n11, n

2
1, and n31 were calculated mathematically by Schubert, Katz [Kat86], and

Ellingsrud-Strømme [ES96], respectively. Kontsevich [Kon95] gave a mathematical
proof of some numbers in g = 0 before the genus-zero invariants were completely
determined by Givental and Lian-Liu-Yau [Giv96; LLY97]. The formula for the
genus-one invariants was proved by Zinger [Zin09].

2.4. Fourteen one-parameter hypergeometric families. There are fourteen
hypergeometric Picard-Fuchs operators for one-parameter families of Calabi-Yau
threefolds X̂ given by

L = θ4 − µ−1z

4∏
k=1

(θ + ak),

where the values of µ and ak are given in Table 2. Here, the notation for the mirror
X means the complete intersection in the weighted projective space with weights
given in parentheses with degrees given by the subscripts. The local exponents
are all 0 at the MUM point, 0, 1, 1, 2 at the conifold point µ, and are given by
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Table 2. Data of one-parameter hypergeometric families

N ak µ−1 Mirror X κ c2 ·D χ(X)

8 1
2 ,

1
2 ,

1
2 ,

1
2 28 X2,2,2,2(1

8) 16 64 −128
9 1

4 ,
1
3 ,

2
3 ,

3
4 2633 X4,3(1

521) 6 48 −156
16 1

4 ,
1
2 ,

1
2 ,

3
4 210 X4,2(1

6) 8 56 −176
25 1

5 ,
2
5 ,

3
5 ,

4
5 55 X5(1

4) 5 50 −200
27 1

3 ,
1
3 ,

2
3 ,

2
3 36 X3,3(1

6) 9 54 −144
32 1

4 ,
1
4 ,

3
4 ,

3
4 212 X4,4(1

422) 4 40 −144
36 1

3 ,
1
2 ,

1
2 ,

2
3 2433 X3,2,2(1

7) 12 60 −144
72 1

6 ,
1
2 ,

1
2 ,

5
6 2833 X6,2(1

531) 4 54 −256
108 1

6 ,
1
3 ,

2
3 ,

5
6 2436 X6(1

421) 3 42 −204
128 1

8 ,
3
8 ,

5
8 ,

7
8 216 X8(1

441) 2 44 −296
144 1

6 ,
1
4 ,

3
4 ,

5
6 21033 X6,4(1

32231) 2 32 −158
200 1

10 ,
3
10 ,

7
10 ,

9
10 2855 X10(1

32151) 1 34 −288
216 1

6 ,
1
6 ,

5
6 ,

5
6 2836 X6,6(1

22232) 1 22 −120
864 1

12 ,
5
12 ,

7
12 ,

11
12 21236 X12,2(1

44161) 1 46 −484

a1, a2, a3, a4 at the orbifold point ∞. The monodromy around a singular point ∗ is
captured by the minimal exponent4 1 ≤ k <∞ such that

(Mk
∗ − 1)p+1 = 0

for some 0 ≤ p ≤ dimCX. When k > 1 and p = 0, then we have an orbifold point.
When p > 0 we have an infinite shift monodromy. If p = 1 and the local exponents
take the form a, b, b, c, then we have a single vanishing period dual to a logarithmic
degenerating period and hence a conifold point, and if the local exponents are
take the form a, a, b, b, then we have two vanishing periods and two logarithmic
degenerating periods, and this case is called a K-point. The case p = 2 cannot occur
by Schmid’s SL(2,C) orbit theorem, and when p = 3, we have a point of maximal
unipotent monodromy with local exponents a, a, a, a.

At the point z = 0, there is a Frobenius basis of solutions

Π0(z) =


f0(z)

f0(z) log z + f1(z)
1
2f0(z)(log z)

2 + f1(z) log z + f2(z)
1
6f0(z)(log z)

3 + 1
2f1(z)(log z)

2 + f2(z) log z + f3(z),



4This corresponds to the degree of the base change needed to make the monodromy unipotent.
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where we normalize the power series to have f0(0) = 1 and fk>0(0) = 0. Therefore,
we can find an integral basis

Π = (2πi)3


ζ3χ(M)
(2πi)3

c2·D
24·2πi 0 κ

(2πi)3
c2·D
24

σ
2πi

κ
(2πi)2 0

1 0 0 0
0 1

2πi 0 0

Π0.

In the integral basis, all monodromies are integral symplectic matrices. At the point
z = 0, we have

M0 =


1 −1 κ

6 + c2·D
12

κ
6 + σ

0 1 σ − κ
2 −κ

0 0 1 0
0 0 1 0

 ,

and at the conifold point, we have

Mµ =


1 0 0 0
0 1 0 0
−1 0 1 0
0 0 0 −1

 .

At z =∞, we have M∞ = (M0Mµ)
−1.

The work of Alexandrov-Feyzbakhsh-Klemm-Pioline-Schimannek [Ale+24] solves
the topological string on these models up to gmod given in Table 3 using D4 brane and
wall-crossing.5 Note that gavail is the maximum genus for which data appears at http:
//www.th.physik.uni-bonn.de/groups/klemm/data.php and ginteg is the maxi-
mum genus solved by the work of Huang-Klemm-Quackenbush [HKQ09].

Table 3. Current state of the art in physics literature as of January 2023.

X χD np1 nc1 Type ginteg gmod gavail

X5(1
5) 5 7 0 O 53 69 64

X6(1
421) 4 4 0 O 48 66 48

X8(1
441) 4 4 0 O 60 84 64

X10(1
32151) 2 7 0 O 50 70 68

X4,3(1
521) 5 9 0 O 20 24 24

X6,4(1
32231) 3 3 0 O 14 17 17

X3,3(1
6) 6 14 1 K 29 33 33

X4,4(1
421) 4 6 1 K 26 34 34

X6,6(1
22232) 2 1 0 K 18 21 21

X6,2(1
531) 5 7 0 C 63 84 49

X4,2(1
6) 6 15 1 C 50 64 40

X3,2,2(1
7) 7 21 1 C 14 ? 14

X2,2,2,2(1
8) 8 33 3 M 17 ? 32

Remark 2.4. Even inserting at least one D4 brane requires going beyond the
topological string, which only gives the usual DT or PT invariants (one D6 brane,
no D4 branes, and arbitrary D2 and D0 brane charges). Hopefully, we will be able
to explore the entire space of Bridgeland stability conditions in the future.

5There have since been more improvements found by adding more D4 brane charges [AFKP23].

http://www.th.physik.uni-bonn.de/groups/klemm/data.php
http://www.th.physik.uni-bonn.de/groups/klemm/data.php
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2.5. More on periods. Consider the Picard-Fuchs operator

L(n+1)(z) =

n+1∑
i=1

ai(z) ∂
i
z

of a one-parameter Calabi-Yau n-fold with middle Hodge structure of type 1, 1, . . . , 1.
Defining the adjoint operator

L(n+1)∨(z) =

n+1∑
i=1

(− ∂z)iai(z),

then Griffiths transversality implies that the operator is essentially self-adjoint, or
in other words

L(n+1)Cz = (−1)n+1CzL
(n+1)∨.

Here, the Yukawa coupling Cz satisfies the differential equation

C ′
z = −

2

n+ 1
anCz.

For the quintic, we in fact obtain

Czzz =
5

z3(1− 55z)
.

Equivalently, self-adjointness implies

n+1∑
j=k

(
j

k

){
C

(j−k)
z

Cz
aj + (−1)n+jaj−kj

}
= 0.

When n = 3, this yields

a33 + 4a′′3 + 6a3a
′
3 + 8a1 − 4a2a3 − 8a′2 = 0.

In the multi-parameter case, the periods Π⃗ span the kernel of the Picard-Fuchs
differential ideal

{L} = {L(dk)
k | k = 1, . . . , ℓ}

generated by the differential operators

L
(dk)
ℓ (θ, z)Π(z) = 0.

This system is complete if all three-point functions

Cijk(z) = Czizjzk(z)

can be integrated from the Griffiths transversality relations.

Example 2.5. For the example X18(1
36191) with middle Hodge structure 1, 2, 2, 1,

the Picard-Fuchs equation is generated by

L
(2)
1 = θ1(θ1 − 3θ2)− 12z1(6θ1 + 1)(6θ1 + 5),

L
(3)
2 = θ32 +

2∏
i=0

(3θ2 − θ1 + i),

and the Cijk are given by

C111 =
9

z31∆1
;
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C112 =
3δ

z21z2∆1
;

C122 =
∆2

2

z1z22∆1
;

C222 =
9(δ3 + (432z1)

3)

z22∆1∆2
,

where the components of the discriminant are given by

∆1 = (1− 432z1)
3 − 27z2(432z1)

3 and ∆2 + 1 + 27z2,

and δ = 1− 432z1.

If we shift the holomorphic form by

Ω→ ef(z)Ω,

this induces a Kähler gauge transformation

K → K − f(z)− f(z).
Also note that the Yukawa couplings Cijk(z) are sections of

L2 ⊗ Sym3 T ∗M(z)1,0,

where L is the dual of the Hodge bundle.
By the local Torelli theorem [Gri68a; Gri68b], the XI components of the period

vector 

∫
B0

Ω
...∫

Br
Ω∫

A0
Ω

...∫
Ar

Ω


=



F0

...
Fr
X0

...
Xr


are homogeneous coordinates on M(z). Griffiths transversality implies that

F =
1

2
XIFI ∈ L2

is a homogeneous prepotential such that

e−K = i(FiX̄
I −XI F̄I)

and the Yukawa couplings are given by

CIJK =
∂

∂XI

∂

∂XJ

∂

∂XK
F.

Dividing by X0, we will get inhomogeneous coordinates ti = Xi

X0 , and we obtain the
inhomogeneous prepotential

F(t) =
F (X)

(X0)2
.

The Kähler potential and Yukawa coupling become

e−K = i[(tı̄ − ti)(Fi + Fı̄) + 2(F − F̄)]

Cijk(t) = ∂i ∂j ∂kF(t).
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In addition, we have

Cijk(t) =
1

(X0)2
∂zℓ
∂ti

∂zm
∂tj

∂zn
∂tk

Cℓmn(z).

In inhomogeneous coordinates, we can obtain the period vector from F(t) by

Π⃗T = X0(2F(t)− ti ∂iF(t), ∂iF(t), 1, ti).
The Picard-Fuchs equation is equivalent to the Gauss-Manin connection

(∂i −Ai(z))Π⃗(z) = 0,

where i = 1, . . . , r and Ai(z) ∈ Q[z]. If we set

Ω̂0 = α0 + tiαi − ∂iFβi − (2F − ti ∂iF)β0

χ̂i = αi − ∂i ∂jFβj − (∂aF − ti ∂i ∂jF)β0

χ̂i = −βi + taβ0

Ω̂0 = β0,

this becomes

∂i


Ω0

χj
χj

Ω0

 =


0 δki 0 0
0 0 Cijk(t) 0

0 0 0 δji
0 0 0 0



Ω0

χj
χj

Ω0

 .

2.6. Special geometry. On the moduli space of complex structures Mcs := M(z),
we have metric connections from the Weil-Petersson metric and the Kähler line
bundle connection. On sections

Vjȷ̄ ∈ T ∗
1,0Mcs ⊗ T ∗

0,1Mcs ⊗ L⊗n ⊗ L̄⊗m,

the covariant derivatives are given by

DiVjȷ̄ = ∂iVjȷ̄ − ΓℓijVℓȷ̄ + nKiVjȷ̄

DiVjȷ̄ = ∂ ı̄Vjȷ̄ − Γℓ̄ı̄ȷ̄Viℓ̄ +mKı̄Vjȷ̄.

Using the covariant derivatives, we see that χi ∈ Hn−1,1(X) and χ̄ı̄ ∈ H1,n−1(X).
Proceeding more systematically, repeated applications of Di yield

DiΩ = (∂i +Ki)Ω = χi

Diχj = −ieKCijkGkk̄χk̄
Diχk̄ = Gik̄Ω̄

DiΩ̄ = 0.

Using the relation
[Di, Dj ]χk = −Giȷ̄χk +Rpiȷ̄kχp,

we further deduce

[Di, Dȷ̄]χk = Gkȷ̄χi − e2KCȷ̄m̄n̄Gmm̄Gnn̄Cikmχn.
It follows that

[Di, Dȷ̄]
k
ℓ = −Rkiȷ̄ℓ = ∂ ȷ̄Γ

k
iℓ = δkℓGȷ̄i + δki Gȷ̄ℓ − Ckmȷ̄ Ciℓm,

where Ckℓȷ̄ = e2KCȷ̄k̄ℓ̄G
kk̄Gℓℓ̄. This equation is known as the special geometry

equation and is the integrability condition for the existence of the prepotential F.
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2.7. Genus one predictions. In a (2, 2) theory, the topological torus partition
function is defined by

F (t, t̄) =
1

2

∫
Ffund

d2τ

Im τ
Tr(−1)FFLFRqH q̄H̄

as an integral of the fermion number projected partition function over the funda-
mental region of the torus. Using its relationship to the family index of Ray-Singer
analytic torsion [FLY08], it satisfies the holomorphic anomaly equation

∂i∂̄ ȷ̄F1 =
1

2
CijkC

kℓ
ȷ̄ −

( χ
24
− 1
)
Giȷ̄.

Using Giȷ̄ = ∂ ȷ̄ ∂iK = ∂ ȷ̄Ki and the special geometry equation, we can integrate
the holomorphic anomaly equation to obtain

(1) F1 = −1

2
log detGiȷ̄ +

(
1

2
(h11 + 1)− χ

24
+ 1

)
K + log f1(z) + log f1(z̄).

2.8. Propagators. The propagators are an-holomorphic sections Sij , Si, and S
of L−2 ⊗ Sym2(TM1,0

cs ), L−2 ⊗ TM1,0
cs , and L−2, respectively, defined by

∂ ı̄S
jk = Cjkı̄ , ∂ ȷ̄S

k = Giȷ̄S
ik, and ∂ ȷ̄S = Giȷ̄S

i.

We can integrate the first equation using the special geometry equation and the
observation that the only contributions to Ckmȷ̄ Ciℓm are derivatives in ∂̄ ȷ̄. Therefore,
if there exists an index i such that [C(i)]m is invertible, we obtain

Skm = C(i)kℓ(δmℓ K(i) + δm(i)Kℓ + Γm(i)ℓ + qm(i)ℓ),

where qm(i)ℓ is the holomorphic propagator ambiguity.

Following Alim-Länge [AL07], it is convenient to shift the remaining propagators
as

S̃i = Si − SijKj ;

S̃ = S − SiKi +
1

2
SijKiKj .

Applying the special geometry equation, we obtain

∂iS
jk = CimnS

mjSnk + δji S̃
k + δki S̃

j − qjimS
mk − qkimSmj + qjki ;

∂iS̃
j = CimnS

mjS̃n + 2δji S̃ − q
j
imS̃

m − qikSjk + qji ;

∂iS̃ =
1

2
CimnS̃

mS̃n − qijS̃j + qi;

∂iKj = KiKj − CijnSmnKm + qmijKm − CijkS̃k + qij .

Here, all of the ambiguities are in fact rational functions in z with rational coefficients.
This allows us to obtain explicit formulae

S̃k =
1

2
(∂kS

kk − CkℓmSkℓSkm + 2qkkℓS
ℓk − qkkk );

S̃ =
1

2
(∂ℓS̃

ℓ − CkℓmS̃kSℓm + qℓℓmS̃
m + qℓmS

ℓm − qℓℓ).

Taking the holomorphic limit of the propagators, we obtain

Skm = C(i)kℓ(δmℓ K(i) + δm(i)Lℓ −Υm(i)ℓ + qm(i)ℓ),
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where we take the holomorphic limits e−K → e−K = X0
∗ , Ki → Ki = − ∂i log(X0

∗ ),

and Γijk → Υijk = ∂zi

∂ta∗

∂2ta∗
∂zj∂zk

.

Returning to the genus one situation, the holomorphic anomaly equation becomes

∂iF1 = Ci −
(
χ(X)

24
− 1

)
Ki,

where we define Ci =
1
2S

jkCijk + f
(1)
i . This can be integrated to obtain (1). The

holomorphic limit is given by

F1 = −1

2
log det

(
∂ta∗
∂zi

)
+

(
χ(X)

24
− 1

2
h11 + 3

)
log

X0
∗

(2πi)3
+ f1(z),

where the holomorphic ambiguity is given by

f1(z) = log
(
z−

c2·D+12
24 ∆

− 1
12

con

)
.

2.9. Higher-genus predictions. In higher genus, the holomorphic anomaly equa-
tion becomes

∂̄k̄ =
1

2
Cij
k̄

(
DiDjFg−1 +

g−1∑
r=1

DiFrDjFg−r

)
.

This can be rewritten as the system of equations

∂Fg
∂Sij

=
1

2
DiDjFg−1 +

1

2

g−1∑
h=1

DiFhDjFg−h,
∂Fg
∂Ki

+ Si
∂Fg
∂S

+ Sij
∂Fg
∂Sj

= 0

assuming that Sij , Si, S, and K are algebraically independent. Using the shifted

propagators, we obtain
∂Fg

∂Kj
= 0 and

∂Fg
∂Sjk

− 1

2

∂Fg

∂S̃k
Kj −

1

2

∂Fg

∂S̃j
+

1

2

∂Fg

∂S̃
KjKk +

1

2
DjDkFg−1 +

1

2

g−1∑
h=1

DjFhDkFg−h.

Using the method of direct integration, due to Yamaguchi-Yau, Grimm-Klemm-
Mariño-Weiss, and Alim-Länge [YY04; GKMW07; AL07], we obtain

∂Fg
∂Sij

=
1

2
∂i(∂

′
jFg−1) +

1

2
(CijℓS̃

ℓk − qkij) ∂′kFg−1 +
1

2
(CijkS̃

k − qij)cg−1

+

g−1∑
h=1

∂′iFh ∂
′
jFg−h;

∂Fg

∂S̃i
= (2g − 3) ∂′iFg−1 +

g−1∑
h=1

ch ∂
′
iFg−h;

∂Fg

∂S̃
= (2g − 3)cg−1 +

g−1∑
h=1

chcg−h.

Here, we set

cg =

{
χ
24 − 1 g = 1

(2g − 2)Fg g > 1
and ∂′iFg =

{
∂iFg +

(
χ
24 − 1

)
Ki g = 1

∂iFg g > 1.
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Therefore, we can solve for a polynomial Fg(S
ij , S̃i, S̃, z), which is a weighted

polynomial of degree 3g − 3 with the weights 1, 2, 3, 0. For example, in the one-
parameter case, we obtain

F2 =
5

24
C2

111(S
11)3 +

1

8
(∂1C111 − 3C111q

1
11 + 4C111f

(1)
1 )(S11)2

+

(
1

4
q111 C111 +

1

2
∂1f

(1)
1 +

1

2
f
(1)
1 (f

(1)
1 − q111) +

1

2

(
1− χ

24

)
q11

)
S11

+
χ

48
(C111S

11 + 2f
(1)
1 )S̃1 +

χ

24

( χ
24
− 1
)
S̃ + f2(z).

2.10. Boundary conditions. The most difficult part of computing Fg is the degree-
zero part fg(z), which is known as the holomorphic or modular ambiguity. In the
hypergeometric cases, we have

fg>1(z) =

∑2g−2
k=0 akz

k

(1− µ−1z)2g−2
+

c∞∑
k=1

bkz
k,

where the number c∞ depends on the type of singularity at z =∞. At z = 0, the
boundary conditions come from the asymptotics(

λ

g2

)2g−2

Fg =
∑
β

(
(−1)g−1 (2g − 2)B2g

(2g)!
nβ0 +

2(−1)gnβ2
(2g − 2)!

+ · · ·

)
Li3−2g(Qβ)

=
(−1)g(2g)!

(2π)4g−2g(2g − 2)
χ(X) + O(Qβ).

The second equality requires the computation of degree-zero GW invariants due to
Faber-Pandharipande.

In the one-parameter case, the Castelnuovo bound implies that the GV invariants

ndg are nonzero only when the genus is strictly less than gmax(d) ≤
⌊
d2

2κ + d
2

⌋
+ 1 in

general and gmax(d) ≤
⌊
2d2

3κ + d
3

⌋
+ 1 when 0 < d < κ. This was first observed by

Huang-Klemm-Quackenbush [HKQ09] and proved in 2023 by Feyzbakhsh (in the
paper [Ale+24] of Alexandrov et. al). Because curves of degree β of genus gmax(β)
are smooth, the associated invariants may be obtained by the formula

ng,β = (−1)dimC Mβχ(Mβ),

where Mβ denotes the deformation space of the curve. For the one-parameter
hypergeometric cases, we obtain

ngmax(κd),κd =

{
ω(ω−1)

2 d = 1

(−1)κ
d(d−1)

2 ω
(
ω + κd(d−1)

2

)
otherwise.

The most important boundary condition is the gap condition at the conifold
point z = µ, where a 3-cycle with the topology of a lens space vanishes. Here, this
says that we have

(X0
con)

2g−2Fg =
(−1)g−1B2g

2g(2g − 2)

(
(2πi)

1
2

tcon

)2g−2

+ O(t0con)

for all g > 1, where tcon is the local coordinate at the conifold point given by the
ratio of a vanishing and non-vanishing period.
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3. An axiomatic approach to enumerative geometry (Patrick Lei)

3.1. Moduli of curves and CohFTs. We will denote by Mg,n the moduli space
of stable curves of genus g with n marked points. This is nonempty if and only if
2g− 2+ n > 0, in which case it is a Deligne-Mumford stack of dimension 3g− 3+ n.
There is a combinatorial structure to the collection of Mg,n, which is given by a
collection of morphisms.

• There is the gluing morphism

q : Mg,n+1 ×Mh,m+1 →Mg+h,n+m,

which takes two curves and glues them along the last marked point to form
a node;
• There is the self-gluing morphism

s : Mg−1,n+2 →Mg,n,

which glues the last two marked points.

There is of course another interesting map, which is the forgetful map

pr: Mg,n+1 →Mg,n

given by deleting the last marked point and then stabilizing. We are now able to
define our enumerative theories of interest, which include Gromov-Witten theory.

Definition 3.1. Given a vector space V with a nondegenerate symmetric bilinear
form η and a unit element 1 ∈ V , a Cohomological Field Theory (CohFT) [KM94]
Ω on V is a collection Ωg,n of Sn-equivariant linear maps

Ωg,n : V
⊗n → H∗(Mg,n)

which satisfy the basic identity

Ω0,3(1, u, v) = η(u, v)

and the following combinatorial identities (we will let eµ be a basis of V such that
e1 = 1 and eµ be the dual basis):

q∗Ωg+h,n+m(v1,v2) =
∑
µ

Ωg,n+1(v1, eµ) · Ωh,m+1(v2, e
µ);

s∗Ωg,n(v) =
∑
µ

Ωg,n+2(v, eµ, e
µ).

If in addition the identity

pr∗ Ωg,n(v) = Ωg,n+1(v,1)

is satisfied, then we say the CohFT has a flat unit (or satisfies the string equation).

All of this can be generalized to super vector spaces, but for simplicity we will
not deal with this case.

Example 3.2. The most important example of a CohFT is the Gromov-Witten
theory of a smooth projective variety X. Here, recall that the source of a stable
map is a prestable curve, so there is a stabilization morphism

st : Mg,n(X,β)→Mg,n
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which forgets the map and stabilizes the curve. Then, working over the Novikov ring,
we will set V = H∗(X), η to be the Poincaré pairing, and 1 to be the fundamental
class of X. The linear maps ΩXg,n are given by the formulae

ΩXg,n(τ ) :=
∑
β

qβ st∗

(
n∏
i=1

evi(τi) ∩ [Mg,n(X,β)]
vir

)
,

where evi : Mg,n(X,β)→ X is the i-th evaluation map.

Example 3.3. Let π : Cg,n →Mg,n be the universal curve. Then the Hodge bundle
is the vector bundle

Eg,n := π∗ωπ.

We then consider the vector space V = C with the usual pairing and define the
CohFT ΩE by the formula

ΩE
g,n := c(Eg,n).

The gluing axioms are satisfied by the equation q∗Eg+h = Eg ⊕ Eh and the exact
sequence

0→ Eg−1 → Eg → O→ 0.

Here, because genus zero components do not contribute to global sections of ω and
E does not depend on the marked points, this CohFT has a flat unit.

Remark 3.4. We will see later that this is related to the GW CohFT of a point by
the quantum Riemann-Roch theorem [CG07].

Given a CohFT Ω, we may produce invariants by pairing the classes Ωg,n(v) with

various cohomology classes on Mg,n. The most important ones to consider are the
classes

ψ̄i := c1(s
∗
iωπ),

where si : Mg,n → Cg,n is the i-th marked point.

Remark 3.5. In Gromov-Witten theory, these are called ancestors. There are also
descendants, which are given by the same formula except using the moduli space
Mg,n of prestable curves instead of Mg,n, where we factor the morphism st defined
above as

Mg,n(X,β)
forget map−−−−−−−→Mg,n

stabilize−−−−−→Mg,n.

The descendant classes are denoted by ψi.

Example 3.6. We will calculate an invariant which will appear in the GW theory
of Calabi-Yau threefolds. For any CohFT Ω, consider the invariant〈

1ψ̄1

〉Ω
1,1

:=

∫
M1,1

Ω1,1(1)ψ̄1.

Using the second gluing equation, the degree zero part of Ω1,1(1) is equal to∑
µ

Ω0,3(1, eµ, e
µ) =

∑
µ

η(eµ, e
µ),

which yields the (graded) dimension χ(V ) of V . Therefore, we obtain〈
1ψ̄1

〉Ω
1,1

=
χ(V )

24
.
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Example 3.7. Consider the GW CohFT of a point. This is given by V = C with
the usual pairing and the formula

Ωg,n = 1.

Then we define the invariants〈
ψ̄a11 · · · ψ̄ann

〉
g,n

:=

∫
Mg,n

Ωg,n · ψ̄a11 · · · ψ̄ann .

Theorem 3.8 ([Kon92]). The function

D := exp

(∑
g,n

ℏg−1

n!

∑
a1+···+an=n

〈
ψ̄a11 · · · ψ̄ann

〉
g,n
ta1 · · · tan

)
is annihilated by the operators

L−1 := − ∂

∂t0
+

ℏ−1

2
t20 +

∞∑
i=0

ti+1
∂

∂ti
;

L0 := − 3

2

∂

∂t1
+

∞∑
i=0

2i+ 1

2
ti
∂

∂ti
+

1

16
;

Ln := − (2n+ 3)!!

2n+1

∂

∂tn+1
+

∞∑
i=0

(2i+ 2n+ 1)!!

(2i− 1)!!2n+1
ti

∂

∂ti+n

+
ℏ
2

n−1∑
i=0

(2i+ 1)(2i− 1) · · · (2i+ 1− 2n)

2n+1

∂2

∂ti ∂tn−1−i
.

Remark 3.9. This result (Virasoro constraints for a point) is equivalent to D being
a tau-function for the KdV hierarchy and has been generalized by various authors.

3.2. The genus-zero picture. A CohFT in genus zero defines a Frobenius mani-
fold [Dub96]. In particular, there is a product structure defined by the formula

η(τ1 ⋆τ τ2, τ3) :=
∑
n

1

n!
p∗⟨τ1, τ2, τ3, τ, . . . , τ⟩Ω0,3+n

and the quantum connection, which is defined by the formula

∇µ := ∂eµ +
1

z
eµ ⋆τ .

The structure of a Frobenius manifold comes from a function F0, which is known as
the genus-zero descendant potential and satisfies a set of PDEs, which are the string
equation, dilaton equation, and an infinite set of topological recursion relations,
where we write v =

∑
µ,n t

µ
neµz

n ∈ V JzK:

∂

∂t10
F0 =

1

2
(v0,v0) +

∞∑
n=0

∑
µ

tµn+1

∂

∂tµn
F0;

∂

∂t11
F0 =

∞∑
n=0

∑
µ

tµn
∂

∂tµn
F0 − 2F0;

∂3

∂tαk+1 ∂t
β
m ∂trn

F0 =
∑
µ,ν

∂2

∂tαk ∂t
µ
0

F0 · ηµν ·
∂3

∂tν0 ∂t
β
m ∂trn

F0.
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To state the following result, we consider the infinite-dimensional vector space
V Lz−1M (or a completion of this) with the symplectic form

(f(z),g(z)) := Resz=0 η(f(−z),g(z)).

We also consider the new variable6 q = v − z, so F0 is now a function near q = −z.

Theorem 3.10 ([Giv04]). F satisfies the above PDEs if and only if the graph L

of dF is a Lagrangian cone with vertex at q = 0 such that its tangent spaces L are
tangent to L exactly along zL ⊂ L.

We may recover the Lagrangian cone L by the following procedure. We find a
fundamental solution

S = Id + S1z
−1 + S2z

−2 + · · ·
to the quantum connection, which satisfies the equation

z
∂

∂tµ
S = eµ ⋆ S.

Then, setting J := zS∗(z)1, we can then recover the Lagrangian cone by the
following procedure:

• The derivatives ∂
∂tµ J form a basis of L ∩ V Jz−1K;

• This implies that z ∂2

∂tµ∂tν ∈ L ∩ V Jz−1K. Writing these in terms of the first
derivatives and using the fact that J solves the quantum connection, we
recover the Frobenius structure and hence the Lagrangian cone.

In Gromov-Witten theory, there is an explicit formula for the fundamental solution
in terms of descendant invariants. It is given by

Sτ (z)ϕ := ϕ+
∑
µ

∑
n,β

qβ

n!
eµ
〈

eµ
z − ψ1

, ϕ, τ, . . . , τ

〉X
0,n+2,β

.

Example 3.11. Let X be the quintic threefold. We will use the genus-zero mirror
theorem of Givental to compute the quantum product on H∗(X). Let

I(q, z) := z
∑
d≥0

qd
∏5d
m=1(5H +mz)∏d
m=1(H +mz)5

= zI0(q) + I1(q) ·H + I2(q) ·
H2

z
+ I3(q) ·

H3

z2

be the (very small) I-function of X. Setting Q(q) := qe
I1(q)

I0(q) , the mirror theorem
states that

J(0, Q(q), z) =
I(q, z)

I0(q)
.

Because the mirror map q 7→ Q(q) corresponds to setting τ = I1(q)
I0(q)

H by the divisor

equation, we can use the mirror theorem to compute ⋆τ . Because of our nonstandard
choice of the I-function, the quantum connection becomes the ODE

(H + zD)Sτ (z)
∗ = Sτ (z)

∗ · I11H⋆τ ,

6This is called the dilaton shift.
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where D := q d
dq (here, the coordinate is log q) and I11 := 1 +D

(
I1(q)
I0(q)

)
. An explicit

computation using the mirror theorem and the results of Zagier-Zinger [ZZ08] yields

I11H + · · · = Sτ (z)
∗(I11H ⋆τ 1)1 +D

 I1
I0

+D
(
I2
I0

)
I11

H2 + · · · = Sτ (z)
∗(I11H ⋆τ H)

I11H
3 = Sτ (z)

∗(I11H ⋆τ H
2).

Because Sτ begins with the identity, this computes H⋆τ .

3.3. R-matrix action. In the early 2000s, Givental [Giv01a; Giv04] discovered
a remarkable property of axiomatic enumerative theories, namely that one can
transform CohFTs by the action of matrices R(z) = R0 + R1z + R2z

2 + · · · ∈
Hom(V, V ′)JzK which satisfy the property

R∗(−z)R(z) = IdV .

Traditionally, the literature [PPZ15] requires that V = V ′ and R0 = Id, but the
MSP group [CGL19] has removed this restriction and also allows dimV < dimV ′.

In order to define the action of R on a CohFT Ω defined on V , we need to review
some of the combinatorial structure of Mg,n. For a curve C ∈ Mg,n(C), we may
consider the dual graph of C, which has vertices, edges, and legs, which are defined
as follows:

• The vertices correspond to irreducible components of C and are labelled by
a non-negative integer, which is the genus;
• The edges correspond to nodes of C (in particular, we allow loops);
• The legs correspond to marked points.

Any graph which appears as the dual graph of a stable curve is called a stable graph.

2

3

0

α

β

3

1

2

ψ

ψ

ψ2

ψ

Figure 1. Example of a stable graph in M7,3 and associated
tautological class. This stable graph describes the image of a map
M2,4 ×M3,2 ×M0,5 →M7,3.

The first type of action on CohFTs is a translation action. Let T ∈ V JzK. For a
CohFT Ω, we define

(TΩ)g,n(v) :=
∑
m

1

m!
p∗Ωg,n+m(v, T, . . . , T )

whenever the infinite sum makes sense.
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Example 3.12. If ΩX is the GW CohFT of a smooth projective variety X and
τ ∈ H2(X) is a divisor class, then the infinite sum makes sense and we can define
the shifted GW CohFT ΩX,τ of X. For example, if X is the quintic threefold and

τ = I1
I0
H, then shifting to τ is the same as the mirror map q 7→ Q(q) = qe

I1
I0 .

The second type of action is the action of a matrix R as in the beginning of this
section. Let Gg,n define the set of all stable graphs of genus g with n legs. Then we
define

(RΩ)g,n :=
∑

Γ∈Gg,n

1

|AutΓ|
ContΓ,

where ContΓ is defined by the following construction:

• At the i-th leg, we place the map

R(−ψ̄i)∗ ∈ Hom(V ′, V )Jψ̄iK;

• At every edge, we place the bivector

V (ψ̄1, ψ̄2) :=

∑
µ eµ ⊗ eµ −

∑
µ′ R(−ψ̄1)

∗eµ′ ⊗R(−ψ̄2)
∗eµ

′

ψ̄1 + ψ̄2
;

• At every vertex, we place the linear map

Ωgv,nv
: V ⊗nv → H∗(Mgv,nv

);

• Finally, we consider the pushforward in cohomology along the gluing mor-
phism

∏
vMgv,nv

→Mg,n.

Definition 3.13. Let R be as above. Then we define the translation

TR := z(1−R(−z)∗1′) ∈ zV ′JzK.

Whenever it makes sense, we define

R.Ω := RTΩ.

Theorem 3.14 ([CGL19]). Suppose we work with coefficients in CJqK. Then if

TR ∈ z2V JzK + zqV JzK,

R.Ω is a well-defined CohFT. Moreover, if dimV = dimV ′, 1′ is a unit for R.Ω.

We would like to remark a bit more about the translation action when R0 ̸= Id.
For simplicity, we will assume that V = V ′ and R01 = c · 1 for some constant c.
Then we set T̃R := z(1− cR(z)−11) and use the dilaton equation to compute

TRΩg,n(v) =

∞∑
m=0

1

m!
p∗Ωg,n+m(v, TR, . . . , TR)

=
∑
k,ℓ≥0

1

k!ℓ!
p∗Ωg,n+k+ℓ(v, ((1− c−1)1 · ψ)⊗k, (c−1T̃R)

⊗ℓ)

=
∑
k,ℓ≥0

(1− c−1)k · c−ℓ

ℓ!

(
2g − 2 + n+ k + ℓ− 1

k

)
p∗Ωg,n+ℓ(v, T̃

⊗ℓ
R )

=

∞∑
m=0

c2g−2+n

m!
p∗Ωg,n+m(v, T̃R, . . . , T̃R)

whenever this makes sense.
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3.4. Reconstruction theorem. Recall that every CohFT defines a Frobenius
algebra. We will call a CohFT semisimple if the corresponding Frobenius algebra is
semisimple.

Theorem 3.15 ([Tel12]). Let Ω be a semisimple CohFT with flat unit and ω be its
topological part. If Ω is semisimple, there exists a unique

R = Id +R1z + · · · ∈ End(V )JzK

such that
Ω = R.ω.

Example 3.16. Recall the Hodge bundle CohFT from before. Recall that it is
given by the formula

ΩE
g,n = c(E) = 1 + λ1 + · · ·+ λg.

Taking the degree zero part, we see that ωE is the GW CohFT of a point. Using
Mumford’s computation

ch(E) = g +

∞∑
k=1

B2k

(2k)!

(
κ2k−1 +

1

2
ι∗

2k−2∑
i=0

ψ̄i1ψ̄
2g−2+i
2

)
,

where κm = p∗ψ̄
m+1
n+1 , B2k are the Bernoulli numbers, and ι is the inclusion of the

boundary up to a 2 : 1 étale cover, and the formula

c(E) = exp

(
−
∑
k

(−1)k(k − 1)! chk(E)

)
for any vector bundle E (or by just using the quantum Riemann-Roch theorem7

directly), we obtain the R-matrix

R(z) = exp

( ∞∑
k=1

B2k

2k(2k − 1)
z2k−1

)
= 1 +

1

12
z + · · · .

As a sanity check, we will compute ΩE
1,1 using the R-matrix. First, we consider

the stable graphs in Figure 2. The first graph Γ1 gives us the contribution

1 0

Figure 2. Stable graphs for g = 1, n = 1

ContΓ1
= TωE

1,1(R(z)
−11)

= ωE
1,1(R(z)

−11) + p∗ω
E
1,1(R(z)

−11, TR(z)).

Using the formula B2 = 1
6 and the fact that dimM1,1 = 1, this becomes

1− 1

12
ψ1 +

1

12
κ1.

7There is a sign error in Coates-Givental, which has propagated to the rest of the literature.
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The second graph does not receive tail contributions because dimM0,3 = 0. The
constant term of the edge contribution is 1

12 , so considering the automorphism and

pushing forward to M1,1 gives us

ContΓ2 =
1

12
∆,

where ∆ denotes the boundary divisor (with the correct stack structure). Because
ψ1 = κ1 in this case, we obtain

1 + λ1 = 1 +
1

12
(κ1 − ψ1 +∆) = 1 +

1

12
∆.

3.5. Operator formalism and geometric quantization. We will return to the
symplectic formalism of Givental. This is more convenient for certain computations,
but it is in fact equal to what we have before, at least when we want to calculate
generating functions. Recall that we had a Frobenius manifold structure on V and
we considered the vector space V := V Lz−1M with symplectic form

(f(z),g(z)) := Resz=0 η(f(−z),g(z)).
If we consider the polarization given by V+ = V [z] and V− = z−1V Jz−1K, then
letting q be as before (with the dilaton shift), let p be coordinates on V− such that
(q,p) form a system of Darboux coordinates for V.

Definition 3.17. We will call any formal function of the form

D = exp

( ∞∑
g=0

ℏg−1Fg

)
an asymptotic element of the Fock space.

Then given such an asymptotic element of the Fock space, we will quantize
(infinitesimal) symplectic transformations on V by the following formulae:

p̂apb := ℏ ∂qa ∂qb , p̂aqb := qb ∂qa , q̂aqb =
qaqb
ℏ
.

In particular, this will allow us to understand expressions like R̂D. However, we
need to be careful because our formulae will involve both the fundamental solution
Sτ and the R-matrix, and Sτ is a power series in z−1.8

Theorem 3.18 ([Giv01a]). An operator of the form S(z−1) = Id + S1z
−1 + · · ·

acts on (asymptotic) elements of the Fock space by the formula

Ŝ−1D(q) = e
1
2ℏW (q,q)D([Sq]+),

where W =
∑
η(Wmnqm, qn) is defined by the formula

S(w−1)∗S(z−1)− Id

w−1 + z−1
=
∑ Wmn

wmzn
.

Operators of the form R(z) = Id +R1z + · · · act by the formula

R̂D(q) = e
ℏ
2 V (∂q,∂q)D(R−1q),

where V =
∑
η(pm, Vmnpn) is defined by

R(w)∗R(z)− Id

w + z
=
∑

Vmnw
mzn.

8This is because we expand 1
z−ψ =

∑∞
n=0 ψ

nz−n−1.
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For a semisimple CohFT, there is a system of canonical coordinates uα such that
the 1-form du is a homomorphism of algebras TvV → C. Then near a semisimple
point, there is a asymptotic solution to the quantum connection of the form

Ψ ·R · eU
z ,

where Ψ switches from flat coordinates to canonical coordinates and U = diag(uα)
is the matrix of canonical coordinates. Finally, define

C =
1

2

∫ u∑
Rαα1 duα.

A corollary of Teleman’s reconstruction theorem is the formula

DX = eC(u)Ŝ−1
τ Ψ̂R̂ê

U
z

dimV∏
i=1

Dpt

for the Gromov-Witten theory of any smooth projective variety with semisimple
quantum cohomology.

Example 3.19. As a final example, we will apply Teleman’s theorem to compute F1

of any semisimple CohFT. This result was first proved by Givental [Giv98] for the
equivariant Gromov-Witten theory of GKM orbifolds and extended to the orbifold
case by Zong [Zon16]. The argument we give is due to Guo-Ross [GR19]. Let eµ
denote an idempotent basis for the quantum product. We will compute∫

M1,1

Ω1,1(eβ).

Using the reconstruction theorem, we obtain∫
M1,1

Ω1,1(eβ) =

∫
M1,1

TRω1,1(R(ψ̄)
−1eβ) +

1

2
TRω0,3(R(ψ̄)

−1eβ , V (ψ̄2, ψ̄3))

=

∫
M1,1

TRω1,1(eβ)−
∫
M1,1

TRω1,1(R1eβ)ψ̄

+
1

2

∑
µ

ω0,3(eβ , R1e
µ, eµ)

=

∫
M1,1

(ω1,1(eβ) + p∗(ω1,2(eβ , R11)ψ̄
2
2))

−
∫
M1,1

(ω1,1(R1eβ)ψ̄1 + p∗(ω1,2(R1eβ)ψ̄
2
2)ψ̄1)

+
1

2

∑
µ

η(eβ ⋆ eµ, R1e
µ)

=
1

24

∑
µ

(ω0,4(eµ, e
µ, eβ , R11)− ω0,3(eµ, e

µ, R1eβ))

+
1

2
η(eβ , R1e

β)

=
1

24

∑
µ

∑
ν

ω0,3(eµ, e
µ, eν)ω0,3(e

ν , eβ , R11)



28 PATRICK LEI

− 1

24

∑
µ

ω0,3(eµ, e
µ, R1eβ) +

1

2
(R1)ββ

=
1

24

(
η(eβ , R11)−

∑
µ

η(eµ, R1eβ)

)
+

1

2
(R1)ββ .

Using the identities

(2)

η(R11, e
β)−

∑
µ

η(R1eβ , e
µ) =

∑
µ

∆µ

∫
M0,4

Ω0,4(eµ, eµ, eµ, eβ)

= −1

2

∑
µ

∆µ ∂uβ
∆−1
µ

=
1

2

∑
µ

∂uβ
log∆µ,

where ∆µ := η(eµ, eµ)
−1, we obtain the result∫

M1,1

Ω1,1eβ =
1

48

∑
µ

∂uµ
log∆µ +

1

2
(R1)ββ ,

which can be placed in the suggestive form

dFΩ
1 =

∑
µ

dlog∆µ

48
+

1

2
(R1)µµ duα.

We will now prove the identities in (2). For the first identity, we will compute Ω0,4

using the reconstruction theorem. There are two stable graphs, given in Figure 3.
The first graph gives the contribution

0 0 0

Figure 3. Stable graphs for g = 0, n = 4

Cont1 = Tω0,4(eµ, eµ, eµ, eβ)− 3Tω0,4(R1eµ, eµ, eµ, eβ)ψ̄1

− Tω0,4(eµ, eµ, eµ, R1eβ)ψ̄4

= ω0,4(eµ, eµ, eµ, eβ) + ω0,5(R11, eµ, eµ, eµ, eβ)ψ̄1

− 3ω0,4(R1eµ, eµ, eµ, eβ)ψ̄1 − ω0,4(eµ, eµ, eµ, R1eβ)ψ̄4

= δβµ∆µ + δβµη(R11, eµ)ψ̄1 − 3η(R1eµ, eβ)ψ̄1 − η(eµ, R1eβ)ψ̄4.

The second graph gives the contribution

Cont2 =
∑
ν

ω0,3(eµ, eµ, e
ν)ω0,3(R1eν , eµ, eβ)[pt]

= η(R1eµ, eβ)[pt].

This has multiplicity 3, so taking the sum and integrating over M0,4
∼= P1, we obtain∫

M0,4

Ω0,4(eµ, eµ, eµ, eβ) = δβµη(R11, eµ)− η(R1eβ , eµ)
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= ∆−1
µ (δβµη(R11, e

µ)− η(R1eβ , e
µ)),

where we have used the fact that

eµ =
eµ

η(eµ, eµ)
= ∆µeµ.

This proves the first identity.
To prove the second equality in (2), we note that

∆−1
µ = Ω0,3(1, eµ, eµ) = Ω0,3(eµ, eµ, eµ)

because eµ is idempotent. Differentiating with respect to uβ , we obtain

∂uβ
∆−1
µ = 2Ω0,3(1, eµ, ∂uβ

eµ) = 3Ω0,3(eµ, eµ, ∂uβ
eµ) +

∫
M0,4

Ω0,4(eµ, eµ, eµ, eβ).

Using again the fact that eµ is idempotent, we see that

Ω0,3(1, eµ ∂uβ
eµ) = Ω0,3(eµ, eµ, ∂uβ

eµ).

This implies that

0 = Ω0,3(1, eµ ∂uβ
eµ) +

∫
M0,4

Ω0,4(eµ, eµ, eµ, eβ)

=
1

2
∂uβ

∆−1
µ +

∫
M0,4

Ω0,4(eµ, eµ, eµ, eβ),

which proves the identity.

Part 2. Higher-genus computations via logarithmic GLSMs

In algebraic geometry, one profitable way to deal with non-compactness issues is
to forcibly compactify our spaces and then understand the contributions coming from
the divisor at infinity. For example, this technique was used by Deligne to construct
mixed Hodge structures [Del71]. In enumerative geometry, one profitable application
of this technique is the capped topological vertex [OP10], which calculates relative
invariants of a (partial compactification) of C3 relative to the divisor at infinity
and is related to the usual topological vertex by a capping operator. While Jun
Li’s technique of expanded degenerations [Li01] allows us to calculate enumerative
invariants relative to a smooth divisor, generalizing this to the case of a simple
normal crossings divisor requires logarithmic geometry (at least if we want to do
it using algebraic geometry). Now, Chen-Janda-Ruan [CJR21] have developed the
theory of log GLSMs, which define stable map-type invariants for any GLSM-type
theory defined over an arbitrary projective Deligne-Mumford stack (and resolves all
compactness issues therein). This theory has been used by Guo-Janda-Ruan [GJR18]
to prove finite generation, holomorphic anomaly equations, orbifold regularity, and
the LG/CY correspondence for the quintic threefold and some other Calabi-Yau
threefold complete intersections in projective space.

4. Geometry of log GLSM moduli spaces (Qile Chen and Felix Janda)

Our motivation is the quantum Lefschetz theorem. Here, we let X be a smooth
projective variety or Deligne-Mumford stack over C and E be a vector bundle over X.
We are interested in computing the Gromov-Witten invariants of a smooth complete
intersection Z ⊂ X defined by a regular section of E. Because the ambient space
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is generally easier to work with, it is desirable to find a way to compute the GW
invariants of Z in terms of the data of (X, E).

Question 4.1. Is there a way to compute the Gromov-Witten invariants of Z using
the ambient data of (X, E), possibly involving some correction terms?

While quantum Lefschetz holds in genus zero in the convex case, and the approach
of desingularization of the moduli of stable maps to force quantum Lefschetz to hold
works well in genus one, this is intractable in higher-genus. Instead, our approach
will be to use GLSMs, which were introduced by Witten [Wit92] in the physics
literature, and by Fan-Jarvis-Ruan and Kiem-Li, Chang-Li, Chang-Li-Li, and other
authors in mathematics [FJR18; KL13; CL12a; CLL15]. We will combine this with
the theory of punctured log maps due to Abramovich-Chen-Gross-Siebert [ACGS24]
to obtain the theory of log GLSM.

4.1. R-maps and log targets.

Definition 4.2. An R-map is a commutative diagram

P

C BC×
ω

S,

f

ωlog

where the morphism P → BC×
ω is a proper, log-smooth DM-type morphism. If

the source is a twisted curve, this is the underlying R-map. If the source is a log
curve, this is a log R-map, and if the source is a punctured curve, this is a punctured
R-map.

Example 4.3. Consider the diagram

P◦
C = Tot(OPn(−d)⊗ Cω) P◦ = Tot(OPn(−d)⊠ Lω)

SpecC BC×
ω Pn ×BC×

ω .

Taking the base change of the underlying R-map to C, consider the diagram

P◦ ×BC×
ω
C P◦

C BC×
ω .

Therefore, the data of an R-map to this target is equivalent to the data of a morphism
C → Pn and a section ρ ∈ H0(f∗O(−d)⊗ ωlog). In particular, if n = 0, we are left
with the data of a differential ρ ∈ H0(ωlog).

Example 4.4. We will now give some examples of some log targets. An easy way
to compactify a vector bundle is to turn it into a weighted projective space bundle,
so for example we may consider

P
GW,C = P(r̃,1)(OPn(−d)⊗ Cω ⊕ O) P

GW
= P(r̃,1)(OPn(−d)⊕ O).
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We can give this the log structure of functions which vanish only on the boundary
and call it PGW.

Another example is to consider the example of 5-spin curves. Here, X = BGm
with the degree 5 map to BC×

ω . Then we set

P
LG

= P(L5
X ⊕ O).

Again, we give this the divisorial log structure and call it PLG.
A feature of this is that there is a geometric LG/CY correspondence, namely

that ∞LG ≃ ∞GW as log stacks.

Example 4.5. For the (3, 3) complete intersection in P5, we consider

PGW = P(OP5(−3)⊕2 ⊗ Lω ⊕ O)

with the divisorial log structure.

Example 4.6. We will now consider a general hybrid target. The input is a smooth
projective DM stack X, a vector bundle E =

⊕
Ei over X, a line bundle L over X,

and r ∈ Z>0. The spin is the diagram

X BGm

X ×BC×
ω BGm

LX

r

L−1⊗Lω

The target is

P
(⊕

E∨
i ⊗ LiX ⊕ O

)
with the divisorial log structure at infinity.

We will now turn our discussion to the discrete data. This consists of a genus,
curve class, and twisted sector for each marking. We will now construct a dual
graph, which has vertices and half-edges. There is an involution

ιG : V ∪H → V ∪H

and a vertex map vG : H → V . Legs are the half-edges which are fixed by the
involution, and we will label the legs by the marking map

m : L→ {1, . . . , n}.

The decorations are the curve classes, sectors, and degrees.
Consider a log map

P

Ph ⊂ Cωlog
BC×

ω ,

f

where Ph is a special point. Because ωlog|Ph
is the trivial bundle, we obtain a

commutative diagram

Ph PC

C P,
f
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which exhibits Ph as a gerbe over PC. Assuming that there are no orbifold points,
theere is a sector map

r : H(G)→ {0PC ,∞PC ,PC}.
We require that Ph → PC factors through rh, and say that h is compact type if
rh = 0P.

Example 4.7. Consider again X = P0. Then P = P(Lω ⊕ O). If g = 1, then a log
map is simply η ∈ H0(ωC), which cannot be stable. Adding a marked point, we

obtain a section of ωlog
C , which we will force to vanish at the marked point.

The stability of underlying R-maps has two conditions:

(1) First, that the morphism is representable;
(2) Second, that

(ωlog)
1+δ ⊗ f∗H⊗k ⊗ f∗O(r̃∞) > 0,

where H is a polarization on the target. Here, k ≫ 1≫ δ > 0.

Example 4.8. Again considering X = P0, we will let C be of genus 2. the limit
limλ→∞ λ · η is the union of a genus-zero curve with a differential which vanishes at
one point with multiplicity 2 connected to a genus 2 curve which sits entirely at
infinity. Even though the rational component is not a priori stable, it is stabilized
by its intersection with the zero section.

Remark 4.9. In the P0 case, stability is equivalent to the condition that

ωlog ⊗ η∗O(k · 0P) > 0

whenever k ≫ 1.

4.2. Log geometry and tropicalization.

Definition 4.10. Let Y be a scheme or a stack. A log structure on Y is a sheaf of
monoids MY on Y , together with a morphism

α : MY → (OY , ·)
inducing an isomorphism α−1O×

Y ≃ O×
Y . The pair Y = (Y ,MY ) is called a log

scheme/stack and the sheaf

MY /O
×
Y

is called the characteristic sheaf or ghost sheaf.

Example 4.11. Any log GLSM target is a log stack.

Example 4.12. Another standard target is a toric variety with MY being all
functions which vanish only on the toric boundary. This is usually called the
divisorial log structure.

Example 4.13. For a toric monoid P , we can consider

S = Spec(P → C) = (SpecC, P × O×
SpecC).

The tropical data we will consider is the category Cones of rational polyhedral
cones (σ,N). This has a distinguished object (R≥0,Z). Locally, we will define

Σ(Spec(P → C)) = Hom(P,R≥0) = P∨
R

with the natural lattice structure P∨ := Hom(P,N). In general, the tropicalization
Σ(X) of a log scheme X is the generalized cone complex given by gluing local
pictures along face maps.
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Example 4.14. Consider A1 with the log structure given by 0. Then

Σ(A1) = R≥0.

Here, there is only a log structure at 0, which is a copy of N measuring the vanishing
order at the origin. The map

MA1,0 →MA1,x

sends 1 to 0, so induces 0 ↪→ N∨.

Example 4.15. Consider A2 with the toric log structure. Then Σ(A2) is simply
R2

≥0, which is the same as the support of the toric fan. At the monoid level, there

is an N2 at the origin, a copy of N on each axis, and 0 at a general point.

4.3. Log curves.

Definition 4.16. An n-pointed log curve over a log scheme S consists of

(π : C → S, {pi}ni=1),

such that

(1) The underlying morphism of π is an n-pointed twisted curve;
(2) π is log smooth and integral;
(3) On the smooth locus of C, the log structure is given by MS ⊕

⊕n
i=1 N · pi

Intuitively, the log structure is given by the log structureMS at smooth unmarked
points, MS ⊕ N at marked points, and MS ⊕N N2 at the nodes, which means the
pushout diagram

N N2

MS MC |q.

∆

ℓ

Here, ℓ is the edge length parameter, and (1, 0) and (0, 1) are the two components.
Because tropicalization is functorial, the morphism C → S induces a morphism

Σ(C)→ Σ(S).

For example, if C has two components, then the node will correspond to the largest
cone, each component corresponds to a copy of MS , and each marking will give a leg
of infinite length. Above a point in Σ(S), the distance between the two components
is the edge length parameter evaluated at the point x. To see this more clearly,
see Figure 4.

We will now consider punctured curves. We will consider a diagram

p◦i pi

C◦ C S.P

Here, P is a morphism of log schemes which is an isomorphism away from Pi and P
is an isomorphism. In addition, we will have an inclusion

MC,pi =MS ⊕ Npi ⊂MC◦,pi =MS ⊕ Zpi.
This corresponds to allowing poles at pi, and in the tropicalization makes edges
finite-length. A picture is given in Figure 5.
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Figure 4. Tropicalization of a log curve.

Figure 5. Tropicalization of a punctured curve.

Definition 4.17. A punctured curve is a log curve with punctures

C◦ → C → S.

A tropical punctured curve is a tropical curve with the additional data of lengths of
punctured legs.

4.4. Superpotentials.
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Definition 4.18. A superpotential is a commutative diagram

P◦ Lω

BC×
ω ,

where P◦ = P \∞. We say that W has proper critical locus if

CritW → BC×
ω

is proper.

Equivalently, a superpotential is a C×
ω -equivariant function

WC : P
◦
C → Cω.

In this formulation, W has proper critical locus if and only if CritWC is proper (as
a DM stack). This implies that the critical locus is contained in 0P.

Example 4.19. Let X be a smooth projective Deligne-Mumford stack and E be a
vector bundle on X with section s. We will write

WC = ⊗(s⊗ 1Cω ) : P
◦
C = E∨ ⊗ Cω → Cω.

Then CritWC is proper if and only if Z = (s = 0) is smooth of codimension equal
to the rank of E.

Example 4.20. Let X = P0 and E = C. Let s ∈ H0(E) be nonzero. Now WC is
simply multiplication by s, so the critical locus is empty.

4.5. Punctured R-maps.

Definition 4.21. A punctured R-map is an R-map with domain a punctured
R-map.

Definition 4.22. Let h be a half-edge. Then the contact order at h is defined by

c(h) :=
∂ Trop f

∂uh
∈ Z.

Figure 6. Contact orders. Note the last downward edge has finite length.
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Example 4.23. Consider the genus 2 picture from before (target being P0) and
consider the same stable limit as an R-map. If we calculate with z = s−1, then

z2 dz = −s−3 ds

s
,

so the pole order at the node must be 3. Tropically, if ĥ is the half edge of the

node attached to the g = 2 vertex, we have c(ĥ) = −3, so restricting to the g = 2
component, we obtain a punctured R-map.

The discrete data of punctured R-maps is

τ = (G, g, β,deg, r, σ : V ∪H → {0, R≥0}, c : H → Z).

Theorem 4.24. The moduli stack R(P, τ ) is a proper log DM stack admitting a
canonical perfect obstruction theory.

Definition 4.25. We will consider τ where V (G) = {⋆} and L(G) = H(G). These
are called vertex-type moduli. If σ = 0, then we will denote

Rg,ς(P, β) := R(P, τ )

for the stack of stable log R-maps, and if σ = R≥0, the we will denote

Rg,ς(∞, β) := R(P, τ )

for the stack of punctured R-maps.

4.6. Obstruction theories.

Definition 4.26. Recall that we have a diagram

P

C BC×
ω

R(P, τ ).

π

f

The canonical perfect obstruction theory is defined by

φ : TR(P,β)/M(τ ) → Rπ∗f
∗TP/BC×

ω
.

Because it is very complicated, we will not discuss M(τ ).

Unfortunately, this is not the obstruction theory that we really want. We will
consider the superpotential and then use the cosection localization technique of
Kiem-Li [KL13]. Here, we have the diagram

P◦ Lω

C BC×
ω

S

W

ωlog

π

whenever τ is of compact type. The compact-type condition implies that

f∗ dW : f∗TP◦/BC×
ω
→ ωlog
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factors through the sheaf ω of holomorphic differentials. Because R1π∗ω ∼= O, we
obtain a cosection

σW := R1π∗f
∗ dW : R1π∗f

∗TP◦/BC×
ω
→ O.

By the results of Kiem-Li, this gives us a virtual cycle

[Rg,ς(P
◦, β)]virσW

supported on R-maps to CritW , which coincides with the canonical virtual cycle
after pushing forward to the stack of all R-maps.

Remark 4.27. In Gromov-Witten theory, the cosection localized virtual cycle satisfies
the relation

[Rg,ς(P
◦, β)]virσW

= ±[Mg,n(Z, β)]
vir

by work of Chang-Li, Chang-Li, Kim-Oh, Picciotto, and Chen-Janda-Webb [CL12a;
CL20b; KO22; Pic21; CJW21].

Of course, we have the problem that Rg,C(P
◦, β) is not proper, so we need to

find a way to extend the cosection along the boundary

∆g,ς(P, β) := Rg,ς(P, β) \ Rg,ς(P◦, β).

We need to understand how to differentiate

W : P 99K Lω,

which will require compact-type legs and a principalization of the boundary.

Definition 4.28. We will say discrete data is compact type if for all h ∈ L(G),
either

• c(h) = 0 and r̄ = 0P;
• c(h) ≤ −1. In this case r̄ =∞P.

Example 4.29. Consider the P0 example in genus 1. If we consider η ∈ H0(ωC),

we can view it as η ∈ H0(ωlog
C ). Then, at the marking, we see that c(h) = 0 and

r̄h = 0P, so the leg is of compact type. In the tropical picture, the entire infinite
leg gets contracted to the origin.

Example 4.30. Now consider the same example but with g = 2. We will impose
that there are no markings by (η = 0) = 2p. The stable limit as we scale η to infinity
had a genus 0 component with a zero of order 2 and a genus 2 component mapping
entirely to ∞. If we consider the half-edge emerging from the genus 0 vertex, it
touches ∞ with contact order 3, so it is not compact type. On the other hand, the
half-edge coming from the genus 2 vertex touches ∞ with contact order −3, so it is
compact type (and in the tropical picture the leg has finite length).

Remark 4.31. The data of η0|C2
is equivalent to a fixed isomorphism OC2

(2p) ≃ ωC2
,

where C2 is the genus 2 vertex.

Remark 4.32. Tropical curves with only compact-type legs have compact image in
Σ(P) = R≥0. In this picture, they are either pointing downward or contracted to
the origin.



38 PATRICK LEI

Having defined compact type insertions, we will now define a modular principal-
ization of the boundary. There is an edge length

ℓ : E(G) ∪ L◦(G)→MS

and a degeneracy
e : V (G)→MS

which intuitively records where v is sent in R≥0.

Definition 4.33. For a toric monoid P , define a partial order a ≤ b if there exists
c ∈ P such that a+ c = b. If we consider a punctured R-map, consider the collection
of degeneracies

{eV | v ∈ V (G)}.
It has uniform maximal degeneracy if there is a unique maximum

emax = max{ev | v ∈ V (G)}.

Example 4.34. Let MS = N2. Suppose that there are v1, v2 and a vertex v0 which
is sent to 0 ∈ R≥0. Then we compute

ev1 = ev0 + c1 · ℓ1
= ℓ1.

Similarly, ev2 = ℓ2, where ℓ1 and ℓ2 are the generators of N2. These cannot be
compared, so we do not have uniform maximal degeneracy.

To uniformize this, we consider a subdivision into three subcones. The first is
when ℓ2 > ℓ1, the second is when ℓ1 = ℓ2, and the third is when ℓ1 > ℓ2. After this
subdivision, each subcone has uniform maximal degeneracy.

Example 4.35. A family of tropical curves over M̄∨
S with compact-type legs and

uniform maximal degeneracy emax ∈ MS has images in R≥0 uniformly bounded
from above by emax.

We now define a new stack
U(P, τ )

to be the stack of punctured R-maps with discrete data τ and having uniform
maximal degeneracy. By removing the condition of uniform maximal degeneracy,
we obtain a morphism

F : U(P, τ )→ R(P, τ ),

which satisfies the following:

• F is log étale, proper, and surjective;
• There is as canonical perfect obstruction theory;
• We have

F∗[Ug,ς(P, β)]
vir = [Rg,ς(P, β)]

vir
σW

F∗[Ug,ς(P, β)]
vir = [Rg,ς(∞, β)]virσW

for vertex-type moduli.

The boundary ∆g,ς(P, β)
⋏ defined by the Cartesian diagram

∆⋏ ∆max = 0

U [A1/Gm]
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is a log Cartier divisor.

Theorem 4.36. Assume all legs are of compact type and W : P◦ → Lω has proper
critical locus. Then

(1) U(P, τ ) has a reduced perfect obstruction theory;
(2) In the log R-map case, we have

[Ug,ς(P, β)]
red = [Rg,ς(P

◦, β)]virσW
;

(3) The boundary ∆⋏
g,ς(P, β) also has a reduced perfect obstruction theory;

(4) There is the relation

[Ug,ς(P, β)]
red = [Ug,ς(P, β)]

vir − r̃[∆⋏
g,ς(P, β)]

red,

where r̃ is the pole order of W at infinity.

The reduced perfect obstruction theory for log R-maps is given by the triangle

Ered → Rπ∗f
∗TP/BC×

ω

σ−→ [O→ O(r̃∆max)]
[1]−→

and for emax > 0 is given by

Ered → Rπ∗f
∗TP/BC×

ω

σ−→ O(r̃)[−1] [1]−→ .

The virtual components of ∆⋏
g,C are given by the formula

[∆⋏
g,ς(P, β)]

red =
∑
τ⋏

lcmx∈E(G) c(x)

|Aut τ⋏|
[U(P, τ⋏)]

red

due to Abramovich-Chen-Gross-Siebert [ACGS24], where

τ⋏ = (τ , Vmax(G))

is the tropical type of rigid tropical curves with uniform maximal degeneracy. Here,
this implies that τ⋏ is bipartite and rigidity means there is no deformation fixing τ
and Vmax(G) besides scaling emax

Decomposing this further, we have

[U(P, τ⋏)]
red

= (−r̃)|V∞(G)|−1

∏
E∈E(G) c(E)

lcmE∈E(G) c(E)
∆!

τ⋏

 ∏
v∈V∞(G)

[U(P, τv)]
red ×

∏
v∈V0(G)

[U(P, τV )]
vir

.
This is not true if we replace everything with the canonical obstruction theory, so
this is quite interesting. Putting these two formulae together, we obtain the tropical
decomposition formula

[Ug,ς(P, β)]
red =

∑
τ⋏

(−r̃)|V∞(G)|

|Aut τ⋏|
·
∏

E∈E(G)

c(E)·

·∆!
τ⋏

 ∏
v∈V∞(G)

[U(P, τv)]
red ×

∏
v∈V0(G)

[U(P, τv)]
vir

.
Example 4.37. Consider the P0 example again. When g = 2, we obtain six
bipartite graphs, which are given in Figure 7. Choosing any nonzero superpotential,
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g = 2 g = 1 g = 0 g = 0 g = 0 g = 0 g = 0

g = 1 g = 0 g = 0 g = 1 g = 2 g = 2

A B C D E F

1 1 1 1 1 2 2 3

Figure 7. Graphs of tropical types for X = P0 when g = 2.

we obtain the tropical decomposition formula

0 = [Ug(P, 0)]
red =

∑
τ⋏

(−1)|V∞(G)|

|Aut τ⋏|
·
∏

E∈E(G)

c(E)

·∆!
τ⋏

 ∏
v∈V∞(G)

[U(P, τv)]
red ×

∏
v∈V0(G)

[U(P, τv)]
vir

.
Note here that the critical locus is empty, so the virtual cycle must be zero.

In GW theory, the tropical decomposition formula becomes

[Mg,n(Z, β)]
vir = ±

∑
τ⋏

(−1)|V∞(G)|

|Aut τ⋏|
·
∏

E∈E(G)

c(E)·

·∆!
τ⋏

 ∏
v∈V∞(G)

[Ugv,ev (∞, βv)]red ×
∏

v∈V0(G)

[Rgv,ev (P, βv)]
vir

.
4.7. Effective invariants. We will consider the reduced virtual cycle [Ug,C(∞, β)]red.
For each h ∈ L, the evaluation lands in ∞C = P(E∨). Then effective invariants are
given by

F∗

(∏
h

ev∗h αh ∩ [Ug,C(∞, β)]red
)
.

Remark 4.38. In the vertex case, we have the relation

[Ug,ς(P, β)]
vir = r̃∆max ∩ [Ug,ς(P, β)]

red.

Before we continue, we will consider the geometry of Rg,ς(∞, β) when X = PN .
Consider the diagram

∞ PN

C BC×
ω .

f

ωlog



HIGHER-GENUS GW OF COMPACT CY3 41

This induces a stable map C → PN , so in fact it is equivalent to the data of
s : C → PN and an isomorphism

f∗O(d)⊗ ω−1
log ≃ OC

(∑
chph

)
,

which is equivalent to an isomorphism

f∗O(1)d ≃ ω

(∑
h

(ch + 1)ph

)
.

Therefore, when N = 0, Rg,C(∞, β) is the moduli of canonical divisors with specified
zero orders, and for general N , we have the moduli of d-spin linear series of rank N .

We can now take a root of the log target ∞, which is given by the diagram

∞ 1
ℓ ∞

[A1/Gm] [A1/Gm].ℓ

On virtual cycles, we obtain

[Rg,ς(∞
1
ℓ , β)]⋆ = ℓ−1[Rg,ς(∞, β)]⋆,

where ⋆ is either “vir” or “red.”
Geometrically, we must have a balancing condition

deg f∗O(∞) =
∑
h

c(h).

Example 4.39. Let X = PN and suppose E = O(d) is a line bundle. Then we
obtain ∑

h

c(h) = deg f∗O(∞)

= deg(f∗OPN (d)⊗ ω−1
log)

= β · d− (2g − 2 + n).

This implies that
2g − 2

d
≥ β ≥ 0,

so β must be one of 0, 1, 2, . . . ,
⌊
2g−2
d

⌋
.

When g = 0, the upper bound is negative, so there are no genus zero reduced
invariants. When g = 1, then the upper bound is zero, so the only reduced invariant
is in the case β = 0. This implies that∑

h

(c(h) + 1) = 0,

so because the contact orders are all negative, they must equal −1.

Example 4.40. We will consider legs of contact order −1 in the P0 case. Let C be
smooth of genus g and η ∈ H0(ωC). We now choose a marking p ∈ C, we obtain
η ∈ H0(ωlog). The stable limit as we scale η to infinity is a genus g component
mapping entirely to ∞ and a genus 0 component with a zero at p. On P1, we see
that

η0|P1 = dz = ds−1 = −s−1 ds

s
.
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This implies the contact order of the genus 0 component with ∞ is 1, so the genus
g component has contact order −1.

Remark 4.41. The legs with contact order −1 are created by adding compact type
markings outside of ∞ and should be viewed as the unit, denoted by 1.

4.8. Log GLSM axioms. Consider the diagram

Ug,ς+1(∞, β) C◦ Ug,ς(∞, β),s

F1

π

where π : C◦ → Ug,ς(∞, β) is the universal punctured curve.

Theorem 4.42. We have the equations

s∗[Ug,ς+1(∞, β)]red = π∗[Ug,ς(∞, β)]red

and

F1,∗(ev
∗
1D ∩ [Ug,ς+1(∞, β)]red) =

∫
β

D · [Ug,ς(∞, β)]red

for any D ∈ H2(∞). In addition, if we consider the diagram

Ug,ς+1(∞, β) Mg,n+1

Ug,ς(∞, β) Mg,n

F

F1 π

F

then we have

F∗[Ug,ς+1(∞, β)]red = π∗F∗[Ug,ς(∞, β)]red.

Example 4.43. If we consider Zd ⊂ PN and let g = 1, then we only need to
compute one non-ambient invariant.

The reduced virtual dimension of Ug,ς(∞, β) is given by the formula

χ(f∗TP/BC×
ω
) + 1 + dimMg,ς(∞A),

which also happens to equal

virdimMg,n(Z, β) + (rkE) ·
∑
h

(c(h) + 1).

Therefore, when the virtual dimension of the stable map moduli is negative, then
the reduced virtual dimension is zero.

Example 4.44. Consider Z5 ⊂ P4. The reduced dimension of Ug,C(∞, β) is simply

virdimMg,n(Z5, β) +
∑
h

(c(h) + 1) =
∑
h

(c(h) + 2).

We can remove all legs of contact order −1, so we reduce to the case when c(h) = −2
for all h. Therefore, there are exactly

⌊
2g−2

5

⌋
+ 1 reduced invariants.

Example 4.45. For a general semi-positive hypersurface in PN , the reduced virtual
dimension when g ≥ 2 is

(4−N)(g − 1)− β · (d−N − 1) + n+
∑
h

(c(h) + 1).
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Using the balancing condition, we obtain an upper bound of

(g − 1)

(
(2−N) +

2N + 2

d

)
+ n+

∑
h

(c(h) + 1).

If 2−N + 2N+2
d is negative, then the reduced virtual dimension is structly less than

n+
∑
h

∑
h

(c(h) + 1).

After removing all legs of contact order −1, all effective cycles vanish! For example,
we have this negativity whenever d = 3 and N ≥ 9, when d = 4 and N ≥ 6, and
when d ≥ 5 and N ≥ 5. For complete intersections in other targets, we can run the
same arguments, and they are governed by birational invariants.

4.9. Uniform minimal degeneracy.

Definition 4.46. A punctured R-map has uniform minimal degeneracy if there
exists a unique

emin = min{ev | v ∈ V (G)}.

Sometimes, we will also need to consider disconnected graphs, so if we enforce
uniform minimal degeneracy, we will obtain a cartesian diagram

U(∞, τ⋎) R(∞, τ⋎)

U(∞, τ ) R(∞, τ )

where both vertical arrows are log blowups and hence log étale and projective. These
introduce two new tautological classes on U(∞, τ⋎), which are

ψmax = −[∆max]

coming from emax and

ψmin = c1(O(−emin))

coming from emin. The class ψmin is a key ingredient for the tropical decomposition
and is needed for the virtual localization formula.

4.10. Some examples. Here, we will give a few exmples.

Example 4.47 (Quintic). Here, the target is X5 ⊂ P4. We will consider the log
target

PX5 = [PP4(O(−5)⊕ O)/Cω×]
with the infinity part

∞X5,C
∼= P4.

Example 4.48 (Double cubic). Here, the target is X3,3 ⊂ P5. We will consider the
log target

PX3,3
= [PP5(O(−3)⊕2 ⊕ O)/Cω×]

with the infinity part

∞X3,3,C
∼= P(O(−3)⊕2) ∼= P5 × P1.
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Example 4.49 (Quintic FJRW). We will consider the log target

PLG = [P5/C×
R]→ BC×

R
5−→ BC×

ω

with the infinity part

∞LG,C
fifth root−−−−−−→∞X5,C.

4.11. C×
ω action. Our goal is now to proceed towards a virtual localization formula

for log GLSM. Here, the two structural formulae are related as in Figure 8.

GW/FJRW
[U]red

[U(P)]vir

effective
[U(∞)]red

GW/FJRW
twisted

tro
pic

al
dec

om
po

sit
ion

localization

Figure 8. Relation between structural formulae and virtual cycles
in log GLSM

There are two ways to think about this C×
ω -action. If we have an R-map

P

C BC×
ω ,

ωlog
C

this was a morphism of stacks, so there is a 2-morphism making the diagram com-
mute. Abstractly, the action simply scales the 2-morphism, which is an isomorphism
of line bundles.

More concretely, consider the quintic example. Then an R-map is equivalent to
the data of a stable map f : C → P4 and a section of the projective bundle

PC(f∗OP4(−5)⊗ ωlog
C ⊕ OC).

Using this description, the C×
ω -action simply scales the p-field, where we scale the

first summand and not the second.
We now have a C×

ω action on all moduli spaces that we considered previously, for
example R(P, β) or U(P, β).

Proposition 4.50. The perfect obstruction theories ER and Ered
U are C×

ω -equivariant.

Remark 4.51. A key input to this result is that the superpotential is C×
ω -equivariant.

If it was in fact invariant, then there would be no need to develop the theory of log
GLSM.
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We may now apply the virtual localization theorem, proved in increasing strength
by Graber-Pandharipande, Chang-Kiem-Li, and Aranha-Khan-Latyntsev-Park-
Ravi [GP99; CKL17; Ara+24] to decompose the reduced virtual cycle as

[U]red =
∑
F

ι∗
[F ]red

e(Nvir
F/[U ])

.

4.12. Fixed loci. There are several kinds of fixed loci:

• There is a fixed locus Rg,ς(0P, β) of all maps going into the zero-section.
• There is another fixed locus Rg,ς(∞P, β) of maps going into infinity.
• More general fixed loci may be described by decorated bipartite graphs,
with vertices at either 0 or ∞ being decorated by a genus and curve class
and edges being decorated by the contact order (which implies the degree
of the edge).

From a bipartite graph, the R-maps which appear in the corresponding fixed locus
arise from taking scaling limits of R-maps of the corresponding tropical type. From
the fixed curves, we can obtain other curves of the same tropical type by smoothing
nodes which appear at 0.

The moduli spaces corresponding to stable vertices are given as follows. When
v ∈ V∞, the vertex moduli space is

Rv = Rg(v),ς(v)(∞, β(v)),

where all contact orders are negative. When v ∈ V0, then we have

Rv = Rg(v),ς(v)(0, β(V ))

∼= Mv = Mg(v),n(v)(X,β(v)),

where X was the ambient space.

4.13. Virtual localization formula.

Example 4.52. In the case of the quintic, note that ∞ ∼= 0. Then we have a
stabilization morphism st : U → Mg,n(X,β). Then we will describe the virtual
localization formula on a moduli space which is related to the fixed locus. It is given
by the Cartesian diagram

MΓ

∏
vMv

(P4)|E| (P4 × P4)|E|.

ev

∆

We then obtain the virtual localization formula

st∗[U]
red =

∑
Γ

1

|AutΓ|
ιΓ,∗∆

!·

·
∏
v∈V0

[Mv]
vir

eC×(Rπ∗ω
log
C ⊗ f∗O(−5)⊗ Cω)

∏
h∈Hv

1
t−ev∗

h(5H)

ch
− ψh

·
∏
v∈V∞

st∗
t[U(∞)]red

−t− ψmin
·
∏
e

· · · ,



46 PATRICK LEI

where t is the equivariant parameter and ch is the contact order. The 0 part gives
the twisted GW theory of P4 with special insertions and the ∞ part gives a more
general version of effective invariants.

Example 4.53. In the case of the double cubic, note that∞C ∼= P5×P1 → P5 = 0C.
Then we have a stabilization morphism st : U→Mg,n(P5, β). For v ∈ V∞, we have

Mv = Mg(v),n(v)(P5, β(v))×(P5)n(v) (P5 × P1)n(v).

Then we will describe the virtual localization formula on a moduli space which is
related to the fixed locus. It is given by the Cartesian diagram

MΓ

∏
vMv

(P5 × P1)|E| (P5 × (P5 × P1))|E|.

ev

∆

Here, ∆ is composition the diagonal and deleting the P1 in the first factor. We then
obtain the virtual localization formula

st∗[U]
red =

∑
Γ

1

|AutΓ|
ιΓ,∗∆

!·

·
∏
v∈V0

[Mv]
vir

eC×(Rπ∗ω
log
C ⊗ f∗O(−3)⊕2 ⊗ Cω)

∏
h∈Hv

1
t−ev∗

h(3H+H∞)

ch
− ψh

·
∏
v∈V∞

st∗
t[U(∞)]red

−t− ψmin
·
∏
e

· · · ,

where t is the equivariant parameter, ch is the contact order, and H∞ is the
hyperplane class on the P1 factor. The 0 part gives the twisted GW theory of P5

with special insertions and the ∞ part gives a more general version of effective
invariants.

Example 4.54. In the case of the FJRW theory of the quintic, note that ∞C =
5
√
(P4,O(1))→ 0C = Bµ5. Then we have a stabilization morphism st : U→M

1
5

g,C.
We now set

Mv = M
1
5

g(v),C(v) ×(Ī0C)n(v) (Ī∞v)
n(v)

Then we will describe the virtual localization formula on a moduli space which is
related to the fixed locus. It is given by the Cartesian diagram

MΓ

∏
vMv

(Ī∞C)
|E| (Ī0C × Ī∞C)

|E|.

ev

∆

We then obtain the virtual localization formula

st∗[U]
red =

∑
Γ

1

|AutΓ|
ιΓ,∗∆

!·

·
∏
v∈V0

[Mv]
vir

eC×(Rπ∗L⊗ Cω)
∏
h∈Hv

1
t−ev∗

h(H∞)

ch
− ψh
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·
∏
v∈V∞

st∗
5t[U(∞)]red

−t− ψmin
·
∏
e

· · · ,

where t is the equivariant parameter and ch is the contact order. The 0 part gives
the twisted GW theory of P4 with special insertions and the ∞ part gives a more
general version of effective invariants.

5. Applications to Gromov-Witten theory (Shuai Guo and Felix Janda)

5.1. Genus two calculations. The goal is to prove the formula

FQM
2 (Q) = ⟨ ⟩t,QM

2 −
〈 − 5

3H
3 + 5

24H
4t−1

(t− 5H)(t− 5H − ψ)

〉t,QM

1

(3)

+
1

2

〈 − 5
3H

3 + 5
24H

4t−1

(t− 5H)(t− 5H − ψ)
,
− 5

3H
3 + 5

24H
4t−1

(t− 5H)(t− 5H − ψ)

〉t,QM

0

(4)

+
1

2

〈
∆∗

( 5
3H

3t−1 + 65
8 H

4t−2

(t− 5H)2(t− 5H − ψ1)(t− 5H − ψ2)

)〉t,QM

0

(5)

+ F2(Q = 0)(6)

for the quintic threefold.
We will first use the localization formula to compute

deg[U2(PX5
, β)]red.

There are many localization graphs, which may be obtained as modifications of the
ones in Figure 7. The most important ones are displayed in Figure 9.

β
g = 2

β
g = 1

β
g = 0

β
g = 0

β1

g = 0
β2

g = 0

β = 0
g = 1

β = 0
g = 0

β = 0
g = 0

β = 0
g = 1

β = 0
g = 1

A B C D E

1 1 1 1 1 2 2

Figure 9. Localization graphs with nonzero contribution for g = 2.

The contributions will now be given. For graph A, the contribution is∑
deg

[M2(P4, β)]vir

e(Rπ∗ω
log
C ⊗ f∗[O](−5)⊗ Cω)

= ⟨ ⟩t2,

which is the O(5)-twisted Gromov-Witten potential of P4. Graph B contributes〈
ev∗

(
[U1,(−1)(∞,0)]vir

−t−ψmin

)
(t− 5H)(t− 5H − ψ)

〉t
1

=

〈 − 5
3H

3 + 5
24H

4t−1

(t− 5H)(t− 5H − ψ)

〉t
1

.
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Graph C contributes (4), and graph D contributes (5). Graph E will contribute

ceff ·

〈
· · ·

t−5H
2 − ψ

〉t
0

= F2(Q = 0) · P 2
1 (Q),

where ceff is the effective invariant.
To obtain a formula with five terms from all of our localization graphs, we will

apply the shift µ = (1 − I0)ψ + I1H which comes from quasimap wall-crossing.
Under the shift, the contribution of graph E becomes the constant F2(Q = 0), while
the contributions from all other graphs vanish.

5.2. Genus two mirror theorem. For convenience, we will set t = 5s. This will
make the equivariant parameters the same for both the Gromov-Witten and FJRW
calculations. This gives us

FQM
2 (Q) = ⟨ ⟩s,QM

2 −
〈 − 5

3H
3 + 5

24H
4(5s)−1

(5s− 5H)(5s− 5H − ψ)

〉s,QM

1

+
1

2

〈 − 5
3H

3 + 5
24H

4(5s)−1

(5s− 5H)(5s− 5H − ψ)
,
− 5

3H
3 + 5

24H
4(5s)−1

(5s− 5H)(5s− 5H − ψ)

〉s,QM

0

+
1

2

〈
∆∗

( 5
3H

3(5s)−1 + 65
8 H

4(5s)−2

(5s− 5H)2(5s− 5H − ψ1)(5s− 5H − ψ2)

)〉s,QM

0

+ F2(Q = 0).

Because the twisted theory is semisimple, we can compute it using the Givental-
Teleman reconstruction theorem [Giv01b; Tel12]. For a graph Γ ∈ {A,B,C,D,E},
the first step is to write

⟨α1(ψ1), αn(ψn)⟩s =
〈
[S(ψ̄1)α1(ψ̄1)]+, [S(ψ̄n)αn(ψ̄n)]+

〉s
g,n

using the descendant-ancestor correspondence of Kontsevich-Manin [KM98]. The
second step is to use the Givental-Teleman reconstruction theorem to compute the
ancestor invariants by a stable graph sum.

For simple reasons, we can rewrite [S(ψ̄)α(ψ̄)]+ = S(5s − 5H)α1(ψ̄). Both
S(5s− 5H) and

R−1(z) =
∑

Rkz
k

have entries in a ring

R̃ = Q[generators]

where the generators are defined using genus-zero invariants. Using the fact that

IX5,s(q, z)|z=5s−5H = 5s− 5H,

the mirror theorem, and S∗1 = z−1J , we see that S∗1|z=5s−5H = 1. To compute
the other entries, we use the quantum connection

zq
d

dz
Sτ,s = τ̇ ⋆ Sτ,s.
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Quantum multiplication by τ̇ is given by the matrix

A =


∗ ∗
∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

 ,

where the ∗ denote nonzero entries. However, the entries of A and their derivatives
lie in

R̃ = Q[9 generators].

Using a computer, we then get the exact formulae for

ContΓ ∈ R̃.

A miracle implies that∑
Γ

ContΓ ∈ R = Q[5 generators] ⊂ R̃.

If we recall that the physicists predicted that Fg is a polynomial in five generators
(which are exactly the same as the five generators here).

Remark 5.1. A similar calculation for FJRW theory yields similar formulae. For
example, graph B contributes〈

5ϕ 4
5

24s2(s− ψ)
−

200ϕ 4
5

24s(s− ψ)2

〉s,QM

1,1

and graph D contributes〈
65
8 ϕ 4

5
⊗ ϕ 4

5

s2(s− ψ1)s2(s− ψ2)
+

5
3ϕ 4

5
⊗ ϕ 4

5

s(s− ψ)2s2(s− ψ2)
+

5
3ϕ 4

5
⊗ ϕ 4

5

s2(s− ψ1)s(s− ψ2)2

〉s,QM

0,2

.

5.3. LG/CY correspondence for the quintic. Write

IGW = zI0 + I1 + I2
H2

z
+ I3

H3

z2
.

Similarly, we can write

zI0ϕ 1
5
+ I1ϕ 2

5
+ I2ϕ 3

5
z−2 + I3ϕ 4

5
z−3.

We can then construct the generators for the FJRW theory of the quintic similarly
to the generators for the GW theory of the quintic.

Theorem 5.2. Write

FGW
g = PCY

g (9 generators)

F FJRW
g = P LG

g (9 generators).

Then after identification of the generators, we have

PCY
g = P LG

g .
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The proof of this result is a direct matching of contributions from graphs in the
virtual localization formula. It relies on the fact that ACY = ALG under a suitable
choice of basis, which also matches the identification of the generators. The tropical
input from log GLSM is that the effective invariants are equal in both the CY and
LG phases. Finally, we need to identify the insertions in the two phases, and this
follows from a direct computation of the specialized S-matrix.

5.4. Geometry of LG/CY correspondence. Let • ∈ {LG,CY}. Recall that

PCY,C = P4 × P1

and ∞CY,C = P4. The log target is PLG,C = [P5/µ5], but the infinity-section is

∞LG
∼= 5
√
P4.

Remark 5.3. There is a modification of the targets such that ∞CY
∼=∞LG.

The first step is to match the virtual localization formulae. In the LG phase,
there are no curve classes at 0, so we compensate for this by using insertions. Also,
note that we need to consider the inertia stack

IBµ5 =

5⊔
i=0

Bµ5,

and in fact the contact orders determine the twisted sectors at the nodes. Then
there is a bijection between the LG and CY decorated graphs. For example, we
match the graphs in Figure 10.

β = 1
g = 4

β1

g = 0
β2

g = 0

β∞ = 1
g = 4

g = 0 g = 0

2 1 2 1

3
5

4
5

2
5

1
5

CY LG

Figure 10. Corresponding graphs in CY and LG phases.

Now let

τ• =
I•1
I•0
∈ H•,

where the state spaces are given by

HCY = H∗(P4) and HLG = Q(s)
〈
ϕ 0

5
, ϕ 1

5
, ϕ 2

5
, ϕ 3

5
, ϕ 4

5

〉
.

Defining

ev∞ :
∏
v∈V∞

Ug(v),e(v)(∞•, β(v))→ (Ī∞•,C)
|E| → (P4)|E|,
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we define

Cont∞Γ,• = (ev∞)∗

( ∏
v∈V∞

5s[Uv]
red

−5s− ψmin

)
.

We may also define the contribution Cont0,τΓ : (H•Jψ̄K)|E| → Q of 0 by

{Te(ψ̄)}e∈E 7→
∏
v∈V0

〈
{Th(ψ̄)}h∈H(v)

〉s,•,τ
g(v),n(v)

.

Finally, for any contact order c ∈ {1, 2}, let

S•c,τ : H
∗(P4)→ H•

be defined by

ϕ 7→ edge factor(c) · ϕ
5s−5H

c − ψ
in the CY case and

ϕ 7→
∫
P4

edge factor(c) · ϕ
5s−5H∞

c − ψ
· ϕ 5−c

5

in the LG case.
Putting these ingredients together, we obtain the following formula:

Theorem 5.4. We have the identity

F •,τ
g =

∑
Γ

1

|AutΓ|
Cont0τΓ,•

((⊗
e

S•c(e),τ

)
Cont∞Γ,•

)
.

The proof of this theorem follows the following steps:

(1) Virtual localization;
(2) Apply the shift coming from quasimap wall-crossing;
(3) Keep track of signs and powers of 5.

It now remains to match the contributions. Here, the contributions Cont∞Γ,•
match because of the geometric isomorphism ∞CY

∼= ∞LG. The matching of the
S•c,τ follows from a direct computation.

5.5. Twisted theories. Recall that the O(5)-twisted GW theory of P4 is given by
integrals against

e(Rπ∗f
∗O(5)⊗ C5s) ∩ [Mg,n(P4, β)]vir.

This is not very hard to compute with, so we add a torus action of (C×)5 on P4.
We will denote the equivariant parameters on the base by λ0, . . . , λ4. This gives us
a general O(5)-twisted theory.

Unfortunately, this is extremely complicated, but we consider the formal quintic
theory, which is given by setting s = 0 and

λj = ζjλ, ζ = exp

(
2πi

5

)
.

Therefore, we have a theory with only one equivariant parameter λ. This theory
(also called the λ-twisted theory) has several advantages:

• It has been studied before by Zinger, Kim-Lho, Lho-Pandharipande, and
various other authors [Zin09; KL18; LP18];
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• The λ-twisted I-function

Iλ = z
∑
d≥0

qd
∏5d
i=1(5H + iz)∏d

i=1((H + iz)5 − λ5)

= Iquintic +O(z−4)

is much nicer than the s-twisted I-function

Is = z
∑
d≥0

qd
∏5d
i=1(5H − 5s+ iz)∏d

i=1(H + iz)5
.

In particular, the appearance of 5s in the numerator of each term of Is is
the reason for the appearance of extra generators for the s-twisted theory.

Our goal now is to rewrite log GLSM invariants using the λ-twisted theory. Using
the tropical decomposition formula, we obtain

deg[U(P)]red =
∑
Γtrop

∏
v∈V0

deg[U(P)]vir
∏
v∈V∞

effective.

Because the canonical virtual cycle does not depend on the equation of the quintic,
we can compute

deg[U(P)]vir = deg[U(P)]vir,(C
×)6 |s=0,λj=ζjλ.

Using the log GLSM localization formula, we now obtain∑
Γloc

∏
v∈V0

twisted
general ∏

v∈V∞

deg[U(∞)]vir,(C
×)6 .

We will now apply operations to graphs as in Figure 11.

g = 2

g = 1

g = 1

g = 1

g = 1

g = 1

g = 1

g = 2

g = 1

Γtrop

Γloc

Γtri

Γbi=⇒

=⇒

Figure 11. Tropical graph, localization graph, and tripartite graph

We may then combine the two decompositions to form a tripartite graph. Using
this, we then obtain

GW =
∑
Γtri

∏
v∈Vℓ

twisted
general ∏

v∈Vm

deg[U(∞)]vir,(C
×)6 ·

∏
v∈Vu

effective
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=
∑
Γbi

∏
v∈V0

twisted
general ∏

v∈V∞

(s, λ)−effective

=

(∑
Γbi

∏
v∈V0

λ−twisted
∏
v∈V∞

λ−effective

)∣∣∣∣∣
λ=0

.

Here, the second equality comes from combining the middle and upper layers of a
tripartite graph.

Remark 5.5.

(1) It is not a priori clear that the specialization s = 0, λj = ζjλ makes sense.

However, we note that H5 = λ5, so H−1 = H4

λ5 , so the specialization

1

5s− 5H − ψh
→ 1

−5H − ψh
makes sense.

(2) The graph Γbi may have contact orders c ≥ 3.

5.6. Combinatorial structure theorem. Recall that the R-matrix action was
found by Givental as follows:

• We will stabilize a localization graph to a stable graph. This involves
contracting rational tails and chains:
• The tails become the translation action;
• The chains become edge contributions V (z, w);
• The ends become leg contributions R(z)−1.

We will consider something similar in log GLSM. We will begin by stabilizing
graphs Γbi as in Figure 12. Applying Givental-Teleman to the vertices at level 0, we

0

∞

g = 0

g = 1 g = 1

g = 0

g = 1

g = 1 g = 1 g = 1

⇒

Figure 12. Stabilization of Γbi

see that there are ∞∞ edges, 0∞ edges, and 00 edges. There are also both 0 and
∞ legs. This implies that

Fg = R̂(ωλ ⊕ ω∞),
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where R is generalized from the Givental formalism. It is given by

R =

{
Rλ label 0

S label ∞

Also, the matrices R and S are determined from the quantum differential equation,
which in the λ-twisted case are given by

A =


0 I11

0 I22
0 I33

0 I44
I0 0

 .

5.7. GW theory of the quintic. We are now able to apply the combinatorial
structure theorem.

• We have a stable graph sum formula involving R;
• The entries of R are polynomials in the five generators, which are determined
by A;
• The generalized tail contribution

T =

{
T label 0

J label ∞

is a polynomial in the holomorphic generator X = 1
1−55q .

To prove the holomorphic anomaly equation, consider differentiating by S ∈
{A,B1, B2, B3}. We look directly at the stable graph localization formula. Differen-
tiation comes from cutting edges as in Figure 13.

∂
∂S

=⇒ +

+ +

Figure 13. Cutting of edges.

If a matrix R satisfies the equation

∂

∂S
R−1 = R−1 · ΛS ,

then the V -tensor satisfies the equation

∂

∂S
V = R−1(z)⊗R−1(w)(∆S),

where

∆S =
ΛS(z)e

α ⊗ eα + eα ⊗ ΛS(w)eα
z + w

.

Therefore, when we compute ∂
∂SFg, we place ∆S at the nodes, and this will match

the holomorphic anomaly equation.
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Remark 5.6. This method also proves that for any extra generator E, we have

∂

∂E
Fg = 0.

This implies that Fg is independent of E, so we reduce the nine generators to five
generators.

Remark 5.7. In fact, the holomorphic anomaly equations hold for arbitrary values
of the effective invariants. In particular, if we define F cg by the formal theory and
effective invariants, then

(1) The generating function F cg satisfies the holomorphic anomaly equations;
(2) F cg has orbifold regularity.

Orbifold regularity is proved by showing that every graph which appears in the
graph sum for Fg satisfies orbifold regularity.

The meaning of orbifold regularity is that if we replace X,A1, B1, B2, B3 by the
LG versions Xorb, Aorb

1 , Borb
1 , Borb

2 , Borb
3 , then Fg is a regular function near q =∞.

Conjecture 5.8 (Conifold gap). At the conifold point q = 5−5, there is the conifold
gap condition

F con
g =

B2g

∆2g−2
+ regular,

where ∆ is the local flat coordinate near the conifold point.

The conifold gap condition has been checked for g ≤ 5 by computer. Unfortunately,
a systematic way of proving the conjecture is not known.

Part 3. See BCOV from the A-side: MSP fields

Using the master space construction introduced by Thaddeus and Dolgachev-
Hu [Tha96; DH98] in the context of variation of GIT, Chang-Li-Li-Liu [CLLL19;
CLLL22] defined the theory of Mixed-Spin-P fields, which connects the Gromov-
Witten and FJRW theories of the quintic threefold. The moduli space has a torus
action, and one type of fixed point gives the Gromov-Witten theory of the quintic,
which led to hope that the theory could be used to compute GW invariants of the
quintic. However, the calculations quickly proved intractable, and an insight of
Guo, which led to the creation of N-Mixed-Spin-P fields [CGLL21], was required to
resolve the difficulties. This led to the proof of the finite generation conjecture and
holomorphic anomaly equations for the quintic threefold by Chang-Guo-Li [CGL21;
CGL19], which was generalized to hypersurfaces in weighted projective space by
the author [Lei24b; Lei24a]. More recently, a new stability condition for GLSMs
was introduced by Chang-Guo-Li-Li-Zhou [Cha+23b], and this will enable the
construction of MSP moduli spaces for other targets.

6. Geometry of MSP moduli spaces (Wei-Ping Li and Yang Zhou)

The genus-zero Gromov-Witten invariants of the quintic were computed by Given-
tal, Lian-Liu-Yau, and various other authors [Giv96; LLY97]. Their computation
uses the fact that the moduli space

M0,n(P4, β)

is smooth and the obstruction sheaf corresponding to O(5) is a vector bundle. This
fails, however in higher genus, and in genus one, the work of Zinger, Vakil-Zinger, and
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Li-Zinger [Zin09; VZ08; LZ09] on reduced Gromov-Witten invariants desingularizes
the moduli spaces and enables computation of the genus one invariants. This result
was also recovered by Kim-Loh [KL18] using quasimap wall-crossing [CK20; Zho22].

There is also the approach of Maulik-Pandharipande [MP06] using the degenera-
tion formula, which in principle computes all of the invariants but is impossible to
calculate with in practice. Finally, there is the approach of Fan-Lee [FL19].

6.1. P -field reformulation of GW and FJRW theory. Let F = xN1 + · · ·+ xNr
be an arbitrary Fermat polynomial. The setup works in full generality, but the
calculations can only be conducted for the quintic threefold. The first step is to
construct the moduli space of P -fields following the work of Chang-Li [CL12a],
which comes from the work of Guffin-Sharpe [GS09] in physics.

Consider the vector space C5 × C with the action of C× given by

t(x1, . . . , x5, p) = (tx1, . . . , tx5, t
−5p).

The GIT quotient with the positive stability chamber is KP4 . We will consider the
superpotential

p(x51 + · · ·+ x55).

A map C → KP4 is equivalent to the data

(C,L, φ1, . . . , φ5 ∈ H0(L), ρ ∈ H0(L−5)).

This is just a stable map, and the P -field is given by modifying ρ by ωC to obtain

ξ = (C,L, φ1, . . . , φ5 ∈ H0(L), ρ ∈ H0(L−5 ⊗ ωC)).
We will also require that (φ1, . . . , φ5) is nonvanishing, so it gives a stable map to P4.

The moduli space Mp of such ξ is noncompact. However, we can follow Kiem-
Li [KL13] and use cosection localization for a cosection

σ : Ob→ O.

The degeneracy locus is in fact

σ−1(0) = Mg(Z5, β),

where Z5 ⊂ P4 is the quintic threefold. This gives a virtual cycle9

[Mp]virloc = ±[Mg(Z, β)]
vir.

FJRW invariants were originally defined using analysis. There are algebraic
reformulations by Polishchuk-Vaintrob and by Chiodo [PV16; Chi06]. We once
again consider C5 × C with an action of C× given by

t(x1, . . . , x5, p) = (tx1, . . . , tx5, t
−5p).

However, we use the negative stability chamber to obtain the quotient [C5/µ5]. The
objects in our moduli space are given by

η = (C,L, φ1, . . . , φ5 ∈ H0(L), ρ ∈ H0(L−5 ⊗ ωC))
such that ρ is nowhere zero. This implies that L5 ∼= ωC . We will consider the same
superpotential

p(x51 + · · ·+ x55).

9The equality of virtual cycles was not proved by Chang-Li [CL12a] (who proved an equality of
invariants only) as claimed in the talk. The first proof of the equality of virtual cycles is due to
Kim-Oh [KO22]. See also [CL20b].
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The moduli space M
1
5 ,5p of such η is still noncompact, but cosection localization

again provides a virtual cycle

[M
1
5 ,5p]virloc

recovers the FJRW virtual cycle.

6.2. Master space and MSP fields. Following the work of Thaddeus [Tha96]
and various other authors, we are interested in a geometric lift of a path connecting
two GIT quotients. Consider the space C5 ×C× P1 with the action of C× given by

t(x1, . . . , x5, p, [u, v]) = (tx1, . . . , tx5, t
−5p, [tu, v]).

Now define the master space

(C5 × C× P1 \ {(0, 0, 0, 0, p, [0, 1])} ∪ {(x1, . . . , x5, 0, [1, 0])})/C×.

Because P1 is a GIT quotient, we can reformulate the GLSM for this target as being
given by the data of

ϑ = (C,L,N, φ1, . . . , φ5 ∈ H0(L), ρ ∈ H0(L−5 ⊗ ωC), µ ∈ H0(L⊗N), ν ∈ H0(N))

such that (φ1, . . . , φ5, µ) is nowhere zero, (ρ, ν) is nowhere zero, and (µ, ν) is nowhere
zero. We also require that Autϑ is finite.

Remark 6.1. Because the target is a Deligne-Mumford stack, we will need to require
the source curve to be a twisted curve. For orbifold markings, we require that L|Σ
is a nontrivial automorphism of AutΣ. For scheme markings we will consider either
(1, ρ) markings where we force ρ = 0 or (1, φ) markings were we force φ = 0. These
are required to construct the cosection. These markings are called narrow, and all
other markings are called broad.

6.3. Cosection localization and virtual cycle. The numerical data is g = g(C),
d0 = degL⊗N, and d∞ = degN. This gives the moduli space

Wg,d⃗ → Dg = {(C,L,N)}

with a relative perfect obstruction theory

Rπ∗(L
⊕5 ⊕ L−5 ⊗ ωC ⊕ L⊗N ⊕N)→ L•

W
g,d⃗
/Dg

.

Here, π : C→Wg,d⃗ is the universal curve.

Fiberwise, the cosection is given by the following construction. Let10

(φ̇, ρ̇, µ̇, ν̇) ∈ H1(L⊕5)⊕H1(L−5 ⊗ ωC)⊕H1(L⊗N)⊕H1(N).

Then the cosection is given by

σ = ρ̇(φ5
1 + · · ·+ φ5

5) + 5ρ(φ4
1φ̇1 + · · ·+ φ4

5φ̇5)

and its image lies in H1(ωC) ∼= C (this isomorphism is canonical).
The degeneracy locus σ−1(0) is given by

σ−1(0) =
{
ρφ4

1 = · · · = ρφ4
5 = φ5

1 + · · ·+ φ5
5 = 0

}
=
{
ρ = φ5

1 + · · ·+ φ5
5 = 0

}
∪ {φ = 0}.

The first difficult step is to prove the properness of the degeneracy locus.

Theorem 6.2. The degeneracy locus σ−1(0) is proper in the narrow setting.

10We are pretending to be physicists here.
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6.4. Virtual localization. There is a C×-action on W which actually preserves
σ−1(0) given by

t · (C,L,N, φ, ρ, µ, ν) = (C,L,N, φ, ρ, tµ, ν).

This allows us to compute MSP invariants using virtual localization.
We will now relate the fixed loci to the previous moduli spaces.

• Let ϑ ∈W. If µ = 0, the N = OC by the condition that (µ, ν) is nowhere
vanishing. This reduces the fields to (φ, ρ), and we need (φ1, . . . , φ5) to be
nowhere vanishing, so we obtain P -fields. We will call this level 0
• If we let ν = 0, then the information of µ disappears and ρ must be nowhere
zero. This reduces us to FJRW theory. This is called level ∞.
• Finally, if we set φ = ρ = 0, then both µ, ν are required to be nowhere
vanishing, so we only have the data of a curve. When we perform virtual
localization, this will give us Hodge integrals. This is called level 1.

Fixed loci F ⊂WC×
will be labelled by graphs. The problem is that there may be

a situation of two edges v0 → v1 → v∞ where one edge has degree d and the other
edge has degree −d. While there is no geometric smoothing of the node (it is banned
by the stability condition), there are nontrivial infinitesimal deformations, so we
cannot decompose the virtual cycle. Fortunately, there is a significant simplification,
which was first discovered by Chang-Li [CL20a] for the quintic and should hold for
all other Calabi-Yau threefolds.

Theorem 6.3 ([CL20a]). These graphs contribute 0 to the MSP virtual localization
formula.

Let Λ be the set of regular graphs. Then the virtual localization theorem for
cosection localized virtual cycles due to Chang-Kiem-Li [CKL17] gives

[W]virloc =
∑
Γ∈Λ

(ιΓ)∗
[WΓ]

vir
loc

e(Nvir
Γ )

.

Because of irregular vanishing, we can decompose [WΓ]
vir
loc along the vertices.

• At a level 0 vertex, we have

[Wv0 ]
vir
loc = ±[Mgv0 ,nv0

(Z, dv0)]
vir,

where Z is the quintic.
• At a level ∞ vertex, we have

[Wv∞ ]virloc = [M
1
5 ,5p

gv∞ ,γv∞
]vir.

• At a level 1 vertex, we simply have

[Wv1 ]
vir
loc = [Mgv1 ,nv1

].

6.5. NMSP fields. The setup can calculate the genus 1 Gromov-Witten invariants
of the quintic, which was done by Chang-Guo-Li-Zhou [CGLZ20], but the calculations
are too complicated to perform more computations. However, an insight of Guo is
to replace µ with

µ = (µ1, . . . , µN ) ∈ H0(L⊕N)⊕N

and consider an action of (C×)N scaling µ diagonally.



HIGHER-GENUS GW OF COMPACT CY3 59

6.6. Reformulation of stability condition. Recall that the original MSP master
space is given by a GIT quotient of C5×C×C×C with coordinates x1, . . . , x5, p, u, v
by (C×)2 acting with weights[

1 1 1 1 1 −5 1 0
0 0 0 0 0 0 1 1

]
and the polarization t1t

2
2. This is a change of coordinates from the standard

presentation [
1 1 1 1 1 −5 1 −1
0 0 0 0 0 0 1 1

]
and polarization t2.

Recall that a stable MSP field

ξ = (C,L,N, φ1, . . . , φ5, ρ, µ, ν)

consists of the data of

• A pointed twisted curve C – the nodes are required to be balanced, which
means that they locally look like[

SpecC[x, y]/(xy)
(x, y) 7→ (ζrx, ζ

−1
r y)

]
.

• L,N ∈ PicC are line bundles such that L⊕N is representable;

• φ1, . . . , φ5 ∈ H0(L), ρ ∈ H0(L−5 ⊗ ωlog
C ), µ ∈ H0(L⊗N), and ν ∈ H0(N)

are sections such that
– (φ, µ) is nonvanishing;
– (ρ, ν) is nonvanishing;
– (µ, ν) is nonvanishing;
– |Aut(ξ)| <∞.

We denote the nonvanishing condition by MSP-Stab-I and the finiteness
of automorphisms by MSP-Stab-II.

There is a superpotential

p

5∑
i=1

x5i : [C8/C× × C×]→ C

with critical locus (see Figure 14)

Crit

(
p

5∑
i=1

x5i

)
=

(
p =

5∑
i=1

x5i = 0

)
∪ (x1 = · · · = x5 = 0).

The semistable locus is

Cone(X5) ∪ P(1, 5).

The degeneracy locus of the MSP moduli space (with reduced stack structure)
consists of all ξ such that C is mapped entirely into the critical locus. In other
words, we require that(

p =

5∑
i=1

x5i

)
∪ (x1 = · · · = x5 = 0) = C.

The upshot of this is that the critical locus is proper.
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KP4 [C5/µ5]

P(1, 5)Cone(X5)

P4

Figure 14. Critical locus Cone(X5) ∪ P(1, 5)

Theorem 6.4 ([CLLL19]). Fixing the discrete data, the moduli of stable MSP fields
is a separated DM stack of finite type and the degeneracy locus of the cosection is
proper.

Our goal is now to generalize the stability condition:

• Stability should come from GIT with the R-charge (which gives the ωlog);
• Properness should follow from properness of the target (or at least the
critical locus).

Lemma 6.5. Under MSP-Stab-I, the condition that |Aut ξ| <∞ is equivalent to
the condition that

(L⊗N2)⊗ (ωlog
C )⊗A > 0

as A→ 1
5 + 0+.

Now note that the unstable locus is cut out by the functions

x1v
2, . . . , x5v

2, uv, u10p.

This allows to reformulate MSP-Stab-I as the condition that the sections

φ1ν
2, . . . , φ5ν

2, µν ∈ H0(L⊗N2) and µ10ρ ∈ H0(L5 ⊗N10 ⊗ ωlog
C )

have no common zeros. This reformulation allows us to give easier proofs of basic
facts about MSP fields.

Corollary 6.6. Fixing the discrete data, stable MSP fields are bounded.

Proof. We need to prove that

• There are finitely many irreducible components;
• The degrees degLC′ and degN|C′ are uniformly bounded for irreducible
components C′ ⊂ C.



HIGHER-GENUS GW OF COMPACT CY3 61

The first condition follows from positivity of the line bundle

L⊗N2 ⊗ (ωlog
C )A.

For the second condition, suppose for simplicity that C′ = C. Then we vary the
polarization to obtain the inequalities

A2 ≤ degL⊗N2 ≤ A1;

A3 ≤ degL⊗N3;

A4 ≤ degL2 ⊗N3.

This gives a bounded region, and the denominators are bounded, so we are done. □

Remark 6.7. In the nonabelian case, boundedness is much harder. See [Cha+23a]
for more details.

6.7. General setup. The setup consists of the following data:

• An extension

1 G Γ C× 1

C×
θ

ϖ

ϑ

of reductive groups;
• An affine scheme V (think a vector space or critical locus) with an action of
Γ such that V s(θ) = V ss(θ) ̸= ∅;

Remark 6.8. The lift ϑ of θ is not essential.

Definition 6.9. An LG-quaasimap is a tuple

ξ = (C, u, κ),

where

(1) C is a pointed twisted curve;
(2) u : C→ [V/Γ] is representable such that the base locus u−1([V un(θ)/Γ]) is

discrete and disjoint from the special points;

(3) κ : u∗Lϖ
∼=−→ ωlog

C is an isomorphism of line bundles.

Example 6.10. In the MSP case, either V = C8 or Crit
(
p
∑
x5i
)
. We also have

Γ = (C×)2 × C×
R.

• A map u : C → [V/Γ] is the data of L,N,R ∈ Pic(C) and fields φ⃗, ρ, µ, ν.
Here, note that ρ ∈ H0(L−5 ⊗ R).

• The data of κ is an isomorphism u∗Lϖ = R ∼= ωlog
C .

A fancier way to write an LG-quasimap is as a commutative diagram

C

[V/G] [V/Γ]

SpecC BC×
R.

u

ωlog
C

κ
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6.8. Ω-stability. Define

Rk :=
{
f ∈ C[V ] | g∗f = (θ(g))kf for all g ∈ G

}
;

R+ :=
⊕
k>0

Rk.

Then recall that we have a morphism

V �θ G = Proj
⊕
k≥0

Rk → SpecR0 = V �0 G.

Lemma 6.11 ([FJR18]). Each Rk is Γ− invariant.

Set
Rk =

⊕
c∈Z

Rk,c,

where
Rk,c :=

{
f ∈ C[V ] | γ∗f = (ϑ(γ))k(ε(γ))cf for all γ ∈ Γ

}
.

Definition 6.12. An element f ∈ R• =
⊕

k≥0Rk is homogeneous if 0 ̸= f ∈ Rk,c
for some k and c. We then define the θ-weight of f by k =: wt(f), the R-charge of
f to be c, and the slope of f to be c

k .

Example 6.13. In the original MSP example, weights are given in Table 4. In this
example, we have

u∗Lkϑ+cϖ = (L⊗N2)⊗k ⊗ (ωlog
C )⊗c.

Table 4. Weights.

xiv
2 uv u10p

Weight 1 1 5
R-charge 0 0 1.

In general, for f ∈ Rk,c and a map u : C→ [V/Γ], we have

u∗f ∈ H0(C, u∗Lkϑ+cϖ).

Now choose a package Ω = (S,A, ϑ), where

• S ⊂ R+ is a finite set of homogeneous elements;
• A > maxf∈S{slope(f)}.

Definition 6.14. A prestable LG-quasimap ξ is Ω-stable if

Ω-1: The base locus u−1([V (S)/Γ]) is discrete and disjoint from the markings and
nodes;

Ω-2: For all non-special points x ∈ Csm, we have

min
f∈S

{
1

wt(f)
ordx(u

∗f) + slope(f)

}
≤ A;

Ω-3: We have the ampleness condition

u∗Lϑ ⊗ (ωlog
C )⊗A > 0.

Remark 6.15.
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(1) The A here corresponds roughly to 1
ε in the previous literature about

quasimaps. Roughly, decreasing A means attempting to force more of the
curve to go into the stable locus;

(2) V (S) may be larger than the unstable locus V un = V (R+);

(3) If any irreducible component C′ ⊂ C satisfies ωlog
C |C′ > 0, then Ω-3 is implied

by either Ω-1 or Ω-2;
(4) In some way, Ω-stability is independent of ϑ (up to changing the other data).

Theorem 6.16. Fixing deg u∗Lϑ = d, the genus g, and the number k of marked
points, the stack

LGQΩ
g,k(X, d)

is a separated DM stack of finite type.

Theorem 6.17. Suppose that X �θ G is projective and S is full (which means that

set-theoretically V (S) = V un(θ)). Then LGQΩ
g,k(X, d) is proper.

Example 6.18. In the original MSP example, S is full. The element u10p ∈ S
has slope 1

5 , so we need A > 1
5 . For any smooth point q ∈ Csm, the conditions Ω-1

and Ω-2 are equivalent. In particular, they mean that at least one of the following
conditions is satisfied:

ordq φi + 2ordq ν ≤ A, i = 1, . . . , 5

ordq µ+ ordq ν ≤ A
1

5
ordq ρ+ 2ordq µ ≤ A−

1

5
.

As A → 1
5 + 0+, we see that the first inequality holds if and only if ordq φi =

ordq ν = 0, which is equivalent to nonvanishing of φiν
2. This recovers the original

nonvanishing condition MSP-Stab-I.

6.9. More examples.

Example 6.19. Consider PN with an R-charge. This means that we take Γ =
C× × C×

R and V = CN+1. We will have Γ act with weights[
1 1 · · · 1
c0 c1 · · · cN

]
.

For simplicity, assume that c0 ≤ · · · ≤ cN . In this model, an LG quasimap is a
package

ξ = (C,L, φi ∈ H0(L⊗ (ωlog
C )⊗ci)).

For the stability condition, we choose S = {x0, . . . , xN} and A > cN .
The condition Ω-2 becomes the condition

min{ordx(φi) + ci} ≤ A.

In general, we see that ordx(φi) is allowed to be positive. The condition Ω-3 becomes
the positivity condition

L⊗ (ωlog
C )A > 0.

For example, if N = 1, c0 = 0, and c1 = 1, then as A → 1+, Ω-2 becomes the
condition that either φ1(x) ̸= 0 or ordx(φ0) ≤ 1 at any non-special point x ∈ C. In
particular, it is impossible to completely remove basepoints.
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Example 6.20. We will now consider the LG phase for a complete intersection

Xd1,d2 ⊂ PN .

We will consider V = CN+1 × C× C and Γ = C× × C×
R acting on V with weights[

1 · · · 1 −d1 −d2
0 · · · 0 1 1

]
.

We will choose the character (t1, t2) 7→ t−1
1 , and the corresponding GIT quotient is

[V �θ G] = Tot(OP(d1,d2)(−1)
⊕N+1).

An LG quasimap is given by the data

ξ = (C,L, φ0, . . . , φN ∈ H0(L), ρ1 ∈ H0(L−d1 ⊗ ωlog
C ), ρ2 ∈ H0(L−d2 ⊗ ωlog

C )).

We choose S = {p1, p2}, and assuming that d1 ≤ d2, we need to choose A > 1
d1
.

The stability condition Ω-2 becomes

min

{
ordx(ρi)

di
+

1

di

}
≤ A,

while Ω-3 becomes the positivity condition

L−1 ⊗ (ωlog
C )A > 0.

As A→
(

1
d1

)+
, the condition Ω-2 becomes the condition that either ρ1(x) ̸= 0 or

ordx(ρ2) ≤ d2
d1
− 1. Therefore, if d2 < 2d1, then ρ1 and ρ2 have no common zeroes.

Remark 6.21. If d1 = d2, this hybrid model admits a good lift in the sense of
Fan-Jarvis-Ruan [FJR18] and the theory was studied by Clader [Cla17].

Example 6.22. We will now consider MSP theory for X3,3 ⊂ P2 × P2. The Calabi-
Yau phase is given by KP2×P2 , which is a GIT quotient of C3 ×C3 ×C by C× ×C×

with weights [
1 1 1 0 0 0 −3
0 0 0 1 1 1 −3

]
.

There are three phases for this model, which are given in Figure 15. To construct

KP2×P2

[Tot(OP2(−1)⊕3)/µ3]

[Tot(OP2(−1)⊕3)/µ3]

Figure 15. Phases of X3,3 ⊂ P2 × P2.
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the MSP moduli space involving all phases, consider the data

x1 x2 x3 y1 y2 y3 p u1 u2 v ϑ

C× 1 1 1 0 0 0 −3 1 0 0 1
C× 0 0 0 1 1 1 −3 0 1 0 1

C× 0 0 0 0 0 0 0 1 1 1 3

C×
R 0 0 0 0 0 0 1 0 0 0 0

.

We will choose the set

S =
{
xyv3, xu2v

2, yu1v
2, u1u2v, y

9u91p
2, x9u92p

2, u91u
9
2p
}
.

The maximum slope is 2
3 , so we will choose A = 2

3 + 0+. In particular, part of Ω-2
becomes the condition

1

6
(9 ord(u1) + 9 ord(u2) + ord(p)) +

1

6
≤ 2

3
+ 0+,

which is equivalent to

9 ord(u1) + 9 ord(u2) + ord(p) ≤ 3.

This is equivalent to the condition that u1 and u2 are nonzero and ord(ρ) ≤
3. Putting all of the conditions together, we obtain the following nonvanishing
conditions:

• (u1, u2, v) ̸= 0;
• (y, u2) ̸= 0;
• (x, u1) ̸= 0;
• Either v ̸= 0 or ord(ρ) ≤ 3.

Unfortunately, it is not possible to remove the basepoints.
Consider the action of C× ×C× given by scaling µ. A schematic diaagram of the

the types of fixed loci is given in Figure 16.

KP2×P2

P2 P2pt

[Tot(OP2(−1)⊕3)/µ3] [Tot(OP2(−1)⊕3)/µ3]
ordx(ρ) ≤ 3

ρ ∈ H0(N6 ⊗ ωlog
C )

L1
∼= L2

∼= N−1

Figure 16. Diagram of fixed loci for X3,3 ∈ P2 × P2.

Remark 6.23. There is a wall-and-chamber structure as we vary A. If we consider
A → ∞, the condition Ω-2 is always true, and Ω-3 bans all rational tails. This
gives a stability condition similar to stable quasimaps which was already studied
by Fan-Jarvis-Ruan. In addition, there should be a wall-crossing structure as we
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vary A (which is desirable because we want to separate the different kinds of fixed
points).

Remark 6.24. Ω-stability exhibits a phenomenon which is close to being independent
of S. If V is reduced and V �θ G is projective, then whenever S is full, we have

• The quantity
max
f∈S
{slope(f)}

is independent of S;
• Fixing A and ϑ, Ω = (S,A, ϑ)-stability is independent of S.

6.10. Proof of key properties of the moduli space. The idea of the proof is as
follows:

• First prove the PN case;
• Compare the general case to PN .

To warm up, we will review the proof of properness for stable maps to P1. A
stable map to P1 is equivalent to the data

(C,L, φ1, φ2 ∈ H0(L))

such that there are no common zeroes and L|C′ > 0 whenever ωlog
C |C′ < 0. We will

use the valuative criteria.
Consider a family over a disk ∆t. We have two divisors (φ1 = 0) and (φ2 = 0),

but they may meet on the central fiber transversely with vanishing order 1. We can
blow up the intersection point to separate the two divisors as in Figure 17. Denote
the blowup morphism by π : C̃→ C. Then we actually have

π∗φ1, π
∗φ2 ∈ H0(π∗L(−E)),

where E is the exceptional divisor. Then the stable limit is given by

(C̃, π∗L(−E), π∗φ1, π
∗φ2).

If A > 1, we simply keep the base point (and disallow the rational tail).

↓

t = 0

∆t

φ2 = 0

φ1 = 0

C
↓

t = 0

∆t

E

C̃

π

Figure 17. Stable limit of family of stable maps.

If we introduce an R-charge 0, c, an LG quasimap is given by

(C,L, φ1 ∈ H0(L), φ2 ∈ H0(L⊗ (ωlog
C )⊗c)).

Now π∗φ2 vanishes to order 1+ c on E. Blowing up again, the vanishing orders now
become (1, 2c) ∼ (0, 2c− 1), which seems worse. If instead (φ1 = 0) has multiplicity
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k > c, then on E the vanishing orders are (k, 1 + c) ∼ (k − 1− c, 0). Then we blow

up the node, which does not change ωlog
C . Therefore, we cannot improve a length 1

zero of φ1, but we can improve a length > k zero of φ1.

↓

t = 0

∆t

φ2 = 0

φ1 = 0

C
↓

t = 0

∆t

E

C̃

π

↓

t = 0

∆t

Figure 18. Stable limit of family of LG quasimaps.

We will now study the general case. We will assume that S = {f0, . . . , fN} all of
weight 1. Then if we consider

V CN+1

Γ C× × C×
R

C×,

(f0,...,fN )

ϑ×ε

ϑ

pr1

This induces a cartesian diagram

LGQ(X) LGQ(PN )

LGQΩ(X) LGQΩ(PN ).

Φ

Properness reduces to proving properness of the bottom morphism. Using the
valuative criterion, consider a curve C◦ → ∆◦ and an LG quasimap

ξ◦ = (C◦, . . .) ∈ LGQΩ(C◦, X).

If we have an extension of Φ(ξ◦) to

ξ = (C,L, φ0, . . . , φN ) ∈ LGQΩ(C,PN ),

we need a unique extension ξ of ξ◦ such that Φ(ξ) = ξ.

Because the line bundle ωlog
C comes from the coarse moduli space, we can trivialize

it locally. Working locally, any LG quasimap becomes a usual quasimap. First
assume that there are no base points (we will deal with base points using Hartogs’s
theorem). We already have an extension to the coarse moduli space X.
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Lemma 6.25 ([AV02]). Locally, given C→ X, there exists a unique commutative
diagram

C X

C X.

This completes the proof of properness.

7. Applications to Gromov-Witten theory (Shuai Guo and Patrick Lei)

7.1. MSP invariants. We will consider MSP moduli spaces Wg,n,d with d0 = d,
d∞ = 0, only (1, ρ) insertions, and arbitrary values of N . We first note that the
MSP virtual localization formula is given by

1

e(Nvir
Θ )

=
∏
v∈V0

N∏
α=1

1

e(Rπ∗f∗vO(1)⊗ tα)

·
N∏
α=1

∏
v∈V α

1

5tα · e(E∨ ⊗ (−tα))5

e(E⊗ 5tα) · (−tα)5

∏
β ̸=α e(E∨ ⊗ (tβ − tα))∏

β ̸=α(tβ − tα)

·

( ∏
a∈a∞

1

e(Nvir
a )

)
·
∏
e∈E

Ae,

where tα are the equivariant variables and V α1 denotes those vertices at level 1 where
the curve satisfies µα ̸= 0 and µβ ̸=α = 0. Also, a ∈ a∞ are connected components
of the level ∞ part of Θ and Ae is the contribution of an edge. In particular, define

[Mg,n(Z5, d)]
top =

[Mg,n(Z5, d)]
vir

e(Rπ∗f∗vO(1)⊗ tα)
= (−tN )d+1−g[Mg,n(Z5, d)]

vir

[Mg,n]
α,top =

(
1

5
N(−tα)N+3

)g−1

[Mg,n].

These are the top degree part of the contribution to the virtual localization formula
coming from a vertex v. We will denote the full contribution at level 1 by [Mg,n]

α,tw.
From now on, we will specialize our equivariant variables to roots of unity as
tα = −ζαN t. For convenience, we will also specialize t such that tN = −1.

We may define MSP invariants using virtual localization. Note that by the
condition that ρ vanishes at the marked points, we have evaluation morphisms

evi : Wg,n,d → P4+N ,

which restrict to

evi : W
−
Θ → (x51 + · · ·+ x55 = 0)(C

×)N = Z5 ⊔
N⊔
α=1

ptα,

where W−
Γ is the degeneracy locus of WΓ. Therefore, we may define MSP invariants

with insertions from the state space

H = H∗(Z5)⊕
N⊕
α=1

H∗(ptα).
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Using the vertex contributions to the virtual normal bundle, we define the pairing

(x, y)M =

∫
Z5

xy|Z5
+
∑
α

5

Nt3α
xy|ptα .

The state space has several bases, which we will discuss now.

• Let p = c1(OP4+N (1)) be the equivariant ambient hyperplane class. Then
we have the basis ϕi = pi for i = 0, . . . , N + 3;
• There is the basis {1Z5

, H,H2, H3} ∪ {1α}Nα=1;

The last kind of MSP invariant we need to define is the MSP [0, 1] invariant.
Here, we simply consider the class

[W][0,1] =
∑

Θ∈Λ[0,1]

[WΘ]
vir

e(Nvir
Θ )

,

where Λ[0,1] denotes the set of all graphs without any level ∞ vertices.

7.2. Genus zero MSP theory. In genus zero, the full MSP and the [0, 1] theory
are equal. This follows from the following lemma:

Lemma 7.1. We have

W0,n,d
∼= M0,n(P4+N , d)

and an equality

[W0,n,d]
vir = ±e(Rπ∗f∗O(5)) ∩ [M0,n(P4+N , d)]vir

of virtual cycles.

The lemma tells us that the genus-zero MSP invariants are the same as the
GW invariants of a degree 5 hypersurface in P4+N , which is in particular Fano. In
particular, the MSP I-function is given by the formula

IM (q, z) = z
∑
d≥0

qd
∏5d
m=1(5p+mz)∏d

m=1(p+mz)5
∏d
m=1((p+mz)N − tN )

.

This automatically implies the following result.

Lemma 7.2. We have

JM (0, q, z) = IM (q, z)

whenever N ≥ 2.

The main result we need to know about genus zero MSP theory is the explicit
form of the quantum connection. Let D := q d

dq .

Lemma 7.3. The MSP S-matrix satisfies the differential equation

(p+ zD)SM (z)∗ = SM (z) ·AM ,
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where AM is given by the matrix

0 120q
1 0 770q

1 0 1345q
1 0 770q

1 0 120q + tN

1 0
1 0

1 0
· · · · · ·

1 0
1 0

1 0


in the basis {ϕi} for N > 5.

7.3. MSP [0, 1] CohFT. Define the MSP R-matrix by the Birkhoff factorization

SM (z)


∆1

. . .

∆N

Id

 = R(z)


Spt1

. . .

SptN

SZ5

 ,

where

∆α(z)

:= exp

∑ B2k

2k(2k − 1)

 5

(−tα)2k−1
+

1

(5tα)2k−1
+
∑
β ̸=α

1

(tβ − tα)2k−1

z2k−1


is defined using the quantum Riemann-Roch theorem. Here, we need to shift SZ to
the point τZ5

= I1
I0
H, and

Sptα = e
τα
z ,

where

τα = −tα
∫ q

0

(L(x)− 1)
dx

x
.

Here, L(q) := (1− 55q)
1
N .

Theorem 7.4. The MSP [0, 1] invariants come from a CohFT Ω[0,1], which is
defined by the formula

Ω[0,1] = R.

(
ΩZ5 ⊕

N⊕
α=1

ωptα,top

)
.

Remark 7.5. The normalized tail contribution at the isolated points is given by

T̃α(z) = z(1− L
N+3

2 R(z)−11)|ptα = O(z2)

In addition, when N ≫ 3g − 3 + n, there is no tail contribution at level 0.
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7.4. Degree bound for MSP theory. In order to compute the invariants of a
Calabi-Yau threefold using MSP theory, we need to control the MSP invariants.
Our goal will be to control the MSP [0, 1] invariants, but these are defined as a
mysterious sum of virtual localization contributions. First, we will control the full
MSP invariants.

Lemma 7.6. The full MSP correlator〈
pa1 ψ̄k11 , . . . , pan ψ̄knn

〉M
g,n

is a polynomial in q of degree at most

g − 1 +
3g − 3 +

∑
ai

N
.

This follows from the fact that the virtual dimension of the MSP moduli space is
N(d+ 1− g) + n. To obtain the same degree bound for the [0, 1] correlators, we
will need a decomposition formula for the full MSP theory in terms of the [0, 1]
theory and the remaining contributions. First, we will construct bipartite graphs
from localization graphs, where vertices are either [0, 1] vertices or ∞ vertices. For
an example of this procedure, see Figure 19.

2 1 4

0 2 1

0 0 5

=⇒

3 4

9

Figure 19. Obtaining a bipartite graph from a localization graph.

Lemma 7.7. We have the MSP decomposition formula

〈
τ1ψ̄

a1
1 , . . . , τnψ̄

an
n

〉M
g,n

=
∑

Γ∈Λbipartite

1

|AutΓ|
∏
v∈V∞

Cont∞[v]

⊗
i∈L◦

v

ψ̄aic(i)

·
·
∏

v∈V[0,1]

〈⊗
i∈Lv

τi
⊗
i∈L◦

v

ψ̄aic(i)

⊗
e∈Ev

1αe

5tαe

ae
− ψ(e,v)

〉[0,1]

gv,nv

.

Here, the contribution Cont∞[v] of a vertex v at level ∞ is a generating series of
FJRW-like invariants, which is a polynomial in q of degree at most

d∞[v] +
1

5

(
2gv − 2−

∑
e∈Ev

(ae − 1)

)
.
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In addition, Λbipartite is the set of stable bipartite graphs, L◦
v is the set of legs

which get contracted to v after stabilization, and c(i) is the stable vertex that i gets
contracted to after stabilization. For an example of stabilization, see Figure 20.

0 v2, 5

0
v1, 2

0 v3, 6

ℓ1 ℓ2 ℓ3

e1

e2

=⇒

v2, 5

v1, 2 v3, 6

ℓ1

ℓ2

ℓ3

Figure 20. Stabilization of a bipartite graph. In this example, we
have c(ℓ1) = (v1, e1), c(ℓ2) = (e2, v2), and c(ℓ3) = ℓ3.

This lemma is proved by directly applying the virtual localization formula and
then analyzing the following two situations:

• What happens at a vertex at level ∞;
• What happens when we split a graph at a vertex at level 1.

By using the decomposition formula and a careful degree-counting argument, we
obtain the following degree bound for the [0, 1] theory.

Lemma 7.8. The MSP [0, 1] correlator〈
pa1 ψ̄k11 , . . . , pan ψ̄knn

〉[0,1]
g,n

is a polynomial in q of degree at most

g − 1 +
3g − 3 +

∑
ai

N
.

7.5. Polynomiality. We first introduce the ring of five generators. Let

I(q, z) := z
∑
d≥0

qd
∏5d
m=1(5H +mz)∏d
m=1(H +mz)5

=: I0z + I1H + I2
H2

z
+ I3

H3

z2

and define the following generators:

Ak :=
DkI11
I11

, Bk :=
DkI0
I0

, and Y =
1

1− 55q
.

Here, recall that I11 = 1 +D
(
I1
I0

)
.

Lemma 7.9 ([YY04]). The ring

R := Q[A1, B1, B2, B3, Y ]

contains all Ak and Bk.
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Theorem 7.10. Introduce the series

Pg,n :=
(5Y )g−1In11

I2g−2
0

(
Q

d

dQ

)n
Fg(Q)

∣∣∣∣∣
Q=qe

I1
I0

.

Then Pg,n ∈ R for all g, n such that 2g − 2 + n > 0.

If we want to prove this result using the results we have already proved, then we
need to prove a polynomiality result for the the entries of the R-matrix. At level 0,
we use the equation

(R(z)−1x)|Z5 = SZ5(q, z)(SM (z)−1)|Z5

and the explicit forms of the MSP quantum connection and the quantum connection
for the quintic to obtain

R(z)∗1|Z5
= I0 +O(zN−3)

R(z)∗p|Z5 = zD(I0) +HI0I11 +O(zN−2).

To simplify what follows, define the normalized basis

φb = I0I11 · · · IbbHb,

where I22 was defined previously and I33 = I11. If we define

(Rk)
b
j := (Rkφ

b, pj)M ,

then the recursive formula

(Rk)
b
j = (D + C + b)(Rk−1)

b
j−1 + (Rk)

b−1
j−1 − cjq(Rk)

b
j−N ,

where Cb = D log(I0 · · · Ibb) ∈ R and cj = (0, . . . , 0, 120, 770, 1345, 770), yields the
following result:

Lemma 7.11. If j ̸≡ b + k (mod N), then (Rk)
b
k = 0. Otherwise, we have

(Rk)
b
b+k ∈ R and Y (Rk)

n
b+N+k ∈ R.

At level 1, define the normalized basis 1̄α = L−N+3
2 1α. Then define

(Rk)
α
j := L−(j−k)

α (Rk1̄
α, pj)M ,

where Lα = −tαL.

Lemma 7.12. The quantity (Rk)
α
j is independent of α and is a polynomial in Y of

degree at most k +
⌊
j
N

⌋
.

The lemma is proved as follows:

• Fix the case when j = 0 by using the Picard-Fuchs equation

D5
Lα

(DN
Lα
− tN )− q

5∏
m=1

(DLα
+mz)R(z)∗1|ptα = 0

and an oscillating integral. Solving the Picard-Fuchs equation expresses
Rk as an antiderivative of some polynomial in Rm<k and their derivatives.
To prove that the constants of integration are zero, we use the fact that
R(z)1|ptα can be computed from the asymptotic expansion of the oscillating
integral ∫

γα

e
W
z
dx0 ∧ · · · ∧ dxN+3

x0 · · ·xN+3
,
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where

W =

N+3∑
i=0

(xi − λi log xi)−

(∏N+3
i=0 xi
q

) 1
5

is the mirror superpotential and γα is the Lefschetz thimble near the critical
point of W corresponding to ptα.
• Use the recursion

(Rk)
α
j =

(
D − 1

N

(
N + 3

2
− j + k

)
(1− Y )

)
(Rk−1)

α
j−1

+ (Rk)
α
j−1 +

cj
55

(1− Y )(Rk)
α
j−N

to induct on j.

Proof of Theorem 7.10. First, note that we have the base cases P0,3 = 1 due to
Zagier-Zinger [ZZ08] and

P1,1 = −1

2
A1 −

31

3
B1 −

1

12
(1− Y )− 25

12

due to Zinger [Zin09]. The relation

Pg,n+1 = (D + (g − 1)(2B1 + 1− Y )− nA1)Pg,n

implies that we only need to prove Pg≥2 ∈ R.

Consider the correlator (5Y )g−1⟨ ⟩[0,1]g,0 , which is a polynomial in Y of degree at
most g − 1. By the stable graph sum formula, we have

(5Y )g−1⟨ ⟩[0,1]g,0 = Pg +
∑
Γ

ContΓ .

For all non-leading graphs, we use the relation
∑
v(gv − 1) + |E| = g − 1 to assign

powers of Y to all of the edges. Then the contributions from vertices are given as
follows:

• At a level 0 vertex, the contributions are simply

Y gv−1
〈
φb1 ψ̄

a1
1 , . . . , φbnv

ψ̄
anv
nv

〉Z5

gv,nv
,

which reduces to Pgv,m by the string and dilaton equations.
• At a level 1 vertex, the contribution is∑

m

L3(gv−1)

m!

〈
Lj1−k1α ψ̄k11 , . . . , L

jnv−knv
α ψ̄

knv
nv , T̃mα

〉
gv,nv+m

.

After summing over all α, we see that this is nonzero only if the total power
of tα is a multiple of N (here, we may want N to be a prime number).

Using the fact that the contribution from an edge between two level 1 vertices
satisfies a balancing condition, the total factor of the Lα for the various α becomes
1. This implies that ContΓ ∈ R for any non-leading Γ, so we must have Pg ∈ R. □

Remark 7.13. We can recover the genus one mirror theorem very quickly using the
results we have already proved. If we consider the correlator

⟨p⟩[0,1]1,1 = const,
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there are only two stable graphs. The contribution of the stable graph with a genus
1 vertex at the quintic is given by

1

I0

〈
R(z)−1p|Z5

〉Z5

1,1
=
〈
−B1ψ̄1 + I11H

〉Z5

1,1

= P1,1 +
200

24
B1.

The other graph contributes

1

2
(A1 + 4B1 +

2

5
(1− Y ))

at level 0. Finally, we can prove that the total contribution from level 1 is a degree

1 polynomial in Y , so using the known values of N1,1 and ⟨H⟩Z1,1,0 fixes the two
coefficients of Y .

Remark 7.14. The formula

P1,1 = −1

2
A1 +

(
χ(Z)

24
− 2

)
B1 −

1

12
(1− Y )− 1

24

∫
Z

c2(Z) ·H

is expected to hold for all of the examples in Table 2, where we denote the Calabi-Yau
threefold by Z. It has been proven for hypersurfaces in weighted projective space
by the author [Lei24b].

7.6. Mirror symmetry picture. Recall that mirror symmetry is for families

Z = (Z, ω) Z∨ = (Z∨, J)

M ⊂M ∋ Q M∨ ⊂M
∨ ∋ q.

On the A-side, we have bases ϕi ∈ H1,1(Z) mirror to ei ∈ H2,1(Z∨). On the B-side,
near the maximal unipotent monodromy point, we have periods

I0 =

∫
Γ0

Ω(q) = 1 +O(q);

I1,i =

∫
Γi

Ω(q) = log qi + · · · .

Then we will have the mirror map given by

Qi = e
I1,i
I0 ,

so we see that

ϕj =
∑
i

∂ logQj
∂ log qi

ei.

Using the B-model basis, we define the Yukawa coupling

Yijk := I20 ⟨ei, ej , ek⟩
Z
0,3,

which is a rational function over M̄.

Remark 7.15. Physicists have more predictions about the Yukawa couplings, includ-
ing pole orders.
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In the case of the quintic Z5 ⊂ P4, there is only one Kähler parameter, and the
Yukawa coupling is simply

Y =
1

1− 55q
.

For Z3,3 ⊂ P2 × P2, the Yukawa couplings are symmetric under permuting 1 and 2
and are given by

Y111 =
34q1(2 + 33q1 + 33q2)

∆
;

Y112 =
(1− 33q1 − 33q2)(1 + 2 · 33q1 − 33q2)

∆
,

where the discriminant ∆ is given by

∆ = (1− 33q1 − 33q2)− 39q1q2.

In higher genus, we define

Pg,⃗a :=
1

I2g−2
0

⟨ea, . . . , ean⟩
X
g,n.

Conjecture 7.16 ([BCOV94]). Define

fg,⃗a := Pg,⃗a + lower order,

where the lower order terms come from a sum over stable graphs. This fg,⃗a is a
rational function in q and after normalization by some power of the Yukawa couplings
is a polynomial of degree at most 3g − 3 + n.

Example 7.17. In the case when g = 2, the contributions to f2 come from the
graps in Figure 21. We put Sij on each edge and at each vertex, we place

2 1 1 1 1 0

0 0 0 0 0

Figure 21. Stable graphs of genus 2 with no marked points.

⟨ei1 , . . . , ein⟩
B
g,n := I

−(2g−2)
0 ⟨ei1 , . . . , ein⟩

A
g,n − (n− 1)!δg,1δ⃗ı,⃗0,

where we replace all e0 by ψ̄ and there is a correction term in genus 1 with only
ancestor insertions.

This Feynman graph sum can be realized using geometric quantization. In
particular, consider the matrix

R =


1 zKi z2Si z2(S + SiKi)

I zSij z2(S̃i)T

U zKT
i

1

 =

(
A C

D

)
,
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which is explicitly defined using BCOV’s propagators [BCOV94]. This is symplectic
with respect to the pairing

⟨f, g⟩ = Resz=0(f(−z), g(z)).
Therefore, we may define its geometric quantization by

R̂F (x) :=

∫
Rh+1×Rh+1

e
1
2Q(x′,p′)−x′·p′+F (x′) dxdp,

where Q is a quadratic form given by

Q =
〈
p,D−1x

〉
− 1

2

〈
p,D−1Cp

〉
.

We will view R ∈ EndHB , where

HB = span
{
e0z−2, eiz−1, ei, e0z

}
.

It naturally acts on Givental’s symplectic vector space, but we can restrict it to a
finite-dimensional vector space HA (which is still larger than HB). We will call it
RA when acting on HA and RB when acting on HB .

Remark 7.18. Note that Givental’s graph sum contains more information than
BCOV’s graph sum coming from the extra basis elements.

Theorem 7.19. Here, we restrict to the case of the quintic. Let • denote either A
or B. Denote

f•(x, y) := R̂•F •(x, y),

where we define

F •(x, y) :=
∑

ℏg−1F •
g,m,n

xmyn

m!n!
.

Then we have the identity

fBg,m,n = fAg,m,n − δg,1δm,0(n− 1)!.

In other words, there is the commutative diagram

fAg,m,n fBg,m,n

FAg,m,n FBg,m,n.

−δg,1δm,0(n−1)!

−δg,1δm,0(n−1)!

R̂A R̂B

7.7. MSP realization of the Feynman rule. Recall that MSP for the quintic is
given by the charges

φ1 φ2 φ3 φ4 φ5 ρ µ ν

L 1 1 1 1 1 −5 1
ωlog 1
N 1 1

.
Virtual localization gives us the fixed loci

W (C×)N = Z5 ⊔Npt,

where W = (x51 + · · ·+ x55 = 0) ⊂ P4+N . At the level of CohFTs, recall that we had
an identity

Ω[0,1] = R.(ΩZ5 ⊕ ΩNpt).
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One advantage of increasing N is that it makes the Dijkgraaf-Witten map τ
(which sends I(−z) onto the slice of Lloc coming from H∗(Z5)⊕H∗(Npt)) very nice.
The actual values of τ on components were given in Section 7.3. If we compute the
edge contribution V 00 connecting two vertices at level 0, this will be exactly the
propagators as N →∞.

Our goal is to use the polynomiality of Ω[0,1] to deduce polynomiality of the
CohFT

RA.ΩZ5 .

We will consider the factorization

R = G ·
(
RA

IN×N

)
,

which factorizes

Ω[0,1] = G.(RA.ΩZ5 ⊕ ΩNpt).

It now suffices to prove that G preserves polynomiality, and in fact we see that the
entries of G lie in Q[Y ] with explicit degree bounds.

7.8. FJRW theory of the quintic. The unfortunate issue with the MSP moduli
space of the quintic is that there are N vertices at level ∞. Instead, we will consider
N copies of the field ν. To calculate FJRW invariants, we will set d0 = 0 and
d∞ = d. One nice feature of this is that the moduli space has no vertices at level 0,
so we do not need to prove irregular vanishing.

The ambient space of the target is Tot(OP(1,...,1,5)(−1)⊕5). Virtual localization
will give N isolated points and the FJRW theory as fixed loci. When computing
using MSP, there is a factorization R = Rloc∆, where Rloc comes from virtual
localization and ∆ comes from Grothendieck-Riemann-Roch. In this model, neither
step preserves the unit, but their composition does preserve the unit, and therefore
we obtain

R.(ΩFJRW ⊕ ΩNpt) = Ω[1,∞].

7.9. Multi-parameter models. We will consider only a 1-parameter deformation
of the GLSM for Z3,3 ⊂ P2 × P2. This is given by the charges

φ1 φ2 φ3 φ4 φ5 φ6 ρ µ ν

L1 1 1 1 −3 1 0
L2 1 1 1 −3 0 0
ωlog 1
N 1 1

.
The fixed loci are now LG, P2, and Z3,3. We then have the identities

Ω
[0,1]
1 = R1.(Ω

Z3,3 ⊕ ΩNP2

);

Ω
[0,1]
2 = R2.(Ω

Z3,3 ⊕ ΩNP2

).

Note that Ω
[0,1]
1 is polynomial only in q1 and Ω

[0,1]
2 is polynomial only in q2. We

then find that RA1 = RA2 , and so in fact we have

Ω
[0,1]
1 = G1.(RA.Ω

Z3,3 ⊕ ΩNP2

);

Ω
[0,1]
2 = G2.(RA.Ω

Z3,3 ⊕ ΩNP2

),
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where Gi is polynomial in qi (with no bound in the other Kähler parameter). The
first identity gives polynomiality in q1 and the second gives polynomiality in q2.

d1

d2
3g − 3

Figure 22. MSP bounds (gray) and sharp bounds (blue) for Z3,3 ⊂
P2 × P2.

Remark 7.20. The bound obtained using MSP for this example is not sharp, for
example see Figure 22.
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Math. Birkhäuser Boston, Boston, MA, 1995, pp. 335–368. isbn:
0-8176-3784-2. doi: 10.1007/978-1-4612-4264-2\_12 ← 10.

[Lei24a] Patrick Lei. Higher genus Gromov-Witten theory of one-parameter
Calabi-Yau threefolds II: Feynman rule and anomaly equations. 2024.
arXiv: 2412.06527 ← 3, 55.

[Lei24b] Patrick Lei. Higher-genus Gromov-Witten theory of one-parameter
Calabi-Yau threefolds I: Polynomiality. 2024. arXiv: 2409.11659 ← 3,
4, 55, 75.

[Li01] Jun Li. “Stable morphisms to singular schemes and relative stable
morphisms”. In: J. Differential Geom. 57.3 (2001), pp. 509–578. issn:
0022-040X,1945-743X ← 29.

[Li11] Si Li. BCOV theory on the elliptic curve and higher genus mirror
symmetry. 2011. arXiv: 1112.4063 [math.QA] ← 5.

[Liu24] Zhiyu Liu. Castelnuovo bound for curves in projective 3-folds. 2024.
arXiv: 2407.20161 ← 4.

[LLY97] Bong H. Lian, Kefeng Liu, and Shing-Tung Yau. “Mirror principle. I”.
In: Asian J. Math. 1.4 (1997), pp. 729–763. issn: 1093-6106,1945-0036.
doi: 10.4310/AJM.1997.v1.n4.a5 ← 3, 10, 55.

[LP18] Hyenho Lho and Rahul Pandharipande. “Stable quotients and the
holomorphic anomaly equation”. In: Adv. Math. 332 (2018), pp. 349–
402. issn: 0001-8708,1090-2082. doi: 10.1016/j.aim.2018.05.020
← 51.

[LR22] Zhiyu Liu and Yongbin Ruan. Castelnuovo bound and higher genus
Gromov-Witten invariants of quintic 3-folds. 2022. arXiv: 2210.13411
← 4.

[LZ09] Jun Li and Aleksey Zinger. “On the genus-one Gromov-Witten invari-
ants of complete intersections”. In: J. Differential Geom. 82.3 (2009),
pp. 641–690. issn: 0022-040X,1945-743X ← 3, 56.

https://doi.org/10.2140/gt.2018.22.1459
https://doi.org/10.1007/s002200050426
https://doi.org/10.1007/s00029-021-00743-1
https://doi.org/10.1007/s00029-021-00743-1
https://doi.org/10.1007/s00029-021-00743-1
https://doi.org/10.1007/978-1-4612-4264-2\_12
https://arxiv.org/abs/2412.06527
https://arxiv.org/abs/2409.11659
https://arxiv.org/abs/1112.4063
https://arxiv.org/abs/2407.20161
https://doi.org/10.4310/AJM.1997.v1.n4.a5
https://doi.org/10.1016/j.aim.2018.05.020
https://arxiv.org/abs/2210.13411


REFERENCES 85

[MNOP06a] Davesh Maulik, Nikita Nekrasov, Andrei Okounkov, and Rahul Pand-
haripande. “Gromov-Witten theory and Donaldson-Thomas theory,
I”. In: Compos. Math. 142.5 (2006), pp. 1263–1285 ← 4.

[MNOP06b] Davesh Maulik, Nikita Nekrasov, Andrei Okounkov, and Rahul Pand-
haripande. “Gromov-Witten theory and Donaldson-Thomas theory,
II”. In: Compos. Math. 142.5 (2006), pp. 1286–1304 ← 4.

[MP06] D. Maulik and R. Pandharipande. “A topological view of Gromov-
Witten theory”. In: Topology 45.5 (2006), pp. 887–918. issn: 0040-9383.
doi: 10.1016/j.top.2006.06.002 ← 56.

[OP10] A. Okounkov and R. Pandharipande. “The local Donaldson-Thomas
theory of curves”. In: Geom. Topol. 14.3 (2010), pp. 1503–1567. issn:
1465-3060,1364-0380. doi: 10.2140/gt.2010.14.1503 ← 29.

[Par24] John Pardon. Universally counting curves in Calabi–Yau threefolds.
2024. arXiv: 2308.02948 ← 4.

[Pic21] Renata Picciotto. Moduli of stable maps with fields. 2021. arXiv:
2009.04385 ← 37.

[Pop13] Alexandra Popa. “The genus one Gromov-Witten invariants of Calabi-
Yau complete intersections”. In: Trans. Amer. Math. Soc. 365.3 (2013),
pp. 1149–1181. issn: 0002-9947,1088-6850. doi: 10.1090/S0002-
9947-2012-05550-4 ← 3.

[PP17] Rahul Pandharipande and Aaron Pixton. “Gromov-Witten/pairs
correspondence for the quintic 3-fold”. In: J. Amer. Math. Soc. 30
(2017), pp. 389–449 ← 4.

[PPZ15] Rahul Pandharipande, Aaron Pixton, and Dimitri Zvonkine. “Rela-

tions on Mg,n via 3-spin structures”. In: J. Amer. Math. Soc. 28.1
(2015), pp. 279–309. issn: 0894-0347,1088-6834. doi: 10.1090/S0894-
0347-2014-00808-0 ← 23.

[PV16] Alexander Polishchuk and Arkady Vaintrob. “Matrix factorizations
and cohomological field theories”. In: J. Reine Angew. Math. 714
(2016), pp. 1–122. issn: 0075-4102,1435-5345. doi: 10.1515/crelle-
2014-0024 ← 56.

[Tel12] Constantin Teleman. “The structure of 2D semi-simple field theories”.
In: Invent. Math. 188 (2012), pp. 525–588 ← 25, 48.

[Tha96] Michael Thaddeus. “Geometric invariant theory and flips”. In: J.
Amer. Math. Soc. 9.3 (1996), pp. 691–723. issn: 0894-0347,1088-6834.
doi: 10.1090/S0894-0347-96-00204-4 ← 3, 55, 57.

[Tia87] Gang Tian. “Smoothness of the universal deformation space of com-
pact Calabi-Yau manifolds and its Petersson-Weil metric”. In: Mathe-
matical aspects of string theory (San Diego, Calif., 1986). Vol. 1. Adv.
Ser. Math. Phys. World Sci. Publishing, Singapore, 1987, pp. 629–646.
isbn: 9971-50-273-9; 9971-50-274-7 ← 5.

[Tod89] Andrey N. Todorov. “The Weil-Petersson geometry of the moduli
space of SU(n ≥ 3) (Calabi-Yau) manifolds. I”. In: Comm. Math.
Phys. 126.2 (1989), pp. 325–346. issn: 0010-3616,1432-0916 ← 5.

[VZ08] Ravi Vakil and Aleksey Zinger. “A desingularization of the main
component of the moduli space of genus-one stable maps into Pn”.
In: Geom. Topol. 12.1 (2008), pp. 1–95. issn: 1465-3060,1364-0380.
doi: 10.2140/gt.2008.12.1 ← 3, 56.

https://doi.org/10.1016/j.top.2006.06.002
https://doi.org/10.2140/gt.2010.14.1503
https://arxiv.org/abs/2308.02948
https://arxiv.org/abs/2009.04385
https://doi.org/10.1090/S0002-9947-2012-05550-4
https://doi.org/10.1090/S0002-9947-2012-05550-4
https://doi.org/10.1090/S0894-0347-2014-00808-0
https://doi.org/10.1090/S0894-0347-2014-00808-0
https://doi.org/10.1515/crelle-2014-0024
https://doi.org/10.1515/crelle-2014-0024
https://doi.org/10.1090/S0894-0347-96-00204-4
https://doi.org/10.2140/gt.2008.12.1


86 REFERENCES

[Wan20] Jun Wang. A mirror theorem for Gromov-Witten theory without
convexity. 2020. arXiv: 1910.14440 ← 3.

[Wit92] Edward Witten. “Mirror manifolds and topological field theory”. In:
Essays on mirror manifolds. Int. Press, Hong Kong, 1992, pp. 120–158.
isbn: 962-7670-01-4 ← 3, 30.

[Yau78] Shing Tung Yau. “On the Ricci curvature of a compact Kähler mani-
fold and the complex Monge-Ampère equation. I”. In: Comm. Pure
Appl. Math. 31.3 (1978), pp. 339–411. issn: 0010-3640,1097-0312. doi:
10.1002/cpa.3160310304 ← 5.

[YY04] Satoshi Yamaguchi and Shing-Tung Yau. “Topological string partition
functions as polynomials”. In: J. High Energy Phys. 7 (2004), pp. 047,
20. issn: 1126-6708,1029-8479. doi: 10.1088/1126-6708/2004/07/
047 ← 17, 72.

[Zho22] Yang Zhou. “Quasimap wall-crossing for GIT quotients”. In: Invent.
Math. 227.2 (2022), pp. 581–660. issn: 0020-9910,1432-1297. doi:
10.1007/s00222-021-01071-z ← 56.

[Zin09] Aleksey Zinger. “The reduced genus 1 Gromov-Witten invariants
of Calabi-Yau hypersurfaces”. In: J. Amer. Math. Soc. 22.3 (2009),
pp. 691–737. issn: 0894-0347,1088-6834. doi: 10.1090/S0894-0347-
08-00625-5 ← 3, 10, 51, 56, 74.

[Zon16] Zhengyu Zong. Equivariant Gromov-Witten Theory of GKM Orbifolds.
2016. arXiv: 1604.07270 ← 27.

[ZZ08] Don Zagier and Aleksey Zinger. “Some properties of hypergeometric
series associated with mirror symmetry”. In: Modular forms and string
duality. Vol. 54. Fields Inst. Commun. Amer. Math. Soc., Providence,
RI, 2008, pp. 163–177. isbn: 978-0-8218-4484-7 ← 23, 74.

https://arxiv.org/abs/1910.14440
https://doi.org/10.1002/cpa.3160310304
https://doi.org/10.1088/1126-6708/2004/07/047
https://doi.org/10.1088/1126-6708/2004/07/047
https://doi.org/10.1007/s00222-021-01071-z
https://doi.org/10.1090/S0894-0347-08-00625-5
https://doi.org/10.1090/S0894-0347-08-00625-5
https://arxiv.org/abs/1604.07270

	1. Introduction
	Author's note
	Acknowledgements

	Part 1. Mathematical and physical preliminaries
	2. Introduction to the topological B-model (Albrecht Klemm)
	2.1. Mirror symmetry and the role of Calabi-Yau threefolds
	2.2. The topological A-model and B-model
	2.3. The quintic
	2.4. Fourteen one-parameter hypergeometric families
	2.5. More on periods
	2.6. Special geometry
	2.7. Genus one predictions
	2.8. Propagators
	2.9. Higher-genus predictions
	2.10. Boundary conditions

	3. An axiomatic approach to enumerative geometry (Patrick Lei)
	3.1. Moduli of curves and CohFTs
	3.2. The genus-zero picture
	3.3. R-matrix action
	3.4. Reconstruction theorem
	3.5. Operator formalism and geometric quantization


	Part 2. Higher-genus computations via logarithmic GLSMs
	4. Geometry of log GLSM moduli spaces (Qile Chen and Felix Janda)
	4.1. R-maps and log targets
	4.2. Log geometry and tropicalization
	4.3. Log curves
	4.4. Superpotentials
	4.5. Punctured R-maps
	4.6. Obstruction theories
	4.7. Effective invariants
	4.8. Log GLSM axioms
	4.9. Uniform minimal degeneracy
	4.10. Some examples
	4.11. C action
	4.12. Fixed loci
	4.13. Virtual localization formula

	5. Applications to Gromov-Witten theory (Shuai Guo and Felix Janda)
	5.1. Genus two calculations
	5.2. Genus two mirror theorem
	5.3. LG/CY correspondence for the quintic
	5.4. Geometry of LG/CY correspondence
	5.5. Twisted theories
	5.6. Combinatorial structure theorem
	5.7. GW theory of the quintic


	Part 3. See BCOV from the A-side: MSP fields
	6. Geometry of MSP moduli spaces (Wei-Ping Li and Yang Zhou)
	6.1. P-field reformulation of GW and FJRW theory
	6.2. Master space and MSP fields
	6.3. Cosection localization and virtual cycle
	6.4. Virtual localization
	6.5. NMSP fields
	6.6. Reformulation of stability condition
	6.7. General setup
	6.8. -stability
	6.9. More examples
	6.10. Proof of key properties of the moduli space

	7. Applications to Gromov-Witten theory (Shuai Guo and Patrick Lei)
	7.1. MSP invariants
	7.2. Genus zero MSP theory
	7.3. MSP [0,1] CohFT
	7.4. Degree bound for MSP theory
	7.5. Polynomiality
	7.6. Mirror symmetry picture
	7.7. MSP realization of the Feynman rule
	7.8. FJRW theory of the quintic
	7.9. Multi-parameter models

	References


