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Lie algebras and algebraic groups

If G is a compact Lie group, then g = Lie(G) has an invariant metric (−,−). If g1 ⊂ g is an ideal,
then g⊥1 is also an ideal and we have g = g1 ⊕ g2. In particular, we have

g =
⊕

gi gi =

{
R

simple nonabelian Lie algebra
.

The simple nonabelian Lie algebras are very interesting and very special, and there are only
countably many of them. Recall that they are classified by root systems.

1.1 Solvable and Nilpotent Lie Algebras

These are built out of abelian Lie algebras. They are not very interesting, but it is easy to find
them. In some sense, if we consider the moduli space of Lie algebras, most Lie algebras will be
nilpotent.

Definition 1.1.1. Define the commutant g ′ of a Lie algebra to be the span of [g, g]. Here, we have
an exact sequence

0→ g ′ → g→ abelian→ 0.

By analogy, we may define G ′ to be the commutator subgroup of a Lie group G.

Theorem 1.1.2. If G is simply connected, then G ′ is a Lie subgroup.

Example 1.1.3. The commutant of the group of all matrices of the form1 ∗ ∗
1 ∗

1


is the set of all matrices of the form 1 0 ∗

1 0
1

.

Now if we take

G =

1 ∗ ∗
1 ∗

1

×R/Λ,
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where Λ is a lattice in the center R2, then G ′ is the image of1 0 ∗
1 0

1

,

which is not necessarily a Lie subgroup.

Proof. Consider the exact sequence 0 → g ′ → g → Rk → 0. Because G is simply connected, we
can lift to an exact sequence

1→ G ′′ → G→ Rk → 0.

We know that G ′ ⊆ G ′′ but then Lie(G ′′) = g ′ and therefore we must have G ′′ = G ′.

Definition 1.1.4. A Lie algebra is called solvable if (g ′) ′ · · · = 0. In other words, repeatedly taking
the commutant eventually reaches 0. Alternatively, one should think about g as an iterated
extension by abelian Lie algebras.

Similarly, a group G is called solvable if (G ′) ′ . . . = 1.

Corollary 1.1.5. A connected Lie group G is solvable if and only if Lie(G) is solvable.

Example 1.1.6. The group B ⊂ GLn of upper-triangular matrices is solvable. In some sense, this
is an universal example.

Note that if G1 ⊂ G and G is solvable, then G1 is solvable. Conversely, if G ↪→ G2 and G is
solvable, then so is G2. Next, if

1→ G1 → G→ G2 → 1

is an exact sequence and G1,G2 are solvable, then so is G.
A stronger condition than being solvable is being nilpotent.

Definition 1.1.7. A Lie algebra g is nilpotent if [[[g, g], g], . . .] = 0.

There is a similar definition for Lie groups, and we have

Corollary 1.1.8. A connected Lie group is nilpotent if and only if Lie(G) is nilpotent.

Example 1.1.9. The group of unitriangular matrices (equivalently the Lie algebra of strictly
upper-triangular matrices) is nilpotent. Again, this is in some sense a universal example.

Theorem 1.1.10 (Lie). If g is a solvable Lie algebra over C and g→ gl(V) is a representation, then g maps
into the set of upper-triangular matrices in some basis.

Remark 1.1.11. C or any algebraically closed field of characteristic 0 is important because we
need to ensure that every operator actually has an eigenvalue and therefore can be upper-
triangularized. Having characteristic 0 is also important because sl2(Z/2Z) is solvable. Here,
we have [h, e] = [h, f] = 0, and in particular, the defining representation cannot be upper-
triangularized.

Proof. The usual proof is induction. We simply need to find one common eigenvector, and first
we find an eigenvector in g ′ and then extend to g. We will prove the result more globally. If G
has a common eigenvector v1, then the line Cv1 ∈ P(V) is fixed by G. Therefore, if G is triangular
in the basis v1, . . . , vn, this is equivalent to fixing a flag Cv1 ⊂ Cv1 + Cv2 ⊂ · · · ⊂ V . Then by
Borel-Morozov, a fixed flag exists because the flag variety is projective.
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Theorem 1.1.12 (Borel-Morozov). If G is a connected solvable affine algebraic group over an arbitrary
algebraically closed field acting on a proper variety X, then XG is nonempty.

If we apply this discussion to the adjoint representation, we see that over a field of characteristic
0, g is solvable if and only if g ′ is nilpotent.

Theorem 1.1.13 (Engel). Suppose g ⊂ gl(V) consists of nilpotent operators. Then g is contained in the
set of strictly upper-triangular matrices for some basis.

The usual proof of this is by induction, so we skip it.

Corollary 1.1.14. If we apply this to the adjoint representation, then g is nilpotent is nilpotent if and only
if ad x = [x,−] is nilpotent for every x.

This result has a global analog, due to Kolchin (who incidentally was once a professor at
Columbia).

Theorem 1.1.15 (Kolchin). Let G ⊂ GL(V) be any group consistent of unipotent operators. Then G is
contained in the set of unitriangular matrices for some basis of V .

Proof. By induction, it is enough to find one common fixed vector v1. We will assume that V is
irreducible. Then we consider Span(G) ⊂ End(V). On End(V), we have a nondegenerate pairing
(a,b) = tr(ab), and thus if we consider

tr(g1 − 1)
∑

cigi =
∑

ci tr(g1gi − gi) = 0

we see that for all g, g = 1. Therefore dimV = 1 and every element is fixed.

Proof of Borel-Morozov. Consider the exact sequence 1→ G ′ → G→ abelian→ 1. By induction on
the dimension of G ′ we see that XG

′ 6= is closed and thus proper. Now rename X = XG
′
, so we

only need to prove the result for abelian G.
Any algebraic group action on an algebraic variety has a closed orbit O, which in this case is

proper. On the other hand, O = G/stabilizer is an affine algebraic group and therefore must be a
point.

For another proof, every affine abelian group is built out of Ga, Gm, so we simply prove the
result for these two groups. For Gm, let x ∈ X. Then we simply consider the limit as t→ 0 of t · x,
which exists by the valuative criterion of properness. This must be a fixed point. For Ga = A1,
we run the same argument except we consider the limit at∞.

In the Lie theorem, G ⊂ GL(n, C) is an arbitrary connected solvable Lie group. We need to see
that the Zariski closure of G is still solvable. If we write g = Lie(G), then we have

Lemma 1.1.16. [g, g] = [g, g].

Proof. We show that [g, g] = [g, g]. Consider

G̃ =

{
h | Adh(g) = g, Adh

∣∣∣∣
g/[g,g]

= 1

}
.

In particular, we have G ⊂ G ⊂ G̃ because G̃ is closed, and therefore [g, g] ⊂ [g, g].
Now consider the same construction but with g replaced by g. This implies that [g, g] ⊂

[g, g].
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Corollary 1.1.17 (Borel). All maximal connected solvable subgroups B ⊂ G are conjugate for any
connected linear algebraic group G.

Proof. The idea is that if B0 ⊆ G is connected solvable of maximal dimension, then X = G/B0 is
projective. Then any other B will have a fixed point gB0 ∈ X, and so g−1Bg fixes B0. This implies
that g−1Bg ⊂ B0 and so they must be equal (by maximality).

Really, we will prove that G ⊆ GL(n,k). Therefore we will consider the action of G on the flag
variety Fl(n), and the stabilizer of any point is solvable. Then stabilizers of maximal dimension
correspond to orbits of smallest dimension, which are closed and thus projective. Choose some
maximal B0, which stabilizes a point in a closed orbit. Then B0 is solvable and X = G/B0 is
projective, so the argument above works.

Now consider the variety X = G/B. This is called the flag variety for G.

Example 1.1.18. 1. If G = GL(n,k), then G/B is the usual flag variety. Here, B is all upper-
triangular matrices.

2. LetG be one of the classical groups. Suppose g preserves a flag 0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vn = kn.
Then g also preserves V⊥i and intersections of the Vi and their orthogonal complements, so
we impose V⊥i = Vn−i. Thus we take the space of flags to be

X =
{

0 ⊂ V1 ⊂ · · · ⊂ Vn = kn | V⊥i = Vn−i

}
.

We need to check that G acts on X transitively, so we check it up to Vbn/2c, which is a
maximal isotropic subspace.

Theorem 1.1.19. For all v1, . . . , vm ∈ kn, invariants of G = SO or G = Sp are generated by (vi, vj)
and minors like vi1 ∧ · · ·∧ vim . But all of these vanish because the vi are all orthogonal, so there are no
invariants.

Definition 1.1.20. A linear algebraic group G is an affine algebraic variety over k which is also a
group.

Theorem 1.1.21 (Chevalley). Over any field of characteristic 0, any group scheme is reduced and hence
smooth.

Example 1.1.22. Consider the group A1 = Ga, the additive group of k. Then k[G] = k[t], and so
the addition map (t1, t2) 7→ t1 + t2 corresponds to the map f(t) 7→ f(t1 + t2).

If chark = p, then t 7→ tp is a group homomorphism. This gives us an exact sequence

0→ Speck[t]/tp → Ga → Ga → 0.

Here, the first term is an affine group scheme because ∆tp = tp ⊗ 1 + 1⊗ tp and therefore k[t]/tp

has a well-defined coproduct.

Therefore in characteristic 0, we can simply consider algebraic varieties. Then G is smooth,
and we note that the maps m : G × G → G, i : G → G, 1 → G induce maps ∆ : A → A ⊗ A
(comultiplication), S : A → A (antipode), and ε : A → k (counit). Here, the comultiplication is
required to be coassociative, and the antipode is required to satisfy the identity

µ ◦ (1⊗ S) ◦∆ = ι ◦ ε.
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In other words, the diagram

A A⊗A A⊗A

k A

∆

ε

1⊗S

µ

ι

commutes.
Now A has two sets of tensors:

1. As a commutative algebra over k, it has µ : A⊗A→ A, which is dual to ∆ : G→ G×G and
the unit ι : k→ A. In principle, the multiplication does not need to be commutative.

2. As functions on a group, it gets ∆ : A → A ⊗ A, ε : A → k,S : A → A. Note that the
comultiplication may not be cocommutative.

Definition 1.1.23. A Hopf algebra A over a field k is a bialgebra over k such that the axioms listed
above for k[G] are satisfied.

Note that there is no need for A to be commutative and that the set of axioms is symmetric.
Therefore we can consider the dual of a Hopf algebra, where all vector spaces are replaced with
their duals and all maps are replaced by the dual maps. Now we see that linear algebraic group
schemes over k are equivalent to finitely generated commutative Hopf algebras over k.

Now let f ∈ A. We see that (∆f)(g,h) = f(gh) =
∑
ci(g)fi(h), so if g = 1, then f is in the span

of the fi. Also,
f(g1g2h) =

∑
ci(g1g2)fi(h) =

∑
ci(g1)fi(g2h)

so every f ∈ A belongs to a finite-dimensional subspace that is invariant under the left regular
representation. This implies that every affine algebraic group G is contained in GL(N,k)

Now note that if G ϕ−→ H is a homomorphism of algebraic groups, then Imϕ ⊂ H is closed.

Theorem 1.1.24. For all subgroups H ⊆ G, there exists a morphism G → GL(V) such that Im(H) is
contained in the stabilizer of a line.

Proof. Let IH be the ideal of H in k[G]. Then H is the stabilizer of IH ⊂ k[G] under the natural
G-action. Here, note that Lh−1f(g) = f(gh), so if we set g = 1, then f(h) = 0 for all h ∈ stab(IH).

Note that a tangent vector to an algebraic variety is an map in Hom(Speck[ε]/ε2,X) that sends
the closed point of Spec k[ε]/ε2 to x ∈ X. Therefore, we have

Lie(G) =
{

1 + εξ ∈ G, ε2 = 0
}

.

Next, from last time, we know that dim Span
{
f(g−1)

}
<∞, s IH = (f1, . . . , fk), where fi ∈ L,

a finite-dimensional G-invariant subspace. Let LH = IH ∩ L. Then H is the stabilizer of LH, so H
stabilizes a point in G(dimLH, dimL). Now we note that

∧k LH ⊆ ∧k L is a line, as desired.

Definition 1.1.25. We define G/H to be the orbit of the line that is stabilized in P(V).

Note that this definition is not necessarily independent of V and we also need to know what
properties it satisfies. From now, we will assume H is smooth and dim Lie(H) = dimH. Then we
have an exact sequence

0→ Lie(H)→ Lie(G)→ THG/H→ 0,

and therefore G→ Orbit is separable.
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Theorem 1.1.26. If X→ Y is dominant, separable, and generically one-to-one, then it is birational.

Proposition 1.1.27. Let x ∈ P(V) be as above and let y ∈ Y, where Y is any variety with a G-action such
that H ⊂ Gy. Then there exists a unique G-invariant map G · x→ G · y such that x 7→ y.

Proof. Consider the map g 7→ (g · x,g · y) that sends G→ G · x×G · y. Then the map p1 : G · x×
G · y → G · x must be separable. But then Gy ⊂ Gx = H implies p1 is one-to-one. This implies
that p1 is birational when restricted to the image of g 7→ (g · x,g · y). But this means that p1 is an
isomorphism, so we can take p2 ◦ p−1

1 as the required map.

Now we will study what the space G/H looks like. In the case where G is connected and B is
a maximal solvable groups, then the flag variety G/B is projective. The space G/H could also be
an affine variety.

Definition 1.1.28. A group G is reductive if for any G ⊂ GL(V), we can write V =
⊕
Vi, where

the Vi are irreducible G-modules.

Remark 1.1.29. Over C, this definition is equivalent to being the complexificaiton of a compact
group.

Theorem 1.1.30 (Matsushita-Onishchik). If G is reductive, then G/H is affine if and only if H is
reductive.

Note that for most H, G/H is neither projective nor affine. For example, if we consider GL(2)
and let

H =

(
1 ∗
0 ∗

)
,

then G/H is the orbit of a single vector, which is A2 \ 0. However, G/H is always quasiprojective,
so it can be embedded in projective space.

Proposition 1.1.31. The space G/H is quasiaffine if and only if H is the stabilizer of a point in an affine
algebraic variety with a G-action. Such subgroups are called observable.

Proposition 1.1.32. Ths space G/H is projective if and only if B ⊂ H. Such subgroups are called parabolic.

Proof. First, if G/H is projective, then (G/H)B 6= ∅ and thus B is conjugate to a subgroup of H. On
the other hand,

1.2 Invariant Theory

Now note that if G acts on X, then G×X→ X is a morphism of algebraic varieties. Now we want
to study the space X/G. We can consider this in some world more general than algebraic varieties
(namely stacks), but this is beyond the scope of this course. Instead, we will consider the best
possible approximation in the category of schemes. Here, we will consider Y = X/G if for all Z
(with the trivial action), G-equivariant maps X→ Z factor uniquely through Y.

Our goal is to show that the GIT quotient X/G exists if X is affine and G is reductive.

Example 1.2.1. Consider the action of GL(V) on V ,V ⊗ V ,V∗,V∗ ⊗ V , . . .. Then the first (second?)
fundamental theorem of invariant theory says that all invariants of these actions come from
contracting tensors. For example, if we consider V∗⊗V = Hom(V ,V), the invariants are generated
by the coefficients of the characteristic polynomial. This means that Hom(V ,V)/GL(V) = AdimV .
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Remark 1.2.2. Note there are several notions of being reductive. The first is structural. The second
is being linearly reductive, which means that we need something like k→ k[G]→ k, where the
last map is some sort of invariant integration. Finally, there is the notion of being geometrically
reductive. If k has characteristic 0, then all of these notions are equivalent.

Lemma 1.2.3. Suppose we can split every module with an invariant element as k →M → k. Then all
representations are linearly reductive.

Proof. Let M1 ⊂M be some submodule. We want a G-invariant map M→M1, which requires
a G-equivariant map Hom(M,M1) → Hom(M1,M1) that maps onto 1M1 . But this problem is
resolved by taking the transpose of a matrix acting on M that preserves M1.

Note that GL(V) is not linearly reductive if chark = p. In this case, consider the action of
GL(2) on the polynomials of degree d in x1, x2. Then the span of xp1 , xp2 does not split off.

Definition 1.2.4. A group G is reductive if the radical of G is a torus. Equivalently, the unipotent
radical of G is trivial. Here, the radical of G is defined to be(⋂

g

gBg−1

)
0

and is the largest normal connected solvable subgroup. The unipotent radical is defined to be the
largest normal unipotent connected subgroup, and is

(⋂
g

gUg−1

)
0

U =


1 ∗ ∗

. . . ∗
1


.

Definition 1.2.5. A group G is geometrically reductive if for any G-module M and line of G-fixed
points, there exists a complementary divisor given by a G-invariant polynomial f(m) that does
not vanish on the line.

Example 1.2.6. Finite groups fail to be linearly reductive in positive characteristic. For example,
the representation of Z/pZ given by

Z/pZ 3 m 7→
(

1 m
1

)
is not completely reducible. On the other hand, they are geometrically reductive.

Proof. Take any f0 such that f0(0) = 0 and f0(x) = 1, where x is a fixed point. Then take

f(m) =
∏
g

f(g−1m) f(x) = 1, f(0) = 0.

Now we can choose the Taylor series of f(x) to be homogeneous of degree p.

Theorem 1.2.7 (Haboush). Group-theoretic reductivity is equivalent to geometric reductivity.

Corollary 1.2.8. Let A be an algebra with a G-action and suppose A � B, which also has a G-action.
Then linear reductivity means the natural map AG � BG is surjective. Geometric reductivity means that
for all f ∈ BG, there exists m = pk such that bm ∈ Im(AG). In particular, BG is integral over AG.
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Theorem 1.2.9 (Nagata, Popov,. . . ). A group G is reductive if and only if for all finitely generated
(commutative) algebras A, the algebra AG of invariants is finitely generated.

This result is extremely hard. Instead, we will prove

Theorem 1.2.10 (Hilbert). Let X be an affine variety over a field k of characteristic 0 and G a reductive
group. Then k[X]G is finitely generated.

Proof. Let X ⊆ V and G ↪→ GL(V). Now k[V]G � k[X]G by linear reductivity. Consider the ideal
I = (k[V]G+). This is finitely generated by another theorem of Hilbert (from the same paper). If
f1, . . . , fk are generators, then we will show that they also generate k[V]G.

Let F ∈ k[V]Gd for some d > 0. Then F ∈ I and we can write F =
∑
cifi. Now we will take the

average over G, which is linear over invariants. Now we obtain F =
∑
cifi, where the ci are all

invariants of degree less than d. By induction on d, we are done.

For the proof in arbitrary characteristic, there is a book on invariant theory by T. Springer.

Now consider a map X
(f1,...,fk)−−−−−−→
π

Ak, where X is an affine variety with an action of a reductive
group G. Then we will show that

1. The map π takes G-invariant X ′ ⊆ X to closed subsets.

2. If X ′,X ′′ are disjoint G-invariant closed subsets, then π(X ′)∩ π(X ′′) = ∅.

3. For any open U ⊆ π(X), π∗OU = OG
π−1(U)

.

In particular, we will show that if G is reductive and X ′,X ′′ ⊆ X are closed and disjoint, then
there exists f ∈ k[X]G such that f(X ′) = 0, f(X ′′) = 1. To see this, we know that IX ′ + IX ′′ = k[X], so
we can find f0 ∈ IX ′ , f1 ∈ IX ′′ such that f0 + f1 = 1. Thus f0(X ′) = 0, f0(X ′′) = 1. Then if f0, . . . , fm

span f0(g−1−), then the map X
(f0,...,fm)−−−−−−→ Am+1 sends X ′ to (0, . . . , 0) and X ′′ to (1, . . . , 1).By

geometric reductivity, there exists a polynomial P(f0, . . . , fm) which is invariant and takes values
0 on X ′ and 1 on X ′′.

Note that if G is not reductive, then closed subsets cannot be separated by invariants. For an
example, consider the action of Ga on A2 by translating the second coordinate. Then (x, 0), (y, 0)
cannot be separated by invariants.

Now we need to show that π(X) is closed. If not, then if p ∈ π(X ′) \ π(X ′), then π−1(p)
is closed and disjoint from X ′. But this implies there exists f such that f(X ′′) = f(p) = 1 and
f(X ′) = f(π(X ′)) = 0, a contradiction.

Finally, let U ⊆ π(X) be given by {F1 6= 0, F2 6= 0}. Then

OU = k[f1, . . . , fk][1/Fi] = k[X]G[1/Fi] = (k[X][1/Fi])G = OG
π−1(U)

.

This all implies that π(X) = X/G is the categorical quotient of X under the action of G. To see
this, observe that if Ui is an affine open cover of Z, then p−1(Ui) cover X, so Xi = X \ p−1(Ui)
is closed and

⋂
Xi = ∅. Now let Vi = Y \ π(Xi). These form an open cover of Y, so now write

p : Vi → Ui. Then we have

OUi
p∗−→ OGX\Xi

↪→ OG
π−1(Vi)

= π∗OVi ⊂ Oπ−1(Vi)
,

and this must be unique, so π∗p∗ = p∗, so p : Vi → Ui.
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Therefore we have proved that if X is affine and G is reductive, then Y = Spec k[X]G is the
categorical quotient. Note that this is surjective, and for p ∈ Y, π−1(p) is nonempty and contains
a unique closed orbit.

Now we will discuss quotients of general varieties by algebraic groups. This is very complicated
because x ∈ X may not have a G-invariant affine neighborhood (consider the example of Hironaka).
Now if we consider X ⊂ P(V) for a G-module V with V∗ = O(1), then O(1) is a very ample line
bundle on X with a linearzation by G. Similarly to Y = Spec k[X]G, we may consider the affine

cone X̂ over X and then take Y = Projk[X̂]
G

. This is covered by open sets where {Fi(x) 6= 0}, and
then P(V) \ {F(x) = 0} is an affine G-invariant set.

Not all points have an invariant polynomial Fi such that Fi 6= 0. The points that do are called
semistable.

Definition 1.2.11. The GIT quotient X �G is defined to be Projk[X̂]
G

= Xs/G, where Xs is the
stable locus.

The unstable points are those such that there is no invariable Fd such that Fd(x) 6= 0. But this
implies that the closure of the orbit of x in V contains 0 ∈ V .

Note that if χ : G → Gm is a character, then V 7→ V ⊗ χ does not change the action on P(V)
because SdV∗ 7→ SdV∗ ⊗ χ−d sends χ-covariants to invariants. Therefore, even in the affine
situation, it makes sense to consider X�G = Proj covariants. For the most basic example, consider
P(V) = Proj

⊕
SdV∗. Then V/Gm is a point, and V � Gm = P(V). On the other hand, we have

V �χ=t Gm = Proj C = ∅, so in both cases the map X�G→ X/G is uninteresting.
Now we want to find generators of the algebra k[X]G = k[f1, . . . , fN]. Then the affine scheme

X/G is cut out by the relations among the fi. Finding the relations is incredibly hard, so we can
try to find the generators. Results of this form go under the form of the first fundamental theorem of
invariant theory. Here, we will assume G = GL(n),SL(n). These fit into the exact sequence

1→ SL(V)→ GL(V)
det−−→ GL(1)→ 1.

Therefore SL(V)-invariants are the same as GL(V)-covariants with respect to the determinant
character. We know that k[X] contains a finite-dimensional G-invariant module M, which can
be included in k[G]⊕m. This implies that any X can be emdedded in some V⊕m1 ⊕ (V∗)⊕m2 =:
Mm1,m2 because there is a natural map k[End(V)]→ k[G]. This gives us a map k[Mm1,m2 ]→ k[X]
that restricts to invariants, so we have reduced the problem of finding invariants to vector spaces.

Theorem 1.2.12 (First fundamental theorem of invariant theory). The invariants of SL(V) acting on
V⊕m1 ⊕ (V∗)⊕m2 are generated by

1. Contracting tensors: (v1, . . . , vm1 , `1, . . . , `m2) 7→
〈
vi, `j

〉
;

2. Determinants of the form det
(
vi1 . . . vin

)
with weight det and dually for the `j with weight

det−1 (weights are under the action of GL).

Proof. Note that Mm1,m2 = Hom(km1 ,V)⊕Hom(V ,km2). Now the two parts parts have actions
by the groups GL(m1),GL(m2) and maximal tori Tm1 , Tm2 . THen the weights record how many
times we use a particular vector or covector. Now it suffices to consider functions of weight
(1`, 0k).

To see this, we use a polarization trick. If degvi f(v1, . . .) = d, then we can write vi =
∑
λiui

and now we have a function of m1 + d− 1 vectors u1, . . . ,ud, v2, . . . , vm1 . Expanding this, we
obtain a new polynomial f̃ that is linear in each of the u1, . . . ,ud. Then considering the polynomial
f̃(v1, . . . , v1, v2, . . . , vm) gives us the desired reduction.
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But now functions on Mm1,m2 linear in each of the v1, . . . , vm, `1, . . . , `m2 are just the space
(V∗)⊗m1 ⊗ V⊗m2 . We will show that

((V∗)⊗m1 ⊗ V⊗m2)
GL(V)

=

0 m1 6= m2

Span
{∏m

i=1

〈
vi, `σ(i)

〉}
σ∈Sm

m1 = m2 = m.

The scalars t · I act with weights t−m1+m2 so there are no invariants unless m1 = m2. Now if
m1 = m2, we are looking for

Hom(V⊗m,V⊗m)
GL(V) ∼= kSm.

This result is known as Schur-Weyl duality. If we consider the natural map GL(V) × Sm →
End(V⊗m). In fact, each piece of the product generates the commutant of the other. We see that
both images are semisimple subalgebras in End(V⊗m). Now the desired result is equivalent to
proving that End(V⊗m)

Sm is the image of GL(V). Then polynomials on End(V) of degree m are
the same as SmEnd(V)∗ = End(V⊗m)

Sm . Suppose that End(V⊗m)
Sm ) GL(V). But then we

can consider GL(V)⊥ in the set of polynomials of degree m. Let P be such a polynomial. Then
P(g, . . . ,g) = 0 for all g ∈ GL(V). But then by Zariski density of GL(V) in End(V), we see that
P = 0. This now tells us that

k[V⊕m1 ⊗ (V∗)⊕m2 ]
GL(V)

= k[
〈
vi, `j

〉
].

Now we need to compute the additional SL(V)-invariants, which are given by(
k[V⊕m1 ⊕ (V∗)⊕m2 ]⊗ det−1

)GL(V)
= k[

〈
vi, `j

〉
]⊗ Span det

(
vi1 · · · vin

)
.

We will introduce new covectors `1, . . . , `n and consider the functions

f · det

 `1...
`n

,

which is an invariant and thus contained in k[
〈
vi, `j

〉
,
〈
vi, `j

〉
]. Now det is multilinear and skew-

symmetric, so each `j has to be used exactly once. But now f is a product f1, f2 where f1 ∈ k[
〈
vi, `j

〉
]

and f2 is contained in the antisymmetrization of
∏ 〈

vik , `k
〉
, so f2 = det(vik) · det

(
`k
)
.

1.2.1 Finite Subgroups of SL(2, C) Now consider a finite group G ⊂ SL(2, C). For
example, G is cyclic, dihedral, etc. Now we have an exact sequence

1→ {±1}→ SL(2)→ SO(3)→ 1.

and now we can find in SO(3) symmetries of the Platonic solids A4,D4,A5 corresponding to
tetrahedron, cube, and dodecahedron. Now if γ ∈ SO(3) has order 3 with eigenvalues 1, ζ3, ζ2

3,
then we know γ̃ ∈ SL(2) has eigenvalues ζ6, ζ−1

6 . Now for G ∈ Ã4, S̃4, Ã5 and V = C2, we know
that SL(2) = Sp(2) preserves the skew pairing. We know

V/G = Spec (S∗V∗)G,
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so now consider the Hilbert/Poincaré series

H(t) =
∑
d

td dim (SdV)
G

.

By an observation of Hilbert, this is a rational function for any finitely generated graded module
over a finitely generated algebra. But now we know that C[a1, . . . ,am]� A. If ai has degree di,
then the free module has Hilbert series

Hfree(t) =
1∏

i 1 − tdi
.

In general, a module M has a finite gree resolution

· · · →
⊕

Airi →
⊕

A ·mi →M→ 0.

This gives us

HM(t) =

∑
tmi −

∑
tri + · · ·∏

(1 − tdi)
.

Theorem 1.2.13 (Molien). Let G be a reductive group over C acting on a vector space V . Then

H
(S•V)G

(t) =

∫
maximal compact

dHaarg
1

detV (1 − tg)
, |t| < ε.

To do the actual computation, we can use the Weyl character formula. This is simply

HS•V (t) =
1
|W|

∫
T

dHaar(s)

∏
α 6=0(1 − sα)∏

weights µ(1 − tsµ)
,

and this can be computed using residues. Of course, if G is finite, then we just sum over conjugacy
classes. For example, if G = A4, then these are cycles of signature either (3, 1) or (2, 2), and
therefore

Ã4 = {±1,±i,±j,±k}∪
{

1
2
(±1± i± j± j)

}
is a group of order 24. Now the conjugacy classes are given by

1 −→ 1

(1 − t)2

−1 −→ 1

(1 + t)2

i −→ 1
(1 + it)(1 − it)

=
1

1 + t2

ζ3 −→
1

(1 − ζ3t)(1 − ζ−1
3 t)

=
1

1 + t+ t2

ζ6 −→
1

1 − t+ t2
.

Remark 1.2.14. Andrei admires the mathematicians of the past who were able to compute things by
hand. Now he cannot imagine performing these computations without a computer. It is important
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to note that we should always use a free and open-source program to perform such computations
and not something proprietary like some programs that shall not be named.1,2

This tells us that

H(t) =
(1 − t24)

(1 − t6)(1 − t8)(1 − t12)
=

(1 + t12)

(1 − t6)(1 − t8)
.

This suggests generators of degree 6, 8, 12 and a relation in degree 24.

Theorem 1.2.15 (E. Noether). The ring (S•V)G is generated in degree at most |G|.

Proof. By polarization, we know SdV is spanned by vd. But then we know that (SdV)G is spanned
by polynomials of the form∑

g · vd =
∑

(gv)d = pd(v,g1v,g2v, . . .︸ ︷︷ ︸
|G|

),

and this can be expressed in elementary symmetric functions of degree at most |G|.

Now we can rewrite

H(t) = 1 + t6 + t8 + 2t12 + t14 + t16 + 2t18 + · · ·

Let x,y, z be the generators of degree 6, 8, 12, and then in degree 24, we have some relation

Ax4 +By3 +Cz2 = 0.

There are no further relations because dimV/Ã4 = 2, so we have a map

V
(x,y,z)−−−−→ V/G ⊂ C3.

Remark 1.2.16. This classification of finite subgroups of SL(2) also gives us Du Val singularities,
the classification of simple Lie algebras, the McKay correspondence, and many other interesting
objects in mathematics.

Now consider the action of SL(2, Z) on the upper half-plane H. Then we have an exact
sequence

1→ Γ(m)→ SL(2, Z)→ SL(2, Z/m)→ 1

and we have an action of SL(2, Z/m) on H/Γ(m).
But now Γ(m) has no torsion, so we have finitely many cusps, corresponding to the action of

Γ(m) on Q, and H/Γ(m) is a curve of genus g = g(Γ(m)). For m = 3, 4, 5, we have g = 0 and thus
SL(2, Z/m) acts on P1.

Now the tetrahedron corresponds to the standard fundamental domain for SL(2, Z). The cube
corresponds to the below:

1See https://www.gnu.org/proprietary/proprietary.en.html or https://www.gnu.org/philosophy/why-free.en.
html

2Andrei says to use free software but himself uses Windows and Microsoft OneNote.

https://www.gnu.org/proprietary/proprietary.en.html
https://www.gnu.org/philosophy/why-free.en.html
https://www.gnu.org/philosophy/why-free.en.html
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Figure 1.1: Fundamental domain subdivided

The dodecahedron and icosahedron correspond to the following:

Figure 1.2: Fundamental domain for icosahedron

The cusps correspond to points of 5-fold symmetry, and correspond to 0, 1, 2,∞,ϕ, 1/ϕ, . . .,
and the points converging to 1/ϕ are given by ratios Fn/Fn−1 of Fibonacci numbers.

Remark 1.2.17. Instead of just considering the icosahedron, we should consider an infinite strip
with the given pattern in the picture.

1.3 Jordan Decomposition

Let k = k. Then for all g ∈ G = GL(V), we can decompose g into Jordan blocks. In particular, we
can write g = gsgn, where gs is semisimple and gn is strictly upper triangular (in some basis).
The analogous decomposition for ξ ∈ g is ξ = ξs + ξn. Now if V ⊆ kn is invariant under g, it is
invariant under both gs,gn.

Consider the regular representation ρ of G = GL(n,k) on k[G].

Lemma 1.3.1. For any g ∈ G, we have ρ(g)s = ρ(gs).

Corollary 1.3.2. If G is an algebraic group, then gs,gn ∈ G for all g ∈ G. Moreover, if ϕ : G1 → G2 is a
homomorphism, then ϕ(g)s = ϕ(gs) and ϕ(g)n = ϕ(gn).

Proof. By Chevalley, G is the stabilizer of a subspace on k[GL(n)] and therefore because g stabilizes
the subspace, so do gs,gn.
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For the second part, we can pull back ϕ∗ : k[G2] → k[G1] and then the desired result is
obvious.

1.4 More Solvable Lie Algebras

We will return to solvable Lie algebras. Assume char k = 0.

Theorem 1.4.1. Let g ⊂ gl(V) be a Lie subalgebra. Then g is solvable if and only if tr x[y, z] = 0 for all
x,y, z ∈ g.

Proof. One direction is clear by Borel. Here, g ⊂ b is contained in the subalgebra of upper-
triangular matrices. In the other direction, the form tr x[y, z] ∈ (Ω3g)

g. In particular, we see that if
g = Lie(G), then this becomes a bi-invariant 3-form on G. This gives a class in H3

dR(G)
G×G. Now

we have an exact sequence

1→ unipotent radical→ G→ Greductive → 1,

and here the unipotent radical is homeomorphic to Rn, while Greductive is a product of simple
nonabelian Gi and a torus up to a finite cover. Then rkπ3 is the number of simple nonabelians,
and so the morphisms SU(2) ' S3 ↪→ (Gi)compact generate π3 ⊗Q.

Now suppose that tr x[y, z] = 0. Now we will show that g is solvable. It suffices to show that
g ′ = [g, g] is nilpotent. By Engel, it suffices to show that any x ∈ g ′ is nilpotent. Consider the
subalgebra

gl(V) ⊃ g̃ = {ξ | [ξ, g] ⊂ [g, g]} ⊃ g.

This is the Lie algebra of an algebraic group

G̃ = {h | Ad(h)(g) = g, Ad(h) ≡ 1 mod [g, g]}.

But then tr xξ = 0 for all x ∈ g ′, ξ ∈ g̃. Now if x =
∑

[yi, zi], then we have

tr xξ =
∑

tryi[zi, ξ] = 0,

so if x ∈ g ⊂ g̃, then xs ∈ g̃. Now considering f(xs) ∈ g̃, we will obtain some condition on ad f(xs).
These will have the same eigenvectors as ad xs. If Eij is an eigenvector of ad xs with eigenvalue
λi − λj, then it has eigenvalue f(λi) − f(λj) under ad f(xs). If there exists ψ such that f(λi) − f(λj),
then ad f(xs) = ψ(ad xs) and thus f(xs) ∈ g̃.

Now if f is linear over Q, then f(xs) ∈ g̃ and ad f(xs) = f(ad xs). Next we see that tr xsf(xs) = 0
because we can embed {λi} ⊂ C and then take f(λi) = λi. Then we see that tr xsf(xs) =

∑
|λi|

2 = 0,
and then we see that all λi = 0. Alternatively, if dimQ

⊕
Qλi > 0, then there exists a nonzero

f :
⊕

Qλi → Q, but then f(
∑
λif(λi)) =

∑
fi(λ)

2.

Definition 1.4.2. Define the Killing form by

(x,y) := tr ad(x) ad(y).

Remark 1.4.3. Killing apparently lived a very sad life and did not get the recognition he deserved.
Unfortunately, Andrei (and I) do not know more about him.

Theorem 1.4.4. A Lie algebra g is solvable if and only if (x, [y, z]) = 0.
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Proof. Consider the exact sequence

0→ Z(g)→ g→ ad g→ 0.

Then solvability of g is equivalent to solvability of ad g.

Theorem 1.4.5 (Cartan Criterion). A Lie algebra g is semisimple if and only if the Killing form is
nondegenerate.

Proof. Suppose (−,−) is degenerate. Then g⊥ is a solvable ideal in g. But then if I is a solvable
ideal with In+1 = 0, then a = In is an abelian ideal. Therefore, for all x,y, we see that

[a, [y, [a, x]]] = 0,

and therefore for all a ∈ a,y ∈ g, we have ad(a) ad(y) ad(a) = 0, so (ad(a) ad(y))2 = 0, and thus
tr ad(a) ad(y) = 0. But then a ∈ g⊥.

Corollary 1.4.6. If g is semisimple, then g =
⊕

gi is a sum of simple nonabelians.

Proof. Suppose h ⊂ g is an ideal. Then h ∩ h⊥ = 0 (because it is a solvable ideal). Note that if
h ⊂ g is an ideal, then (h1,h2)h = (h1,h2)g.
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Geometric and topological aspects

2.1 Lie algebra cohomology

There are three kinds of properties:

• General abstract properties;

• Properties derived from the structure theory g = h⊕
⊕
α gα;

• Properties derived from the calssification of root systems.

We will begin with the first. If g is semisimple, then:

1. The category Modfd g is semisimple. In particular, every finite-dimension g-module has the
form M =

⊕
Mi, where the Mi are simple.

2. The algebra g has no deformations.

3. All derivations of g are inner derivations. In particular, we see that g = Lie(Aut(g)). In
addition, in the exact sequence

0→ Z(g)→ g
ad−→ Der g→ Out g→ 0,

the two outside terms vanish.

4. For any Lie algebra gany, we have

0→ radical→ gany → gss → 0,

and this exact sequence splits into gany = gss n radical.

All of these pheonomena fit under the umbrella of the vanishing of some cohomology groups.

Definition 2.1.1. Let g be a Lie algebra over a field k and M be a g-module. We may consider the
complex

Homk
(∧n

g,M
)
3 ω(ξ1, . . . , ξn) ξi ∈ g.

and define

dω (ξ1, . . . , ξn+1) =
∑
i

(−1)i−1ξiω(. . . , ξ̂i, . . .) +
∑
i<j

(−1)i+jω([ξi, ξj], . . . , ξ̂i, . . . , ξ̂j, . . .).

In the homework, we will show that d2 = 0, so we may define the Lie algebra cohomology Hn(g,M).

18
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For an example in low dimension, we see that C0 =M→ C1 is given by dω (ξ1) = ξ1(ω), so
H0(M) = Mg. For a more modern definition, we see that Hi(g,M) are the derived functors of
M→Mg.

We may motivate this formula in the following way from the de Rham differential. Suppose
G acts on a manifold X. This gives a morphism g → Γ(X, TX) into the vector fields. Then if
ξ1, . . . , ξn+1 are vector fields on X and ω is an n-form on X, we have

Proposition 2.1.2. The formula for dω (ξ1, . . . , ξn) is the same formula as in Lie algebra cohomology,
where ξiω is the Lie derivative of ω along ξi.

Proof. Andrei’s proof is way too confusing. This is also Proposition 12.19 in Lee’s smooth
manifolds book. The proof there is the same, but is done in a much easier-to-digest way.

Theorem 2.1.3. Let g be a semisimple Lie algebra over a field of characteristic 0.

1. If M is irreducible and nontrivial, then H•(g,M) = 0.

2. H•(g,k) is the free anticommutative algebra on finitely many generators of degree contained in
{3, 5, 7, . . .}. When k = C, this is the same as H•(G, C). This is also the same as the cohomology of
the maximal compact subgroup. For example,

H•(SL(n, C), C) = H•(SU(n), C) = C 〈ω3,ω5, . . . ,ω2n−1〉 .

In particular, if g is semisimple, then H1,H2 vanish for all M. Also, we have an isomorphism
H3(g,k) ∼= k# simple factors, and this is just the space of invariant bilinar forms.

Proof.

1. Suppose M is nontrivial and irreducible. Without loss of generality, assume g is simple
and consider g ⊆ gl(M). We will show that multiplication by dim g is homotopic to 0.
Consider the form B(x,y) = trM xy, which is nondegenerate. Then if {e1, . . . , ed}, {f1, . . . , fd}
are dual bases of g, the Casimir element

∑
eifi commutes with g and is nonzero because

tr
∑
eifi =

∑
tr eifi = dim g. Now we will define our homotopy by

hω(ξ1, . . . , ξn−1) =
∑

eiω(fi, ξ1, . . . , ξn−1).

Now, we compute d ◦ h+ h ◦ d. We have

dhω(ξ1, . . . , ξn) =
∑
i

(−1)i−1ξie∗ω(f∗, . . . , ξ̂i, . . .) +
∑
i<j

(−1)i+j(−1)i+je∗ω(f∗, [ξi, ξj], . . .)

Then writing

dω(ξ0, ξ1, . . . , ξn) = ξ0ω(ξ1, . . . , ξn) +
∑

(−1)iξiω(ξ0, . . . , ξ̂i, . . . , ξn)

+
∑
i

(−1)iω([ξ0, ξi], . . .) +
∑

0<i<j

(−1)i+jω([ξi, ξj], . . .),

we have

hdω (ξ1, . . . , ξn) = e∗f∗ω(ξ1, . . . , ξn) +
∑

(−1)ie∗ξiω(f∗, . . .)

+
∑
i

(−1)ie∗ω([f∗, ξi], . . .) +
∑
i<j

(−1)i+je∗ω([ξi, ξj], f∗, . . .).
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Now we may verify that all of the relevant terms cancel, so

(hd+ dh)ω = e∗f∗ω+
∑
i

(−1)i([e∗, ξi]ω(f∗, . . .) + e∗ω([f∗, ξi], . . .)).

The second term is given by inserting the tensor [e∗ ⊗ f∗, ξi ⊗ 1 + 1⊗ ξ]. But then e∗ ⊗ f∗ is
an invariant tensor, so ad(ξ)e∗ ⊗ f∗ = [ξ⊗ 1 + 1⊗ ξ, e∗ ⊗ f∗] = 0.

2. We may assume that k = R or k = C, so let G be a connected compact Lie group. We will
see that H•(g) = (

∧• g)G ' H•(G). We will compute ordinary cohomology using the de
Rham complex. First, we will note that g ∈ G acts trivially on H•(G). To see this, observe
that ξ ∈ g acts on forms by the Lie derivative Lξ, and [Lξω] = 0 if dω = 0 by the Cartan
formula.

Now for any compact group G acting on a manifold X, the inclusion (ΩiX)
G → ΩiX induces

an isomorphism on cohomology. To see this, we simply note that
∫
g∗ωdg is cohomologous

to ω. Therefore, we may consider right-invariant forms in ΩiG. But then

(ΩiG)right invariant '
∧i

g∗ '
∧i

g,

and the differential on
∧i g∗ is the differential from Lie algebra cohomology. Now if we

consider (Ωi)
G×G ' (

∧i g∗)G, the differential vanishes. To see this, the map g 7→ g−1

perserves the biinvariants but acts by (−1)i on
∧i g∗, and so d 7→ −d, so d = 0. Because g

acts trivially on cohomology, it is also possible to see that((∧•
g∗
)g

, 0
)
↪→
(∧•

g∗, d
)

is a quasi-isomorphism.

Example 2.1.4. 1. Let g be abelian. Then

H•(g, R) =
∧•

g∗ = H•(g/Λ, R) =
∧•

H1
(∏

S1, R
)

.

2. The condition that G is compact is important. Note that

H•(SL(2, R), R) = H•(S1) 6= H•(S3) = H•(SU(2)) = H•(su(2), R).

Next, we will actually prove that H•(g,k) = k
〈
ω2di−1

〉
i=1,...,rankg

. In particular, by a theorem
of Hopf, this is a Hopf algebra. Similarly, if G is a compact Lie group then H•(G, R) is a Hopf
algebra. Here are some properties of the cohomology:

• It is graded and supercommutative.

• Under the map G→ G×G µ−→ G given by g 7→ (g, 1)→ g, if we write

∆ω =
∑

ω ′i ⊗ω
′′
i ,

then (1⊗ η)∆ω = ω because ∆ω = ω⊗ 1 + 1⊗ω+H>0 ⊗H>0.

Theorem 2.1.5 (Hopf). Any finitely generated graded supercommutative Hopf algebra and the second
property has the form k

〈
ωmi

〉
.
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Corollary 2.1.6. If, additionally, our Hopf algebra is assumed to be finite-dimensional, then all of the mi
are odd.

Proof. Let ωmi be generators with m1 6 m2 6 · · · . Then let Hk be the algebra generated
by ωm1 , . . . ,ωmk . Then we know that ∆ωmk = ωmk ⊗ 1 + 1 ⊗ωmk + · · · , so each Hk is a
sub-bialgebra. Now it suffices to show that Hk = Hk−1

〈
ωmk

〉
.

Suppose there is a relation R =
∑d
i=0 cix

i = 0 of degree d. But now if we consider the ideal
∆R modulo 1⊗

〈
Hk−1, x2〉, which does not contain x for grading reasons, then we have

∆ci = ci ⊗ 1 + · · ·
∆x = x⊗ 1 + 1⊗ x+ · · ·
∆xn = (∆x)n = xn ⊗ 1 +nxn−1 ⊗ x+ · · ·

∆R = R⊗ 1 +
∂

∂x
R⊗ x+ · · · ,

and this must be a relation of smaller degree. Therefore we have no relations beyond supercom-
mutativity.

Now an interesting problem is to compute the degrees of the generators. For example, we have

H•(SU(n)) = R 〈ω3,ω5, . . . ,ω2n−1〉 .

Theorem 2.1.7 (Cartier-Kostant-Gabriel-. . . ). If H is a supercommutative Hopf algebra over a field k of
characteristic 0, then

H = kGnU(g).

where G is a (typically finite) group and g is a Lie superalgebra over k.

The elements with ∆g = g⊗ g are called grouplike, and the elements with ∆ξ = ξ⊗ 1± 1⊗ ξ
are called primitive. The grouplike elements give us G, and the primitive elements give us g.

Now we may take the dual Hopf algebra, and this gives us another graded supercommutative
Hopf algebra. These give us algebraic supergroups over k. But this algebraic supergroup must be
an odd vector space. Another consequence of the theorem is that a commutative Hopf algebra
over k has no nilpotent elements. This implies that all group schemes over k are reduced and
therefore smooth.

Recall that if G is a compact connected Lie group, then H•(G, R) = R
〈
ω2di−1

〉
i=1,...,rankG.

Theorem 2.1.8. We have dimRH
•(G, R) = 2rankG, where rankG is the dimension of the maximal torus.

We would also like to compute the di. In fact, di are the degrees of the generators of (S•g∗)G.
We know that every element of g is conjugate to an element of t = Lie T . The normalizer of this is
the Weyl group W. Now, by definition, we have

(S•t∗)W = R[t/W],

and this is free on some generators pdi of degree
∣∣pdi ∣∣ = di for i = 1, . . . , dim t = rkG.

Theorem 2.1.9. The di defined in the various ways are the same numbers and are called exponents of G.

Example 2.1.10. For G = U(n), we have {di} = {1, 2, . . . ,n} and pd = tr ξd. Alternatively, we can
use the coefficients of the characteristic polynomial. In addition, we see that

H•(U(n)) = R 〈ω1,ω3,ω5, . . . ,ω2n−1〉 ,



22

and
(∧• g∗)G is generated by ω1(ξ) = tr ξ,ω3(ξ1, ξ2, ξ3) = tr ξ1[ξ2, ξ3], and in general

ωd(ξ1, . . . , ξd) =
∑

σ∈S(d)/(123...d)

(−1)σ tr
d∏
i=1

ξσ(i).

In this formula, we observe that d must be odd.

Proof of Theorem 3.2.8. Use the Molien series. We have

dimVG =

∫
G

trV gdg =
1
|W|

∫
T

trV g · det
g/t

(1 − Ad(t))dHaart.

Setting V =
∧• g, we see that

trV g = det
g
(1 + Ad(g)) = 2rank det

g/t
(1 + Ad(t)).

This now gives us

2rank 1
W

∫
T

det
g/t

(1 − Ad(t2))dHaart = 2rank

by change of variables.

2.2 Classifying Spaces and Flag Varieties

We already know that H•(G) = R
〈
ω2di−1

〉
. On the other hand, we know the cohomology of the

flag manifold H•(G/T) is all even, and finally we have the cohomology

H•(BG) = H•(pt/G) = (S2•g∗)
G

= (S•t∗)W .

On the other hand, we have
H2•(G/T) = (S•t∗)/(S•t∗)W>0.

For G = U(n), this becomes the space of polynomials divided by symmetric polynomials of
positive degree and has dimension n! = |W|. This is the fiber over 0 of the map t→ t/W. To define
BG, consider the category of spaces with a free action of G (equivalently principal G-bundles) for
any group G. Given a commutative diagram

G X

G ′ X ′

ϕG ϕX

with ϕ(g · x) = ϕ(g) ·ϕ(x), we would like to consider the possibilities for ϕX for a fixed ϕG. If
we consider the graph of ϕX, this is just a section of X× X ′/X because G acts freely, this is the
same as a section of (X×X ′)/G→ X/G.

Theorem 2.2.1. If X ′ is contractible, then there exists a unique ϕX : X→ X ′ compatible with ϕG.

Proposition 2.2.2. For any compact group G, there exists a contractible space EG with a free G-action.

Corollary 2.2.3.
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1. EG is unique up to homotopy.

2. EG is functorial in G.

3. For any free action of G on X, the map X→ X/G is the pullback of

X EG

X/G BG

for some map X/G→ BG. Therefore, we see that

{principal G-bundles over B} = [B,BG].

Proof of proposition. For all G compact, there exists an embedding G ⊆ U(n), so it suffices to
consider U(n). Consider the embedding U(n) ↪→Mat(n,N)rank=n for some N� 0. For example,
we have the action of U(1) on Cn \ 0 ' SN−1, so we can consider S∞, which is contractible.
Therefore we have BU(1) = S∞/U(1) = CP∞.

In general, we can consider the action of U(n) on

Mat(n,N) \ {rank < n} ⊇ {X | XX∗ = 1n},

and this last space becomes contractible as N→∞. To see this, it sits inside of (SN)
n, and thus as

N→∞, we obtain a contractible subspace of (S∞)n. Finally, we have BU(n) = Gr(n,∞).

Therefore, we have a tautological U(n)-bundle on Gr(n,∞) and a tautological Cn-bundle
where the fiber above a subspace is the subspace itself. The vector bundle is the associated bundle
of the U(n)-bundle and the U(n)-bundle is the bundle of unitary operators on the vector bundle.
Also, we have proved that

{complex vector bundles of rank n over B}←→ [B, Gr(n,∞)].

The same statement holds for O(n), real vector bundles, and the real Grassmannian. Explicitly
over B, consider the exact sequence

0→ ker→ CNB → V → 0.

Now the kernel defines a map B → Gr(N− n,N) ' Gr(n,N). Taking N → ∞, we obtain the
desired result.

Remark 2.2.4. The spaces EG and BG are naturally approximated by algebraic varieties such as
Gr(n,N) and are therefore ind-schemes.

We want to show that R∞ \ 0 is contractible. We can consider the function T on R∞ \ 0
given by T(x1, x2, . . . , 0, . . .) = (0, x1, x2, . . .). Then x, Tx are never collinear for x 6= 0 and thus T
is homotopic to the identity. But then Tx is never collinear to e1 = (1, 0, . . . , ) and therefore T is
nullhomotopic. We also see that C∞ \ 0 is contractible. Also, S∞ ∼ R∞ \ 0 is contractible and so
are Stiefel manifolds

{v1, . . . , vn ∈ C∞ | vi are linearly independent}.

The Stiefel manifold has a free action of GL(n, C), so this is EGL(n, C). We also see that
BGL(n, C) = Gr(n,∞, C). We know that the maximal compact subgroup of G is homotopy
equivalent to G, so BGL(n, C) = BU(n).



24

Remark 2.2.5. The high-brow way that we prove that all of these spaces are contractible is by
proving that they are weakly contractible, and then smashing the remaining part that weakly
contractible implies contractible for spaces with the homotopy type of a CW complex.

Now the cohomology H•(B,G) is intimately connected to characteristic classes for principal
G-bundles. If G acts on a manifold M, we have a map g = Lie(G) → Vect(M), so we may
consider the Lie derivative Lx : ΩkM→ ΩkM for x ∈ g. For the Lie derivatives, recall the identity
[Lx, ιy] = ι[x,y]. This gives us a super Lie algebra ĝ with ĝ1 = Cd, ĝ0 = g, and ĝ−1 ∼= Ad g. This
gives us the super-Lie bracket

[a,b] = ab− (−1)|a||b|ba.

Now we see that [ĝ1, ĝ0] = 0, [ĝ1, ĝ−1] is given by the Cartan formula, and [ĝ0, ĝ−1] is the adjoint ac-
tion of g on itself. Therefore, if M is a manifold with a G-action, then Ω•M is a supercommutative
DG algebra with an action of ĝ.

If the action of G is free, we may choose a G-invariant metric on M. For every v ∈ TmM, we
have its projection onto TmGm ' g. This gives us a connection, which is a G-invariant 1-form
with values in g and thus gives us a map

α : g∗ → Ω1M [α(ξ)](ιx) = 〈ξ, x〉 .

Therefore, if a map ĝ→ A•, where A is a supercommutative DG algebra means that G acts on M,
we would like to give an interpretation of a connection α : g∗ → A1 such that [α(ξ)](ιx) = 〈ξ, x〉.

Theorem 2.2.6. There exists a unique acyclic supercommutative DG algebra with H0(A•) = C,Hi(A•) =
0, i > 0. We will denote this universal algebra by E.

Proof. Set A0 = C and A1 = α(g∗) with Lx acting by the coadjoint action. We set d : A0 → A1 to
be the zero map. We also set ιx(α(ξ)) = 〈ξ, x〉. Because d : A1 → A2 must be an isomorphism, we
see that A2 = β(g∗)⊕

∧2 A1 with the coadjoint action of g. Then we define ix by

ix dα(ξ) = Lxα(ξ) − dixα(ξ) = Lxα(ξ).

Note that E looks like Ω•g, which are polynomials in x multiplied by
∧

dxi. For β ∈ A2 and
α ∈ A1, we can define d∗β(ξ) = α, d∗α(ξ) = 0. Therefore, d∗ is a derivation, and the Laplacian

[d∗, d] = d∗d + dd∗

is the identity on A1 and A2. This implies that multiplication by (k+ `) on (E1)
k
(E2)

` is homotopic
to the identity and thus H•(E) = C.

Now we return to our manifold M and base B =M/G. Then the image of H•(B) ↪→ H•(M)
are the so-called basic forms, which vanish on ιx (horizontal) and are G-invariant. In particular,
they are killed by both ιx,Lx. Then the map H•(M)� H•(G) has kernel the horizontal forms, so
we need to consider the horizontal forms.

Proposition 2.2.7. Horizontal forms are generated by curvatures, which have the form

β(ξ) + δα(ξ),

where δ is the map g∗ →
∧2

E1 given by the transpose of the Lie bracket.

We now have
ιx(β(ξ) + δα(ξ)) = α(ad∗x ξ) +α(ξ)[x,−] = 0
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because α(ξ)[x,−] = −α(adx ξ). Therefore we can write

E =
∧•

α(ξ)⊗ S•(curvatures) =
∧•

α(ξ)⊗ S•β(ξ).

Therefore, we have Ehorizontal = S•g∗ and Ebasic = (S•g∗)G with zero differential, so we have
H2•(Ebasic) = (S•g∗)G. Now we have a transgression1 map H2m(Ebasic) → H2m−1(G), which is

the “inverse” π ◦ d∗
m : EG →

(∧• g∗)G of the differential. This vanishes on
(
(S•g)2

>0

)2
.

Corollary 2.2.8. Ehorizontal = S
•(curvatures). This is because ιξ : g⊗ g∗ → C is a perfect pairing.

In some sense, we have proven that

Theorem 2.2.9. H•(BG,C) ' (S•g∗)G.

However, we would like to discuss H•(G). Now we want to describe the transgression. If
p ∈ H•(BG), then want to compute d−1(p) ∈ H•−1(EG), and then we can restrict this to H•(G) by
killing the horizontal forms. Therefore, polynomial functions on g map to polynomial differential
forms on g by d∗. This gives us something like

p(x) 7→
∑
∂i

p(x)⊗ ξi 7→ substitute x = −[ξ, ξ]

and this takes polynomials of degree m to elements of degree 2m− 1. Now in the chain(
(Smg∗)G, 0

)
→ · · · →

((∧2m−1
g∗
)

, 0
)

,

the choice of d−1 does not matter. Also, this map is zero on
(
(S>0g∗)

G
)2

because d−1(p1p2) =

p1d−1p2 if degp1, degp2 > 0, which is killed by transgression. Therefore, primitive elements of
(S•g∗)G map isomorphically onto primitive elements of

(∧• g∗)G. Now we have explained the
relationship between H•(G) and H•(BG).

We now want to add the third vertex of the triangle, which is H•(G/T). Recall that any
element of g is conjugate to some element of t and that (S•g∗)G = (S•t∗)W , which is a free algebra.
Therefore,

H2•(G/T) = S•t∗/(S>0t∗)
W

.

We will see that this is free over (S•t∗)W .

Example 2.2.10. For G = SU(2) and G/T = S2, we have Lie t = R and W = {±1}, and also
H2(S2) = C[x]/(x2).

Now we have a map S•t∗/(S>0t∗)
W → H2•(G/T) because the image of the map G/T → BT →

BG is a point, so we have to kill all positive degree elements in H•(BG).

Theorem 2.2.11 (Chevalley-Sheppard-Tod). Let Γ ⊂ GL(V) be finite. Then the following are equivalent:

1. Γ is generated by complex reflections r such that rk(r− 1) = 1.

2. C[V] = R is free over the invariants S = C[V]Γ .

1This is the same as the transgression map in the Serre spectral sequence.
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3. S = C[p1, . . . ,pdimV ].

There is a classification of all such groups generated by complex reflections, but Andrei does not remember
what it is.

The key to the proof of this theorem is divided difference operators: If sα is a reflection, then Vs

is a hyperplane, so for all f ∈ R, we may consider f−sα·fα . This vanishes on Vs, lowers the degree
by 1, and commutes with x. For example, we could choose

f(x1, x2, . . .) − f(x2, x1, . . .)
x1 − x2

.

Proof. Let e1, e2, . . . be a basis of R/S>0 ·R. We will show that it is also a basis of R over S. Suppose
there exists a relation

∑
giei = 0, where gi ∈ S. Then either g1 ∈

∑
i>0 Sgi or e1 ∈ RS>0.

Inducting on the degree of e1, if deg e1 = 0, then

g1 = −
∑
i>1

giei.

Averaging over Γ , we obtain the desired expression. If deg e1 > 0, then we can apply divided
difference operators to reduce the degree. The divided differences of some function f all vanish
only when sαf = f for all α, which is equivalent to f ∈ RG = S. Therefore we can assume f ∈ S>0,
so if g1 =

∑
cigi, then

e1, e2 + c2e1, e3 + c3e1, e4 + c4e1, . . .

form another basis of R/S>0. But now we obtain a shorter relation∑
giei = g2(e2 + c2e2) + g3(e3 + c3e1) + · · ·

Therefore we have proved freeness. Finally, we see that the rank of R over S is deg(V → V/Γ) = |Γ |.
Now note that V → V/Γ is flat. Therefore V/Γ is smooth. Recall that if X is a scheme, a point

p ∈ X is smooth if and only if a minimal resolution of · · · → OX → Op is finite.2. The most
important point to check is 0. Here, have a finite resolution

· · · · · ·︸ ︷︷ ︸
finite

→ S→ S/S>0 → 0,

so after tensoring with R, flatness gives us finiteness for R→ R/RS>0.
To prove the final leg, we will use Molien series. Recall that V/Γ is a cone with vertex 0 and is

also smooth, so it must be affine space. Recall that S =
⊕
i>0 Si, where S0 = C. Then

1∏
(1 − tmi)

=
∑
i

tiSi

=
1
|Γ |

∑
γ∈Γ

det
1

1 − tγ

=
1
Γ

(
1

1 − t
dimV +

∑
reflections

1

(1 − t)dimV−1 · · ·+O

(
1

(1 − t)dimV−2

))
.

2You can choose your favorite singular variety and try to find a finite resolution
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This implies that the number of generators is dimV/Γ = dimV . This implies that |Γ | =
∏
mi. For

example, if G = SU(n), then |W| = n! = n(n− 1)(n− 2) · · · 2, and the exponents are 1, . . . ,n. The
next term in the expansion gives us the subgroup of all reflections fixing α = 0 in Γ , and in fact it
is cyclic and contained in the roots of unity. Denote a generator by ζk. Then we have

1
|Γ |

(∑
s

1
det(1 − ts)

+ o(· · · )

)
=
∑ 1

(1 − t)r−1

k−1∑
i=1

1
1 − ζikt

=
∑ 1

(1 − t)r−1
k− 1

2

=
1

(1 − t)r−1
#reflections

2
+ o(. . .).

This implies that #reflections =
∑

(mi − 1). For example, for Γ = Sn, we have
(
n
2
)
= (1 −

1) + (2 − 1) + · · · + (n − 1). Now set Γ ′ ⊂ Γ be the subgroup generated by reflections. Then
C[pi] = S ⊂ S ′ = RΓ

′
= C[p ′i], where p ′i has degree m ′i and pi has degree mi. If we order

m1 6 · · · 6 mr and m ′1 6 · · · 6 m
′
r, then mi > m ′i because otherwise the p1, . . . ,pi would be

algebraically dependent. Thus
∑

(mi − 1) >
∑

(m ′i − 1) and in in fact the inequality is strict
unless mi = m ′i for all i. However, both sums count reflections, which is the same for γ,γ ′, so in
fact mi = m ′i. This implies that

∏
mi =

∏
m ′i, and thus |Γ | = |Γ ′|, so Γ = Γ ′.

Now we have a diagram

H•(G/T , C) S•t∗ H•(BT)

invariant differential forms
(∧•(g/t)∗)T

λ7→λ([x1,x2])

which commutes. In particular, H•(G/T , C) is the regular representation of the Weyl group, which
follows from the Lefschetz fixed point formula, which states that if f : M→M, then we have∑

f(m)=m

mult(m) =
∑
i

(−1)i trHi(M) f
∗,

which says that the number of fixed points with multiplicity is equal to the intersection product
of ∆ and Γ(f). In our case, w 6= 1 has no fixed points and thus its trace vanishes. For w = 1, all
points are fixed, so we obtain χ(G/T) = |W|.

Now recall that H2k(G/T)
ci←− Skt∗. Then λ ∈ t∗ maps to a G-invarint 2-form that restricts to

λ([x,y]) at the origin and that H•(G/T) is the regular representation of W. But then we see that
H•(G/T)W = H0 and thus (S>0t∗)

W → 0. This also follows from the fact that the composition
G/T → BG→ BG maps G/T to a point. Therefore we have a map

S•t∗/(S>0t∗)
W

.

Both spaces have dimension W, but we want to know if this is an isomorphism. Equivalently,
we want to know whether the cohomology of G/T is generated by c1(taut). Both of these are
0-dimensional Gorenstein rings. Of course, we have HdimM = C · [M] for any closed manifold M,
and we call this the socle. This has dimension 1 as a vector space. In addition, we have a perfect
pairing

Hk ⊗HdimM−k 3 α⊗β 7→
∫
M
α^ β,
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and in particular dimHk = dimHdimM−k.
Another important example is a 0-dimensional complete intersection Z ⊂Ad. This has

OZ = k[x1, . . . , xd]/(f1, . . . , fd),

where f1, . . . , fd is a regular sequence. For example, a dimension 0 subscheme of the plane
generated by a monomial ideal is Gorenstein if and only if it is generated by two elements.

Equivalently, its Young diagram is a rectangle. Then the socle of OZ is spanned by kdet
(
∂fi
∂xj

)
.

In the case of a monomial ideal (xd1
1 , xd2

2 ), this is spanned by xd1−1
1 x

d2−1
2 . Now a map between

Gorenstein rings is injective if and only if it preserves the socle. Then we know that S•tW =

C[p1, . . . ,pr], where r is the rank, so I = (p1, . . . ,pr). Therefore S•t∗/(S>0t∗)
W is a complete

intersection. It has socle given by

C det
(
∂pi
∂xj

)
= C
∏

roots

and is the first anti-invariant J. This means sαJ = −J and thus the socle is the sign representation
of W. But then any f with sαf = −f has to vanish along α = 0, so α | f. In particular,

∏
α | J. We

conclude that the socle of S•t∗/(S>0t∗)
W is C ·

∏
α with

(f,g)→ antisymmetrize(fg)∏
α

.

Now it suffices to check where
∏
α goes in H•(G/T). We know that

∏
α is the volume form on

g/t, so it goes to Htop(G/T)
G, as desired.

Remark 2.2.12. There are other approaches to proving this result. Let M = Gr(k,n) and consider
the locus

diag = {L1,L2 ⊂ Cn | dimL1 = k,L1 → Cn → Cn/L2 = 0}.

This is the zero locus of a section of Hom(L1, Cn/L2), where L1,L2 are the tautological bundles.
This has rank k(n− k) and thus Gr(k,n) = U(n)/U(k)×U(n− k). Now in H•(M×M), the class
[diag] is given by the characteristic classes of L1,L2. Like in Lefschetz, this acts by the identity
operator on H•(M) and thus H•(M) is spanned by the characteristic classes of L1.

It remains to discuss the relationship between H•(G) and H•(G/T). In principle, we can
consider T ↪→ G → G/T , but studying this requires spectral sequences. Alternatively, we will
study this using the Weyl integration formula. Recall that the map

G/T × T → G (g, t) 7→ gtg−1

is generically |W|-to-1. Therefore we have a map

G/T × T → G/T ×W T → G,

and because the action (g, t) 7→ (gw−1,wtw−1) is free, the middle term is a smooth manifold.
This gives us a map H•(G) → H(G/T × T)W . This is a map between Gorenstein rings and is
injective on the socle by inspection. Thus it remains to compute the dimension. By the Künneth
formula, we have

H•(G/T × T) = H•(G/T)⊗H•(T).
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The first term is the regular representation of W and the second term is
∧• t∗ with the natural W

action. But then we see that H(G/T × T)W has dimension dim
∧• t∗ = 2r. Chasing equivalences,

we have
(Ω•t)W =

(∧•
t∗ ⊗ S•t∗

)W
=
∧

k
[dp1 , . . . , dpr].

Here, all elements of S•t∗ have their degrees doubled. In particular, deg dpi = 2mi − 1.

Remarks 2.2.13. Recall that Lie algebra cohomology give the derived functors of M → Mg =
Hom(k,M). This is computed by resolving, taking invariants, and then taking the cohomology.
This is a general principle in homological algebra, and in fact we can apply this to topological
spaces. If G acts freely on M, then M/G is nice (a smooth manifold) and therefore is nice.
Otherwise, it is better to consider (M× EG)/G and the fibration M ↪→ (M× EG)/G→ BG. Then
we can define the equivariant cohomology

H•G(M) = H•((M× EG)/G),

and this is a module over H•G(pt) = Hbullet(BG). Then we can view SpecH•G(M) (here the Spec
is taken as a superscheme) as a sheaf over t∗/W. If G acts on M freely, then (M× EG)/G is
homotopy equivalent to M/G. The module structure over H•(EG) via H•(BG)→ H•(EG) = H0.
Now we obtain the skyscraper sheaf over t∗/W with stalk H•(M) at the origin.

In this language, we haveH•T (G/T) = S
•t∗⊗

(S•t∗)W S
•t∗, and this has a map toH•(G/T) killing

the positive degree part of the first factor of the tensor product. This recovers the cohomology of
H•(G/T) that we computed before.

Now let V be a rank r vector bundle on X. Then V is given by a map X→ BU(r) = Gr(r,∞).
This induces a map H∗(BU(r), Z) → H∗(X, Z). Now there is a cell decomposition Gr(r,N) into
Schubert cells, which is given by the row reduced echelon form of a matrix in Gr(r,N). Now this
gives a basis

H∗(Gr(r,N), Z) =
⊕

Z[Σ],

where Σ ranges over the Schubert cells. Then the character∑
σ∈S(r)

(−1)σxσ·(λ+ρ)−ρ/
∏

(xi − xj)

is the character of an irreducible representation of U(r). Now in terms of the characteristic classes,
pulling back Z[e1, . . . , er] gives us classes ck(V) ∈ H2k(X), where ei are the elementary symmetric
polynomials.

Now recall that Gr(N, r) parameterizes surjections CN → Lr, and if X ϕ−→ [S], then we know
S is a locus where a section of L vanishes, and V = ϕ∗L. Then Cr(V) = Ctop(V). Thus if X is a
complex manifold, TX has rank dimX, so ctop(TX) is the locus where a vector field vanishes, so∫

[X]
ctop(TX) = χ(X)

Now c1 parameterizes the locus where r generic sections have rank r− 1, or equivalently detV = 0.
Therefore c1(V) = c1

(∧r V). Then ck describes the locus where r− k+ 1 sections have rank r− k.
Then the splitting principle tells us that we can write

∑
ck(V) =

∏
(1+xi), where xi are the Chern

roots. This is because if 0→ V1 → V → V2 → 0 is an exact sequence, then c(V) = c(V1)c(V2).
Now we will consider the case of a line bundle V = L. Then the curvature of L is a class in

H2(X, R). Then we can trivialize away from the zero locus of a section s = 0, If we draw a loop
in the total space of L over X \ x, then this may not be trivial. If the loop around D2 trivial, then
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∫
D2

curv = 0, but if there is a zero in the loop, then the integral is the total angle of rotation 2π

times the order of vanishing. Thus c1 = curv
2π and x1 = t1

2π .

Now if π : X̂→ X is the flag bundle of V , then π∗V = L1 ⊕ · · · ⊕Lr. Then

π∗(c(V)) =
r∏
i=1

(1 + c1(Li)).

Now we can use this to prove that S
 = ek(x1, . . . , xr).

To see this, note that every symmetric polynomial of degree k is determined uniquely by its
values on x = (x1, . . . , xk, 0, . . . , 0). It is enough to consider vector bundles V = V ′ ⊕Cr−k, where
V ′ = L1 ⊕ · · · ⊕Lk is a sum of line bundles. Then if s1, . . . , sk are sections of L1, . . . ,Lk, then all
s1, . . . , sk must vanish, so ek(x) = x1x2 · · · xk.

Now we want to see that [Sλ] = sλ(x) using equivariant cohomology. Consider the action of
GL(N) on Gr(r,N). It is easy to see that the Schubert classes are preserved by the Borel subgroup.
Now there is no difference if we take the Borel or the maximal torus A, so we have a map

SpecH•A(Gr)→ LieA = SpecH•A(pt) = H•(BA).

This is flat of length
(
N
r

)
because we are taking the Chern roots x1, . . . , xr up to permutation. If

Cn � L, then c(L) | c(Cn). Because c(L) =
∏

(1 + txi) while c(Cn) =
∏

(1 + tai). Now if we
consider the vector bundle

Cn ↪→ (Cn × EA)/A→ BA,

we see that ai ∈ H•(BA). But then we must have xi = aj for all i and some j.
By flatness, we obtain a result called equivariant formality. If a ∈ Lie(A), the fiber above a is

simply H•(Gr(r,N)a). If a = 0, then we obtain H•(Gr(r,N)), and if a is generic, then Gr(r,N)a is
a set of coordinate subspaces and is thus a disjoint union of

(
N
r

)
points.

Now if [Sλ] ∈ Z[a1, . . . ,aN][x1, . . . , xr]Sr/ ∼, this has degree |λ| in x1, . . . , xr and misses
many fixed points. For example, on PN, the class (1, ∗, . . . , ∗) hits everything, while the class
(0, . . . , 0︸ ︷︷ ︸

k

, 1, ∗, . . .) misses anything with a 1 in the first k components. Thus we have a polynomial

of degree k in x that vanishes on x = a1, . . . ,ak, so we obtain (x− a1) · · · (x− ak) =: pk(x). Now
we want a symmetric version of this, which is a Schur function in the

det
(
pλi+N−i(xj)

)∏
(xi − xj)

.

By an interpolation argument, this is exactly [Sλ] ∈ H•A(G). In ordinary cohomology, we set a = 0
and obtain the Schur function.
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2.3 Minimizing norms

Let G be a compact Lie group. This is associated to a complex Lie algebra g. Then there exists a
simply connected G̃ such that Lie G̃ = g. By the Lie theorem, we have a central extension

central K̃ K

G̃ G.

Therefore complex representations of G are the same as complex representations of K. In particular,
G is linearly reductive.

On the other hand, by Peter-Weyl, L2(K) has a dense subset given by
⊕
V End(V), where V

ranges over all irreducible representations. This is a finitely generated commutative Hopf algebra
generated by matrix elements of a faithful representation. Therefore it is C[G] for some linear
algebraic group with RepG = RepK. This also works when K is not connected. For example, if
K = (S1)

n is abelian, then G = (C×)
n.

Now we will prove that if G is a complex reductive group, there exists a compact K ⊂ G such
that Lie(K)⊗R C = Lie(G). In other words, every complex reductive group is a complexification of
a compact Lie group. Now if G is a complex reductive group, then there exists an exact sequence

1→ Z(G)→ G→ Ad(G)→ 1.

Then Ad(G) is open in Aut(g), and thus everything is algebraic. Therefore we have an embedding
G ↪→ GL(CN) ⊃ U(N). Now all of the maximal compact subgroups are conjugate because any
compact group preserves some Hermitian metric, so we hope for K = G∩U(n).

What we want to do is to minimize some norm. Consider X = GL/G = Spec C[GL]G. This
is a finitely generated algebra with a linear action of GL, so if we take a GL-invariant subspace
that contains the generators, then there is a closed embedding X ↪→ V into a finite-dimensional
GL-module V as a closed orbit. Now choose a U-invariant norm ‖−‖2 on V and minimize it on X.
Set

Xmin = {x ∈ X, ‖x‖ minimal }.

Proposition 2.3.1. dimR Xmin 6 dimC X.

Assuming this, choose x = gG ∈ Xmin, where g ∈ GL. Then

dimRUx 6 dimC X = dimCGL− dimCG

and therefore dimCG 6 dimR g
−1Ug∩G. In fact, the real dimension of a compact subgroup is at

most the complex dimension of G, and in fact any compact subgroup is totally real in G. Here a
submanifold Y of a complex manifold X is totally real if TyT ∩ iTyT = 0 for all y ∈ Y. In particular,
we have dimR Xmin = dimC X and dimRG∩ g−1Ug = dimCG. Therefore it remains to prove the
inequality.

First, note that ‖−‖2 is a plurisubharmonic or J-convex function.

Definition 2.3.2. Let X be a complex manifold and f : X → R be a real function. Then f is
plurisubharmonic if (∂i∂jf) is positive semidefinite and strictly plurisubharmonic if (∂i∂jf) is positive
definite.
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This is equivalent to the function U→ X
f−→ R being subharmonic for all open U ⊂ C, which is

equivalent to the Laplacian being nonnegative (or strictly positive). To see this, note that

∂w∂w(f ◦w) =
∑
ij

∂2f

∂zi∂zj
∂wzi∂wzj

and so we have the product of the Hessian and the norm of ∂zi∂w . Therefore the restriction of a
plurisubharmonic function to a complex submanifold remains plurisubharmonic. Thus ‖−‖2 is
clearly plurisubharmonic because its Hessian is the standard Hermitian metric.

Proposition 2.3.3. The minima of any strictly plurisubharmonic function are totally real.

Proof. Note that TxXmin is in the kernel of the Hessian of f. Therefore it cannot contain any
complex lines and is thus totally real.

There are some variations. Let X ⊂ CN be an affine variety (or a Stein manifold) and consider
f(x) = ‖x− p‖2 for some fixed p. This is a Morse function for generic p. Then the negative index of
f(x) at any critical point x0 is at most dimC X, so the tangent space contains no complex lines. This
implies that X has the homotopy type of a CW complex of real dimension at most dimC X. This
can be found in a 1959 paper of Andreoti and Frankel about the Lefschetz hyperplane theorem.

Theorem 2.3.4 (Lefschetz hyperplane theorem). Let Z be a smooth projective manifold of dimension n.
Let D = O(1) be a hyperplane section. Then the restriction map Hi(Z)→ Hi(D) is an isomorphism for
i 6 n− 2 and injective for i = n− 1.

Now let G be a complex reductive group and let G → GL(V) be a representation. Then we
know that Spec C[V]G parameterizes closed G-orbits. For example, under the action of C× on A2

by (t, t−1), the closed orbits have the form x1x2 = c 6= 0 and the origin. Here, the only closed
orbit in x1x2 = 0 is the origin. Therefore, we have Spec C[x1, x2]

G = Spec C[x1x2]. For any closed
orbit we can look for minima of a K-invariant Hermitian metric ‖−‖2, where K is a compact real
form of G. We may assume that ‖−‖2 has the form c1‖x1‖2 + c2‖x2‖2. We would like to prove the
following result:

Theorem 2.3.5 (Kempf-Ness; Matsushita-Onishchik). The orbit G · v is closed if and only ‖−‖2 attains
a minimum. When this is the case, the minima form a single K-orbit and there are no other critical points of
‖−‖2. Finally, the stabilizer of v is reductive.3

Corollary 2.3.6. We can identify V/G with the quotient of the critical loci of ‖−‖2 by K. Equivalently,
the moment map µ : V → Lie(K)∗ vanishes.

Returning to our example, the critical locus of ‖−‖2 is the set
{
c1|x1|

2 − c2|x2|
2 = 0

}
, which is

the union of two lines. This intersects each orbit exactly once, as desired.
It is clear that if the orbit is closed, the minimum of the norm function is attained. Now we

will assume Kempf-Ness and prove Matsushita-Onishchik. Write Xmin for the locus where the
minimum of the norm is attained. Then we know that dimR Xmin 6 dimC X = dimCG− dimCH,
where H is the stabilizer of a point v ∈ Xmin. However, we can extend this to the inequality

dimR K− dimR K∩H 6 dimR Xmin 6 dimC X = dimCG− dimCH.

3Everything but the last statement is Kempf-Ness, the last statement is Matsushita-Onishchik
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This implies that dimCH 6 dimR K∩H. Of course K∩H is totally real, so the reverse inequality
holds and thus H is the complexification of K∩H, so it is reductive. In fact, all inequalities are
equalities, so dimR Xmin is the dimension of any K-orbit contained in Xmin. This implies that Xmin
is smooth. We will also see later that Xmin is connected, so it forms a single orbit.

Now for g ∈ GL(n), write gg∗ ∈ GL(n)/U(n). This is some Hermitian metric, so GL(n)/U(n)
can be identified with the space of Hermitian metrics on Cn. Then we know that

LieGL(n) = LieU(n)⊕ i LieU(n).

Recall that for G ⊂ GL(n) reductive, there exists some metric ‖−‖2 such that G∩U(n) is a compact
real form K. Then we have a morphism G/K→ GL(n)/U(n), and the image is exp(i LieK). Then
we know every element of Lie(K) is conjugate to an element of Lie(T) for a maximal torus T ⊂ K,
Therefore we can represent G/K as kAk−1 for some K, where A = exp(i Lie T) ⊂ G. In particular,
we have the decomposition G = KAK. In our previous example, G = C∗,K = U(1),A = R>0.

This means we can write g · v = k1ak2v, and only a changes ‖−‖2. Now if α ∈ LieA, we know

etα ∼

e
tα1 0

. . .
0 etαn

,

and therefore we can write ∥∥etαx∥∥2
=
∑

e2tαi |xi|
2.

This is a convex nonnegative function. When the αi are not all of the same sign, we have a unique
maximum, but not necessarily when all αi > 0. We can consider the weights of the T -action on V
in the characters of T . In the first case, the Newton polytope contains the origin, so our function is
strictly convex and bounded below. In the second case, the Newton polytope does not contain
the origin, so the closure of Av contains some other vector v ′ and thus is not closed. This implies
KAKv is not closed. There is a third case in which 0 is contained on the boundary on the Newton
polytope. In this case, we have a semistable point.

In conclusion, of ‖−‖2 has a local minimum, then the orbit is closed and there are no other
critical points. In addition, for any maximal torus T ⊂ K, the Newton polytope of the weights of
the T -action on V contains the origin. This is called the Hilbert-Mumford criterion.4

Now consider the action of K on coadjoint orbits in Lie(K)∗. Then every ξ ∈ Lie(K) defines a
function which is the Hamiltonian for the vector field ad∗(ξ). Recall that the coadjoint orbits are
Poisson manifolds. For a basic example of a Hamiltonian, the function H = 1

2 (p
2 +q2) gives us the

flow which is rotation with velocity 1. Changing coordinatse, we see that H = 1
2‖z‖

2 generates eit

and H = m
2 ‖z‖

2 generates eimt. If we write im = ξ ∈ Lie(U(1)), then α = ξ
i ∈ LieA. Of course,

we have
∥∥etαz∥∥2

= 22mt‖z‖2 and thus

H =
1
4
∂

∂t

∥∥∥eξi tz∥∥∥2
∣∣∣∣
t=0

.

We obtain the same formula when ξ is a larger diagonal matrix, where H = 1
2
∑
mi|zi|

2. In this
case, we have

〈µ(z), ξ〉 = 1
4
∂

∂t

∥∥∥eξi tz∥∥∥2
∣∣∣∣
t=0

.

4To see how this is related to the usual statement found in any text on geometric invariant theory, look at the lecture
of Nicolás in my GIT notes at https://math.columbia.edu/~plei/GIT.pdf.

https://math.columbia.edu/~plei/GIT.pdf
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This implies that critical points of ‖−‖2 are the same as the zeroes of the moment map.
Now we can generalize this in several directions:

1. We can consider GIT quotients. For example, if we have a character ξ : G→ C∗, then we can
replace V/G by

V �χ G = Proj
⊕
n>0

(C[V]⊗ χn)G.

Instead of µ = 0, we can consider µ = ±dχ.

2. Many moduli problems are fomally quotients by infinite-dimensional groups. Then the
moment map equations (or minimization of ‖−‖2) are very useful and important PDEs. A
very classical example of this is the work of Hitchin-Kobayashi-Donaldson-Uhlenbeck-Yau-
. . . who studied stable holomorphic vector bundles. In fact, stable holomorphic bundles are
precisely those with Hermitian Yang-Mills connection. These minimize ‖curvature‖2

L2 .

For example, if we consider a curve C and a line bundle of degree 0, this line bundle
lives in Jac0(C). Then we are looking for flat unitary line bundles, which have the form
(C̃×C)/π1(C) under a map π1(C)→ U(1). Therefore our line bundles are parameterized by

Hom(π1(C),U(1)) = Hom(H1(C, Z),U(1)) = U(1)2g.

In fact, this is isomorphic to the Jacobian as a smooth manifold. More recently, there is the
work of Chen-Donaldson-Sun in higher dimension.

2.4 Symmetric spaces

Now let G ⊂ GL(V) be a complex semisimple group and K be a maximal compact. Then K is fixed
under σ(g) = (g∗)−1, which is an antiholomorphic automorphism of G. Now consider a G orbit
of ‖−‖2, which is thet set {gg∗ | g ∈ G} of positive self-adjoint elements of G. Now T1(G) = k + ik.
Also, G/K has a G-invariant metric, and this is unique up to multiple if K is simple. Also, σ
preserves the metric, so it acts as an isometry of G/K, which is a symmetry about 1 ∈ G/K.

Definition 2.4.1. Let M be a Riemannian manifold. We say M is a Riemannian symmetric space if
for all m, there exists some isometry σm fixing m such that σm acts by −1 on TmM.

In particular, G/K is an example of a Riemannian symmetric space. There is a structure theory
of Riemannian symmetric spaces, and the classification is essentially the classification of all real
Lie groups. Here are some properties of symmetric spaces. If m,m ′ lie on a geodesic, then
σm ′σm is translation by the distance between m ′,m. In particular, M is complete. In addition,
the isometry group G of M acts transitively on M.

This implies that M = G/H where H is the stabilizer of some point m ∈M. In particular, H is
compact because it is a closed subgroup of O(TmM). We also know that H commutes with σm,
so σm ∈ Aut(G) is an inner automorphism. Now we have

T1G = Lie(H)⊕ TmM,

where Lie(H) are transformations in O(TmM) and TmM moves m. We see that Lie(H) is the +1
eigenspace and TmM is the −1 eigenspace. Therefore a Riemannian symmetric space M is the
same as a Lie group G with a choice of automorphism σ and compact subgroup (Gσ)1 ⊂ H ⊂ Gσ,
where M = G/H.
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Now consider the symmetric space Sn. If we choose (x1, . . . , xn, xn+1) = (0, . . . , 0, 1), the
involution fixing the north pole is the map

(x1, . . . , xn, xn+1) 7→ (−x1, . . . ,−xn, xn+1),

which has two fixed points. This means that σm does not have to have a unique fixed point. Now

if we conjugate O(n+ 1) by σ =

 1
1

. . .
1

, then the fixed locus is

O(n+ 1)σ =

(
O(n)
±1

)
.

Now if we take H = O(n), we can remove the ±1 if we take Sn/± 1 = RPn. Now the classification
of Riemannian symmetric spaces is as follows:

1. Spaces of the form G/K, where G is a real Lie group and K is a maximal compact group.
These have negative curvature.

2. Spaces of the form K×K/∆, where K is a compact Lie group. Thus we have M = K with the
action of K by conjugation.

3. There are compact summetric spaces with positive curvature, and these are dual to the
negative curvature case.

An important example of a symmetric space is the hyperbolic space Hn = SO(n, 1)+/SO(n).
This is dual to Sn = SO(n+ 1)/SO(n). The classification reduces again to the classification of root
systems, which sit inside the class of finite reflection groups. Of course, finite reflection groups sit
inside discrete reflection groups. In fact, the maximal symmetric spaces have H = O(TmM), and
these are classified by

LieG = so(n)⊕Rn.

We also must have [so(n), Rn] ⊂ Rn and [Rn, Rn] ⊂ so(n) because so(n) is the positive eigenspace
of some involution and Rn is the negative eigenspace. This gives us an so(n)-equivariant map∧2

Rn → so(n). These are both irreducible and isomorphic, so these are multiplication by a
real constant c. If c > 0, then g = so(n+ 1) and G/H = Sn. If c = 0, then g = so(n)n Rn and
G/H = Rn, and if c < 0, then g = so(n, 1) and G/H = Hn.
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Semisimple Lie algebras

3.1 Reflection groups and root systems

Now we want to consider discrete isometry groups Γ ⊂ Iso(M) where M is one of Sn, Rn, Hn.
This is in fact equivalent to the fact that for all x ∈ M, Γx ⊂ M is discrete. Therefore the
subsets {Mγ}γ∈Γ are also discrete in M. To see this, consider any point m. Then the distance
d(m,γm) 6 2d(m,Mγ). Thus if Mγ is not discrete, the distances d(m,γm) accumulate. If Γ is
generated by reflections, then the set of reflecting hyperplanes is discrete.

Now we will consider the Dirichlet fundamental domain

D = {y | d(y, x) 6 d(y,γx) for all γ ∈ Γ }.

This is a locally finite intersection of half-spaces. We are mainly interested in the case where M
is compact, so we will have a globally finite intersection. In the compact case, we may have to
subdivide the boundaries ∂D such that each facet F corresponds to a particular γF ∈ Γ :

Figure 3.1: Subdivision of facet

In the globally finite case, we obtain γFi ∈ Γ . These generate Γ and the relations are as follows:
Note that F ′ := γ−1

F (F) is a facet of D. It is also easy to see that γF ′ = γ−1
F . In the case of a

reflection group, then F = F ′ and Γ2
F = 1. In other words, {γF} is a symmetric set of generators. We

36
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also have more complicated relations coming from codimension 2 strata. If the fixed hyperplanes
of r1, r2 have angle piP m, then r1r2 is rotation by 2θ, so we obtain the relation (r1r2)

m = 1. In fact,
if we have the square lattice, then γ1γ2 = γ2γ1.

Theorem 3.1.1. The relations above are all relations between the γF. This means that

Γ = 〈γF | above relations〉 .

Proof. Consider the exact sequence 1→ ker→ Γ̃ = 〈ΓF | relations〉 → Γ → 1. Now consider

M \ (codim > 3) =
⋃
γ∈Γ

γ(D\ codim > 3).

But now we have a covering⋃
γ∈Γ̃

(γ,D\ codim > 3)/relations→M \ codim > 3.

However, M \ codim > 3 is 1-connected, so this covering is an isomorphism.

Therefore it remains to classify possible D. First, however, we will consider a very classical
example.

Example 3.1.2. Consider a triangle with angles π
m12

, π
m13

, π
m23

. Then we can consider the discrete
reflection group Γ =

〈
s1, s2, s3 | s2

i = 1, (sisj)
mij = 1

〉
. We have the following cases for where the

triangle lives:

1
m12

+
1
m13

+
1
m23


> 1 S2

= 1 R2

< 1 H2.

Thus in the first case Γ is finite, in the second case it has polynomial growth, and in the final case
it has exponential growth. To define the growth, we need to consider the length function on Γ .
Here, we count the number of hyperplanes separating D,γD, and this is the length `(γ), which is
also the length of the shortest γ = si1 · · · si` . Some nice properties are that `(γ) = `(γ−1) and that
`(γsi) = `(siγ) = `(γ)± 1. Then we consider the function that takes x to the number of words
with length less than x, and consider the growth of this function.

There are finitely many solutions to 1
m12

+ 1
m23

+ 1
m12
> 1, and these correspond to platonic

solids (spherical) or regular tesselations of the plane (Euclidean).

Now we are ready to classify discrete reflection groups acting on Sn or Rn. We can embed
Sn ⊂ Rn+1, so the two cases are really the same. We want to impose that the normal vectors to the
bounding hyperplanes span (Rn)∗. We also assume that there is no partition of the normal vectors
into two mutually perpendicular sets. We will carry out the classification using the connection to
complex semisimple Lie algebras (or compact semisimple real Lie algebras). Consider the outer
normals ei and consider the Coxeter matrix (ei, ej)ij. Now we know

Q = (ei, ej) =

{
1 i = j

− cos
(
π
mij

)
i 6= j

.

Because this is a Gram matrix, it is positive semidefinite. Also, the diagonal emenets are all
positive and all off-diagonal elements are nonpositive.
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Lemma 3.1.3. Together with indecomposability, the two properties imply that either the ei are linearly
independent (in which case D is a cone over a tetrahedron, which is the image of Rn>0 under a linear map)
or that kerQ = R · v, where v has all positive coordinates.

In the first case, D is the cone over a simplex and Γ is finite. In the second case, D is a simplex,
so it is the image of {xi > 0 |

∑
xi = 1}. In this case, we obtain an irreducible reflection group in

Iso(Rn).

Proof. Consider the matrix Q as a quadratic form. Then the kernal kerQ = {v | Q(v, v) = 0}. For
v ∈ (v1, . . . , vn), denote |v| = (|v1|, . . . , |vn|). Thus Q(|v|, |v|) 6 Q(v, v). Thus if Q(v, v) = 0, we also
have Q(|v|, |v|) = 0. Now suppose that some vi = 0 and Qv = 0. Then (Qv)i =

∑
j 6=i qijvj. If there

exist i 6= j such that qij 6= 0, then Q(|v|, |v|) < Q(v, v). This is impossible if Q is indecomposable, so
no vi can vanish for v ∈ kerQ. Thus dimR ker 6 1. Moreover, the kernel is closed under v→ |v|,
so it must be spanned by a vector with vi > 0.

This implies that the classification of reflection groups in Sn, Rn is the same as the classification
of indecomposable positive-semidefinite Coxeter matrices. This is explicit and fun, and involves
solving inequalities.

Now let k = Lie(K) for a compact group K with maximal torus T . Then write g = k⊗R C and
t = Lie(T)⊗R C. Then we have a decomposition

g = t⊕
⊕

α∈char(T)

gα,

and we know gα is 1-dimensional if and only if α is a root. Next, consider eα ∈ gα, fα ∈ g−α. Then
we write hα = [eα, fα] ∈ t, and this is unique. Then we have (hα,h) = α(h) and [hα, eα] = 2eα
and [hα, fα] = −2eα. Therefore we have an embedding sl(2)α ⊂ g, so an SL(2)α ⊂ G. Next,
consider the map

β 7→ β−
2(α,β)
(α,α)

α = sα(β).

We need 2(α,β)
(α,α) ∈ Z so that sα(β) is in the lattice spanned by the roots. The reflections in the

roots α generate a finite group W of reflections, which also preserves the root lattice. Now we

may consider the Cartan matrix
(

2 (αi,αj)
(αi,αi)

)
. This is an integer matrix with 2 on the diagonal and

nonpositive off diagonal entries. The Cartan matrix must be positive definite.
Now each reflecting hyperplane is the zero set of a linear function (which is a root). Now we

can choose a fundamental domain, and this gives us a partition of roots into positive and negative
roots. After reflection by some si, if β 6= αi is a positive root, then β−αi is still positive after αi.
Therefore every positive root has a sum of the form β =

∑
miαi, where the αi are the simple

positive roots (corresponding the the faces). Moreover, this expression is unique (because the
simple roots are independent as affine linear functions).

Now recall that for a semisimple Lie algebra g, we have

g = h⊕
⊕
α

gα,

where α ranges over the roots. We know that [h, eα] = α(h)eα, that [gα, gβ], that dimC gα = 1,
and that gα ⊥ gβ if α+β 6= 0. Also, there exist e±α ∈ g±α such that (eα, e−α) = 1. If we write
hα := [eα, e−α], then (hα,h) = α(h). Now our goal is go from root systems to Lie algebras.
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Because every root is either positive or negative, and every positive root can be written uniquely
as a sum of simple roots, we can write

g = h⊕ n+ ⊕ n− n± =
⊕
α>0

g±α.

Note that if g is finite-dimensional, then n+ is nilpotent.

Proposition 3.1.4. The nilpotent Lie algebra n+ is generated by ei : eαi , where {α1, . . . ,αr} are the simple
positive roots.

Proof. We show that if α + β is a root, then [gα, gβ] = gα+β. Consider the action of (sl2)α
on gnα+β. Now each gnα+β is one-dimensional. Now recall that the weights of irreducible
representations with respect to hα are λ, λ− 2, . . . , 2 − λ,−λ. But now recall that fα decreases the
weight by 2 and eα increases the weight by 2, and so the action of eα : gβ → gβ+α is nonzero, as
desired.

Corollary 3.1.5. The Lie algebra g = 〈hi, ei, fi〉 /relations, where ei = eαi , fi = e−αi ,hi = hαi , where
the αi are the simple roots.

The relations are given by

[hi, ej] = αj(hαi)ej, αj(hi) = 2
(αj,αi)
(αi,αi)

.

We will write aij := αi(hi). We also have [hi, fj] = −aijfj and [ei, fj] = δijhi.

Lemma 3.1.6 (Chevalley-Serre). For all i, j, we have ad(ei)
1−aijej = 0.

For example, for the A2 root system with Cartan matrix
(

2 −1
−1 2

)
, we have ad(e1)

2e2 =

ad(e2)
2e1 = 0.

Proof. Write � = ad(ei)
1−aijej. We will prove that if [fk,�] = 0, then ad(g)� is invariant under g.

Then � is a lowest weight vector, so ad(g)� ⊂ n+ would be a proper submodule, contracticting
the simplicity of g.

Now we need to prove that [fk,�] = 0. This is clear for k 6= i, j, so we need to check it for
k = i and k = j. For k = i, we have weights aij,aij + 2, . . . ,−aij for hi (by the action of (sl2)i on
ej), so � corresponds to the weight −aij + 2, so we must have � = 0 (because otherwise it would
generate an infinite-dimensional module). Now we consider the case when k = j. Here, we have

[fj, (ad ei)
1−aijej] = −(ad ei)

1−aijhj

= (ad ei)
−aij [ei,hj]

= (ad ei)
−aij(−aijei).

Now if aij < 0, we see [ei, ei] = 0 and if aij = 0, we also have vanishing.

Theorem 3.1.7. For a simple Lie algebra g, we have g = 〈hi, fi, ei〉 /relations with the Cartan matrix
C = (aij) = 2 (αi,αj)

(αj,αj)
. Moreover, for any matrix C such that aii = 2, aij 6 0, and C is symmetrizable,

then the matrix g is simple and finite-dimensional if and only if C corresponds to a finite root system.

Remark 3.1.8. Note that the conditions that aii = 2,aij 6 0, and C is symmetrizable can be relaxed
in principle.
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3.2 Kac-Moody Lie algebras

Let C = (aij) be a matrix such that aii = 2,aij 6 0, and aij = 0 if and only if aij = 0. Note this is
weaker than being symmetrizable. Now we define the Lie algebra

g̃ = 〈ei, fi,hi〉

/ [ei, fj] = δijhi
[hj, fj] = −aijfj

[hi, ei] = aijej

 .

Now we have the decomposition g̃ = h⊕ ñ+ ⊕ ñ−, where ñ+ is the free Lie algebra generalized
by the ei, whose universal enveloping algebra is a free associative algebra. Note if C = (2), then
g̃ = sl2. Also, we have

ñ+ =
⊕

α=
∑
miαi>0

gα,

so in fact all roots are already either positive or negative. Here, note that

[fi, n+] ⊂ Chi ⊕ n+,

and we also know that
[f1, [e1, e2]] = −[h1, e2] = −a12e2.

The previous argument for � = ad(ei)
1−aijej shows that it is a lowest weight vector in n+. Now

we know that n+ ⊇ ad(g̃)�. More generally, we can consider the maximal submodule of ad(g̃)
(which cannot contain the ei).

Definition 3.2.1. We define the Kac-Moody algebra gKM to be the quotient of g̃ by the maximal
submodules in n+ and n−.

Theorem 3.2.2 (Gabber-Kac). If C is symmetrizable, then the maximal submodules in n+, n− are
generated by the Chevalley-Serre relations.

Theorem 3.2.3. If dim gKM <∞, then C corresponds to a finite reflection group.

Remark 3.2.4. There are even larger generalizations of this, for example Borcherds-Kac-Moody Lie
algebras and other classes of Lie algebras.

Now Chevalley-Serre tells us that for large enough M, ad(ei)
M applied to any generator

vanishes. Thus for any x ∈ gKM, there exists M = M(x) such that ad(ei)
Mx = ad(fi)

Mx = 0. I
particular, any x ∈ gKM is contained in a finite-dimensional sl(2)i = 〈ei, fi,hi〉-module.

By definition, a gKM-module is integrable if for all sl(2)i, the module decomposes as a sum of
finite-dimensional modules. Thus, in this language, the adjoint representation of gKM is integrable.
Now we can integrate each sl(2)i-module to SL(2)i, and the matrix

( 0 −1
1 0

)
acts by reflection ri.

Then we see that
ri(λ) = λ− λ(hi)αi,

and the ri generate the Weyl group of gKM. In particular, it permutes the set of roots.
Recall that when we had an invariant quadratic form, we had the identity

(hi,hj) = (hi, [ej, fj]) = ([hi, ej], fj) = aij(ej, fj).
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Therefore there exists an invariant quadratic form if and only if there exists a diagonal D such
that CD is symmetric. Now note that g̃ = h⊕ n+ ⊕ n−, and n+, n− are dual with respect to the
quadratic form. In fact, we obtain expressions of the form

(ad(ei)ej, fk) = −(ej, ad(ei)fk).

Now if we consider the ideal of relations r+ ⊂ n+, then we note that

(r, ad(fi)∗) = −(ad(fi)r, ∗) = 0.

Now note that any invariant bilinear form on g is nondegenerate because g⊥ is an ideal which
does not intersect h, and thus vanishes. If aii 6= 0, then we can assume aii = 2, and therefore we
have a subalgebra sl(2)i = 〈ei, fi,hi〉, then for j 6= i, ej is the lowest weight vector for sl(2)i with
weight aij. If aij ∈ 0,−1,−2, . . ., then it is possible that the sl(2)i-module is finite-dimensional.
Kac-Moody theory is about integrable modules. Also, recall that ad(ei)

1−aijej = 0 ∈ g, and by
Gabber-Kac this is the complete list of relations. Also recall the adjoint representation is integrable.

Example 3.2.5. Consider C =
(

2 a12
a21 2

)
. Note that if we want detC > 0, we can only have

(a12,a21) = (−1,−1), (−2,−1), (−3,−1). Now the three cases correspond to the Lie algebras
sl3, sp(4) = so(5),G2. In the case where detC = 0, or (a12,a21) = (−2,−2), (−4,−1), then we need
to enlarge h to have αj(hi) = aij. The extra elements in h will be central, and we will need to
consider a central extension of sl(2)⊗C[t±1]. Here, we will have

e1 =

(
0 1
0 0

)
, e2 =

(
0 0
t 0

)
, f1 =

(
0 0
1 0

)
, f2 =

(
0 t−1

0 0

)
.

Now we have
h = C

( 1 0
0 −1

)
⊕C · central⊕C · t d

dt
.

These are called affine Lie algebras, and these correspond to reflection groups in Rn. Now
consider the case when detC < 0. This is much more complex, and suppose a12 = a21 = −m,
where m > 4. Then the quadratic form ‖(x,y)‖2 = 2x2 − 2mxy+ 2y2 has signature (1,−1). Now
after we kill the Serre relations, we have our Weyl group W = 〈r1, r2〉, where

r1 =

(
−1 m
0 1

)
, r2 =

(
1 0
m −1

)
.

It is easy to see that r2(1, 0) = (1,m), r2(0, 1) = (0,−1), r1(0, 1) = (m, 1), r1(1, 0) = (−1, 0). Now the
vectors with ‖−‖2 = 2 form a hyperbola, and it is easy to see that r1, r2 are translations on the
hyperbola. Note that these are solutions to x2 −mxy+ y2 = 1 and are units in Q(

√
m2 − 4). Also,

note that
m+

√
m2 − 4
2

= m− 1 +
1

1 + 1
m−2+···

is periodic and the coefficients are 1,m− 2.
The fact that there are no roots of g̃ in Z>0×Z60 \ {(0, 1), (1, 0), (0, 0)} and theW-action implies

that there are no roots with ‖−‖2 > 2. Now for β = m1α1 +m2α2, we would like to minimize the
height m1 +m2. Now if (ri,β) = β− (αi,β)αi, then we can decrease the height unless β = αi.
Now in every W-orbit of a root β, either there is a simple root αi, so ‖β‖2 = 2, or there is a root
with (β,αi) > 0 for all i. Now roots are either real (which means dim gβ = 1) or imaginary (which
implies exponential growth in the cone bounded by lines of slope m/2, 2/m). In general, if the
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signature of our matrix (n− 1, 1), there is a similar picture, where we have a light cone (notation
stolen from physics, all hyperboloids will asymptotically converge to this), and inside we have
the funramental domain. Unfortunately, there is only a compact fundamental domain in low
dimension, so the theory fails in high dimension. If the signature is worse, then the theory gets
worse. However, every root is either real or belongs to the orbit of a fundamental domain (which
is the set of vectors such that (β,αi) 6 0 for all but finitely many roots).

It should be clear that dim g < ∞ if and only if C > 0. This explains why we end up with
infinite-dimensional Lie algebras when we attempt classification.

3.3 Integrable representations of Kac-Moody Lie algebras

Let g = h⊕ n+ ⊕ n− be a symmetrizable Kac-Moody Lie algebra and C = (aij) be the Cartan
matrix. Then the Weyl group W = 〈ri〉 acts on h, h∗.

Now if M is a module and v ∈M, by definition v is a highest weight vector if hiv = λ(hi)v for
some λ ∈ h∗ and eiv = 0 for all i. Some examples of highest weight modules are Verma modules
Mλ, which is the free module generated by a highest weight vector vλ. Equivalently, we can write

Mλ = U(g)⊗U(h⊕n+) Cλ.

This is not even close to being integrable (just note we can act infinitely many times by fi). To
make Mλ integrable, we need λ(hi) = 0, 1, . . . to be a nonnegative integer and fλ(hi)+1

i v = 0. This
gives us a candidate for an irreducible integrable module Lλ with highest weight1 λ. We will see
later that this is indeed irreducible by the classification of irreducible finite-dimensional modules.
We will also compute the character using the Weyl-Kac formula.

We will now consider the Casimir element. First suppose that dim g <∞ and let xi,yi be dual
bases for the Killing form (−,−). Then the Casimir element is

C =
∑

xiyi ∈ U(g).

Now because gα is dual to g−α, we have

C =
∑

h2
i +
∑
α>0

(eαfα + fαeα).

This acts by a scalar in Mλ because it commutes with all fi, and so

Cv =
∑

λ(hi)
2 +
∑
α>0

λ(hα).

For any h ∈ h, we have (h,hα) = α(h)(eα, fα). Now consider

ρ =
1
2

∑
α>0

α ∈ h∗.

Lemma 3.3.1. For all r, ri(ρ) = ρ−αi. In other words, ρ(hi) = 1.

Proof. Note that ri permutes the set of positive roots distinct from αi. Therefore ri(αi) = −αi,
and the desired result follows by splitting the expression for ρ.

1Allegedly there is a physical interpretation for the existence of a highest weight vector.
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Remark 3.3.2. Some analog of this also makes sense if dim g =∞.

We can take any other function of the set {α > 0 | α 6= αi}, such as x 7→ 1 − e−x. Then the
product

eρ
∏
α>0

(1 − e−α)

is a Laurent series in e−αi which is often analytically convergent. Under the action of ri, we
obtain

eρ−αi(1 − eαi)
∏
α6=αi

(1 − e−α) = −e−ρ
∏

(1 − e−α).

Therefore this product is W-anti-invariant. Note that the product
∏
α>0

1
1−e−α is the character of

hh acting on U(n−). Here, the operators 1, fα, . . . have weight 1, e−α.e−2α, . . ., and taking the sum,
we obtain the expression. Therefore, the character of a Verma module is

eλ∏
α>0(1 − e−α)

.

Theorem 3.3.3 (Weyl-Kac). The character of the integrable representation Lλ is given by

∑
w∈W

w ·
(

eλ∏
α>0(1 − e−α)

)
=

1∏
α>0(1 − e−α)

∑
w

(−1)wew(λ+ρ)−ρ.

Returning to the Casimir element, we now write

C =
∑

hih
i +
∑
α>0

hα + 2
∑
α>0

eαfα.

For infinite-dimensional modules with highest weight, this expression makes sense because the
final term in the sum is locally finite. Here, hi is the dual basis to the hi. This still commutes with
the fi. Therefore C acts on Mλ by (λ, λ) + 2(λ, ρ) = (λ+ ρ, λ+ ρ) − (ρ, ρ).

To prove this, consider the exact sequence

0→M→Mλ → Lλ → 0.

Here, M is some highest-weight module, so it has a surjection from
⊕
Mµi . Thus there exists a

resolution of Lλ by Verma modules of the form

· · · →
⊕

Mνj →
⊕

Mµi →Mλ → Lλ → 0.

By the action of the Casimir element, we have ‖µi + ρ‖2 = ‖λ+ ρ‖2. In addition, the character of
Lλ is W-invariant by integrability. Together, we obtain that the character of Lλ is a sum of the
form ∑

µ

cµchar(Mµ),

where λ− µ is either a sum of positive roots or zero, cλ = 1, ‖µ+ ρ‖2 = ‖λ+ ρ‖2, cµ is anti-
invariant under the action of W by w · µ = w(µ+ ρ) − ρ.

Lemma 3.3.4. Every µ such that λ− µ is a sum of roots can be brought by the W· action to the positive
cone (where (µ,αi) > 0). The positive cone is also called the dominant cone.
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Proof. Choose w such that in the expression λ+ ρ−w(µ+ ρ) =
∑
miαi,

∑
mi is minimal. If

(µ,αi) < 0, then we can apply ri and decrease mi.

Lemma 3.3.5. If (λ,αi) > 0, (µ,αi) > 0, λ > µ, and (λ, λ) = (µ,mu), then λ = µ.

Proof of this result is left as an exercise to the reader.
As a consequence, we have:

1. If cµ 6= 0, then the intersection of W · µ with the dominant cone is simply λ, and thus
cµ(−1)wδW·λ.

2. In the exact sequence
⊕

U(n−)f
λ(hi)+1
i v → Mλ → coker → 0, the first term is simply⊕

ri
Mri·λ. Now the cokernel is irreducible because it is integrable and therefore there is no

room for other singular vectors. In fact, this can be continued to a Bernstein-Gelfand-Gelfand
resolution of Lλ by

· · · →
⊕

`(w)=k

Mw·λ → · · ·

As a corollary of Weyl-Kac we obtain

Corollary 3.3.6 (Denominator identity). Apply the formula to L0 = C to obtain

1 =
e−ρ∏

α>0(1 − e−α)

∑
w

(−1)wewρ

and rearrange to obtain ∑
w

(−1)wewρ = eρ
∏
α>0

(1 − e−α).

For example, when g = sl(n), the positive roots are of the form (0, 1, . . . ,−1, 0), so eα = xi
xj

.
Then we have ρ = ((n− 1)/2, . . . , (1 −n)/2), and therefore we have

x...
∏
i>j

(
1 −

xj

xi

)
=
∑
s∈Sn

(−1)ss(x...).

This has the more familiar form∏
i>j

(xi − xj) =
∑
s∈Sn

(−1)ss · (xn−1
1 · · · x0

n).

For ŝl2, this gives us the Jacobi triple product identity for theta functions

ϑ(x;q) =
∑
n

(−1)nxnqn
2/2 =

∏
n>0

(1 − qn)
∏
n>0

(1 − xqn)
∏
n>0

(1 − x−1qn).

3.4 Affine Lie Algebras

Let Γ = 〈ri〉 be a group of isometries in Rn. For example, if r1, r2, r3 are reflections along the sides
of an equilateral triangle, we have the Â2 group. Now isometries of Rn embed in isometries of
Hn+1 because we can embed Rn as a horocycle. Now consider the group Â1 generated by r1, r2
with r1r2 of infinite order. If we consider spheres Sn in Hn+1, we have an action of SO(n) on
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Sn which commutes with the action of SO(n, 1) on Hn+1. Note that SO(n) stabilizes a vector of
negative norm. In the limit as the radius approaches∞, the curvature approaches 0, so we obtain
Rn.

Now the semidirect product SO(n− 1)n Rn stabilizes a null vector, so it acts on Rn ⊂Hn+1.
Now if we fix that SO(n, 1) preserves the form x0xn + x2

1 + · · ·+ x
2
n−1, then if we consider the

light cone where ‖x ′‖2 + x0xn = 0, then our isometry group acts in a way such that orbits are
like parabolas. In the case of Â1, the orbit of a single point in R1 will lie on a parabola when we
embed in R2,1.

Now our reflection group Â1 could have Cartan matrix
( 2 −2
−2 2

)
or
(

2 −4
−1 2

)
. The first corre-

sponds to a central extension ŝl(2) of sl(2)⊗C[t, t−1] while the second corresponds to a twisted
loop algebra. Here, if g is a Lie algebra and σ is an automorphism of order m, then we may
consider the subalgebra

{f(t) | f(tζm) = σf(t)} ⊂ g[t, t−1].

For example, note that sl(2)[t±1] is generated by the matrices

e1 =

(
0 1
0 1

)
, f1 =

(
0 0
1 0

)
, e0 =

(
0 0
t 0

)
, f0 =

(
0 t−1

0 0

)
.

Then [e1, f1] = h1 = −[e0, f0]. If we define h0 := [e0, f0], then for C =
( 2 −2
−2 2

)
, h0 +h1 is contained

in the kernel of the map

0→ C(h0 + h1)→ 〈h1, e0, f0,h1, f1, e1〉 7→ sl(2)[t±1]→ 0.

Now note that if we set deg e0 = (1, 0), deg e1 = (0, 1), then the Lie algebra 〈h0, e0, f0,h1, f1, e1〉 is
graded by Z2. Because C is degenerate, only one of these two gradings is internal. To restore the
grading, we introduce the element D := t d

dt , where De0 = e0 and Df0 = −f0. Now we set

g = h⊕
⊕
α>0

gα, C ′ =

 2 −2
−2 2
1 0


where we set h2 = D. Now we have a map

0→ C(h0 + h1)→ 〈h0,h1,h2, e0, f0, e1, f1〉 → Ct
d
dt

n sl(2)[t±1]→ 0.

Now because there are three simple roots, the matrix of the invariant bilinear form is 2 −2 1
−2 2 0
1 0 0

,

and this has signature (2, 1). In the basis of C = (h0 + h1),h1,D, this takes the form 1
2

1

,

which is precisely of the form x0xn+1 + x
2
1 + · · ·+ x

2
n.

Now we would like to describe the central extension in terms of matrices. Here, we have

[e0, f0] = h0 = C− h1 =
[(

0 0
t 0
)
,
(

0 t−1

0 0

)]
+C · 1,
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then we can write 1 = Res trP ′(t)Q(t) = Res
(

d
dtP(t),Q(t)

)
if we set e1 = P(t), f1 = Q(t). Using

integration by parts, this is skew-symmetric. Now we have

g = h⊕
⊕
n∈Z

C

(
0 tn

0 0

)
⊕
⊕
n∈Z

C

(
0 0
tn 0

)
⊕
⊕
n 6=0

C

(
tn

−tn

)
.

Now the eigenvalues of (C,h1,D) on each factor are (0, 2,n), (0,−2,n), (0, 0,n). The values
x+n(n > 0),−x+n(n > 1),n(n > 1) are positive for x ∈ (0, 1). Now if we define

∆ :=
∏
α>0

(1 − e−α),

then if we set exp(0, 0,−1) = q, exp(0, 1, 0) = x, we obtain

∆ = (1 − x−1)
∏
n>0

(1 − qnx−1)(1 − qn)(1 − qnx).

This is simply the genus 1 theta function ϑ(x), which has the property that ϑ(1) = 0 and that

ϑ(qx) = (1 − q−1x−1)
∏
n>0

(1 − qn−1x−1)(1 − qn)(1 − qn+1x) = ϑ(x)
1 − q−1x−1

1 − qx
= −q−1x−1ϑ(x).

Therefore ϑ is a section of a degree 1 line bundle over E := C×/qZ. Note that ∆ converges
analytically if |q| < 1. Because −q−1x−1 is invertible, we may use it as a clutching function. By
Riemann-Roch, ϑ only has a single zero at x = 1.

Another way to write solutions of the equation ϑ(qx) = −q−1x−1ϑ(x) is using the form∑
xmqm

2/2. Here we want to think of m
2

2 as
(
m
2
)
, so if we apply x 7→ qx, we have∑

xmq
m(m−1)

2 7→
∑
m

xmq
m(m+1)

2 = x−1
∑
m

xmq
m(m−1)

2 ,

and thus we have ϑ̃(qx) = x−1(̃ϑ)(x). Therefore ϑ(x) ≈ constϑ̃(−qx), and thus everything is
unique up to a multiple section of a line bundle on E. Classically, this is the Jacobi product
formula. As a sum, we really have the sum in the Weyl-Kac formula, because

∆ =
∏
α>0
n>0

(1 − qnxα)
∏
α<0
n>0

(1 − qnxα)
∏
n>0

(1 − qn)rankg.

This also satisfies some q-difference equation, so is a section of a Line bundle of Erankg. In general,
we have

∆ =
∑

WfinitenZr

(−1)signqquadraticxsomething,

and this can be rewritten as an expression in the characters of gfinite is we sum over W first and as
a theta function if we sum over the lattice first.
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