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Caleb (Jan 22): Rational Equivalence

The idea of intersection theory is to define a well-defined intersection product on a scheme or
variety that behaves like the intersection form in ordinary homology of a manifold.

Example 1.0.1. Let f,g ∈A2
k be two plane curves. Then we can define the intersection multiplicity

by
i(I, F ·G) = dimk(k[x,y]/(f,g)),

which is the dimension of the intersection scheme. However, this does not generalize, so we will
need to use Serre’s formula, which involves the Tor functor.

1.1 Chow Groups

We want to define zeroes and poles for a singular variety. If V is codimension 1 in X for a
nonsingular variety X, then consider r ∈ K(X)×, where K(X) = Frac(OV ,X), where this local
ring is a discrete valuation ring. Then we can write (r) =

∑
ordV (r)[V], which is a Weil divisor.

For a curve, we can compute ordV (r) = dimk(OV ,X/(r)). In general, we can write ordV (r) =
lenA(A/(r)), where A = OV ,X.

Example 1.1.1. If X = A3 and r = y2(x−2)(xy+1)
zy+x , we see that along y = 0, we have A = k[x,y, z](y)

and thus lemA(A/r) = 2.

Proposition 1.1.2. The map ordV : R(X)∗ → Z is a homomorphism.

Proposition 1.1.3. For any r, there are finitely many V such that ordV (r) 6= 0.

Examples 1.1.4.

1. Let f be irreducible and f,g be plane curves. Then i(P, F ·G) = ordP(g).

2. Let X̃→ X, Ṽ → V be normalizations. Then ordV (r) =
∑

ord
Ṽ
(r)[K(Ṽ) : K(V)].

Now we will define rational equivalence. Let W be a (k+ 1)-dimensional subvariety of X and
r ∈ R(W)×. Then we may obtain cycles of the form [div(r)], and such cycles form the group
Ratk X.

Definition 1.1.5. The Chow groups of X are defined by Ak(X) := Zk(X)/Ratk X.
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Example 1.1.6 (Not Mayer-Vietoris). Let X1,X2 be closed subschemes of X. Then the sequence

Ak(X1 ∩X2)→ Ak(X1)⊕Ak(X2)→ Ak(X1 ∪X2)→ 0

is exact.

1.2 Pushforward of Cycles

Let f : X → Y be a morphism. We want to define a pushforward Ak(X) → Ak(Y). This would
imply that Ratk(X) → Ratk(Y). This is true when f is proper. Then V → f(V) = W is a map of
cycles because proper implies universally closed. We obtain a field K(W) ⊆ K(V), which is finite
if V ,W are of equal dimension. Then we define

deg(V/W) =

{
[K(V) : K(W)] dimV = dimW

0 dimV > dimW.

Definition 1.2.1. The pushforward of a cycle V is f∗[V] = deg(V/W)[W].

Theorem 1.2.2. Let f is proper. If α ∼ 0, then f∗α ∼ 0.

Proposition 1.2.3. Let f be proper and surjective and let r ∈ K(X)×. Then

1. f∗[div(r)] = 0 if dim Y < dimX;

2. f∗[div(r)] = div(N(r)) if dim Y = dimX.

Proof. Consider the map P1 → Speck. Because the order map is a homomorphism, let r ∈ k[t] ⊂
k(t) be an irreducible polynomial, where p has degree n. Then div(r) = [P] −n[∞] and then we
have

f∗(div(r)) = n[pt] −n[pt] = 0.

Now suppose f is finite. Given W ⊂ Y of codimension 1, write (A,m) = (OW,Y ,mW,Y).
Construct a domain B such that B/A is finite and B⊗A K(Y) = K(X) such that {Ui} → W are
obtained by Bmi = OUi,X. Here, we need to show that∑

ordVi(r)[K(Vi) : K(W)] = ordW(N(r)).

Now if r ∈ B, we want ϕ : B
r−→ B, and then the LHS becomes `A(cokerϕ) = ordW(detϕK). In

general, we need to apply results from EGA III to show that B exists.
Now in the different-dimensional case, we replace Y with SpecK(Y) and reduce to the case of

a curve over SpecK(Y).

Corollary 1.2.4 (Bezout’s Theorem). Let k = k and suppose f,g are plane curves of degree m,n with no
common component. Then

∑
i(P, F ·G) = mn.

Proof. Assume f is irreducible and replace G with G ′ = Ln. Then G/G ′ = r ∈ K(CF) and therefore∑
i(P, F ·G) −

∑
i(P, F ·G ′) =

∑
ordP(r) = 0,

so we may as well assume F,G are lines and then the result is obvious.

Definition 1.2.5. We can define the degree deg(α) to be deg(α) =
∫
X α =

∑
nP[K(P) : K].
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1.3 Alternative Definition of Rational Equivalence

Let X be a scheme with irreducible components X1, . . . ,Xt. Then let mi := `OX,x(OX,x). We define
the fundamental class [X] =

∑t
i=1mi[Xi].

Proposition 1.3.1. A cycle α ∈ Zk(X) is rationally equivalent to 0 if and only if there exist (k+ 1)-
dimensional subvarieties V1, . . . ,Vt of X×P1 such that fi : Vi → P1 are dominant and α =

∑
[Vi(0)] −

[Vi(∞)].

Sketch of Proof. Suppose α = [div(r)] for some r ∈ K(W)×. Now r defines W → P1, so we will
define V = Γ(r) to be the closure of the graph. This gives a dominant rational map f : V 99K P1

and thus [div(r)] = p∗(div(f)) = [V(0)] − [V(∞)]. The other direction is easy.

Remark 1.3.2. This discussion and more machinery allows us to show that if f : X → Y is flat of
relative dimension n, then we can define pullbacks of cycles. Here, if α ∼ 0 is a k-cycle on Y, then
f∗α ∼ 0 in Zk+n(X), so we have

f∗ : Ak(Y)→ Ak+n(X).
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Avi (Jan 29): Intersecting with divisors and the first Chern
class

Note: These are the speaker’s notes. Minor edits to the TEX source were made.

2.1 Cartier and Weil divisors

Let X be a variety of dimension n over a field k. We want to introduce two notions of divisors,
one familiar from the last chapter.

Definition 2.1.1. A Weil divisor of X is an n− 1-cycle on X, i.e. a finite formal linear combination
of codimension 1 subvarieties of X. Thus the Weil divisors form a group Zn−1X.

Definition 2.1.2. A Cartier divisor consists of the following data:

• an open cover {Uα} of X;

• for each α a nonzero rational function fα on Uα, defined up to multiplication by a unit , i.e.
a function without zeros or poles, such that for any α,β we have fα/fβ a unit on Uα ∩Uβ.

Like the Weil divisors, the Cartier divisors form an abelian group: ({Uα, fα}) + ({Uα,gα}) =
({Uα, fαgα}) (we can assume that the open covers are the same, since if not they refine to
{Uα ∩ Vβ}). We call this abelian group DivX.

Given a Cartier divisor D = ({Uα, fα}) and a codimension 1 subvariety V of X, we define

ordV D = ordV (fα)

for α such that Uα ∩V is nonempty; since each fα is defined up to a unit, this order is well-defined.
We define the associated Weil divsior

[D] =
∑
V

ordV D · [V].

This defines a homomorphism
DivX→ Zn−1X.

For any rational function f on X, we get a principal Cartier divisor div(f) by choosing any cover
{Uα} and defining fα = f|Uα . It is immediate that the image [div(f)] of this divisor under the
map to Zn−1X is the Weil principal divisor. Say that two Cartier divisors D and D ′ are linearly
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equivalent if D−D ′ = div(f) for some f; then we define PicX to be the group of Cartier divisors
modulo linear equivalence, and the above then shows that the map DivX→ Zn−1X descends to a
map PicX→ An−1X. This map is in general neither injective nor surjective.

Notice that the definition of a Cartier divisor yields that of a line bundle on X: given a divisor
D = ({Uα, fα}), define a line bundle L = O(D) to be trivialized on each Uα with transition
functions fα/fβ. Two Cartier divisors D and D ′ are linearly equivalent if and only if O(D) =
O(D ′), and so we get the alternate description of PicX as the abelian group of line bundles on
X with group operation given by the tensor product. Conversely, given a line bundle L, this
determines a Cartier divisor D(L) up to some additional data: a nonzero rational section s of
L. Therefore we can also think of Cartier divisors as the data of a line bundle together with a
nonzero rational section.

We define the support suppD or |D| of a Cartier divisor D to be the union of codimension 1
subvarieties V of X such that fα is not a unit for Uα nontrivially intersecting V , i.e. ordV D is
nonzero.

We say that a Cartier divisor D = ({Uα, fα}) if all of the fα are regular, i.e. have no poles.

2.2 Pseudo-divisors

In general, Cartier divisors are not well-behaved under pullbacks (although line bundles are). In
particular, given the data of a line bundle L and a nonzero rational section s and a morphism
f : Y → X, there is no guarantee that the pullback f∗s is nonzero. Therefore we enlarge the notion
to make it behave better: let L be a line bundle on X, Z ⊂ X be a closed subset, and s be a nowhere
vanishing section of L restricted to X−Z, or equivalently a trivialization of L|X−Z. A pseudo-divisor
on X consists of the data of such a triple (L,Z, s), up to the following equivalence: two triples
(L,Z, s) and (L ′,Z ′, s ′) define the same pseudo-divisor if Z = Z ′ and there exists an isomorphism
σ : L→ L ′ such that restricted to X−Z we have σ ◦ s = s ′. Note that this is well-behaved under
pullback.

Example 2.2.1. Let D = ({Uα, fα}) be a Cartier divisor, with support |D|. Then each fα away from
|D gives a local section of the associated line bundle O(D), and so these glue to a section sD of
O(D) on X− |D|; this makes (O(D), |D|, sD) a pseudo-divisor.

We say that a Cartier divisor D represents a pseudo-divisor (L,Z, s) when |D| ⊆ Z and there
exists an isomorphism σ : O(D)→ L such that restricted to X−Z we have σ ◦ sD = s, with notation
as above.

Lemma 2.2.2. If X is a variety, then every pseudo-divisor (L,Z, s) on X is represented by a Cartier divisor
D. If Z ( X, then D is unique; if Z = X, then D is unique up to linear equivalence.

Proof. If Z = X, then s is a section on X− X = {}, and so a pseudo-divisor is just a line bundle;
and we saw in the previous section that the group of Cartier divisors up to linear equivalence is
isomorphic to the group of line bundles, so L corresponds to a unique linear equivalence class of
Cartier divisors.

If Z 6= X, let U = X− Z. As above, choose a Cartier divisor D = ({Uα, fα}) with O(D) ' L.
The section s consists of a collection of functions sα on U ∩Uα such that sα = fα/fβ · sβ on
U∩Uα ∩Uβ; thus sα/fα = sβ/fβ on each intersection, i.e. there exists some rational function r
such that sα/fα = r on each U∩Uα. Then D ′ := D+ div(r) is the Cartier divisor ({Uα, fαr}) and
by definition fαr = sα on each U∩Uα; therefore using the definition above sD ′ = s. Since D ′ is
linearly equivalent to D, it corresponds to the same line bundle, and since r is regular on each Uα
the support of div(r) is contained in Z; therefore D ′ represents (L,Z, s).

For uniqueness, suppose that two Cartier divisors D1 = ({Uα, fα}) and D2 = ({Vβ,gβ}) both
represent (L,Z, s). Then similarly there must exist some rational function r such that rfα = rgβ



9

on each Uα ∩ Vβ. But since sD1 = sD2 = s, if Z 6= X, i.e. U is nonempty, then sD1 and sD2 must
agree on every U∩Uα ∩ Vβ, and so r restricted to U must be 1; since f is rational it follows that
f = 1 and D1 = D2.

For any pseudo-divisor D = (L,Z, s), as for Weil divisors we will write O(D) = L, |D| = Z, and
sD = s.

If D = (L,Z, s) and D ′ = (L ′,Z ′, s ′) are two pseudo-divisors, we can define their sum

D+D ′ = (L⊗ L ′,Z∪Z ′, s⊗ s ′).

This agrees with the sum on Cartier divisors, except that the supports may be larger in this case.
Similarly defining

−D = (L−1,Z, s−1)

makes the set of pseudo-divisors into an abelian group.
Given a pseudo-divisor D on a variety X of dimension X, we can define the Weil class divisor

[D] by taking D̃ to be the Cartier divisor which represents D and setting [D] := [D̃], the associated
Weil divisor from the previous section. The above lemma shows that this yields a well-defined
element of An−1X; this gives a homomorphism from the group of pseudo-divisors to An−1X.

2.3 Intersecting with divisors

Let X be a variety of dimension n, D be a pseudo-divisor on X, and V be a subvariety of dimension
k. Let j : V ↪→ X be the inclusion of V into X; then the pullback j∗D is a pseudo-divisor on V with
support V ∩ |D|. We define the class D · [V] in Ak−1(V ∩ |D|) given by the Weil class divisor of j∗D:

D · [V] = [j∗D].

For any closed subscheme Y ⊂ X containing V ∩ |D|, we can also view this as an element of Ak−1Y;
we will also denote this by D · [V].

Let α =
∑
V nV ·V be a k-cycle on X, with support |α the union of the subvarieties V such that

nV is nonzero. For a pseudo-divisor D on X, we define the intersection class D ·α in Ak−1(V ∩ |D|)
by

D ·α =
∑
V

nV · (D · [V]).

As above, we can also view this as an element of Ak−1Y for any Y containing |α|∩ |D|.
We will apply this in two main cases. First: f |D| = X, then the data of D = (L,X, s) is just that

of a line bundle as above; in this case the action of D on a k-cycle α is called that of the first Chern
class, written D ·α = c1(L)∩α.

Second: if i : |D| ↪→ X is the inclusion of |D| into X, then D ·α is called the Gysin pullback i∗α.

Theorem 2.3.1. Let X be a scheme, D be a pseudo-divisor on X, and α be a k-cycle on X.

(a) Let α ′ be a k-cycle on X. Then

D · (α+α ′) = D ·α+D ·α ′

in Ak−1((|α|∪ |α ′|)∩ |D|).

(b) Let D ′ be a pseudo-divisor on X. Then

(D+D ′) ·α = D ·α+D ′ ·α

in Ak−1(|α|∩ (|D|∪ |D ′|)).
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(c) Let f : Y → X be a proper morphism, β be a k-cycle on Y, and g : |β|∩ f−1(|D|)→ f(|β|)∩ |D| be the
restriction of f to |β|∩ f−1(|D|). Then

g∗(f
∗D ·β) = D · f∗β

in Ak−1(f(|β|)∩ |D|).

(d) Let f : Y → X be a flat morphism of relative dimension n and g : f−1(|α| ∩ |D|) → |α| ∩ |D| be the
restriction of f to f−1(|α|∩ |D|). Then

f∗D · f∗α = g∗(D ·α)

in An+k−1(f
−1(|α|∩ |D|)).

(e) If the line bundle O(D) is trivial, then
D ·α = 0

in Ak−1(|α|∩ |D|).

Proof. Part (a) is immediate from the definition. Using part (a), then, we can assume by linearity
that α = [V] for some k-dimensional subvariety V ⊂ X. Restricting to V , (b) is just the statement
that taking the Weil class divisor is compatible with sums.

For part (c), we can likewise assume that β = [W] for some k-dimensional subvariety W ⊂ Y;
then f∗D · β is the restriction of the Cartier divisor f∗D̃ representing f∗D to W, and so we can
assume that Y = W. Similarly on the right-hand side D · f∗β = D · deg(f(W)/W)[f(W)] and so
concerns only the restriction of D to f(W), and so we can assume that f(W) = X. In this case g = f
on the support of D and so the statement is

f∗(f
∗[D]) = deg(W/f(W))[D]

since D · [X] = [D] and f∗D · [Y] = f∗[D]. If f is a map of degree d and D = div(r) for some
function r on some open subset of f(W), then from last time we know that locally

f∗[div(f∗r)] = [div(N(f∗r))] = d[div(r)]

where N is the determinant map from functions on subsets of W to functions on their images,
since N(f∗r) = dr since f has degree d. But locally we can always assume that [D] is principal,
and so f∗f∗[D] = d[D] as desired.

For (d), we can again assume that α = [V] = [X], so the statement similarly becomes

[f∗D] = f∗[D].

By linearity, we can assumeD = [W] for some subvarietyW of X = V , at which point the statement
is f∗[W] = [f−1(W)], which is true whenever f is flat.

Finally for (e) we can again assume α = [V] = [X], so that the statement is [D] = 0 in An−1X
whenever O(D) is trivial, where n is the dimension of V = X. Letting D̃ be the Cartier divisor
representing D, we know from section 1 that O(D) is trivial precisely when D̃ is linearly equivalent
to the trivial Cartier divisor 0 = ({Uα, 1}) for which every local function is a unit; and we know
that the associated Weil divisor map DivX → Zn−1X descends to a map PicX → An−1X, i.e.
[D] = [D̃] = 0 whenever O(D) is trivial.
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2.4 Commutativity

Suppose that we have two Cartier divisors D,D ′ on an n-dimensional variety X. Then they both
determine associated Weil divisors [D], [D ′] ∈ Zn−1X (and thus in An−1X), and so it is natural to
consider the intersections

D · [D ′], D ′ · [D].

Theorem 2.4.1. In An−2(|D|∩ |D ′|), we have

D · [D ′] = D ′ · [D].

Corollary 2.4.2. Let D be a pseudo-divisor on a scheme X, and α be a k-cycle on X rationally equivalent
to 0. Then

D ·α = 0

in Ak−1(|D|).

Proof. We can assume without loss of generality that α = [div(f)] for some rational function f on
a subvariety V of X. Then letting D̃ be the Cartier divisor representing D we can replace D with
D̃ and X with V without changing the result; then we can apply Theorem 2.4.1 to get

D ·α = D̃ · [div(f)] = div(f) · [D̃].

But by part (e) of Theorem 2.3.1, we have div(f) · [D̃] = 0.

Given a closed subscheme Y ⊂ X and a k-cycle α on Y, we can construct its intersection
D ·α ∈ Ak−1(Y ∩ |D|) for any pseudo-divisor D on X. This gives a map

ZkY → Ak−1(Y ∩ |D|).

The above corollary shows that in fact this map descends to a map

AkY → Ak−1(Y ∩ |D|);

this is called intersecting with D.

Corollary 2.4.3. For two pseudo-divisors D,D ′ on a scheme X and a k-cycle α on X, we have

D · (D ′ ·α) = D ′ · (D ·α)

in Ak−2(|α|∩ |D|∩ |D ′|).

Proof. We can assume without loss of generality that α = [V] for some subvariety V ⊆ X of
dimension k. Then we can restrict D and D ′ to V , so that D ′ · [V] = [id∗D ′] = [D ′] and similarly
D · [V] = [D]; and then applying Theorem 2.4.1 immediately gives the result.

For pseudo-divisors D1, . . . ,Dn on X and a k-cycle α on X, we can then define inductively

D1 · · ·Dn ·α = D1 · (D2 · · ·Dn ·α)

in Ak−n(|α|∩ (|D1|∪ · · · ∪ |Dn|)). Theorem 2.4.1 implies that the order of the Di is unimportant,
and parts (a) and (b) of Theorem 2.3.1 implies that the action is linear in each Di and in α. More
generally if p(t1, . . . , tn) is a homogeneous polynomial of degree d and Z is a closed subscheme
of X containing |α|∩ (|D1|∪ · · · ∪ |Dn|), then we can define p(D1, . . . ,Dn) ·α in Ak−d(Z).
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Definition 2.4.4. We say that an algebraic variety Y is complete if for any variety Z the projection
Y ×Z→ Y is a closed map.

For example, any projective variety is complete.
If n = k and Y = |α|∩ (|D1|∪ · · · ∪ |Dk|) is complete, then we can define the intersection number

(D1 · · ·Dk ·α)X =

∫
Y
D1 · · ·Dk ·α.

Similarly if p is a homogeneous polynomial of degree k in k variables then we can define

(p(D1, . . . ,Dk) ·α)X =

∫
Y
p(D1, . . . ,Dn) ·α.

For a subvariety V purely of dimension k, we will sometimes write simply V instead of [V];
similarly we will sometimes write D instead of [D].

Example 2.4.5. Let X be the projective completion of the affine surface X ′ ⊂A3 defined by z2 = xy.
Consider the Cartier divisor D on X defined everywhere by the equation x, corresponding to the
subvariety cut out by x = 0. Define the lines `, ` ′ by x = z = 0 and y = z = 0 respectively, and let
P be the origin (0, 0, 0). Along the subvariety x = 0, from the defining equation we also have z = 0
(in affine space), and so [D] = ord`D · [`]; we have

ord`D = lenAA/(x),

where (in the affine variety) A = OX,` = K[x,y, z]/(z2 − xy). Thus A/(x) = K[x,y, z]/(z2 −
xy, x) = K[y, z]/(z2) which has length 2, with maximal proper subsequence of modules given by
0 ⊂ K[y] = K[y, z]/(z) ⊂ K[y, z]/(z2). Therefore [D] = 2[`]. We can compute

D · [` ′] = [j∗D] = [P]

where j is the inclusion of ` ′ into X, since restricted to the line y = z = 0 the equation x = 0
specifies only the point P with multiplicity 1. Therefore there cannot exist any Cartier divisor D ′

with [D ′] = [` ′], since if there were we would have

[P] = D · [` ′] = D · [D ′] = D ′ · [D] = 2D ′ · [`]

in either Z1X or A1X, by Theorem 2.4.1 and the above calculation. This proves our above claim
that the maps DivX→ ZdimX−1 and PicX→ AdimX−1X are not in general surjective.

2.5 The first Chern class

Let X be a scheme, V ⊆ X a subvariety of dimension k, and L a line bundle on X. The restriction
of L to V is a line bundle on V and so is isomorphic to O(C) for some Cartier divisor C on V ,
determined up to linear equivalence. This in turn defines a well-defined element [C] of Ak−1X;
we write c1(L) ∩ [V] := [C]. More generally, if α =

∑
V nV · [V] is a k-cycle on X then define CV

for each V as above, and write
c1(L)∩α :=

∑
V

nV · [CV ].

If L = O(D) for some pseudo-divisor D, then if j : V ↪→ X is the inclusion then the Cartier divisor
D̃ on V representing j∗D satisfies O(D̃) ' O(D) by construction; by definition, this means that
[CV ] = [j∗D] = D · [V] and so

c1(L)∩α = D ·α
in Ak−1X.
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Theorem 2.5.1. Let X be a scheme, L be a line bundle on X, and α be a k-cycle on X.

(a) If α is rationally equivalent to 0, then c1(L)∩α = 0. Therefore there is an induced homomorphism
c1(L)∩−: AkX→ Ak−1X.

(b) If L ′ is a second line bundle on X, then

c1(L)∩ (c1(L
′)∩α) = c1(L

′)∩ (c1(L)∩α)

in Ak−2X.

(c) If f : Y → X is a proper morphism and β is a k-cycle on Y, then

f∗(c1(f
∗L)∩β) = c1(L)∩ f∗β

in Ak−1X.

(d) If f : Y → X is a flat morphism of relative dimension n, then

c1(f
∗L)∩ f∗α = f∗(c1(L)∩α)

in An+k−1Y.

(e) If L ′ is a second line bundle on X, then

c1(L⊗ L ′)∩α = c1(L)∩α+ c1(L
′)∩α

and
c1(L

−1)∩α = −c1(L)∩α

in Ak−1X.

Proof. A line bundle on X defines a pseudo-divisor with support X, and so the analogous properties
from Theorem 2.3.1 and its corollaries immediately imply these.

2.6 The Gysin map

Fix an effective Cartier divisor D on a scheme X, with the inclusion given by i : |D| ↪→ X. Then we
define the “Gysin homomorphism”

i∗α := D ·α

for k-cycles α on X.

Proposition 2.6.1. With notation as above:

(a) If α is rationally equivalent to 0, then i∗α = 0, and so there is an induced homomorphism i∗ : AkX→
Ak−1(|D|).

(b) We have
i∗i
∗α = c1(O(D))∩α.

(c) If β is a k-cycle on |D|, then
i∗i∗β = c1(i

∗O(D))∩β.
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(d) If X is purely n-dimensional, then
i∗[X] = [D]

in An−1(|D|).

(e) If L is a line bundle on X, then

i∗(c1(L)∩α) = c1(i
∗L)∩ i∗α

in Ak−2(|D|).

All of these follow immediately from the definitions and the results above.
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Alex (Feb 05): Chern classes and Segre classes of vector
bundles

3.1 Chern and Segre Classes

Let L be a line bundle over a scheme X. If Vk ⊆ X is a subvariety, then there exists a Cartier
divisor such that L

∣∣
V

= OV (C), which gives us a cycle [C] ∈ Ak−1.

Definition 3.1.1. We will define the first Chern class of L by c1(L)∩ [V] = [C]. Therefore we obtain
a map

c1(L)∩−: ZkX→ Zk−1X.

Proposition 3.1.2. Here are some properties of Chern classes:

1. The Chern class gives a well-defined map Ak → Ak−1.

2. We have c1(L)∩ c1(L
′)∩− = c1(L

′)∩ c1(L)∩−.

3. Let f : X→ Y be proper and α ∈ AkX. For a line bundle L over Y, we have

f∗(c1(f
∗L)∩α) = c1(L)∩α.

4. If f : X→ Y is flat of relative dimension n, L/Y, and α ∈ AkY, we have

c1(f
∗L)∩ f∗α = f∗(c1(L)∩α).

5. Let L,L ′ be line bundles. Then c1(L⊗ L ′)∩− = c1(L)∩−+ c1(L
′)∩−

In the smooth case, Segre classes agree with Chern classes, but they have a nice generalization
to the singular case. Let E be a rank e+ 1 vector bundle over a scheme X and let P = P(E) be the
associated projective bundle. Then we have a line bundle OE(1), and so we define

si(E)∩−: AkX→ Ak−iX si(E)∩α = p∗(c1(O(1))
e+i ∩ p∗α).

If E is a line bundle, we see that s1(E)∩α = −c1(E)∩α.

Proposition 3.1.3. Let L be a line bundle. Then

sP(E⊗ L) =
p∑
i=0

(−1)p−i
(
e+ p

e+ i

)
· si(E) · c1(L)

p−i.

15
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Now we will define Chern classes for an arbitrary vector bundle E of rank r = e+ 1. Set

st(E) = 1 + s1(E)t+ s2(E)t
2 + · · ·

and set
ct(E) = st(E)

−1 = 1 − s1(E)t+ s2(E)t
2 + · · ·

This tells us that cn(E) = −s1cn−1 − s2cn−2 − · · ·− sn. This gives us a map ci(E) : Ak → Ak−i.
Here are some new properties of Chern classes:

• For all i > r, we have ci(E) = 0.

• If 0→ E ′ → E→ E ′′ → 0 is an exact sequence of vector bundles, then ct(E) = ct(E ′) · ct(E ′′).

Remark 3.1.4. The projection formula, flat pullback, and c1 give us uniqueness for all of the Chern
classes.

3.2 Splitting Principle

Let E be a vector bundle over X. Then there exists a flat f : X ′ → X such that

1. The pushforward f∗AkX ′ → AkX is injective.

2. There exists a filtration E = Er ⊇ Er−1 ⊇ · · · ⊇ E0 = 0 such that Ei/Ei−1 = Li for some line
bundle Li. In addition, we have

ct(E) =
∏
i

(1 + c1(Li)t).

This gives us a splitting principle:

To prove a universal formula for Chern clases of some vector bundles with certain relations,
it suffices to show that the formula is true for filtrations with line bundle quotients and the
relations are preserved under flat pullback.

Here are some properties of Chern classes:

1. If E∨ is the dual of E, we have ci(E∨) = (−1)ici(E) and ct(E∨) =
∏

(1 −αit), where αi are
the Chern roots of E.

2. Let E, F be vector bundles with Chern roots αi,βj. Then
{
αi +βj

}
i,j are Chern roots for

E⊗ F.

3. Let E be a rank r vector bundle. Then
∧p E has Chern roots

{
αi1 + · · ·+αip

}
.

Example 3.2.1. Recall the exact sequence

0→ OPn → OPn(1)n+1 → TPn → 0.

From the fact that ct(OPn) = 1 and ct(OPn(1)) = (1 +Ht), we can compute the Chern character
of TPn .

Let E be a vector bundle on a nonsingular variety X and suppose p : P(E)→ X is the projection.
Then we have an exact sequence

0→ OP(E) → p∗E⊗OE(1)→ TP(E) → p∗TX → 0.

This allows us to calculate

ct(TP(E)) = ct(p
∗TX) · ct(p∗E⊗OE(1)).
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3.3 Rational equivalence of bundles

This generalizes the Gysin map from last week. Let E be a vector bundle of rank r = e+ 1 and let
π : E→ X be the projection. Then we obtain a commutative diagram

E P(E⊕O)

X.

π

q

Theorem 3.3.1.

1. The map π∗ : Ak−r → AkE is an isomorphism for all k.

2. A cycle β ∈ AkP(E) is uniquely expressible in the form

β =

e∑
i=0

c1(O(1))
i ∩ p∗αi

where αi ∈ Ak+1−eX.

Definition 3.3.2. Let s∗ : AkE→ Ak−rX be (π∗)−1. This is the Gysin map.

Proposition 3.3.3. Let β ∈ AkE and β ∈ AkP(E⊕O) that restricts to β. Then s∗(β) = q∗(cr(ξ)∩β)
where ξ is the universal rank r quotient bundle of q∗(E⊕O). Here, we have an exact sequence

0→ ???→ q∗(E⊕O)→ ξ→ 0.
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Patrick (Feb 12): Cones: because not every coherent
sheaf is locally free

Note: These are the speaker’s notes.

4.1 Cones and Segre Classes

Our goal is to define a Segre class s(X, Y) of a subvariety X ( Y and study its properties.

4.1.1 Cones

Definition 4.1.1. Let S• be a sheaf of graded OX-algebras such that OX → S0 is surjective, S1 is
coherent, and S• is generated by S1. Then any scheme of the form C = SpecOX(S

•) is called a
cone.

If C is a cone, then P(C⊕ 1) = Proj(S•[z]) is the projective completion with projection q : P(C⊕
1→ X). Let O(1) be the canonical line bundle on P(C⊕ 1).

Definition 4.1.2. The Segre class s(C) ∈ A∗X of C is defined as

s(C) := q∗

∑
i>0

c1(O(1))
i ∩ [P(C⊕ 1)]

.

Proposition 4.1.3.

1. If E is a vector bundle on X, then s(E) = c(E)−1 ∩ [X], where c = 1 + c1 + · · · is the total Chern
class.

2. Let 1, . . . , ct by the irreducible components of C with geometric multiplicity mi. Then

s(C) =

t∑
i=1

mis(Ci).

Example 4.1.4. Let F,F ′ be coherent sheaves and let E be locally free. Then we may define
C(F) = Spec(SymF). We may define s(F) = s(C(F)). Now if

0→ F ′ → F → E→ 0

is exact, then s(F ′) = c(E)∩ s(F).

18



19

4.1.2 Segre Class of a Subvariety Let X be a closed subscheme of Y defined by the ideal
sheaf I and let

C = CXY = Spec

( ∞∑
n=0

In/In+1

)

be the normal cone. Note that if X is regularly embedded in Y, then CXY is a vector bundle.

Definition 4.1.5. The Segre class of X in Y is defined by

s(X, Y) := s(CXY) ∈ A∗X.

Lemma 4.1.6. Let Y be a scheme of pure dimension m and let Y1, . . . , Yr be the irreducible components of
Y with multiplicity mi. If X is a closed subscheme of Y and Xi = X∩ Yi, then

s(X, Y) =
∑

mis(Xi, Yi).

Proposition 4.1.7. Let f : Y ′ → Y be a morphism of pure-dimensional schemes, X ⊆ Y a closed subscheme,
and g : X ′ = f−1(X)→ X be the induced morphism.

1. If f is proper, Y is irreducible, and f maps each irreducible component of Y ′ onto Y, then

g∗(s(X
′, Y ′)) = deg(Y ′/Y) · s(X, Y).

2. If f is flat, then g∗(s(X, Y)) = s(X ′, Y ′).

Remark 4.1.8. If f is birational, then f∗(s(X ′, Y ′)) = s(X, Y). This says that Segre classes are
unchanged by pushforward along birational modifications.

Corollary 4.1.9. Let Y be a variety and X ⊆ Y be a proper closed subsecheme. Then let Ỹ = BlX Y and
X̃ = P(C) be the exceptional divisor with projection η : X̃→ X. Then

s(X, Y) =
∑
k>1

(−1)k−1η∗(X̃
k) =

∑
i>0

η∗(c1(O(1))
i ∩ [P(C)]).

Example 4.1.10. Let A,B,D be effective Cartier divisors on a surface Y. Then let A ′ = A+D,B ′ =
B +D, and let X = A ′ ∩ B ′. Suppose that A,B meet transversally at a single smooth point
P ∈ Y. Then if Ỹ = BlP Y and f : Ỹ → Y is the blowup with exceptional divisor E, we see that
X̃ = f−1(X) = f∗D+ E, so we have

s(X, Y) = f∗[X̃] − f∗(X̃ · [X̃])
= [D] − f∗(f

∗D · [f∗D] + 2f∗D · [E] + E · [E])
= [D] −D · [D] + [P].

If A,B both have multiplicity m at P and no common tangents at P, then

s(X, Y) = [D] + (m2[P] −D · [D]).

In general, the answer is more complicated.
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4.1.3 Multiplicity Let X ⊆ Y be an (irreducible) subvariety. Then the coefficient of [X] in the
class s(X, Y) is called the algebraic multiplicity of X on Y and is denoted eXY.

Suppose X has positive codimension n, p : P(CXY) → X and q : P(CXY ⊕ 1) → X are the
projections to X, and Ỹ = BlX Y with exceptional divisor X̃ = P(C). Then we have

eXY[X] = q∗(c1(O(1))
n ∩ [P[C⊕ 1]])

= p∗(c1(O(1))
n−1 ∩ [P(C)])

= (−1)n−1p∗(X̃
n).

For example, if X is a point, then we have

ePY =

∫
P(C)

c1(O(1))
n−1 ∩ [P(C)] = deg[P(C)].

Example 4.1.11. Let C be a smooth curve of genus g and C(d) be the d-th symmetric power of
C. Then let P0 ∈ C, J = J(C) be the Jacobian, and ud : C(d) → J be given by D 7→ D− dP0. We
know that the fibers of ud are the linear systems |D| ∼= Pr; if d > 2g− 2, then ud : C(d) → J is a
projective bundle; and if 1 6 d 6 g, then µd is birational onto its image Wd. Now if degD = d
and dim |D| = r, we have

s(D,C(d)) = (1 +K)g−d+r ∩ [|D|],

where K = c1(K|D|). When d is large, this follows from the second bullet, but if d is small, then
we may embed

C(d) ⊂ C(d+s) E 7→ E+ sP0

and then consider the normal bundle to this embedding restricted to |D|. Combined with
Proposition 4.1.7, this gives us the Riemann-Kempf formula, which says that the multiplicity of Wd
at ud(D) is given by eµd(D)Wd =

(
g−d+r
r

)
.

Remark 4.1.12. The previous example can be generalized to the Fano varieties of lines on a cubic
threefold X. In particular if F is the Fano variety of lines on X, then there is a morphism of degree
6 from F× F to the theta divisor, and we can calculate (following Clemens-Griffiths) that∫

F
s2(TF) =

∫
F
c1(TF)

2 − c2(Tf) = 45 − 27 = 18,

and then the theta divisor has a singular point of multiplicity 3.

4.1.4 Linear Systems Let L be a line bundle on a variety X (of dimension n) and let V ⊆ |L|

be a partial linear system of dimension r+ 1. Then let B be the base locus of V . Then if X̃ = BlB X,
we obtain a morphism f : X̃ → Pr resolving the rational map X 99K Pr. By definition, we have
f∗O(1) = π∗(L)⊗O(−E). Define degf X̃ to be the degree of f∗[X̃] ∈ AnPr.

Proposition 4.1.13. We have the identity

degf X̃ =

∫
X
c1(L)

n −

∫
B
c1(L)

n ∩ s(B,X).

Example 4.1.14. Let B ⊂ Pn be the rational normal curve. Then let V ⊂ |O(2)| be the linear system
of quadrics containing B. If P̃n = BlBPn, we see that

degf P̃n = 2n − (n2 −n+ 2).

If n = 4, then f(P̃4) = Gr(2, 4) ⊂ P5.
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4.2 Deformation to the Normal Cone

Let X ⊆ Y be a closed subscheme and C = CXY be the normal cone. We will construct a scheme
M =MXY and a closed embedding X×P1 ⊆M such that

X×P1 M

P1

p2
q

comutes and such that

1. Away from ∞, we have q−1(A1) = Y ×A1 and the embedding is the trivial embedding
X×A1 ⊆ Y ×A1.

2. Over ∞, M∞ = P(C⊕ 1) + Ỹ is a sum of two Cartier divisors, where Ỹ = BlX Y. The
embedding of X is given by X ↪→ C ↪→ P(C⊕ 1). We also have P(C⊕ 1)∩ Ỹ = P(C), which
is embedded as the hyperplane at∞ in P(C⊕ 1) and as the exceptional divisor in Ỹ.

We will now construct this deformation. Let M = BlX×∞ Y ×P1. Clearly we have CX×∞Y ×
P1 = C⊕ 1. But now we can embed X×P1 ⊆ M. The first property is obvious by the blowup
construction, so now we need to show the second property.

We may assume Y = SpecA is affine and X is defined by the ideal I. Identify P1 \ 0 = A1 =
Speck[t]. Then if we write Sn = I, Tn, then we see that BlX×0 Y ×A1 = ProjS•. But now this is
covered by affines {

SpecS•(a)
}
a∈(I,T) generator

.

Now for a ∈ I, we see that P(C⊕ 1) ⊆ SpecS•(a) is defined by the equation a/1, while Ỹ is defined
by T/a, and now we see that

M∞ = V(T) = V

(
a

1
· t
a

)
= V(a)∪ V(T/a) = P(C⊕ 1) + Ỹ,

as desired.
Now this allows us to define a specialization morphism

σ : ZkY → ZkC [V] 7→ [CV∩XV].

Proposition 4.2.1. Specialization preserves rational equivalence. Therefore we have a specialization
morphism

σ : AkY → AkC.

Remark 4.2.2. Supposing that X, Y are smooth, then the embedding of X ⊂ P(N⊕ 1) is nicer than
X ⊂ Y in several ways:

1. There is a retraction P(N⊕ 1)→ X.

2. There is a vector bundle ξ on P(N⊕ 1) or rank codimY X and a section s ∈ Γ(ξ) such that
V(s) = X. Therefore X is represented by the top Chern class of ξ.
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Caleb (Feb 19): Chern classes and intersection products

5.1 Chern Classes

We will recall the notion of Chern classes in topology. Recall that characteristic classes are
natural transformations from C−Vectn(−)→ H∗(−, Z). Because complex vector bundles of rank
n are reprsented by Gr(n,∞), the Yoneda lemma tells us that characteristic classes are given by
H∗(Gr(n,∞), Z). Now Chern classes satisfy the following properties:

1. c(C) = 1, where C denotes the trivial bundle.

2. If E has rank n, then c(E) is nonzero only in degrees 0, . . . , 2n.

3. c(E⊕ E ′) = c(E)c(E ′).

4. c(OCP∞(−1)) generates H2(CP∞).
Remark 5.1.1. Chern classes can be computed using the exponential sequence

0→ Z→ OX → O×X → 0,

where
c1 : H

1(O×X)→ H2(X, Z) L 7→ c1(L)

under the isomorphism H1(O×X)
∼= PicX.

We now return to algebraic geometry. Let L be a line bundle and σ be a rational section. Then
c1(L) = [divσ] ∈ An−1(X).

Example 5.1.2. If X is a smooth variety over C, then we can write ωX =
∧n OmegaX, and KX =

c1(ωX). For example, if X = Pn, then we can choose Θ = dx1 ∧ · · ·∧ dxn, and KX = (n+ 1)H.

Here are some properties of Chern classes of vector bundles. Let E be a vector bundle on a
smooth quasiprojective variety X. Then we define

c(E) = 1 + c1(E) + c2(E) + · · · ci(E) ∈ An−i(E).

1. If L is a line bundle, then c(L) = 1 + c1(L).

2. If τ0, . . . , τn−i are global sections with degeneracy locus having codimension i, then ci(E) =
[D] ∈ An−i(X)

22
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3. If 0→ E→ F→ G→ 0 is an exact sequence, then c(F) = c(E)c(G).

4. If ϕ : Y → X is a morphism, then ϕ∗c(E) = c(ϕ∗E).

This axiomatic construction of Chern classes was done first by Grothendieck in 1958.
Now we discuss degeneracy loci. We know that c1(L) = 0 if and only if L ' OX, whic happens

if and only if L has a nonvanishing section. Now if E has rank n and we have general global
sections τ0, . . . , τn−i, the degeneracy locus is where

∧n−i+1
3 τ0 ∧ · · · τn−i = 0.

Now recall that we defined the map c1(L)∩−: Ak → Ak−1 and the map si(E)∩−: Ak → Ak−i.
Finally, we defined c(E) = s(E)−1. We will now return to splitting. If E→ X is a vector bundle of
rank r, then there exists f : Y → X such that f∗ is surjective and f∗ is injective on A∗ and f∗E has a
filtration by line bundles. The proof is by induction and is thus omitted. This allows us to write

c(E) =

r∏
i=1

(1 +αi),

where αi = c1(Li) are the Chern roots.

Example 5.1.3. If E has roots αi, then SkE has roots
{
αi1 + · · ·+αik

}
i16i26···6ik

.

Example 5.1.4. We will now compute the 27 lines on a cubic surface. Note that there is a 20-
dimensional locus of cubic hypersurfaces in P3. On the other hand, there is a 4-dimensional space
of cubic forms on a line L. Therefore, L lies on a cubic surface f if and only if f

∣∣
L
= 0.

As L varies, the cubic forms give a vector bundle S3E∨. Now each f gives us a section, so the
locus where L is contained in f is precisely the zero-locus of f. Now we have a vector bundle S3E∨

on the Grassmannian G(2, 4) of lines in P3. Now we may assume that∫
c4(S

3E∨)

(the number of lines on the cubic surface) is finite, so we want to calculate it. We know E has roots
α1,α2. Then c1(E) = α1 +α2, c2(E) = α1α2, so

c(S3E∨) = (1 + 3α1)(1 + 2α1 +α2)(1 +α1 + 2α2)(1 + 3α2)

= 1 + 6c1 + 10c2 + 11c2
1 + 30c1c2 + 6c3

1 + 9c2
2 + 18c2

1.

Therefore we have c4 = 9c2
2 + 18c2

1c2. But then
∫
c2(E

∨)
2
= 1 is the number of lines contained in

two planes. On the other hand,
∫ {
c1(E

∨)
}2
c2(E

∨) = 1 is the number of lines intersecting two
lines in a given plane, so we see that c4 = 27, as desired.

5.2 Intersection Products

Let i : X→ Y be a regular closed embedding of codimension d with normal bundle NXY. Let V be
purely k-dimensional with a map f : C→ Y. Our goal is to construct X · V ∈ Ak−d(X). If we want
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this to look like cohomology, use formal Poincare duality. We will use deformation to the normal
cone for our construction. Consider the pullback

f−1(X) =W V

X Y

g

p

f

i

Now define N = g∗NXY be a rank d vector bundle on W and π : N→W be the projection. Then
if I is the ideal sheaf of i : X→ Y, this generates the ideal sheaf J of p : W → V . This means that⊕

n

f∗(In/In+1)�
⊕
n

Jn/Jn+1

is surjective. This gives a closed embedding of the normal cone C = CWV ↪→ N. By a result in the
appendix, C is purely k-dimensional. Now consider te cycle [C] on N and let s be the zero-section
of N. Now we will define

X · V = s∗[C],

where s∗ : Ak(N)→ An−d(W) is the Gysin map.
Here are some properties of the intersection product:

1. The intersection product is compactible with proper pushforwards.

2. Intersection products are compatible with flat pullbacks.

3. The intersection product is commutative.

4. Functoriality.
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Nicolás (Mar 12): families of algebraic cycles

Note: these notes were adapted from the source for the beamer provided by the speaker. Very light edits were
made to the source.

6.1 Introduction

“A typical problem in enumerative geometry is to find the number of geometric figures in a given
family which satisfy certain conditions”. One of the classical examples is that given five points in
general position in P2, there exists a unique smooth conic passing through them.

The idea is that “conics are parametrized by P5, and passing through a point is a degree 1
equation in P5”. But this might be dangerous:

• P5 parametrizes conics, not smooth conics.

• We need transversal intersections.

For instance, the argument does not work for smooth conics tangent to five lines. Each tangency
is a degree 2 equation on P5, but they are not transversal (the conics of the form {L2 = 0} are
“tangent” to all lines).

The correct number is 1, which may be seen by taking the dual conic (the set of tangent lines,
as a subset of (P2)

∗).

6.1.1 Conservation of number The classical principle is called conservation of number: if
the problem has a finite numerical answer, this number is constant (or jumps to infinity).

Sadly, this does not work. Given four lines and a point in general position, there exists 14 · 2 = 2
smooth conics tangent to the lines and passing through the point (as one can show by taking the

25
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dual problem). But if the point lies in the diagonals of the quadrilateral given by the lines, then
the number of smooth solutions decreases to 1 or 0.

Today we will discuss strong foundations for this principle, and some applications in enumer-
ative geometry.

6.2 Families of cycle classes

During this section, T will denote an irreducible variety of dimension m > 0. We take t ∈ T a
regular closed point, and we denote

{t} = Spec κ(t), t : {t}→ T

for the point and the inclusion.
We will use script letters (e.g. X,Y) for schemes over T , and the corresponding latin letters (e.g.

Xt, Yt) for the corresponding fibers over t (as schemes over {t}). If f : X→ Y is a morphism, we
denote ft : Xt → Yt the map on the fibers.

6.2.1 Specialization Let p : Y→ T ,α ∈ Ak+mY. We define αt ∈ AkYt by

αt = t
!(α)

where t! is the refined Gysin homomorphism induced by

Yt Y

{t} T .

p

t

For instance, if α = [V] and V ⊆ Yt, then [V]t = 0.
Here are some basic properties.

Proposition 6.2.1. 1. If f : X→ Y is proper, α ∈ Ak+mX, then

ft∗(αt) = (f∗(α))t in Ak(Yt).

2. If f : X→ Y is flat of relative dimension n, α ∈ Ak+mY

f∗t(αt) = (f∗(α))t in Ak+n(Xt).

3. If i : X → Y is a regular embedding of codimension d, such that it : Xt → Yt is also a regular
embedding of codimension d, f : V→ Y a morphism, α ∈ Ak+mV, then

i!t(αt) = (i!(α))t in Ak−d(Wt),W = f−1(X).

4. If E is a vector bundle over Y, α ∈ Ak+mY, then

ci(Et)∩αt = (ci(E)∩α)t in Ak−i(Yt).

The proof follows directly from similar statements for the refined Gysin homomorphism (see
§ 6.2–6.4).

We would now like to relate different fibers. Given a family X → T and α ∈ Ak+mX, it is
natural to compare αt ∈ Ak(Xt) for different values of t. It is not obvious that such relation exists,
even if X = Y × T is the trivial family.
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Example 6.2.2. Let Y = T be a projective curve of genus g > 2, and ∆ ⊆ Y × T the diagonal. If
α = [∆] ∈ A1(Y × T), then αt = [t] ∈ A0Y. But for t1 6= t2, we have that αt1 and αt2 are not
rationally equivalent.

This can be solved if we assume that X = Y × T , and if for every t1, t2 ∈ T , they can be
connected by a chain of rational curves in T (see Example 10.1.7).

Here is a useful corollary.

Corollary 6.2.3. Assume T is non-singular, t ∈ T rational over the ground field, Y smooth over T with
relative dimension n. If α ∈ Ak+m(Y),β ∈ Al+m(Y), then

αt ·βt = (α ·β)t in Ak+l−n(Yt).

This gives us a strategy to show that a · b = c in a non-singular variety Y. We construct a
family Y→ T with Yt = Y for some t, and such that a,b, c can be lifted to α,β,γ. Then, it suffices
to show that α ·β = γ, which we can try to prove generically.

6.2.2 Sample Application Let C be a non-singular curve, C(n) its nth symmetric product
(which points are effective divisors of degree n over C). If A is an effective divisor on C of degree
< n, define

XA = {D ∈ C(n) | D > A}.

One can show that if A and B have disjoint support, then XA and XB intersect transversally,
and so

[XA] · [XB] = [XA+B].

This is true even if A and B intersect, by using Corollary 6.2.3 and by “moving” A.

6.3 Conservation of number

We have seen that for α ∈ AkY, it is not clear that {αt}t∈T are related, even if Y = Y × T is the
trivial family. We have the following substitute.

Proposition 6.3.1 (Conservation of number). Let p : Y → T be a proper morphism, dim T = m as
before. Let α be an m-cycle on Y. Then αt ∈ A0(Yt) all have the same degree (which is obtained by
pt∗(αt) = degαt · [{t}]).

The idea of the proof is write p∗(α) = N[T ] ∈ Am(T), for some N ∈ Z. Then, by Proposi-
tion 6.2.1 we get

pt∗(αt) = (p∗(α))t = N[T ]t = N[{t}].

This proposition can be improved to compute the degree of intersections with Chern classes or
some divisors (see § 10.2 for precise statements). We will need the following result.

Corollary 6.3.2. Let Y be a scheme, Hi ⊆ Y× T effective Cartier divisors which are flat over T , i = 1, . . . ,d.
Let a be a d-cycle on Y. Assume that

H1 ∩ · · · ∩Hd ∩ (Supp(a)× T)

is proper over T . Then
deg((H1)t · · · (Hd)t · a)

is independent of t.
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6.4 An enumerative problem

Our main application of these techniques will be to solve the following problem.

Given an r-dimensional family of plane curves, and r curves in general position in the plane, how many
curves in the family are tangent to the r given curves?

The answer will require to compute the characteristics µkνr−k of the family, which are the
number of curves in the family passing through k general points and tangent to r− k general
lines.

For instance, if we consider the family of smooth conics, then

µ5 = ν5 = 1, µν4 = µ4ν = 2, µ2ν3 = µ3ν2 = 4.

1. We will study the incidence correspondence

I = {[x : y : z], [a : b : c] | ax+ by+ cz = 0} ⊆ P2 ×P2∗.

This can be seen as a P1-bundle over P2. In fact, if E is the kernel of

1⊕3
P2

(x,y,z)−−−−→ OP2(1)→ 0,

then I = P(E).

This allows us to compute A•(I) (see Example 8.3.4), with a basis

1, λ, ζ, λ2, ζ2, λ2ζ = λζ2,

where λζ = λ2 + ζ2, λ3 = ζ3 = 0, and λ, ζ the pullbacks of c1(OP2(1)), c1(OP2∗(1)).

Now, if M is a line and Q a point, consider

M ′ = {(P,L) ∈ I | L =M} Q ′ = {(P,L) ∈ I | P = Q}

M ′′ = {(P,L) ∈ I | P ∈M} Q ′′ = {(P,L) ∈ I | Q ∈ L}.

One can show that

λ = [M ′′], ζ = [Q ′′], λ2 = [Q ′], ζ2 = [M ′].

2. Let D ⊆ P2 be a curve without multiple components. Define D ′ ⊆ I as the closure of

{(P,L) ∈ I | P simple point of D,L tangent at P}.

We claim that
[D ′] = n[M ′] +m[Q ′] = nζ2 +mλ2 ∈ A2I,

where n is the degree and m the class of D (the number of tangents from a general point to
D). The idea is to compute

D ′ ∩M ′′ = {(Pi,Li) | Pi ∈M∩D,Li tangent at Pi},

which has generically #D ′ ∩M ′′ = n points.

The equivalence [D ′] = m[M ′] +n[Q ′] can be computed explicitely. Take P0 a general point,
M a general line, and let Q1, . . . ,Qm the intersections of M with the tangents from P0.
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P0

Q1

Q2

The projection from P0 to M gives a family D→ A1 with D1 = [D ′],D0 = n[M ′] +
∑

[Q ′i].
(There is a explicit computation in § 10.4.)

3. Let X ⊆ P2 × S be a flat family of plane curves, dimS = r, S non-singular. Assume Xs has
no multiple compontents for general s, and let S0 ⊆ S an open set with Xs reduced for s ∈ S.
Let X(r) ⊆ Ir × S0 given by (P1,L1), . . . , (Pr,Lr), s such that Pi is a simple point of Xs, and
Li is tangent in Pi. Note that dimX(r) = 2r.
Take D1, . . . ,Dr ⊆ P2 reduced curves, and consider

W D ′1 × · · · ×D
′
r

X(r) Ir.ϕ

We can move D1, . . . ,Dr, so that the interseccion between X(r) and D ′1× · · · ×D
′
r is transver-

sal (by taking a general element in PGL(2)r). This way, W has N (reduced) points.

Now, compactify X ⊆ P2 × S0, and X(r) ⊆ Ir × S0. If Z is a closed subsed of dimension less
than 2r, which contains all X(r) −X(r), then the number N does not change after we remove
Z.

4. We now degenerate each Di to a multiple line (as we did for D). This gives a diagram

W D ′1 × · · · ×D ′r Ar

X(r) Ir.

The space X(r) is complete, so W is proper over Ar. This way, we may take an open
neighborhood T of (1, . . . , 1) and (0, . . . , 0), so that W is proper over T and disjoint from Z.
Now, Corollary 6.2.3 applies, and so

deg(X(r) ·ϕ (D ′1 × · · · ×D
′
r)) = deg(X(r) ·ϕ (E ′1 × . . .E ′r)),

where D ′i,E
′
i are the fibers over 1 and 0.

The right hand side is just
r∏
i=1

(miµ+niν) =

r∑
k=0

Nkµ
kνr−k,

where each curve Di has degree ni and class mi.
The left hand side is the number of points N, provided that we take a convenient Z (which
avoids technical difficulties such as bitangents).
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6.4.1 A famous example The most famous example is the Steiner’s conic problem, which tries
to determine the number of conics tangent to five smooth conics in general position.

The natural family here is the family of smooth conics (as a subset of P5), which has character-
istics

µ5 = ν5 = 1, µ4ν = µν4 = 2,µ3ν2 = µ2ν3 = 4

(in characteristic zero!)
This way, the number of conics tangent to five non-singular curves of degree n in general

position is

N = n5((n− 1)5 + 10(n− 1)4 + 40(n− 1)3 + 40(n− 1)2 + 10(n− 1) + 1),

which for n = 2 gives the famous number 3264.
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Patrick (Mar 19): Doing Italian-style algebraic geometry
rigorously

Note: these are the speaker’s notes.

7.1 Intersection multiplicities

Consider a Cartesian square

W V

X Y

j

g f

i

where i is a regular embedding of codimension d and V has pure dimension k. Let C = CWV
have components C1, . . . ,Cr with multiplicity mi. Let Zi be the support of Ci. We call the Zi the
distinguished varieties of the intersection.

Lemma 7.1.1.

(a) Every irreducible component of W is distinguished.

(b) For any distinguished variety Z, we have k− d 6 dimZ 6 k.

Definition 7.1.2. An irreducible component Z of W = f−1(X) is a proper component of intersection
of V by X if dimZ = k− d. The intersection multiplicity of Z in X · V , denoted i(Z,X · V ; Y) =
i(Z,X · V) = i(Z) is the coefficient of Z in the class X · V ∈ Ak−d(W).

If NZ is the pullback of NXY to Z, then i(Z,X · V ; Y) is the coefficient of NZ in [C]. Now let
A = OZ,V and J ⊂ A be the ideal of W. Then A/J has finite length when Z is an irreducible
component of W.

Proposition 7.1.3. Assume Z is a proper component of W.

(a) If `(A/J) is the length of A/J, then 1 6 i(Z,X · V ; Y) 6 `(A/J).

(b) If J is generated by a regular sequence of length d, then i(Z,X · V ; Y) = `(A/J).

If A is Cohen-Macaulay, then local equations for X in Y give a regular sequence generating J and equality
in (b) holds.

31



32

Now suppose Z is a proper component of the intersection of V by X on Y. Let A = OV ,Z and J
be the ideal in A generated by the ideal (sheaf) of X in Y, and let m be the maximal ideal of A.

Proposition 7.1.4. Suppose V is a variety. Then i(Z,X · V ; Y) = 1 if and only if A is regular and J = m.

7.2 Nonsingular varieties

Let Y be a smooth variety of dimension n. Then ∆ ⊂ Y × Y is regularly embedded with codimen-
sion n. The global intersection product is the map

Ak(Y)⊗A`(Y)→ Ak+`−n(Y) x⊗ y 7→ x · y∆∗(x× y),

where δ∗ is the Gysin homomorphism.
More generally, let X be a scheme and f : X→ Y a morphism to a smooth variety. Then Γf is

regularly embedded in Y, so we can define a cap product

Ai(Y)⊗Aj(X)→ Ai+j−n(X) y⊗ x 7→ f∗(y)∩ x = Γ∗f (x× y).

If X is smooth, then we write f∗y = f∗y∩ [X].
Remark 7.2.1. We may also replace the Gysin homomorphisms ∆∗, Γ∗f with the refined Gysin
homomorphisms ∆!, Γ !

f.

Definition 7.2.2. Let f : X → Y be a morphism with Y smooth of dimension n. Let pX : X ′ →
X,pY : Y ′ → Y be morphisms of schemes. Then form the square

X ′ ×Y Y ′ X ′ × Y ′

X X× Y.

pX×pY
Γf

Now define the refined intersection product by

x ·f y := Γ !
f(x× y) ∈ Ak+`−n(X

′ ×Y Y ′)

for x ∈ Ak(X ′), Y ∈ A`(Y ′). When X ′ = X, Y ′ = Y, this is the global product.

Proposition 7.2.3. The refined products satisfy the following formal properties:

(a) (Associativity) If X f−→ Y
g−→ Z with Y,Z smooth, then

x ·f (y ·g z) = (x ·f y) ·gf z ∈ A∗(X ′ ×Y Y ′ ×Z Z ′).

(b) (Commutativity) If fi : X→ Yi with Yi smooth, then

(x ·f1 y1) ·f2 y2 = (x ·f2 y2) ·f1 y1 ∈ A∗(Y ′1 ×Y1 X
′ ×Y2 Y

′
2).

(c) (Projection) Let X f−→ Y
g−→ Z with Z smooth. Let f ′ : X ′ → Y ′ be proper with pYf ′ = fpX and

f ′′ = f ′ ×Z idZ. Then
f ′′∗ (x×gf z) = f ′∗(x) ·g z ∈ A∗(Y ′ ×Z Z ′).

(d) (Compatibility) Let f : X→ Y with Y smooth and g : V ′ → Y ′ be a regular embedding. Then

g!(x ·f y) = x ·f g!y ∈ A∗(X ′ ×Y V ′).
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Corollary 7.2.4. Let Y be smooth and j : V → Y be a regular embedding. If x is a cycle on Y, then
x · [V] = j!(x) ∈ A∗(|x|∩ V).

Corollary 7.2.5. Let f : X→ Y with X, Y smooth. Then x ·f y = (x× y) · [Γf] ∈ A∗(|x|∩ f−1(|y|)).

Corollary 7.2.6. Let f : X→ Y with Y smooth and x a cycle on X. Then x ·f [Y] = x.

Definition 7.2.7. Let f : X → Y be a morphism with X purely m-dimensional and Y a smooth
n-dimensional variety Y. For any morphism g : Y ′ → Y, define a refined Gysin homomorphism

f! : Ak(Y
′)→ Ak+m−n(X×Y Y ′) f!(y) = [X] ·f y.

Proposition 7.2.8.

(a) If f is flat, then f!(y) = f ′∗(y), where f ′ : X×Y Y ′ → Y ′ is the base change.

(b) If f is a local complete intersection morphism, then f! agrees with the morphism constructed in Section
6.6 of Fulton.

Now let Y be a smooth variety of dimension n. Let V ,W be closed subschemes of Y of
pure dimension k, `. Now a component Z ⊆ V ∩W is a proper component if dimZ = k+ `− n.
If Z is proper, then the coefficient of Z in V ·W ∈ Ak+`−n(V ∩W) is called the intersection
multiplicity i(Z,V ·W; Y) = i(Z,∆Y · (V ×W); Y × Y). If every component of V ∩W is proper, then
the intersection class is

V ·W =
∑
Z

i(Z,V ·W; Y) · [Z].

Proposition 7.2.9. Assume Z is a proper component of V ∩W. Then

(a) 1 6 i(Z,V ·W; Y) 6 OV∩W,Z.

(b) If the local ring OV∩W,Z is Cohen-Macaulay, then i(Z,V ·W; Y) = `(OV∩W,Z).

(c) If V ,W are varieties, then i(Z,V ·W; Y) = 1 if and only if the maximal ideal of OY,Z is the sum of
the prime ideals of V and W. In fact, OV ,Z,OW,Z are regular.

Now let Y be a smooth variety of dimension n. Set Ap(Y) = An−p(Y). Now this indexing, the
intersection product is now Ap(Y)⊗Aq(Y)→ Ap+q(Y). In addition, if f : X→ Y is a morphism,
the cap product is now Ap(Y)⊗Aq(X)

∩−→ Aq−p(X). If X is also smooth, the pullback now reads
f∗ : Ap(Y)→ Ap(X).

Proposition 7.2.10.

(a) Suppose Y is a smooth variety. Then the intersection product makes A∗(Y) into a commutative
graded ring with unit A0 3 1 = [Y] ∈ An. Then Y 7→ A∗(Y) is a contravariant functor from smooth
varieties to rings.

(b) If f : X→ Y is a morphism from a scheme X to a smooth variety Y, then A∗X is a A∗Y-module with
action

Ap(Y)⊗Aq(X)
∩−→ Aq−p(X).

(c) If f : X→ Y is a proper morphism of smooth varieties, then

f∗(f
∗y · x) = y · f∗(x)

for all classes x on X and y on Y.
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7.3 Bézout’s Theorem

We will now use this theory to discuss something classical. It is easy to see that Ak(Pn) ∼= Z and
is generated by [Lk] for a linear subspace Lk ⊂ Pn. If α is a k-cycle on Pn, we define the degree
deg(α) to be the integer satisfying α = deg(α) · [Lk]. Equivalently, we may define

deg(α) =
∫

Pn
c1(O(1))

k ∩α.

Theorem 7.3.1 (Bézout). Let αi ∈ Adi(Pn) for i = 1, . . . , r. If d1 + · · ·+ dr 6 n, then

deg(α1 · · ·αr) = deg(α1) · · ·deg(αr).

Proof. We have an isomorphism A∗(Pn) = Z[h]/(hn+1), where h = [Ln−1]. Thus [Ln−k] = hk,
and the desired result follows.

Now if subschemes V1, . . . ,Vr ⊆ Pn representing α1, . . . ,αr meet properly, then

V1 · · ·Vr =
∑
j

i(Zj,V1 · · ·Vr; Pn) · [Zj],

where Zj are the components of
⋂
Vi. Then Bézout’s theorem gives us the identity∑

j

i(Zj,V1 · · ·Vr; Pn) · deg(Zj) =
∏

deg(Vi).

If H1, . . . ,Hn are hypersurfaces intersecting properly (so the intersection is a finite number of
points), then consider the local ring O⋂Hi,P. Then complete intersections are Cohen-Macaulay, so

i(P,H1 · · ·Hn; Pn) = `(O⋂Hi,P).
Now dimk O⋂Hi,P = degP`(O⋂Hi,P), and thus we obtain∑

P

dimk O⋂Hi,P =
∏

degHi.

This recovers the very classical Bézout’s theorem.

Example 7.3.2. Let s be the hyperplane class on Pn and t be the hyperplane class on Pm. Then

1. A∗(Pn ×Pm) = Z[s, t]/(sn+1, tm+1).

2. If H1, . . . ,Hn+m are hypersurfaces in Pn ×Pm with bidegree (ai,bi), then∫
[H1] · · · [Hn+m] =

∑
(i1,...,in,j1,...,jm)
(n,m)-shuffle

ai1 · · ·ainbj1 · · ·bjm .

3. If ∆ is the diagonal in Pn ×Pn, then [∆] =
∑n
i=0 s

itn−i ∈ An(Pn ×Pn). This formula fol-
lows from intersecting ∆ with [L1 × L2], where L1,L2 are linear subspaces of complementary
dimension.

4. Let s : Pn ×Pm → Pnm+n+m be the Segre embedding. It h is the hyperplane class on
Pnm+n+m, then s∗u = s+ t. Also, the degree of s(Pn ×Pm) is

(
n+m
n

)
.

5. If vm : Pn → P(n+mn )−1 is the Veronese embedding and s,h are the hyperplane classes on
the source and target, then v∗mu = m · s. If V is a k-dimensional subvarity of Pn of degree d,
then deg(vm(V)) = d ·mk.
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Morena (Mar 26): Grothendieck-Riemann-Roch

We will begin by reviewing some notions from algebraic topology.

1. Let E be a vector bundle over X with Chern roots α1, . . . ,αr. Then we may define the Chern
character

ch(E) =
r∑
i=1

eαi =

∞∑
n=0

sn(c1, . . . , cn)
n!

,

where sn is the n-th Newton polynomial. Recall that if

0→ E ′ → E→ E ′′ → 0

is exact, then ch(E) = ch(E ′) + ch(E ′′) and ch(E⊗ F) = ch(E) ch(F).

2. We may define the Todd class

td(E) =
r∏
i=1

αi
1 − e−αi

.

Similarly to Chern classes, if
0→ E ′ → E→ E ′′ → 0

is exact, then td(E) = td(E ′) td(E ′′).

3. Now define the ring

K0(X) =
⊕

Z[E]/(0→ E ′ → E→ E ′′ → 0).

This is well-behaved under pullback, but pushforward is not well-defined.

In order to fix the problems with pushforwards of vector bundles, we will attempt to define
the Grothendieck group K0(X) of coherent sheaves. Unfortunately, pullbacks of coherent sheaves
are only right exacts. Also, pushforwards do exist for proper morphisms, but this is only left
exact. Therefore we need to consider the higher derived functors, and now we define

f∗ : K0(X)→ K0(Y) [F] 7→
∞∑
i=0

(−1)i[Rif∗F].

This is a finite sum because we assume all of our schemes are Noetherian.
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For a smooth variety, there is always a map K0(X) → K0(X). In fact, there is an inverse,
because we can resolve any coherent sheaf F by vector bundles. In this case, we will write
K0(X) = K

0(X) = K(X). If F is resolved by

0→ Ln → · · · → L0 → F → 0,

we write [F] =
∑n
i=0[Li] and ch(F) =

∑n
i=0 (−1)i ch(Li).

8.1 Statement of the theorem

Recall the Chern character ch : K(X) → A(X)⊗Q. In topology, we need the Todd class to make
the diagram

K(X) K(E)

H∗(X, Q) H∗(X, Q)

λE

ch ch ·(−1)rk(E) td(E∗)
uE

commute. Now we are able to state the Grothendieck-Riemann-Roch theorem:

Theorem 8.1.1 (Grothendieck-Riemann-Roch). Let f : X→ Y be proper where X, Y are smooth quasipro-
jective varieties over k. Then the diagram

K(X) K(Y)

A(X)Q A(Y)Q

f∗

ch · td(TX) ch · td(TY)
f∗

commutes. In other words, f∗(ch(−) · td(TX)) = ch(f∗(−)) · td(TY).

First, we will see why this implies the classical (Hirzebruch)-Riemann-Roch theorem. First, let
X be a curve, Y = pt, and L be a line bundle. Then the right hand side is

ch(f∗[L]) = (−1)iHi(X,L) = χ(X,L).

On the other side, we have

f∗(1 + c1(L))(1 + c1(TX)/2) = f∗(c1(L) + c1(TX)/2)

= deg(L) −
1
2

deg(K)

= deg(L) − g+ 1.

This recovers the classical Riemann-Roch theorem.
Now let X be a smooth surface. Then our formula becomes

χ(X,L) = f∗

((
1 + c1(L+

c2
1(L)

2
)

)(
1 +

c1(TX)

2
+
c2

1(TX) + c2(TX)

2

))

= deg

(
c2

1(L)

2
−
c1(L)c1(ΩX)

2
+
c2

1(ΩX) − c2(ΩX)

12

)
.

This recovers the Hirzebruch-Riemann-Roch theorem.
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8.2 Proof for Pm → pt

First, we have the following theorem:

Theorem 8.2.1. K(Pm) is generated by [OPm(n)] for 0 6 n 6 m.

To prove this, we need to find a resolution of a coherent sheaf F by line bundles, so we have

0→
⊕

L〉
(n) → · · · →

⊕
L
(0)
i → F → 0.

Because O(1) is ample, F⊗O(N) is generated by global sections, so we have the exact sequence

0→ · · · →
⊕

O→ F⊗O(N)→ 0,

and we can tensor this by O(−N). Now if we set V =
⊕m+1 O(−1), we can take the Koszul

complex

0→
∧m+1

V → · · · →
∧0

V → 0.

Now we have the exact sequence

0→ O(−m− 1)→ · · · →
⊕

O(−m− 1 + j)→ · · · → O→ 0.

In particular, this means that we can generate K(Pm) by {O,O(1), . . . ,O(m)}.
Now it remains to prove Grothendieck-Riemann-Roch just for O(n), 0 6 n 6 m. Here, because

Y is a point, we have ch(f∗(−)) td(T∗) = χ(X,−). In our case, we know that for 0 < i < m,
Hi(Pm,O(n)) = 0 and Hm(Pm,O(n)) = H0(Pn,O(−n−m− 1))∨ = 0, so

χ(Pn,O(n)) = hn(Pn,O(n)) =
(
n+m

m

)
by basic combinatorics.1

On the other hand, we want to compute f∗(ch(O(n)) td(TPm)). Recall the Euler exact sequence

0→ O→ O(1)⊕m+1 → TPm → 0.

Therefore we have td(TPm) = td(OPn)
m+1. Also, ch(O(n)) = ch(O(1))n = exn. Looking for the

xm-coefficient in exnxm+1

(1−e−x)m+1 , we can multiply by xm+1 and compute the residue to obtain
(
m+n
n

)
.

Remark 8.2.2. Grothendieck wrote the following about this result:

Um dieser Aussage über f : X → Y einen approximativen Sunn zu geben, musste ich
nahezu zwei Stunden lang die Geduld der Zuhörer missbrauchen. Schwartz auf weiss (in
Springer’s Lecture Notes) nimmt’s wohl an die 400, 500 Seiten. Ein packendes Beispiel
dafür, wie unser Wissens - und Entdeckungsdrang sich immer mehr in einem lebensentrücken
logischen Delirium auslabt, während das Leben selbst auf tausendfache Art zum Teufel geht –
und mit endgültiger Vernichtung bedroht ist. Höchste Zeit, unsern Kurs zu ändern!

The English translation of this,2 keeping sentence structure intact as much as possible, is

1If you are unsure of this, this is an exercise in Giulia’s homework. If you need a hint, please email Caleb, who has
several publications in combinatorics, at calebji@math.columbia.edu.

2Provided by the person who originally scanned the note and provided me with the transcription.

calebji@math.columbia.edu
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To give this statement about f : X → Y an approximate meaning I’d have to abuse the
patience of the listeners for nearly two hours. Black on white (in Springer’s Lecture Notes) it
should take about 400, 500 pages. A gripping example of how our thirst for knowledge and
discovery indulges more and more in a life-divorced logical delirium, while life itself is going to
hell in a thousand different ways – and is threatened with absolute extinction. High time to
change our course!
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Patrick (Apr 02): Fine moduli memes for 1-categorical
teens

Note: these are the speaker’s notes. Throughout this lecture, we work over C.

9.1 The moduli space

The space M0,n parameterizes curves that look like this:

Figure 9.1: A stable curve

More precisely, these are reduced connected curves that are a tree of P1s such that each P1 has
at least three marked points or nodes. In addition, at most two components meet at each node
and we want H1(C,OC) = 0. If all of these conditions are satisfied, we call our curve stable. More
precisely, we want to represent the functor

S 7→

 C S
π

s1,...,sn

flat, proper

∣∣∣∣∣ geometric fibers are stable curves
s1, . . . , sn disjoint sections

 .

Theorem 9.1.1 (Knudsen). There exists a smooth complete variety M0,n and universal curve U0,n →
M0,n with universal sections s1, . . . , sn that is a fine moduli space for this functor. M0,n also contains the
space M0,n = (P1 \ {0, 1,∞})

n−3
\∆ as a dense open subset.

In fact, Knudsen also shows that U0,n = M0,n+1 and U0,n+1 is a blowup of M0,n+1 ×M0,n

M0,n+1 along some subscheme of the diagonal. In order to prove this, Knudsen introduces two

39
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operations that we can perform, called contraction and stabilization. Contraction happens when
we delete a marked point and stabilization happens when we add a marked point.

Theorem 9.1.2 (Knudsen). Contraction and stabilization are functorial! Moreover, they commute with
base change.

Here are some pictorial depictions of our operations:

4

51 2 3

delete 5

1 2 3 4

Figure 9.2: Contraction

1 2

3

4

add 5 at node

1 2

3 4

5

Figure 9.3: Stabilization (1)

4

51 2 3

add 5 at 4

1 2 3 4

Figure 9.4: Stabilization (2)

9.2 Keel construction of M0,n

First, we will describe the boundary divisors of M0,n. Let T ⊆ {1, . . . ,n} =: [n] satisfy |T |,
∣∣TC∣∣ > 2.

Then define

DT :=


T TC

.

It is easy to see that DT = D(TC). Knudsen proves that DT is a smooth divisor and that
DT ∼=M|T |+1 ×M|TC|+1.
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Now consider the map π : M0,n+1 → M0,n coming from the identification M0,n+1 = U0,n.
Now Keel proves that we can factor π as

M0,n+1
π1=(π,π1,2,3,n+1)−−−−−−−−−−−→M0,n ×M0,4

p1−→M0,n,

where π1,2,3,n+1 : M0,n+1 →M0,n forgets all sections besides 1, 2, 3,n+ 1. Next, Keel shows that
π1 is a composition of blowups along smooth codimension 2 subvarieties using an inductive
construction.

Set B1 =M0,n ×M0,4. Then the universal sections s1, . . . , sn : M0,n →M0,n+1 induce sections
p ◦ s1, . . . ,p ◦ sn. In fact, DT ∼= p ◦ si(DT ) and this is independent of i. We also have

Lemma 9.2.1 (Keel). The divisors DT ⊂M0,n+1 with T ⊂ [n] are the exceptional divisors of π1.

Now we set B2 to be the blowup of B1 at
⋃
|TC|=2D

T . Inductively, we set Bk+1 to be the

blowup of Bk at
⋃
|TC|=k+1D

T . Now we summarize the main results as follows:

Theorem 9.2.2 (Keel). The map π1 factors through Bk and M0,n+1 = Bn−2.

9.3 Intersection theory of M0,n

There are several major results about the intersection theory of M0,n. In fact, once we state these
results, we will only be seven pages through Keel’s paper, and the rest of the paper is dedicated
to proving these results.

Theorem 9.3.1. We have an isomorphism A∗(M0,n) → H∗(M0,n). In particular, M0,n has no odd
homology and A∗(M0,n+1) is a finitely generated free abelian group. In fact, if a scheme Y satisfies
A∗(Y) = H∗(Y), then so does Y ×M0,n.

Theorem 9.3.2. For any scheme S, there is an isomorphism A∗(M0,n × S) = A∗(M0,n)⊗A∗(S).

Theorem 9.3.3. For all k, we have an isomorphism

Ak(M0,n+1) ∼= Ak(M0,n)⊕Ak−1(M0,n)⊕
⊕
T⊂[n]

|T∩[3]|61

Ak−1(DT )

which is induced by the maps

Ak(M0,n)
π∗−−→ Ak(M0,n+1)

Ak−1(M0,n)
π∗−−→ Ak−1(M0,n+1)

∪π∗1,2,3,n+1(c1(O(1)))
−−−−−−−−−−−−−−→ Ak(M0,n+1)

Ak−1(DT )
g∗−→ Ak−1(DT⊂[n+1])

j∗−→ Ak(M0,n+1),

where g, j are as in the diagram

DT⊂[n+1] M0,n+1

DT M0,n.

g

j

π

i
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Theorem 9.3.4. The Chow groups Ak(M0,n) are free abelian and the ranks ak(n) = rk(Ak(M0,n)) are
given by the recursive formula

ak(n+ 1) = ak(n) + ak−1(n) +
1
2

n−2∑
j=2

(
n

j

) k−1∑
`=0

a`(j+ 1)ak−1−`(n− j− 1).

In particular, we have the Picard rank a1(n) = 2n−1 −
(
n
2
)
− 1.

Theorem 9.3.5. The Chow ring A∗(M0,n) is the quotient of Z[DT | T ⊂ [n], |T |,
∣∣TC∣∣ > 2] by the

relations

1. DT = D(TC);

2. For any distinct i, j,k, ` ∈ [n], we have the equality∑
i.j∈T
k,`/∈T

DT =
∑
i,k∈T
j,`/∈T

DT =
∑
i,`∈T
j,k/∈T

DT .

3. For T1, T2 ⊂ [n], DT1DT2 = 0 unless one of T1 ⊂ T2, T2 ⊂ T1, T1 ⊂ TC2 , T2 ⊂ TC1 holds.

Remark 9.3.6. All of the relations encode geometric content:

1. As divisors, we already know that DT = D(TC).

2. If we consider the map πi,j,k,` : M0,n →M0,4, then the three sums are the pullbacks of the
three boundary divisors Di,j,Di,k,Di,` ⊂M0,4 = P1.

3. The final relation encodes the fact that DT1 ∩DT2 = ∅ unless one of the four inclusions holds.
Pictorially, this is encoded in the diagram below:

Figure 9.5: Degeneration to a common stable curve

9.4 Intersection theory of regular blowups

Let i : X ⊂ Y be a regularly embedded subvariety, π : Ỹ → Y be the blowup along X, and X̃ be the
exceptional divisor. Let g : X̃→ X and j : X̃→ Ỹ.

Theorem 9.4.1. Suppose i∗ is surjective. Then

A∗(Ỹ) =
A∗(Y)[T ]

(P(T), T · ker(i∗))
,

where P(T) has constant term [X] and i∗P(T) = Td + Td−1c1(NXY) + · · ·+ cd(NXY), where d is the
codimension of X in Y. This is induced by −T = [X̃].
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Theorem 9.4.2. A scheme X is HI if A∗(X) = H∗(X). If X, Y are both HI, then so is Ỹ.

Theorem 9.4.3. The map

Ak(Y)⊕Ak−1(X)
(π∗,j∗g∗)−−−−−−→ Ak(Ỹ)

is an isomorphism.
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Patrick (Apr 09): Do we even need derived categories?

Note: these are the speaker’s notes.

10.1 Serre formula

Recall the following from my March 19 lecture (this is Proposition 7.2.9 in my notes):

Proposition. Let X be a smooth variety, V ,W ⊂ X be closed subschemes that intersect properly, and Z be
an irreducible component of V ∩W. Then

V ·W =
∑
Z

i(Z,V ·W;X) · [Z],

where 1 6 i(Z,V ·W;X) 6 `(OV∩W,Z) is the intersection number and i(Z,V ·W;X) = `(OV∩W,Z) if
and only if the local ring is Cohen-Macaulay.

However, most rings are not Cohen-Macaulay, so we would like a formula to compute the
intersection multiplicities in all cases. Serre gives a formula in terms of higher Tor functors
(because OV∩W,Z = OV ,Z ⊗OW,Z). Before we state the formula, first we will state some results
about the higher Tor functors.

First, if X is a locally ringed space and F,G are modules on X, then

TorOXi (F,G)
x
= TorOX,x

i (Fx,Gx).

This follows from the construction of the derived tensor product ⊗L in Stacks, which exposits
derived categories much better than I ever could.

Lemma 10.1.1. Let X be a locally Noetherian scheme. If F,G are coherent, so is TorOXi (F,G). Also, if
L,K ∈ D−

coh(OX) (this means bounded above complexes of quasicoherent sheaves with coherent homology),
then so is L⊗L K.

Proof of this fact is pure homological algebra, and again can be found in the Stacks project.

Lemma 10.1.2. Let X be a smooth variety and F,G be coherent sheaves. Then TorOXi (F,G) is supported
on SuppF ∩ SuppG, and is nonzero only when 0 6 i 6 dimX.

44
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Proof. The support condition is clear by looking at the stalks, so we need to consider when the
stalks are nonzero. Here, we note that because X is smooth, the local rings OX,x are regular local
rings. By a result of Serre (Theorem 4.4.1 in my commutative algebra notes), OX,x has finite global
dimension dimOX,x 6 dimX. Here, the global dimension and the dimension are the same by
Theorem 4.3.12 of my commutative algebra notes.1

Now we can compute the intersection multiplicities as (Stacks gives this as the definition of
intersection multiplicity)

i(Z,V ·W;X) =
∑

(−1)i`(TorOX,Z
i (OV ,Z,OW,Z)).

This formula is due to Serre, and Stacks writes the total intersection as

W · V =
∑

(−1)i[TorOXi (OV ,OW)].

Remark 10.1.3. Stacks writes the intersection multiplicity as e(X,V ·W,Z). I am using the notation
in Fulton’s book.

Lemma 10.1.4. Assume that `(OV∩W,Z) = 1. Then i(Z,V ·W;X) = 1 and V ,W are smooth in a general
point of Z.

Proof. Write A = OX,Z. Then dimA = dimX−dimZ. Let I, J be the ideals of V ,W. By Proposition
7.2.9 of the notes,2 I+ J = m. Thus there exists f1, . . . , fr ∈ I,g1, . . . , fs ∈ J Forming a basis for
m/m2. But this is a regular sequence and a system of parameters, so A/(f1, . . . , fr) is a regular
local ring of dimension dimX− dimV , so I = (f1, . . . , fr). Similarly, J = (g1, . . . ,gs). Now by
Corollary 4.4.3 of commutative algebra, the Koszul complex K(f1, . . . , fr,A) resolves A/I, so we
obtain

TorAi (A/I,A/J) = Hi(K(f1, . . . , fr,A)⊗A/J)
= Hi(K(f1, . . . , fr,A/J)).

By Theorem 4.4.2 from commutative algebra, we only have H0 = k.

Example 10.1.5. Suppose V ,W ⊂ X are closed subvarieties, dimX = 4, ÔX,p = C[[x,y, z,w]] and
V = (xz, xw,yz,yw),W = (x− z,y−w). Then `(C[[x,y, z,w]]/(xz, xw,yz,yw, x− z, x−w)) = 3,
but the intersection multiplicity is 2 because V is locally a union (x = y = 0)∪ (z = w = 0).

10.2 Some algebra

Let (A,m,k) be a Noetherian local ring. If M is a module and I is an ideal of definition, recall the
Hilbert-Samuel polynomial ϕI,M(n) = `(InM/In+1M). Similarly recall the function

χI,M(n) = `(M/In+1M) =

n∑
i=0

ϕI,M(i).

Recall that d(M) := degχ is independent of I and equals the dimension of the support of M
(from the proof of Theorem 3.2.9 in my commutative algebta notes). Now write χI,M(n) =

eI(M,d)n
d

d! +O(nd−1).
1Originally there was an argument that the global dimension of a Noetherian local ring is the projective dimension

of the residue field, which is Theorem 4.3.10 of the commutative algebra notes, and then by the Auslander-Buchsbaum
formula this is the same as the depth, and finally regular implies Cohen-Macaulay, so depth equals dimension.

2This may be cheating, and a self-contained argument is given in Stacks
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Definition 10.2.1. For d = d(M) we write eI(M,d) as above, and for d > d(M), we set eI(M,d) =
0.

Lemma 10.2.2. For all I,M, we have

eI(M,d) =
∑

dimA/p=d

`Ap(Mp)eI(A/p,d).

Lemma 10.2.3. Let P be a polynomial of degree r with leading coefficient a. Then

r!a =

r∑
i=0

(−1)i
(
r

i

)
P(t− i)

for any t.

Proof. Write ∆ for the operator taking a polynomial P to P(t) − P(t− 1). Then

∆r+1(P) =

r∑
i=0

(−1)i
(
r

i

)
∆(P)(t− i)

=

r∑
i=0

(−1)i
(
r

i

)
(P(t− i) − P(t− i− 1)).

The desired claim follows from Pascal’s identity.

Theorem 10.2.4. Let A be a Noetherian local ring and I = (f1, . . . , fr) be an ideal of definition. Then

eI(M, r) =
∑

(−1)i`(Hi(K(f1, . . . , fr)⊗M)).

There is a very long proof of this statement in Stacks using spectral sequences.

10.3 Computing intersection multiplicities without derived categories

We give some cases where intersection multiplicities can be computed without using derived
categories.

Lemma 10.3.1. Suppose OV ,Z and OW,Z are Cohen-Macaulay. Then i(Z,V ·W;X) = `(OV∩W,Z).

Proof. Write A = OX,Z,B = OV ,Z,C = OW,Z. Then by Auslander-Buchsbaum (exercise 4d of the
final CA homework), we have a resolution F• → B of length depthA−depthB = dimA−dimB =
dimC. Then F• ⊗C represents B⊗L C and is supported in {mA}, so by Lemma 10.108.2 in Stacks,
it has nonzero cohomology only in degree 0.

Lemma 10.3.2. Let A be a Noetherian local ring and I = (f1, . . . , fr) is generated by a regular sequence.
If M is a finite A-module with dim SuppM/IM = 0, then

eI(M, r) =
∑

(−1)i`(TorAi (A/I,M)).

In what follows, we will assume V is cut out in OX,Z by a regular sequence (f1, . . . , fc).

Lemma 10.3.3. In this case, we have i(Z,V ·W;X) = c!. This is the leading coefficient of the “Hilbert
polynomial” n 7→ `(OW,Z/(f1, . . . , fc)t).
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Proof. By the previous lemma, e(Z,V ·W;X) = e(f1,...,fc)(OW,Z(c)). Now we need to show that
dimOW,Z = c. But now if dimV = r, dimW = s, dimX = n, dimZ = r + s − n, so k(Z)
has transcendence degree r + s − n. Because f1, . . . , fc is a regular sequence, r + c = n, so
dimOW,Z = s− (r+ s−n) = s− (n− c+ s−n) = c.

Lemma 10.3.4. Assume c = 1 (for example, V is an effeective Cartier divisor). Then i(Z,V ·W;X) =
`(OW,Z/(f1)).

Proof. Note that OW,Z is a Noetherian local domain of dimension 1. Then it is clear that
`(OW,Z/(f

t
1)) = t`(OW,Z/(f1)) for all t > 1.

Lemma 10.3.5. Asssume OW,Z is Cohen-Macaulay. Then i(Z,V ·W;X) = `(OW,Z/(f1, . . . , fc)).

Proof. Because f1, . . . , fc is a regular sequence, it is also quasi-regular by Proposition 3.5.6 of my
commutative algebra notes. Then

`(OW,Z/(f1, . . . , fc)t) =
(
c+ t

c

)
`(OW,Z/(f1, . . . , fc)).

Now take the leading coefficient.
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Caleb (Apr 16): Motivic cohomology

Note: these are the speaker’s notes. No changes were made except to bring notational and stylistic
conventions in line with the rest of the notes and to adapt pictures that were not available to me. Also, the
quote of Grothendieck was changed to the original French.

These are my notes on motivic cohomology. Essentially everything here is based off of
Voevodsky’s lectures, now turned into a book by Mazza and Weibel.

11.1 Bloch’s higher Chow groups

11.1.1 Some topological motivation Recall the following exact sequence.

Proposition 11.1.1 (Fulton, Prop. 1.8). Let Y be a closed subscheme of a scheme X, and let U = X− Y.
Let i : Y → X, j : U→ X be the inclusions. Then the sequence

CHk Y i∗−→ CHk X
j∗−→ CHkU→ 0

is exact for all k.

This is great, but if we want homology to continue to the left. We certainly cannot put these
sequences together. In fact, the indexing is a bit misleading in this way – instead, we should
put the ks together for a grading of CH∗(−). So, we really do need new groups if we want
to continue this sequence. To construct these groups, we first recall the following definition of
rational equivalence.

Definition 11.1.2 (Rat(X)). Let Z(X) denote the cycles of a scheme X and let Φ be any subvariety
of X×P1. Then we define Rat(X) ⊂ Z(X) be the subgroup generated by differences of the form

[Φ∩ (X× {0})] − [Φ∩ (X× {∞})].

Then rationally equivalent cycles are those which differ by something in Rat(X). We see that it
looks like there is a homotopy between rationally equivalent cycles.

11.1.2 Definition Motivated by algebraic topology, we define the algebraic simplex

∆k = Speck[x0, . . . , xn]/(x0 + · · ·+ xk − 1).

Let zi(X,n) be the subgroup of Zi(X× ∆n) that meet all faces properly. This gives both a
simplicial abelian group zi(X, •) and a chain complex zi(X, ∗).

48
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Definition 11.1.3. The higher Chow groups CHi(X,m) are defined

CHi(X,m) := πm(zi(X, •)) = Hm(zi(X, ∗)).

11.1.3 Properties

1. Homotopy invariance:

The projection X×A1 → X induces an isomorphism

CHi(X,m) ∼= CHi(X×A1,m).

2. Long exact sequence:

There is a distinguished triangle

zp(Y, ∗)→ zp(X, ∗)→ zp(U, ∗)→ zp(Y, ∗)[1].

3. Isomorphism with rational K-theory:

(Ki(X)⊗Q)(q) ∼= CHq(X, i)⊗Q.

We will see that Hp,q(X;A) = CHq(X, 2q − p;A). In particular, we have H2q,q(X,A) =
CHq(X)⊗A.

11.2 The category of correspondences

11.2.1 Correspondences Let X, Y ∈ Smk be smooth separated schemes of finite type over
k. Very informally, one can think of Cor(X, Y) as a generalization of Hom(X, Y) to multivalued
morphisms.

Definition 11.2.1. An elementary correspondence between a smooth connected scheme X/k to a sep-
arated scheme Y/k is an irreducible closed subset W ⊂ X× Y whose associated integral subscheme
is finite and surjective over X.

If X is not connected, then an elementary correspondence refers to one that is one from a
connected component of X to Y.

The group Cor(X, Y) of finite correspondences is the free abelian group generated by the elemen-
tary correspondences.

Then given a closed subscheme Z ⊂ X× Y finite and surjective over X, we can associate the
finite correspondence

∑
niWi where Wi are the irreducible components of the support of Z

surjective over a component of X with generic points ξi and ni = `(OZ,ξi).
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11.2.2 The category of correspondences We compose correspondences V ∈ Cork(X, Y)
and W ∈ Cork(Y,Z) as follows. Construct the cycle [T ] = (V × Z) · (X×W) on X× Y × Z. Then
take its pushforward along the projection p : X× Y ×Z→ X×Z.

It is not difficult to check that Smk embeds into Cork as a subcategory, where f : X → Y
becomes the graph Γf ⊂ X× Y.

Furthermore, Cork is a symmetric monoidal category. Indeed, the tensor product is simply
X⊗ Y = X× Y. Given V ∈ Cork(X,X ′) and W ∈ Cork(Y, Y ′), we get the desired cycle V ×W ∈
Cork(X⊗ Y,X ′ ⊗ Y ′).

11.2.3 Examples

1. Cork(Speck,X) is generated by the 0-cycles of X.

2. Cork(X, Speck) is generated by the irreducible components of X.

3. Take W ∈ Cork(A
1,X) and two k-points s, t : Speck→A1. Then the zero-cycles W ◦ Γs and

W ◦ Γt are rationally equivalent.

11.3 Presheaves with transfers

11.3.1 Definition

Definition 11.3.1. A presheaf with transfers is a contravariant additive functor F : Cork → Ab.

Additivity gives a map
Cork(X, Y)⊗ F(Y)→ F(X).

Thus there are extra “transfer maps" F(Y)→ F(X) coming from Cork(X, Y).

Theorem 11.3.2. PST(k) is an abelian category with enough injectives and projectives.

11.3.2 Examples

Example 11.3.3. The constant presheaf A on Smk can be extended to a pst.
For W ∈ Cor(X, Y) with X, Y connected, the corresponding homomorphism A→ A is multipli-

cation by the degree of W over X.

Example 11.3.4. O∗ and O, at least for X normal. Use the norm and trace maps.

O∗(Y) O∗(X)

O∗(W)

N

O(Y) O(X)

O(W)

Tr

Example 11.3.5. CHi(−), the Chow groups.

Example 11.3.6. Representable functors: hX(−)
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11.3.3 Representable functors of Cork(X) Take X ∈ Ob(Cork(X)). We denote

Ztr(X) := hX(−).

By Yoneda, Ztr(X) is a projective object in PST(k).

Note that Ztr(Speck) is just the constant sheaf Z on Smk, with the transfer maps constructed
in the example from the previous subsection. Let (X, x) be a pointed scheme. We define

Ztr(X, x) := coker[x∗ : Z→ Ztr(X)].

The structure map X→ Speck provides a splitting, so

Ztr(X) ∼= Z⊕Ztr(X, x).

Out of laziness we screenshot the following definitions from Voevodsky’s lectures.

Definition 11.3.7. If (Xi, xi) are pointed schemes for i = 1, . . . ,n we define Ztr((X1, x1)∧ · · ·∧
(Xn, xn)), or Ztr(X1 ∧ · · ·Xn), to be:

coker

(⊕
i

Ztr(X1 × · · · X̂i · · · ×Xn)
id×···×xi×···×id−−−−−−−−−−−−→ Ztr(X1 × · · ·Xn)

)
.

Lemma 11.3.8. The presheaf Ztr((X1, x1)∧ · · ·∧ (Xn, xn)) is a direct summand of Ztr(X1× · · · ×Xn).
In particular, it is a projective object of PST.

Moreover, the following sequence of presheaves with transfers is split-exact:

0→ Z
xi−→
⊕
i

Ztr(Xi)→
⊕
i,j

Ztr(Xi ×Xj)× · · ·

· · · →
⊕
i,j

Ztr(X1 × · · · X̂i · · · X̂j · · · ×Xn)→
⊕
i

Ztr(X1 × · · · X̂i · · · ×Xn)→

→ Ztr(X1 × · · · ×Xn)→ Ztr(X1 ∧ · · ·∧Xn)→ 0.

Consider the pointed scheme (Gm, 1). We will be interested in the presheaf with transfers
Ztr(G

∧q
m ).

Before continuing, we recall our construction

∆k = Speck[x0, . . . , xn]/(x0 + · · ·+ xk − 1).

Recall that a simplicial object of a category C is a functor F : ∆op → C. Then if F is a presheaf
of abelian groups on Smk, then F(U×∆•) is a simplicial abelian group. Then

C•F : U 7→ F(U×∆•)

is a simplicial presheaf with transfers. Similarly, C∗F(U) gives the complex of abelian groups

· · · → F(U×∆2)→ F(U×∆1)→ F(U)→ 0.
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11.3.4 Homotopy invariant presheaves

Definition 11.3.9. A presheaf F is homotopy invariant if for every X, the map p∗ : F(X)→ F(X×A1)
is an isomorphism.

Note that this is equivalent to p∗ being surjective. We can check that an equivalent condition
is that for all X, we have

i∗0 = i∗1 : F(X×A1)→ F(X).

Furthermore, if F is any presheaf, we have that i∗0 , i∗1 : C∗F(X×A1)→ C∗F(X) are chain homotopic.
From this we deduce that if F is a presheaf, then the homology presheaves

HnC∗F : X 7→ HnC∗F(X)

are homotopy invariant for all n.

Definition 11.3.10. Two finite correspondences from X to Y are A1-homotopic if they are the
restrictions along X× 0 and X× 1 of an element of Cor(X×A1, Y).

This is an equivalence relation on Cor(X, Y). Note that it is not one if we just look at morphisms
of schemes! With this definition though, we define f : X→ Y to be an A1-homotopy equivalence
in the expected way.

11.4 Motivic cohomology

11.4.1 The motivic complex

Definition 11.4.1. For q ∈ Z>0, the motivic complex Z(q) is defined as the following complex of
presheaves with transfers.

Z(q) := C∗Ztr(G
∧q
m )[−q].

We can change coefficients to A ∈ Ab by setting A(q) = Z(q)⊗A.

These are actually complexes of sheaves with respect to the Zariski topology. In fact, they are
also sheaves in the étale topology.

For example when q = 0, applying this to a scheme Y we just get

· · · 0−→ Z
id−→ Z

0−→ Z→ 0

which is quasi-isomorphic to just Z. When q = 1, the complex looks like

· · · −→ Cor(Y ×∆2, Gm) −→ Cor(Y ×∆1, Gm) −→ Cor(Y, Gm)→ 0.

11.4.2 Motivic cohomology groups

Definition 11.4.2. The motivic cohomology groupsHp,q(X, Z) are defined to be the hypercohomology
of the motivic complexes Z(q) with respect to the Zariski topology:

Hp,q(X, Z) = H
p
Zar(X, Z(q)).

If A is any abelian group, we define

Hp,q(X,A) = H
p
Zar(X,A(q)).
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11.4.3 Weight 1 There is a quasi-isomorphism

Z(1)
∼=−→ O∗[−1].

Thus we have the following table.

Z(X)

O∗(X) Pic(X) 0000

0 0 000

0 0 000 0

H−2,2 H−1,2 H0,2 H1,2 H2,2 H3,2

q

p

Figure 11.1: Weight q motivic cohomology

11.5 Relation to other fields

11.5.1 Algebraic K-theory Atiyah-Hirzebruch:

E
p,q
2 = Hp(X;Kq(∗))⇒ Kp+q(X).

In the algebraic setting, it is much more difficult. Indeed, both algebraic K-theory and motivic
cohomology are significantly harder to define than their topological counterparts. In 2002, Suslin
and Friedlander built upon previous work of Bloch and Lichtenbaum to show the following
spectral sequence.

E
p,q
2 = Hp−q(X, Z(−q)) = CH−q(X,−p− q)⇒ K−p−q(X).

11.5.2 Motives

C’est pour parvenir à exprimer cette intuition de “parenté” entre théories cohomologiques
différentes, que j’ai dégagé la notion du “motif” associé à une variété algébrique. Par ce terme,
j’entends suggérer qu’il s’agit du “motif commun” (or de la “raison commune”) sous-jacent
à cette multitude d’invariants cohomologiques différents associés à là variété, à l’aide de la
multitude des toutes les théories cohomologiques possibles a priori. Alexander Grothendieck
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Note: there was an English translation originally in the slideshow, but I don’t actually think the translation
is very good. I provided my own translation at some point, but that was also bad so it was removed.

Grothendieck constructed Chow motives by replacing morphisms of schemes with correspon-
dences (defined under rational equivalence, different from the correspondences discussed earlier),
augmenting the category to look like an abelian category, and taking the opposite category. By
construction, this works in that cohomology theories factor through it. However, to truly achieve
what is desired from them, one must assume the standard conjectures on algebraic cycles (or some
variants), which have been open for over 50 years!

Voevodsky used motivic cohomology to construct a triangulated category DM(k;R), which
for all intents and purposes acts as the derived category of the desired category of motives. He
studied mixed motives, which apply to all varieties (not just the smooth ones). These can be
thought of as extensions of pure motives, and motivic cohomology studies these Ext groups.

11.5.3 Arithmetic geometry There’s the Bloch-Kato conjecture and the Bloch-Kato conjec-
tures, which are different!

The Bloch-Kato conjecture is now a theorem: the norm residue isomorphism theorem, proven
by Voevodsky. Through proving it, Voevodsky developed motivic cohomology, motivic homotopy
theory, motivic Steenrod algebra...

The norm residue isomorphism theorem (or Bloch-Kato conjecture) states that for a field k
and an integer ` that is inverible in k, the norm residue map

∂n : KMn (k)/`→ Hnét (k,µ⊗n` )

from Milnor K-theory mod-` to étale cohomology is an isomorphism. The case ` = 2 is the
Milnor conjecture, and the case n = 2 is the Murkurjev-Suslin theorem. Wikipedia

The Bloch-Kato conjectures are on special values of L-functions.

Conjecture 11.5.1 (Soulé). If X is regular and proper over Spec Z, then for an integer n ∈ Z we have

ords=n ζX(s) = −
∑
i>0

(−1)i rank(Hi(X; Z(n))).

Applied to elliptic curves, this implies (one of the two parts of) the Birch-Swinnerton Dyer
conjecture!
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