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Motivation

Here is a very classical question (that the ancients were interested in):

Question 1.0.1. Which prime numbers p can be written as p = x2 + y2 for integers x,y?

We can try to answer this by experiment. Clearly, 2 = 1 + 1, 5 = 1 + 4, 13 = 4 + 9, 17 = 1 + 16
and the other primes below 20 cannot be written as a sum of two squares. Then, because any
square is congruent to 0 or 1 modulo 4, we see that if p is an odd prime, then

Theorem 1.0.2 (Fermat, Christmas Day, 1640). An odd prime p can be written as a sum of two squares
if and only if p ≡ 1 (mod 4).1 Similarly, we have:

• 2 6= p = x2 + 2y2 if and only if p ≡ 1, 3 (mod 8).

• 3 6= p = x2 + 3y2 if and only if p ≡ 1 (mod 3).

In the modern day, we should reinterpret p = x2 + y2 as a factorization problem in the number
field k = Q(i). Now we write our problem as p = (x+ iy)(x− iy). Similarly, the second problem
can be written as p = (x+

√
−2y)(x−

√
−2y) in Q(

√
−2) and the third problem can be expressed

in the field Q(
√
−3). More generally, we can consider k = Q(

√
d) for an arbitrary d, called the

discriminant of k. For a general quadratic extension, the ring of integers is not a UFD, but it is
Dedekind, so we have unique factorization of prime ideals. Therefore we can write

(p) =


p1p2

(
d
p

)
= 1

p
(
d
p

)
= −1

p2
(
d
p

)
= 0( or p | d).

What we want to know is when the ideal (p) splits, and this behavior is governed by the Legendre
symbol. This symbol satisfies the miraculous identity (due to Gauss)

Theorem 1.0.3 (Quadratic Reciprocity). Let p,q be odd primes. Then we have the identity(
q

p

)(
p

q

)
= (−1)

p−1
2
q−1

2 .

1Of course, Fermat never actually proved anything, and this statement was proved by Euler in the 1740s.
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Recall that if p is odd and p - d, then
(
d
p

)
= 1 if and only if x2 ≡ d (mod p) has solutions.

Quadratic reciprocity tells us that the equation x2 ≡ q (mod p) is highly related to the equation
x2 ≡ p (mod q). This ability to change the modulus is very helpful in solving these classical
problems.

Example 1.0.4. A prime p splits in Q(
√
−3) if and only if

(
−3
p

)
= 1 if and only if

(p
3
)
= 1 if and

only if p ≡ 1 (mod 3).

Now we can generalize our question about splitting in quadratic fields to more general fields:

Question 1.0.5. Is there a criterion of the form p splits in k if and only if p ≡ ∗ (mod N) for some N? If
so, we can generalize quadratic reciprocity. This is one of the main questions of class field theory.

Example 1.0.6. We have some examples of splitting behavior:

• p splits in k = Q(
√
−5) if and only if p ≡ 1, 3, 7, 9 (mod 2)0.

• p splits in k = Q(
√
−5, i) if and only if p ≡ 1, 9 (mod 2)0.

• p splits in k = Q(ζ5) if and only if p ≡ 1 (mod 5).

However, there is no congruence condition for splitting in k = Q( 3√2) for any modulus N. The
question is what is different about the last example. First, the fields Q(

√
−5), Q(

√
−5, i), Q(ζ5) are

all Galois extensions of Q with Galois groups Z/2, Z/2×Z/2, Z/4. On the other hand, k = Q( 3√2)
is not Galois and its Galois closure Q( 3√2, ζ3) has Galois group S3.

Definition 1.0.7. A field extension L/K is called abelian if L/K is Galois and Gal(L/K) is abelian.

This gives us the following slogan: given a number field k, class field theory

1. classifies all abelian extensions L/K in an accessible way;

2. describes factorization of primes of K in L in terms of groups intrinsic to K (for example the
class group of K).

1.1 A Special Case of CFT

Here, we will classify all unramified abelian extensions L/K. Recall that the class group Cl(K) of a
number field K is

Cl(K) := {fractional ideals of K}/{principal ideals of K}.

This is always a finite abelian group.

Definition 1.1.1. Let H ⊂ Cl(K) be a subgroup. Then a finite unramified abelian extension L/K is
a class field for a subgroup H ⊂ Cl(K) if p splits in L/K if and only if [p] ∈ H ⊂ Cl(K).

Theorem 1.1.2 (Unramified CFT). Given H ⊂ Cl(K), the class field for H exists and is unique. Moreover,
each finite unramified abelian extension arises as a class field. This gives us a bijection

{finite unramified abelian extensions}←→ {subgroups of Cl(K)}.

Moreover, Gal(L/K) ∼= Cl(K)/H.
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Definition 1.1.3. Note that the class field for H = 0 is the maximal unramified abelian extension
HK of K, called the Hilbert class field. This gives a canonical isomorphism Gal(HK/K) ∼= Cl(K).
Also, we see that p splits in HK if and only if p is a principal ideal.

Example 1.1.4. For the fields K = Q, Q(i), Q(
√
−2), Q(

√
−3), we have Cl(K) = 0 and thus HK = K.

Example 1.1.5. The simplest example of a number field with nontrivial class group is K = Q(
√
−5).

Here, Cl(K) = Z/2 and HK = Q(
√
−5, i).

Remark 1.1.6. More generally, class field theory will add ramification on both sides of the corre-
spondence to obtain a correspondence

{finite abelian extensions}←→
{

subgroups of CK = A×K/K
×}.

1.2 Back to Fermat

Consider the equation p = x2 + 5y2. Recall that we have 2, 5 6= p = x2 + 5y2 if and only if p ≡ 1, 9
(mod 2)0. Note that this is different from the splitting behavior in K = Q(

√
−5). This happens

because Cl(Q(
√
−5)) = Z/2 is not trivial, and so we need both the condition that (p) = p1p2 and

that the pi are principal. By unramified CFT, we know that pi are principal if and only if they
split in HK = Q(

√
−5, i), and therefore p = x2 + 5y2 if and only if p splits in Q(

√
−5, i). In this

case, HK/Q is abelian, so we have a nice answer.

Example 1.2.1. The primes of the form p = x2 + 14y2 cannot be described in terms of a congruence
condition. The field K = Q(

√
−14) has Cl(K) = Z/4 and Gal(HK/Q) ∼= D4 is non-abelian.

Remark 1.2.2. We can study non-abelian extensions to get some nice answers that involve modular
forms, and this is called the Langlands program, which is beyond the scope of this course.

Our outline for the semester is to prove local CFT, then prove global CFT, then do applications
if time permits. This will be done using group cohomology.
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Local Fields

Recall that it is very difficult to detect whether a polynomial equation over a global field like
Q has solutions. However, we can embed Q into the local field R and then checking whether
the polynomial has real solutions is very easy because we can do analysis. To try to recover all
information about Q, we can embed Q ↪→ Qp for a prime p. We then have the following slogan,
known as the local-to-global principle:

We will study problems in Q by studying problems in all the local fields R and Qp.

2.1 Absolute Values

Definition 2.1.1. Let K be a field. An absolute value on K is a function |−| : K→ R such that

1. |−| sends K× to R>0 and 0 to 0.

2. We have |xy| = |x| · |y| for all x,y ∈ K.

3. For all x,y ∈ K, we have |x+ y| 6 |x|+ |y|.

Example 2.1.2. The usual absolute value on R defines an absolute value in this semse. This
induces an absolute value on Q ⊆ R usually denoted by |−|∞. This is known as the archimedean
absolute value on Q.

Similarly, any embedding K
σ
↪−→ R or K

σ
↪−→ C induces an absolute value on K defined by

|x|σ := |σ(x)|.

There is a different kind of absolute value that is not archimedian. Here, we will strengthen
the triangle inequality.

Definition 2.1.3. If |−| satisfies the ultrametric inequality

|x+ y| 6 max {|x|, |y|}

then we say |−| is nonarchimedean.

Remark 2.1.4. Recall that R satisfies the archimedean property: If 0 6= x ∈ R there exists n ∈ Z

such that |nx| > 1. This property fails for nonarchimedean absolute values because |nx| 6 |x| for
all n ∈ Z. In fact, |−| is nonarchimedean if and only if the set {|n · 1|}n∈Z is bounded.
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Example 2.1.5. Let a ∈ Q× and p be a prime. Then define ordp(a) ∈ Z such that

a = ±
∏
p

pordp(a).

Now for any c < 1, we define
|a|p := cordp(a).

Then we simply need to check that |−|p is a nonarchimedean absolute value on Q. Here, it is easy
to check the ultrametric inequality, and this absolute value is called the p-adic absolute value. By
convention, we will choose c = p−1 and this is the normalized p-adic absolute value on Q.

Example 2.1.6. For any number field K and prime ideal p ⊆ OK. Then we have a normalized
p-adic absolute value

|a|p :=

(
1
Np

)ordp(a)

where Np = #OK/p.

Definition 2.1.7. An absolute value |−| is discrete if
∣∣K×∣∣ ⊂ R is discrete under the usual topology

on R.

Example 2.1.8. For a number field K and prime p, the p-adic absolute value |−|p is discrete. On
the other hand, |−|∞ is not discrete.

Definition 2.1.9. Suppose |−| be nonarchimedean. Then define

1. A := {a ∈ K | |a| 6 1}. This is a subring of K.

2. Now define A× = {a ∈ K | |a| = 1}. This is a subgroup of A of invertible elements.

3. Set m = {a ∈ K | |a| < 1}. This is the unique maximal ideal of A.

Then |−| is discrete if and only if m is principal. In this case, a generator π of m is called a
uniformizer. Then every a ∈ K can be uniquely written as a = πr · u for some r ∈ Z,u ∈ A×.

Example 2.1.10. (Non-example) Consider the field Q(
{
p1/n

}
,n ∈ Z) with p-adic absolute value.

This is not a discrete absolute value.

Definition 2.1.11. An absolute value defines a metric on K by d(a,b) = |a− b| for all a,b ∈ K.
This induces a topology on K where a basis of open neighborhoods of a ∈ K is given by open balls

B(a, r) := {x ∈ K | |x− a| < r}.

Example 2.1.12. In the p-adic topology, we see that a,b ∈ Q are closer under |−|p if and only if
|a− b|p is smaller, which is equivalent to ordp(a− b) being larger, which is equivalent to a− b
being divisible by a large power of p. In other words, a ≡ b (mod p)N for N large.

Definition 2.1.13. We say two absolute values on K are equivalent, or |−| sin |−| ′ if they induce the
same topology on K.

Theorem 2.1.14 (Ostrowski, 1916). Let |−| be an absolute value on Q.

1. If |−| is archimedean, then |−| ∼ |−|∞.

2. If |−| is nonarchimedean, then |−| ∼ |−|p for a unique p.
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Remark 2.1.15. Similarly, absolute values on a number field K are given by

1. |−|p for a prime ideal p ⊆ OK (p-adic place);

2. |−|σ for some σ : K ↪→ R (real place);

3. |−|σ for some complex embeddings σ : K ↪→ C (complex place). Here, note that complex
embeddings come in conjugate pairs.

Definition 2.1.16. An equivalence class of absolute values on K is called a place (or prime) of K.

Remark 2.1.17. When v is a complex place it corresponds to a pair of complex embeddings σ,σ, so
we define

|x|v := |σ(x)|2

and this is the normalized absolute value for v.

One reason for this normalization is

Theorem 2.1.18 (Product Formula). Let K be a number field. Then for all a ∈ K×, we have∏
v place of K

|a|v = 1.

Remark 2.1.19. When K = Q, let a = m
n for m,n ∈ Z. Then all but finitely many terms in the

product are finite. Now it suffices to check this formula for a = p and a = −1.
When a = p, we see that |a|p = p−1 and for primes ` 6= p, we have |a|` = 1. Finally, we see

that |a|∞ = p, so the formula holds. When a = −1, all absolute values are 1, so the product of all
absolute values is trivial.

For a general number field, we can simply take the norm map NK/Q to Q and check that it
behaves well with respect to the places.

Theorem 2.1.20 (Weak Approximation). Let |−|1, . . . , |−|n be inequivalent absolute values on a field K.
Let a1, . . . ,an ∈ K. Then for all ε > 0, there exists a ∈ K such that |a− ai|i < ε for all i = 1, . . . ,n.

Remark 2.1.21. This allows us to approximate any finite collection ai ∈ K for inequivalent |−|i.

Remark 2.1.22. As a sanity check, consider K = Q and suppose |−|i = |−|pi . Then given a1, . . . ,an,
we simply find a ∈ Q such that ai ≡ a (mod p)Ni , which is possible by the Chinese remainder
theorem.

Remark 2.1.23. More generally, if |−|1 � |−|2 then one can choose a ∈ K such that |a|1 > 1 and
|a|2 < 1. Then if we consider ar

1+ar as r → ∞, the absolute value under |−|1 approaches 1 and
under |−|2 it approaches 0.

2.2 Completions

Consider the field Q equipped with the the absolute value |−|∞. Then we can complete Q as a
metric space to obtain the field R. More generally, if (K, |−|) is a field equipped with an absolute
value (a valued field), then we will produce a general completion K̂. Our aim is to produce a field
that contains the original field and whose arithmetic is easier to understand.

Definition 2.2.1. Let (K, |−|) be a valued field. Then a sequence {an} of elements in K is called
Cauchy if for all ε > 0, there exists N > 1 such that |an − am| < ε for all n,m > N. We say that K
is complete if any Cauchy sequence in K has a limit in K.
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Example 2.2.2. Consider the sequence of integers {an = 2n} = 2, 4, 8, 16, 32, . . .. Clearly, this is not
Cauchy under the usual absolute value on Q, but then if m > n, we see that

|an − am|2 =

(
1
2

)n
,

so {an} is Cauchy in (Q, |−|2). We then see that |an − 0|2 =
(

1
2

)n
→ 0 and thus the limit of the

sequence is 0.

Example 2.2.3. Consider {an} = {4, 34, 334, 3334, . . .}. Then if m > n, we have

|an − am|5 =

(
1
5

)n
and therefore {an} is Cauchy in (Q, |−|2). We then see that

|3an − 2|5 =
1

5n
n→∞−−−−→ 0

and therefore an → 2
3 .

Remark 2.2.4. In general, the limit of a Cauchy sequence may not exist.

Theorem 2.2.5. Let (K, |−|) be a valued field. Then there exists a complete valued field (K̂, |−|) and an
embedding K ↪→ K̂ of valued fields such that any other embedding K ↪→ L of K into a complete valued field
factors uniquely through K̂. In particular, K̂ is unique up to isomorphism and is called the completion of
(K, |−|).

Proof. Let K̂ be the set of all Cauchy sequences in K under the equivalence relation where
{an} ∼ {bn} where limn→∞ |an − bn| = 0. Then K̂ is equipped with termwise addition and
multiplication and absolute value |{an}| = limn→∞ |an|. Thus K̂ is a complete valued field.

To verify the universal property, we see that x 7→ (x, x, . . . , x) embeds K ↪→ K̂ and this satisfies
the desired universal property.

Definition 2.2.6. Let K be a number field and v a place of K. Denote by Kv := (K, |−|v). When v is
a finite place, denote by OKv = OK,v = Ov the valuation ring {x ∈ Kv : |x| 6 1} ⊆ Kv. When v is an
infinite place, we see that Kv ∼= R, C.

Example 2.2.7. Let K = Z. Then we see that Q∞ = R and Qp has a subring Zp, which is a
discrete valuation ring. Here, elements of Zp have a nonnegative lowest power of p.

Example 2.2.8. If K = Q(i), then K∞ = C and Kp for p ⊂ OK = Z[i] prime ideals are the
completions of K.

Remark 2.2.9. Let K be a nonarchimedean discrete valued field. Then K̂ is a complete discrete
valued field and the valuation ring Â ⊂ K̂ is the closure of A ⊆ K in K̂. Also, the maximal ideal
m̂ ⊆ Â is the closure of m ⊆ A in K̂. Finally, a uniformizer π of K is also a uniformizer of K̂.

We also see that the natural map A/mn → Â/m̂n is an isomorphism. This tells us that we can
approximate elements in Â up to πnA using elements in A.

Proposition 2.2.10. Let K be a discrete valued field. Let S be a complete set of representatives of A/m and
π be a uniformizer of K. Then any element of K̂ can be uniquely written as akπk + ak+1π

k+1 + · · · where
ai ∈ S and k ∈ Z.
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Corollary 2.2.11. Let x ∈ Qp. Then x has a p-adic expansion x =
∑
i>k aip

i, where ai ∈ S = Z/pZ =
{0, 1, . . . ,p− 1} and k ∈ Z.

Remark 2.2.12. The main term of the p-adic expansion is the lowest term pk. This is completely
unlike the situation with the decimal digits of x ∈ R, where the highest power of 10 is the main
term.

Remark 2.2.13. Qp resembles Fp((T)) but is more complicated arithmetically. When we add two
power series, we simply add the coefficients, but addition in Qp requires carrying. In addition,
we see that Fp[[T ]]/T

n ↪→ Fp[[T ]] but Zp/p
n does not embed in Zp.

Corollary 2.2.14. We have an isomorphism

Â = lim
←−

Â/m̂n ∼= lim
←−

A/mn.

For example, we have
Zp = lim

←−
Z/pnZ.

Proof of Proposition 2.2.10. Let x ∈ K̂×. Then x = πk · y for some k ∈ Z and y ∈ Â×. Then we find
the first digit a0 by considering y ≡ a0 in A/m = S. Then we replace π−1(y−a0) = a1 +a2π

2 + · · ·
and repeat the process. Repeating this, we simply use the completeness of K̂ to obtain the desired
expansion.

The advantage of completeness is that it is much easier to solve equations. Here, we take
solutions modulo a high power of p and then take the limit.

Theorem 2.2.15 (Hensel’s Lemma). Let K be a complete discrete valued field and k = A/m be the residue
field. Now let f(x) ∈ A[x] be a monic polynomial and let f(x) := f(x) mod m ∈ k[x]. Assume that
f(x) = g0(x)h0(x) in k[x] where g0,h0 are monic and coprime. Then there exist unique g,h ∈ A[x] such
that f(x) = g(x)h(x) and g ≡ g0,h = h0.

Corollary 2.2.16. Suppose f has a simple root α0 ∈ k. Then f(x) has a unique zero α ∈ A such that
α = α0.

Corollary 2.2.17. If k = Fq for q = pt, then f(x) = xq − x has q distinct roots in k = Fq and hence q
distinct roots in K. In particular, K× contains all (q− 1)-th roots of unity, so we have a map F×q ↪→ K×,
called the Teichmuller lift.

Proof of Hensel’s lemma. Let g0,g0 ∈ A[x] be arbitrary monic lifts. Then f− g0h0 ∈ πA[x]. Now
inductiely we assume that there exist gn,hn ∈ A[x] monic such that f− gnhn ∈ πn+1A[n]. We
simply write gn+1 = gn + πn+1u for some u ∈ A[x] such that degu < deggn and hn+1 =
hn + πn+1v where deg v < deghn. Then f− gn+1hn+1 ∈ πn+2A if and only if

uhn − vgn ≡
f− gnhn
πn+1 (mod π)

but we can find such u, v by Bezout’s lemma. Thus the desired gn+1,hn+1 exist, and we obtain
g,h by taking the limit.
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2.3 Extension of Absolute Values and Unramified Extensions

Let K be a complete discrete valued field and L be a finite separable extension of K. Suppose
[L : K] = n. The main result is

Theorem 2.3.1. Let K,L be as above. Then

1. |−|K extends uniquely to a discrete absolute value |−|L on L;

2. L is complete with respect to |−|L;

3. For all β ∈ L, we have

|β|L =
∣∣∣NL/K(β)∣∣∣1/n

K
.

Remark 2.3.2. To perform a sanity check, if β ∈ K, we have |β|L =
∣∣∣NL/K(β)∣∣∣1/n

K
= |βn|

1/n
K = |β|K.

Proof.

1. We first need to prove that a unique extension exists. We know that |−|K comes from a
discrete valuation (hence is nonarchimedean), so let A ⊆ K be the valuation ring. Then A is
a Dedekind domain. Then let B be the integral closure of A in L. Then B is also a Dedekind
domain. But then any absolute value on L extending |−|K comes from a maximal iddeal of B
lying above the unique maximal ideal p ⊆ A. Therefore, we need to show that B is a local
ring.
To see this, assume not. Suppose there exist two prime ideals P1,P2 ⊆ B lying above p. Let
β ∈ P but β /∈ P2. This implies that A[β]∩P1 6= A[β]∩P2. Let f(x) ∈ A[x] be the minimal
polynomial of β. Then f(x) = f(x) mod p ∈ A/p[x] = k[x] must satisfy f(x) = h(x)m for an
irreducible h(x) ∈ k[x] (otherwise it has two distinct irreducible factors and Hensel tells us
that the factorization can be lifted to A[x]). This implies that

A[β]/pA[β] = A[x]/(p, f(x)) = k[x]/(f(x)) = k[x]/(h(x))m

has a unique prime ideal, generated by h(x), which contradicts our original assumption that
A[β]∩P1,A[β]∩P2 were distinct prime ideals.

2. Now we show that L is complete. Let {ak} be a Cauchy sequence in L. Choose a K-basis
{e1, . . . , en} of L and write

ak = a1,ke1 + · · ·+ an,ken ai,k ∈ K.

But then each sequence {ai,k}k forms a Cauchy sequence in K. By completeness of K, we
can take ai := limk→∞ ai.k ∈ K and so we have

lim
k→∞ak = a1e1 + · · ·+ anen ∈ L,

and thus L is complete.

3. Let L̃ be the Galois closure of L/K. Then we know that |−|K also extends uniquely to L̃. For
any σ ∈ Gal(L̃/K), the map L ∈ β 7→ |σ(β)|

L̃
is also an absolute value on L extending |−|K.

Therefore, by the uniqueness of the extension, we see that |β|L = |σ(β)|
L̃

. This implies that∣∣∣NL/K(β)∣∣∣
K
=
∣∣∣NL/K∣∣∣

L̃
=
∏

σ : L→L̃

|σ(β)|
L̃
=
∏

σ : L→L̃

|β|L = |β|nL ,

as desired.
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Corollary 2.3.3. If L/K is merely an algebraic and separable extension, then |−|K also extends uniquely to
an absolute value on L, but |−|L may fail to be discrete or complete.

Proof. Note that L is the union of all of its finite subextensions.

Definition 2.3.4. Let K be a complete discrete valued field and L be a finite separable extension.
Let OK ⊆ K and OL ⊆ L be the valuation rings and p ⊆ OK,P ⊆ OL be the maximal ideals. Next,
let k = OK/p, ` = OL/P be the residue fields.

Define the ramification index e(L/K) to be the e > 1 such that pOL = Pe. Next, define the
residual degree f(L/K) to be f > 1 such that f = [` : k]. Then n = ef.

Definition 2.3.5. The extension L/K is called

1. Unramified if e(L/K) = 1 (which implies f(L/K) = n and p = P);

2. Totally ramified if e(L/K) = n (which implies ` = k and p = Pn).

2.4 Unramified Extensions

We will study unramified extensions. Here, we will try to understand L/K via `/k.

Proposition 2.4.1. If L/K is unramified, write ` = k(α0),α0 ∈ `. Then for any α ∈ OL such that α = α0
we have L = K(α).

Proof. Let f(x) ∈ OK[x] be the minimal polynomial of α. Then deg f = deg f = [K(α) : K] 6 [L : K].
But then we know that deg f > [k(α0) : k] = [` : k] = [L : K]. But this implies that deg f = [L : K], so
K(α) = L.

Proposition 2.4.2. If L = K(α) with minimal polynomial of α given by f(x) such that f(x) has no repeated
roots over k, then L/K is unramified.

Proof. If f(x) is irreducible, then by Hensel’s lemma, we have f(x) = h(x)m where h(x) ∈ k[x] is
irreducible. But then because f(x) has no repeated roots, we see that m = 1. But then we see that
[` : k] = [L : K] and thus L/K is unramified.

Proposition 2.4.3.

1. Let K ⊂ L ⊂M be a tower of field extensions. Then M/K is unramified if and only if M/L and L/K
are unramified.

2. Assume k is perfect. If L/K is unramified and L ′/K is finite, then LL ′/L ′ is unramified.

3. Assume k is perfect. Then if L/K and L ′/K are unramified, then LL ′/K is unramified.

Proof.

1. Note that M/K is unramified if and only if e(M/K) = 1, which is equivalent to e(M/L) =
e(L/K) = 1 by multiplicativity of the ramification index.

2. Suppose L/K is unramified. Then let L = K(α) and let f(x) ∈ OK[x] be the minimal
polynomial of α. Then the reduction f(x) ∈ k[x] is irreducible and ` = k(α). Because k is
perfect, f(x) has no repeated roots.

Because LL ′/L ′ = L ′(α)/L ′, let g(x) ∈ OL ′ [x] be the minimal polynomial of α. Then
g(x) | f(x) and thus g(x) has no repeated roots, so LL ′/L ′ is unramified.
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3. Consider the tower K ⊆ L ′ ⊆ LL ′. Because L/K,L ′/K are unramified, we know LL ′/L is
unramified. This implies that LL ′/K is unramified.

Theorem 2.4.4. Assume that k is perfect. Then there is an inclusion-preserving bijection

{L/K finite unramified} '←→ {`/k finite} L 7→ `.

Moreover, L/K is Galois if and only if `/k is Galois and Gal(L/K) ' Gal(`/k) in this case.

Proof. We prove surjectivity. Let `/k be a finite extension. Write ` = k(α0) and let f(x) = k[x] be
the minimal polynomial of α0. Then any monic lift f(x) ∈ OK[x] of f(x) has a root α such that
α = α0 by Hensel’s Lemma. Then L = K(α) has residue field ` = k(α0). Because f is irreducible
and k is perfect, we know L/K is unramified.

Now we will prove injectivity. Let L/K,L ′/K be unramified with the same residue field `. Then
LL ′/K is also unramified with residue field `. But this implies that

[LL ′ : K] = [` : k] = [L : K] = [L ′ : K],

so we must have L = LL ′ = L ′.
Now we will show the statements about Galois extensions. If L/K is Galois, then Gal(L/K)

preserves OL and pL ⊆ OL and acts trivially on OK and pK ⊆ OK. This implies that any
σ ∈ Gal(L/K) induces σ ∈ Aut(`/k). If L = K(α) and α0 = α, then L/K is Galois if and only if
it contains α, but this is equivalent to ` containing all conjugates of α0, which is equivalent to
`/k being Galois. Then the natural map Gal(L/K) → Gal(`/k) is an isomorphism because the
permutation on conjugates of α induces the same permutation on the conjuages of α0.

Corollary 2.4.5. If L/K is an algebraic extension (possibly infinite), then there exists a largest unramified
subextension K0/K of L/K. Moreover, L/K0 is totally ramified.

Proof. Let K0 be the compositum of all finite unramified subextensions of L/K. Then the residue
field of K0 is equal to the residue field of L (otherwise, we can create an even larger unramified
extension). This implies L/K0 is totally ramified.

Corollary 2.4.6. Assume k = Fq. Then for all n > 1 there is a unique unramified extension L/K of
degree n and Gal(L/K) = Gal(Fqn/Fq) ∼= Z/nZ.

Proof. There is a unique degree n extension of Fq.

Definition 2.4.7. Define the Frobenius element σ ∈ Gal(L/K) when k = Fq to be the generator of
Gal(L/K) corresponding to the Frobenius map under Gal(L/K) '−→ Gal(Fqn/Fq). We will call this
element FrobL/K, and FrobL/K(α) ≡ αq (mod )pL for all α ∈ OL.

Corollary 2.4.8. When k = Fq, the maximal unramified extension of K is

Kur =
⋃

(n,q)=0

K(ζn).

In particular, we have
Qur
p =

⋃
(n,p)=1

Qp(ζn).

Proof. We know Fqn = Fq(ζqn−1), so Fq is given by adjoining all coprime-to-p roots of unity.
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2.5 Totally Ramified Extensions

Definition 2.5.1. A polynomial f(x) ∈ K[x] is Eisenstein if

f(x) = anx
n + · · ·+ a1x+ a0

such that |an| = 1, |ai| < 1, |a0| = |π|.

Example 2.5.2. The polynomial xn − π is Eisenstein. Note that K[x]/f(x) = K( n
√
π) is totally

ramified.

Proposition 2.5.3. A finite extension L/K is totally ramified if and only if L = K(α) where α is a root of
an Eisenstein polynomial.

Proof. Let α be the root of an Eisenstein polynomial. Then |αn| =
∏
σ : L↪→L̃ |σ(α)| = |a0| = |π|.

Therefore e(L/K) > n and thus L/K is totally ramified.
Now suppose L/K is totally ramified. Let α be a uniformizer of L. Therefore (αn) = (π)

and thus |α|L = |π|
1/n
L . Then 1,α, . . . ,αn−1 have absolute values representing different cosets in∣∣L×∣∣/∣∣K×∣∣. Thus the minimal polynomial of α has degree n. Moreover, if we write the minimal

polynomial as

αn + an−1α
n−1 + · · ·+ a1α+ a0 = 0,

then |α|n = |a0| = |π| and |ai| < 1 so that the required cancellation happens. But this implies that
α is a root of an Eisenstein polynomial.

Proposition 2.5.4. Assume k = Fq. Then there are only finitely many totally ramified extensions of K.

Proof. Recall Krasner’s lemma: Let f(x) =
∑n
i=0 aix

i,g(x) =
∑n
i=0 bix

i ∈ K[x] and assume
|ai − bi| is sufficiently small for all i. If f(x) is irreducible, then so is g(x), and

{K(α) | f(α) = 0} = {K(β) : g(β) = 0}.

Therefore a totally ramified extension depends only on a small neighborhood of (a0, . . . ,an−1) in
the set

{|a0| = |π|}× {|a1| < 1}× · · · × {|an−1| < 1},

which is compact, so it can be covered by finitely many such small neighborhoods.

Recall that if K is a complete discrete valued field with residue field k = Fq, there exists a
unique unramified extension L/K of degree n. Together with the proposition, there exist finitely
many totally unramified extensions L/K of degree n. This is of course false for number fields; for
example, Q has infinitely many quadratic extensions.

Remark 2.5.5. Krasner (1966) gave an explicit formula for the number of extensions of p-adic fields
of degree n and an algorithm to construct the set of generating polynomials of degree n. More
desirable is a way to organize all these extensions, and local class field theory achieves this for
abelian extensions of all local fields.

Definition 2.5.6. A local field is a valued field K that is locally compact under the topology induced
by the absolute value.

Remark 2.5.7. Recall that

1. A topological space is compact if and only if open cover has a finite subcover.
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2. A topological space is locally compact if every point has compact neighborhood.

3. A metric space is compact if and only if it is complete and totally bounded.

4. A metric space is compact if and only if all closed balls are compact.

5. This tells us that local fields are always complete. To find a limit for a Cauchy sequence,
everything is contained in a closed ball, which is complete and thus has a limit.

Example 2.5.8.

1. The easiest examples of local fields are R, C.

2. If K is archimedean and complete, then K ' R or C.

Lemma 2.5.9. Let K be a complete discrete valued field. Then K is locally compact if and only if the residue
field k is finite.

Proof. Let K be locally compact. Then OK = {x ∈ K | |x| 6 1} is a closed ball. This means that OK is
compact. If we consider an open cover

OK =
⋃
x∈k

(x+ pK),

this has a finite subcover. But all of the x+ pK are disjoint, so k is finite.
Now suppose k is finite. We show that every x ∈ K has a compact neighborhood. In particular,

we will show that x+OK is compact and therefore that OK is compact. To do this, we need to
show that OK is totally bounded. Choose r > 0 and consider the open balls Ba,r give a cover of
OK as long as a ∈ OK/p

n
K and n is sufficiently large. By finiteness of k, we know that OK/pnK is

finite, as desired.

Theorem 2.5.10. Every local field is one of the following:

1. R or C;

2. A finite extension of Qp;

3. Fq((t)) for a prime power q.

Proof. Suppose charK = 0. Then Q ⊆ K. If K is archimedean, then K = R or C. Otherwise,
Qp ⊆ K and by local compactness, K/Qp must be finite.

If charK = 0, then Fp ⊆ K. Let k = Fq be the residue field. Then

K =

∑
n>k

anπ
n | k ∈ Z,an ∈ S = OK/pK

.

By Hensel’s lemma, we have F×q ↪→ K× and we thus have Fq ⊆ K. Therefore K ∼= Fq((π)), as
desired.
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2.6 Statement of Local Class Field Theory

Recall that a field extension L/K is abelian if it is Galois and Gal(L/K) is abelian.

Exercise 2.6.1. If L1/K,L2/K are abelian, then L1L2/K is also abelian.

Define Kab to be the maximal abelian extension of K. Equivalently, this is the compositum of
all finite extensions of K. Then Kab/K has infinite degree, and classifying abelian extensions of K
is equivalent to understanding Gal(Kab/K).

Definition 2.6.2. Let Ω/K be a possible infinite extension. We call Ω/K Galois if it is algebraic,
separable, and normal. Equivalently, Ω is the union of all its finite Galois subextensions. In
particular, we have

Gal(Ω/K) = lim←−
L/K finite Galois

Gal(L/K)

is an inverse limit of finite groups, known as a profinite group. Then Gal(Ω/K) has a profinite
topology with a basis of open neighborhoods of 1 given by Gal(Ω/L) ⊆ Gal(Ω/K) for finite
subextensions L/K.

Example 2.6.3. Consider Ω/K = Fq/Fq. Then

Gal(Fq, Fq) = lim←−
n

Gal(Fqn/Fq) = lim←−
n

Z/nZ =: Ẑ.

The open neighborhoods of 1 are given by Gal(Fq/Fqn) ∼= nẐ ⊆ Ẑ.

Remark 2.6.4. If L/K is finite, then Gal(Ω/L) is an open subgroup. In addition, Gal(Ω/L) is also
closed, so it is clopen.

If L/K is any extension, then

Gal(Ω/L) =
⋂
Li⊆L

Li/K finite

Gal(Ω/Li)

is a closed subgroup.

Theorem 2.6.5 (Galois correspondence). Let Ω/K be Galois. Then there is a Galois correspondence

{L/K subextension of Ω/K}←→ {closed subgroups of Gal(Ω/K)}.

Moreover, L/K is Galois if and only if the corresponding closed subgroup H ⊆ Gal(Ω/K) is normal.

Remark 2.6.6. If H ⊆ Gal(Ω/K) is not necessarily closed (for example, Z ⊂ Ẑ is not closed and
its closure is Ẑ), then ΩH corresponds to H under the Galois correspondence. In particular,
Gal(Kab/K) = G/[G,G] =: Gab, where G = Gal(K/K).

This gives us the slogan, that when K is a local field, Gal(Kab/K) can be understood in terms
of K×.

Theorem 2.6.7 (Local Artin reciprocity). There exists a unique φK : K× → Gal(Kab/K) (local Artin
reciprocity map) such that



18

1. For any finite abelian L/K, there is a commutative diagram

K× Gal(Kab/K)

K×/N(L×) Gal(L/K).

φK

∼

φL/K

2. For any finite unramified L/K and uniformizer π of K, we have φL/K(π) = FrobL/K ∈ Gal(L/K).

2.7 Norm Subgroups

Let K be a nonarchimedean local field.

Definition 2.7.1. A subgroup of K× is a norm subgroup if it is of the form N(L×) for some finite
abelian extension L/K.

Proposition 2.7.2. Assume local CFT I.

1. N(L×1 )∩N(L×2 ) = N((L1L2)
×).

2. N(L×1 ) ⊆ N(L×2 ) if and only if L1 ⊇ L2.

3. A subgroup of K× containing a norm subgroup is also a norm subgroup.

4. N(L×1 )N(L×2 ) = N((L1 ∩ L2)
×).

Proof. Recall that there exists a unique local Artin reciprocity map K×
φK−−→ Gal(Kab/K).

1. Note that if K ⊆ L2 ⊆ L1, then N(L×1 ) ⊆ N(L×2 ), so clearly for L1,L2, we see that
N((L1L2)

×) ⊆ N(L×1 )∩N(L×2 ). Conversely, if a ∈ N(L×1 )∩N(L×2 ), then by local Artin reci-
procity, we see that a ∈ kerφL1/K

∩ kerφL2/K
. But this means that φK(a)

∣∣
L1

= φK(a)
∣∣
L2

=

1, and thus φK(a)
∣∣
L1L2

= 1. But this implies that a ∈ kerφL1L2/K
= N((L1L2)

×).

2. One direction is obvious. Assume that N(L×1 ) ⊆ N(L×2 ). Therefore

N(L×1 ) = N(L×1 )∩N(L×2 ) = N((L1L2)
×).

However, we know that

[L1L2 : K] = [K× : N((L1L2)
×)] = [K× : N(L×1 )] = [L1 : K],

which implies that L1 = L1L2, so L1 ⊇ L2.

3. Assume H ⊇ N(L×). Let M = LφL/K(H)⊆Gal(L/K). Then by local Artin reciprocity, we have
a commutative diagram

H/N(L×) Gal(L/M)

K×/N(L×) Gal(L/K)

K×/H = K×/N(M×) Gal(M/K).

'

φL/K
∼

φM/K
∼
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This tells us that H = N(M×) is also a norm subgroup.

4. Note that L1 ∩ L2 is the largest subextension contained in both L1,L2. On the other hand,
N((L1 ∩ L2)

×) is the smallest subgroup containing bothN(L×1 ),N(L×2 ), and the desired result
follows.

Corollary 2.7.3. The map L 7→ N(L×) defines a bijection

{L/K finite abelian}←→
{

norm subgroups of K×
}

.

The idea of local Artin reciprocity was to understand extrinsic data about extensions using
intrinsic data about the group K×. However, the notion of a norm subgroup still still extrinsic, so
we want a more intrinsic characterization of norm subgroups.

Lemma 2.7.4. Let L/K be a finite extension. If N(L×) has finite index in K×, it must be open.

Proof. Note that N : L× → K× is continuous and O×L is compact. Then N(O×L ) ⊆ K
× ic compact

and hence closed. But then O×K/N(O×L )→ K×/N(L×), and thus N(O×L ) ⊆ O×K is open (and closed).
But this implies that N(O×L ) ⊆ K

× is open (because O×K ⊆ K
× is open), and thus N(L×) must be

open.

Corollary 2.7.5. If L/K is finite abelian, then N(L×) ⊆ K× is a finite index open subgroup.

Theorem 2.7.6 (Local CFT II: local existence). Every finite index open subgroup of K× is a norm
subgroup.

Corollary 2.7.7. We have a bijection

{L/K finite abelian}←→
{

finite index open subgroups of K×
}

.

Remarks 2.7.8.

1. This bijection also holds for archimedean local fields. For K = R, the two extensions R, C

correspond to R×, R>0, while C is algebraically closed and C× is the only finite-index open
subgroup of itself.

2. If K is a finite extension of Qp, then any finite index subgroup of K× is automatically
open. However, this is not true for K = Fq((t)). In fact, if H ⊆ K× has finite index n,
then (K×)

n ⊆ H. Therefore, it suffices to show that (K×)n is open. It is easy to see that
(K×)

n ⊇ 1 + pmK for some m� 0. Therefore the equation xn − a = 0 has solutions in K for
a ∈ 1 + pmK by Hensel for p - n and a stronger version for p | n (that does not always hold).

Now we want a reformulation of local CFT using the norm topology.

Definition 2.7.9. The norm topology on K× is given by declaring a basis of open neighborhoods
of 1 to be the norm subgroups of K×, which are the same as finite index open subgroups in the
usual topology.

Example 2.7.10. Note that O×K is open under the usual topology, but is not open under the norm
topology.

Remark 2.7.11. The norm topology has fewer open sets and is therefore coarses than the usual
topology.
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Definition 2.7.12. Define K̂× to be the completion of K× under the norm topology:

K̂× := lim←−
L/K finite abelian

K×/N(L×).

Then the Artin reciprocity map induces an isomorphism K̂× ' Gal(Kab/K).

Proposition 2.7.13. We have an isomorphism K̂× ∼= O×K × Ẑ as topological groups.

Proof. Choose a uniformizer π of K. Then K× ∼= O×K × π
Z. Then a basis of finite index open

subgroups is given by (q+ pmk )× πnZ for some m,n > 1. This implies that

K̂× ∼= lim←−
m

O×K/(1 + pmK )× lim←−
n

Z/nZ = O×K × Ẑ.

Corollary 2.7.14. There is an isomorphism Gal(Kab/K) ∼= O×K × Ẑ as topological groups for any choice

of uniformizer π. Therefore, we have a decomposition Kab = Kπ · Kur, where Kπ = (Kab)
φK(π) and

Kur = (Kab)
φK(O

×
K) is the maximal unramified extension. This means that Kπ is the totally ramified part

of Kab.

Remark 2.7.15. More canonically, consider the short exact sequence

0→ O×K → K× → Z→ 0.

If we consider the profinite completion of this, we obtain an exact sequence

0→ O×K → K̂× → Ẑ→ 0.

Because Z ↪→ Ẑ is dense, so is K× ↪→ K̂×.

Now, it remains to prove local class field theory. First, we will construct the local Artin
reciprocity map φK using Galois cohomology. After we prove that φK has the desired property,
we will prove the local existence theorem by constructing enough norm subgroups using cyclic
extensions.
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Group Cohomology

Definition 3.0.1. Let G be a group. Then a G-module is a (left) module over the ring Z[G], or in
other words, an abelian group with a linear (left) G-action.

Example 3.0.2. Let L/K be a finite Galois extension of fields and G = Gal(L/K). Then M = L and
M = L× are both G-modules.

Example 3.0.3. Any abelian group M can be regarded as a G-module under the trivial action.

Definition 3.0.4. A homomorphism of G-modules α : M → N is a G-equivariant group homomor-
phism, or equivalently a morphism of Z[G]-modules. The set of such morphisms is denoted
HomG(M,N).

We will denote the category of G-modules with G-linear maps by ModG. Because ModG =
ModZ[G], it is an abelian category with enough injectives and projectives. This allows us to develop
the full theory of homological algebra in a concrete way.

Definition 3.0.5. M ∈ ModG is injective if the functor HomG(−,M) is exact. Dually, M ∈ ModG is
projective if HomG(M,−) is exact.

Definition 3.0.6. An abelian category has enough injectives if any object can be embedded in an
injective object. Similarly, an abelian category has enough projectives if any object has a surjection
from a projective object.

Example 3.0.7. The free Z[G]-module M = Z[G] is projective. In fact, HomG(Z[G],M) =M.

3.1 Definition of Cohomology

Definition 3.1.1. Let M ∈ ModG. Define its G-invariants by

MG := {x ∈M | gx = x for all g ∈ G} ⊆M

to be the largest submodule with trivial G-action.

Example 3.1.2. Let G = Gal(L/K). Then if M = L, Galois theory tells us that MG = K. Similarly,
if M = L×, then MG = K×.

21
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Remark 3.1.3. In other words, we have MG = HomZ[G](Z,M), where Z has the trivial action.
This implies that the functor M 7→MG is always left-exact. Therefore, for a short exact sequence

0→ A→ B→ C,

we have an exact sequence
0→ AG → BG → CG.

However, this may fail to be right-exact.

We may resolve this failure of right-exactness by constructing the derived functor of (−)G.
This will give us a long exact sequence.

Definition 3.1.4. The group cohomology Hr(G,M) for any r > 0 is defined by be the functor
Extr(G,M). This is the right derived functor of HomZ[G](Z,M). It is characterized by

1. H0(G,M) =MG.

2. A short exact sequence 0 → A → B → C → 0 induces a long exact sequence in group
cohomology

0 AG BG CG

H1(G,A) H1(G,B) H1(C,G) · · ·

3. If I ∈ ModG is injective, then Hr(G, I) = 0 for all r > 1.

Remark 3.1.5. More concretely, we can compute Hr(G,M) using an injective resolution of M. If we
consider an injective resolution

0→M→ I0 → I1 → I2 → · · · ,

then we apply (−)G to obtain a complex

(I0)
G → (I1)

G → (I2)
G → · · ·

and then we have Hr(G,M) = Hr((I•)G).

Remark 3.1.6. We can also compute Hr(G,M) using a projective resolution of Z. If we consider a
projective resolution

· · · → P2 → P1 → P0 → Z→ 0,

then we apply HomG(−,M) to this and obtain a complex

HomG(P0,M)→ HomG(P1,M)→ HomG(P2,M)→ · · ·

and then H•(G,M) is just the cohomology of this complex.

Now we will give a description of the cohomology in low degree. In particular, what we will
do is use an explicit free resolution of Z.
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Definition 3.1.7. Define Pr = Z[G× · · ·G︸ ︷︷ ︸
r+1

] where G acts on Pr by

g · (g0, . . . ,gr) = (gg0, . . . ,ggr).

Note that Pr is a free Z[G]-module with basis {(1,g1, . . . ,gr)}. Now we define the morphism
Pr → Pr−1 by

(g0, . . . ,gr) 7→
r∑
i=0

(−1)i(g0, . . . , ĝi, . . . ,gr).

Lemma 3.1.8. The previous definition gives a free resolution of Z in ModG.

Definition 3.1.9. This is clearly a complex. To prove exactness, let

kr : Pr → Pr+1 (g0, . . . ,gr) 7→ (1,g0, . . . ,gr).

Then we can check that dr ◦kr+kr−1 ◦dr−1 = id. Then taking the image of both sides of ker dr−1,
we obtain dr ◦ kr(ker dr−1) = ker dr−1 and thus ker dr−1 ⊆ Im dr.

Corollary 3.1.10. We can compute Hr(G,M) = Hr(HomG(P•,M)).

Definition 3.1.11. We have an identification

HomG(Pr,M) =
{
ϕ : Gr+1 →M | ϕ(gg0, . . . ,ggr) = gϕ(g0, . . . ,gr)

}
.

These are called the homogeneous r-cochains of G with values in M and are denoted by C̃r(G,M).
Then the differentials are given by

C̃r(G,M)
d̃r−→ C̃r+1(G,M) (d̃rϕ)(g0, . . . ,gr+1) =

r+1∑
i=0

(−1)iϕ(g0, . . . , ĝi, . . . , r+ 1).

Then we have an explicit cochain description

Hr(G,M) =
ker d̃r

Im d̃r−1
=

{homogeneous r-cocycles}
{homogeneous r-coboundaries}

.

Note that homogeneous r-cocycles ϕ : Gr+1 →M are determined by their values on elements of
the form (1,g1, . . . ,gr) for gi ∈ G, or equivalently on elements of the form (1,g1,g1g2, . . . ,g1 · · ·gr).
Therefore we may eliminate one degree of freedom.

Definition 3.1.12. Define the group of inhomogeneous r-cochains to be the group

Cr(G,M) := {ϕ : Gr →M arbitrary function}.

Now we have an isomorphism C̃r(G,M) ' Cr(G,M) given by

ϕ̃ 7→ ϕ(g1, . . . ,gr) := ϕ̃(1,g1,g1g2, . . . ,g1 · · ·gr).

The differentials Cr(G,M)
dr+1
−−−→ Cr+1(G,M) are given by

(drϕ)(g1, . . . ,gr+1) = g1ϕ(g2,g3, . . . ,gr)

+

r∑
i=1

(−1)iϕ(g1,g2, . . . ,gi−1,gigi+1,gi+2, . . . ,gr)

+ (−1)rϕ(g1,g2, . . . ,gr).

Now we can define the r-cocycles Zr(G,M) and r-coboundaries Br(G,M) and the corresponding
cohomology groups Hr(G,M).
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Example 3.1.13. Suppose r = 1. Then we have

Z1(G,M) = {ϕ : G→M | dϕ = 0}
= {ϕ : G→M | g1ϕ(g2) −ϕ(g1g2) +ϕ(g1) = 0}
= {ϕ : G→M | ϕ(g1g2) = g1ϕ(g2) +ϕ(g1)}.

Such functions are usually called crossed homomorphisms.
On the other hand, we have

B1(G,M) =
{

d0ϕ | ϕ : {1}→M
}

=
{
(d0ϕ)(g) = gm−m | m ∈M

}
= {ϕ : G→M | ϕ(g) = gm−m for some m ∈M}.

These functions are called principal crossed homomorphisms. Therefore, we have

H1(G,M) =
{crossed homomorphisms}

{principal crossed homomorphisms}
.

Example 3.1.14. If M acts trivially on G, then Z1(G,M) = HomGrp(G,M) and B1(G,M) is trivial.
Thus H1(G,M) = HomGrp(G,M).

Remark 3.1.15. There is an explicit cochain description for Hr(G,M), but computing using this
definition is extremely tedious. Instead, we will try to break G and M into smaller pieces and
then piece them back together.

3.2 Change of Groups

Definition 3.2.1. Let H ⊆ G be a subgroup and let M ∈ ModH. Define the induced module

IndGHM := HomZ[H](Z[G],M) = {ϕ : G→M | ϕ(hg) = hϕ(g)}

with the action of G given by
(gϕ)(x) := ϕ(xg).

Example 3.2.2. For any M ∈ ModG, we have IndGGM =M.

Definition 3.2.3. Let M ∈ ModG. Then define the restriction ResGHM to be the same M but viewed
as an H-module.

Proposition 3.2.4.

1. (Frobenius reciprocity) For any M ∈ ModG,N ∈ ModH, we have

HomG(M, IndGHN) ∼= HomH(ResGHM,N).

2. The functor IndGH is an exact functor.

3. The functor IndGH preserves injections.

Proof.
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1. We will construct explicit mutual inverses. We will define

HomG(M, IndGHN)
∼←→ HomH(ResGHM,N)

α 7→ β(m) := α(m)(1G)
α(m)(g) := β(gm)← [ β

It is easy to check that these are inverse to each other.

2. Now we need to show that induction is right exact. Suppose M � N is a surjective map
of H-modules. Now let ϕ ∈ IndGHN. Note that ϕ is uniquely determined by its values on
a complete set of representatives s ∈ H\G. Then we lift ϕ(s) ∈ N to ϕ̃(s) ∈ M using the
surjection M� N. Now define ϕ̃(hs) = hϕ̃(s) for all h ∈ H, and now we obtain an element
ϕ̃ ∈ IndGHM mapping to ϕ.

3. Let I ∈ ModH be injective. Then IndGH I is injective if and only if HomG(−, IndGH I) is
exact. By Frobenius reciprocity, this is equivalent to exactness of HomH(ResGH−, I), which is
obvious.

Proposition 3.2.5 (Shapiro’s lemma). Let N ∈ ModH. Then Hr(G, IndGHN) ' Hr(H,N) for all r > 0.

Proof. Choose an injective resolution N → I• in ModH. But then exactness of induction and
preservation of injectives imply that IndGH → IndGH I

• is an injective resolution in ModG. But now
we see that

Hr(G, IndGHN) = Hr(HomG(Z, IndGH I
•)) = Hr(HomH(Z, I•)) = Hr(H,N).

Definition 3.2.6. A module M ∈ ModG is called induced if M = IndG1 M0 for some abelian group
M0.

Corollary 3.2.7. If M is induced, then for all r > 1, Hr(G,M) = 0.

Proof. By Shapiro, this reduces to computing cohomology Hr(1,M0), but then we know that
Hom(Z,−) = (−) is exact, so all higher derived functors vanish.

Now we will consider functorial properties of group cohomology with respect to change of
groups. Given H ⊆ G and M ∈ ModG, we will define

1. The restriction functor Res : Hr(G,M)→ Hr(H,M).

2. The corestriction functor Cor : Hr(H,M)→ Hr(G,M) whenever [G : H] <∞.

3. The inflation functor Inf : Hr(G/H,MH)→ Hr(G,M) when H is a normal subgroup of G.

Suppose we are given α : G ′ → G and ModG 3M
β−→M ′ ∈ ModG ′ that are compatible in the

sense that
β(α(g ′)m) = g ′β(m)

for all g ′ ∈ G ′,m ∈M. Then we obtain a morphism of cochain complexes

Cr(G,M)→ Cr(G ′,M ′) (ϕ : Gr →M)→ β ◦ϕ ◦αr : (G ′)r → Gr →M→M ′.

This is compatible with the differentials, so we obtain a morphism Hr(G,M)→ Hr(G ′,M ′). Now
using this generality, we can define the three functors.
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1. (Restriction) We will set α : H ↪→ G and β : M id−→M.

2. (Corestriction) We will set α : G id−→ G and

β : IndGHM→M ϕ 7→
∑

g∈G/H
gϕ(g−1).

This gives us the corestriction map by Shapiro.

3. (Inflation) We take α : G� G/H and β : MH ↪→M.

Remark 3.2.8. Suppose r = 0. Then the functors are

Res : MG ↪→MH

Cor : MH
NG/H−−−−→MG

m 7→
∑

g∈G/H
gm.

Proposition 3.2.9. The map Cor ◦Res : Hr(G,M)→ Hr(H,M)→ Hr(G,M) is given by multiplication
by [G : H].

Proof. Consider M→ IndGHM→M. Then this map is given by

m 7→ ϕ(g) = gm 7→
∑

g∈G/H
gϕ(g−1) =

∑
g∈G/H

m = [G : H]m.

Corollary 3.2.10. If G is finite, then Hr(G,M) is killed by |G|.

Proof. Take H = 1 and apply the previous proposition together with the fact that all higher
cohomology vanishes for H = 1.

Corollary 3.2.11. If G is finite and M is a finitely generated abelian group, then Hr(G,M) is finite.

Proof. If M is finitely generated, then so is Hr(G,M) because the cochain complex is finitely
generated. But then Hr(G,M) is torsion, so it must be finite.

Theorem 3.2.12 (Inflation-restriction exact sequence). There is an exact sequence

0→ H1(G/H,MH) Inf−→ H1(G,M)
Res−−→ H1(H,M).

Proof. We will check this by hand.

First map is injective: Let ϕ ∈ Z1(G/H,MH). Now assume that

Inf(ϕ) : G� G/H
ϕ−→MH ↪→M ∈ Z1(G,M)

is a coboundary. Thus there exists m ∈M such that Inf(ϕ)(g) = gm−m for all g ∈ G. But
then ϕ(g) = gm−m, but then for all h ∈ H, we see that ϕ(h) = hm−m = 0 because h fixes
MH. Therefore ϕ is a coboundary.
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Composition is zero: Clearly we have Res ◦ Inf = 0 because the composition

H ↪→ G� G/H
ϕ−→MH ↪→M

is trivial because it passes through G/H.

Exactness on right: Assume that Res(ϕ) ∈ B1(H,M). Then there exists m ∈M such that ϕ(h) =
hm−m for all h ∈ H. Now define

ϕ ′ ∈ Z1(G,M) ϕ ′(g) := ϕ(g) − (gm−m).

Now ϕ ′,ϕ are cohomologous. We will now write ϕ ′ as an inflation. Because ϕ ′(h) =
ϕ(h) − (hm−m) = 0, we know that ϕ ′ factors through G/H. Moreover, we see that

ϕ ′(hg) = hϕ ′(g) +ϕ ′(h) = hϕ ′(g)

= ϕ ′(gh ′) = gϕ ′(h ′) +ϕ ′(g) = ϕ ′(g).

This implies that ϕ ′ is valued in MH, so it must have been an inflation.

Theorem 3.2.13 (Inflation-restriction, general case). Let r > 1. Assume Hi(H,M) = 0 for all
1 6 i < r. Then we have an exact sequence

0→ Hr(G/H,MH) Inf−→ Hr(G,M)
Res−−→ Hr(H,M).

Proof. We will proceed by induction on r using a dimension-shifting argument. Consider the
induced G-module M∗ = IndG1 M. Then look at the exact sequence

0→M→M∗ →M ′ → 0,

where we have the map m 7→ (g 7→ gm). But then the higher cohomology of M∗ vanishes, so we
have isomorphisms Hi(G,M ′) ' Hi+1(G,M) for all i > 1. But then M∗ = IndGH IndH1 M, so we
have isomorphisms Hi(H,M ′) ' Hi+1(H,M) for all i > 1. Similarly, because H1(H,M) = 0, we
have an exact sequence

0→MH → HH∗ → (M ′)
H → 0,

and thereforeMH∗ is also an induced G/H-module. Therefore Hi(G/H, (M ′)H) ' Hi+1(G/H,MH)
for all i > 1.

Now, by assumption, we have Hi(H,M) = 0 for all 1 6 i 6 r− 1. Therefore, Hi(H,M ′) = 0 for
all 1 6 i 6 r− 2 and now we can apply the inductive hypothesis to obtain an exact sequence

0→ Hr−1(G/H, (M ′)H) Inf−→ Hr−1(G,M ′) Res−−→ Hr−1(H,M ′).

This implies that

0→ Hr(G/H,MH) Inf−→ Hr(G,M ′) Res−−→ Hr(H,M)

is also exact.

Remark 3.2.14. We have a more general version of the dimension shift. Given an exact sequence

0→M→ A1 → · · · → Ak → N→ 0,

where each Ai is induced, then Hr(G,M) ' Hr+1(G,N) for all r > 1.
Remark 3.2.15. The inflation-restriction exact sequence is a special case of the Hochschild-Serre
spectral sequence. We have

E
p,q
2 = Hp(G/H,Hq(H,M))⇒ Hp+q(G,M).

In our case, only the rows q = 0,q = r are nontrivial.
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3.3 Group Homology

Definition 3.3.1. Define the G-coinvariants of M by

MG :=M/ 〈gm−m | g ∈ G,m ∈M〉 .

This is the largest quotient module of M where G acts trivially.

Definition 3.3.2. The augmentation ideal is defined to be

IG := ker(Z[G]
ε−→ Z) = Z[g− 1 | g 6= 1].

Then we see that MG = M/IGM = M ⊗Z[G] Z[G]/IG = M ⊗Z[G] Z. In particular, the
coinvariants functor is right-exact. Applying the derived functor package, we obtain

Definition 3.3.3. Define the group homology by

Hr(G,M) := TorZ[G]
r (Z,M)

to be the left derived functor TorZ[G]
r (Z,M) of M 7→MG.

Remarks 3.3.4. Group homology is characterized by

1. H0(G,M) =MG;

2. A short exact sequence 0→ A→ B→ C→ 0 in ModG gives a long exact sequence

· · · Hr(G,A) Hr(G,B) Hr(G,C)

Hr−1(G,A) Hr−1(G,B) Hr−1(C,G) · · ·

3. If P ∈ ModG is projective, then Hr(G,P) = 0 for all r > 1.

Remark 3.3.5. Let P• →M be a projective resolution. Then Hr(G,M) = Hr((P•)G).

Proposition 3.3.6. For any G, we have H1(G, Z) ' Gab = G/[G,G].

Proof. Consider the short exact sequence

0→ IG → Z[G]
ε−→→ Z→ 0.

This gives a long exact sequence

H1(G, Z[G])→ H1(G, Z)→ H0(G, IG)→ H0(G, Z[G])→ H0(G, Z)→ 0.

This becomes
0→ H1(G, Z)→ IG/I

2
G → Z

∼−→ Z→ 0.

But this tells us that H1(G, Z) ' IG/I2G. Now define the map

G→ IG/I
2
G g 7→ g− 1.

By the identity
g1g2 − 1 = (g1 − 1) + (g2 − 1) + (g1 − 1)(g2 − 1),

we see that this is a group homomorphism. Because IG/I2G is abelian, the group homomorphism
factors through Gab → IG/I

2
G. One can easily check that have an inverse IG/I2G → Gab given by

g− 1 7→ g.
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Remark 3.3.7. This gives a homological interpretation of Gal(L/K)ab as H1(Gal(L/K), Z).

Remark 3.3.8. This is analogous to the topological fact that if X is path-connected, then H1(X, Z) =

π1(X)
ab. In fact, for any group G, we can define a space BG = K(G, 1) such that π1(BG) = G and

πi(BG) = 0 for i 6= 1. We have Hr(BG, Z) = Hr(G, Z), where the LHS is singular homology and
the RHS is group homology. If we choose r = 1, we recover H1(G, Z) = Gab.

Example 3.3.9.

1. If G = Z, then we have BZ = R/Z = S1.

2. If G = Z ∗Z ∗ · · · ∗Z︸ ︷︷ ︸
n

, then BG = S1 ∨ · · ·∨ S1︸ ︷︷ ︸
n

.

3.4 Tate Cohomology

The idea is that for a finite group G, we will patch both group cohomology and group homology
into a single theory.

Definition 3.4.1. Let G be a finite group and M ∈ ModG. Define the norm map

NmG : M→M m 7→
∑
g∈G

gm.

By definition, the image of the norm map lies in the invariants and NmG(gm−m) = 0, so the
kernel always contains IGM. This gives us a commutative diagram

M M

MG MG

NmG

NmG

and an exact sequence

0→ ker NmG
IG

→MG
NmG−−−→MG → MG

Im NmG
→ 0.

In particular, this gives us

0→ Ĥ−1(G,M)→ H0(G,M)→ H0(G,M)→ Ĥ0(G,M)→ 0,

where Ĥ just means a modified version of cohomology.

Definition 3.4.2. For r ∈ Z, define the Tate cohomology groups

Ĥr(G,M) :=


Hr(G,M) r > 1
MG

Im NmG
r = 0

ker NmG
IGM

r = −1
H−(r+1)(G,M) r 6 −2.
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Example 3.4.3. Given a short exact sequence

0→ A→ B→ C→ 0

in ModG, we obtain a long exact sequence

· · · H1(G,C) H0(G,A) H0(G,B) H0(G,C) 0

0 H0(G,A) H0(G,B) H0(G,C) H1(G,A) · · ·

NmG NmG NmG

and by the snake lemma, these can be patched to form a very long exact sequence

· · · → Ĥ−1(G,C)→ Ĥ−1(G,A)→ Ĥ−1(G,B)→ Ĥ−1(G,C)→ Ĥ0(G,A)→ · · ·

Remark 3.4.4.

1. If M ∈ ModG is induced, then Ĥr(G,M) = 0 for all r ∈ Z.

2. The dimension shift argument works for Ĥr in both directions. If M ↪→ IndG1 M, then
Ĥr(M1) = Ĥr+1(M), where M1 is the cokernel. Similarly, if IndG1 M �M, then Ĥr(M) =

Ĥr+1(M1), where M1 is the kernel.

3. Shapiro’s lemma still holds for Ĥr.

4. The property that CorGH ◦ResGH is multiplication by [G : H] holds for Ĥr.

Remark 3.4.5. Take P• → Z to be a free resolution in ModG. Taking the dual M 7→ M∗ =
HomZ(M, Z) where (gϕ)(m) = ϕ(g−1m). This gives a resolution Z → P•. If we take P−n :=
P∗n−1, we obtain

· · · → P2 → P1 → P1 → P−1 = P∗0 → P−2 → · · ·

Then we can compute Ĥr(G,M) = Hr(HomG((P•),M)).

Now we will compute Tate cohomology explicitly for finite cyclic groups G = 〈σ〉. We can very
explicitly write down the norm map, invariants, and coinvariants:

NmG(m) =
∑
g∈G

gm = (1 + σ+ σ2 + · · ·+ σn−1)m

MG =Mσ=1 = ker(σ− 1)
IGM = Im(σ− 1)
MG = coker(σ− 1).

This implies that

Ĥ0(G,M) =
MG

Im(NmG)
=

ker(σ− 1)
Im(1 + σ+ · · ·+ σn−1)

Ĥ−1(G,M) =
ker(NmG)
IGM

=
ker(1 + σ+ · · ·+ σn−1)

Im(σ− 1)
.

Remark 3.4.6. All remaining Ĥr(G,M) are determined by Ĥ0, Ĥ−1.
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Theorem 3.4.7 (Period 2). Let G = 〈σ〉. Then we have isomorphisms Ĥr(G,M) ' Ĥr+2(G,M).

Proof. Note that we have a free resolution of Z in ModG given by

· · · → Z[G]
σ−1−−−→ Z[G]

1+σ+···+σn−1
−−−−−−−−−−→ Z[G]

σ−1−−−→ Z[G]
ε−→ Z.

This computes the Tate cohomology and has period 2, so the Tate cohomology also must have
period 2.

Definition 3.4.8. Define the Herbrand quotient

h(M) :=

∣∣∣Ĥ0(G,M)
∣∣∣∣∣∣Ĥ1(G,M)
∣∣∣

if both Ĥ0, Ĥ1 are finite.

Proposition 3.4.9. If 0→ A→ B→ C→ 0 is an exact sequence, then h(B) = h(A) · h(C).

Proof. Consider the long exact sequence

0→ K→ Ĥ0(G,A)→ Ĥ0(G,B)→ Ĥ−(G,C)→ Ĥ1(G,A)→ Ĥ1(G,B)→ Ĥ1(G,C)→ Q→ 0.

This implies that

|K| ·
∣∣∣Ĥ0(A)

∣∣∣−1
·
∣∣∣Ĥ0(B)

∣∣∣ · ∣∣∣Ĥ0(C)
∣∣∣−1
·
∣∣∣Ĥ1(A)

∣∣∣ · ∣∣∣Ĥ1(B)
∣∣∣−1
·
∣∣∣Ĥ1(C)

∣∣∣ · |Q|−1 = 1.

From this, we obtain
h(B)

h(A)h(C)
=

|Q|

|K|
,

so it suffices to show that |Q| = |K|. But here, we see that

Q = coker(Ĥ1(B)→ Ĥ1(C)) = coker(Ĥ−1(B)→ Ĥ−1(C)) = K

because Tate cohomology has period 2.

Proposition 3.4.10. If M is finite, then h(M) = 1.

Proof. Note that we have the exact sequence

0→MG →M
σ−1−−−→M→MG → 0.

This tells us that
∣∣MG∣∣ = |MG|. Next, we note that

0→ Ĥ−1(G,M)→MG
NmG−−−→MG → Ĥ0(G,M)→ 0

is exact, so
∣∣∣Ĥ−1(G,M)

∣∣∣ = ∣∣∣Ĥ0(G,M)
∣∣∣.

Corollary 3.4.11. If α : M→ N has finite kernel and cokernel, then h(M) = h(N).



32

Proof. Consider the exact sequence

0→ kerα→M→ N→ cokerα→ 0.

This tells us that
h(kerα) · h(M)−1 · h(N) · h(cokerα)−1 = 1.

Because α has finite kernel and cokernel, h(kerα) = h(cokerα) = 1, so h(M) = h(N).

Now we want to compute Tate cohomology for more general G.

Theorem 3.4.12. Let G be a finite group. If for any subgroup H ⊆ G we have H1(H,M) = H2(H,M) = 0,
then Ĥr(G,M) = 0 for all r ∈ Z.

Proof. If G is cyclic, then it follows from the period 2 isomorphism. In the general case, if G
is solvable, we can induct on |G|. If H /G is normal such that G/H is cyclic. By the induction
hypothesis, we know Ĥr(H,M) = 0 for all r ∈ Z. Applying inflation-restriction, we have an exact
sequence

0→ Hr(G/H,MH)→ Hr(G,M)→ Hr(H,M).

By assumption, Hr(G,M) = 0 for r = 1, 2. By exactness, we know Hr(G/H,MH) = 0 for r = 1, 2,
so Ĥr(G/H,MH) = 0 for all r ∈ Z because G/H is cyclic. By exactness and the inductive
hypothesis, we know Ĥr(G,M) = 0 for all r > 1. But now the hypotheses are invariant under
dimension shift, so we obtain the desired result.

Finally, if G is an arbitrary finite group, reduce to the solvable case. If we consider the Sylow
subgroups Gp ⊆ G, we know Gp is solvable. Therefore Ĥr(Gp,M) = 0 for all r ∈ Z. By an
exercise from the homework, we see Ĥr(G,M) = 0 for all r ∈ Z.

Unfortunately, H2 generally does not vanish, but we can still gain insight about the behavior
of Tate cohomology in this case.

Theorem 3.4.13 (Tate). Let G be a finite group. If for any subgroup H ⊆ G we have

1. H1(H,M) = 0;

2. H2(H,M) = Z/|H|Z,

then Ĥr(G, Z) ' Ĥr+2(G,M) for all r ∈ Z.

Example 3.4.14. We will apply Tate’s theorem to construct the local Artin map. Let G = Gal(L/K)
and M = L× and set r = −2. Then both conditions of the theorem are satisfied, and so

Gal(L/K)ab = H1(G, Z) = Ĥ−1(G, Z) ' Ĥ0(G,M) =MG/ Im(NmG) = K
×/NL/K(L

×).

Now we have defined the inverse of the local Artin map!

Remark 3.4.15. Chao says that Tate was very brave to go from the object Ĥ0(G,M) that we want to
understand to an object that did not exist at the time!

Before we prove Tate’s theorem, we will give an explicit description of H2(G,M). Recall that

Z2(G,M) =
{
ϕ : G2 →M | g1ϕ(g2,g3) −ϕ(g1g2,g3) +ϕ(g1,g2g3) −ϕ(g1,g2) = 0

}
.

We also know that

B2(G,M) =
{
ϕ : G2 →M | ϕ(g1,g2) = g1ψ(g2) −ψ(g1g2) +ψ(g1),ψ : G→M

}
.
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Proposition 3.4.16. The cohomology group H2(G,M) =
Z2(G,M)
B2(G,M)

parameterizes extensions

0→M→ E→ G→ 0

such that the conjugation action of E/M ∼= G on M agrees with the G-module structure. Moreover,
0 ∈ H2(G,M) corresponds to the split extension.

Proof. Given such an extension, choose a splitting of E = G×M as sets. This gives us a section
s : E→ G Then for all g1,g2 ∈ G, we have s(g1) · s(g2) = ϕ(g1,g2)s(g1g2) for some ϕ : G2 →M.

We check that ϕ is actually a cocycle. To see this, note that

(s(g1)s(g2))s(g3) = s(g1)(s(g2)s(g3))

by associativity, which gives us

(ϕ(g1,g2) +ϕ(g1g2,g3))s(g1g2g3) = (g1ϕ(g2,g3) +ϕ(g1,g2g3))s(g1g2g3),

and therefore ϕ is a cocycle. We can check that any ϕ gives such an extension together with a
section s and that different choices of the section s give coboundary relations.

Definition 3.4.17. For any ϕ ∈ Z2(G,M), define its splitting module to be

M(ϕ) :=M⊕

⊕
g 6=1

ZXg


with the action of G given by

g1 ·Xg2 := Xg1g2 −Xg1 +ϕ(g1,g2)

for any choice of g1,g2 ∈ G. By convention, we write X1 := ϕ(1, 1) ∈M.

Remark 3.4.18. By construction, we have an exact sequence

0→M→M(ϕ)→ IG → 0,

where Xg 7→ g− 1.

Lemma 3.4.19. The image of ϕ under H2(G,M)→ H2(G,M(ϕ)) is 0.

Proof. Note that ϕ(g1,g2) = g1Xg2 −Xg1g2 +Xg1 is the coboundary of g 7→ Xg.

Remark 3.4.20. The extension E ′ associated to ϕ

0 M E G 0

0 M(ϕ) E ′ G 0

of M(ϕ) is a split extension.

Proof of Tate’s theorem. There are two steps to the proof.
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1. We know that H2(G,M) = Z/|G|Z = 〈ϕ〉 with splitting module M(ϕ). We also know that
H1(H,M) = 0. We will show that H1(H,M(ϕ)) = 0 and H2(H,M(ϕ)) = 0. Consider the
short exact sequence

0→M→M(ϕ)→ IG → 0.

This gives a long exact sequence

H1(H,M)→ H1(H,M(ϕ))→ H1(H, IG)→ H2(H,M)→ H2(H,M(ϕ))→ H2(H, IG).

However, we know that H1(H1,M) = 0,H1(H, IG) = Z/|H|Z, and H2(H, IG) = 0. We also
know that H2(H,M) → H2(H,M(ϕ)) is the zero map (the restriction of ϕ to H2(H,M) is
a generator), so the map H1(H, IG) → H2(H,M) must be an isomorphism and therefore
H1(H,M(ϕ)) = H2(H,M(ϕ)) = 0.

2. Now we know that all Tate cohomology Ĥr(G,M(ϕ)) = 0 for all r ∈ Z. Now we use the
four term exact sequence

0→M→M(ϕ)→ Z[G]
ε−→ Z→ 0.

Because Ĥr(G,M(ϕ)) = 0 and Ĥr(G, Z[G]) = 0 for all r ∈ Z, By dimension shift, we have
Ĥr(G, Z) ∼= Ĥr+2(G,M).

Remark 3.4.21. There is an alternative description of Ĥr(G, Z) ' Ĥr+2(G,M) as a cup product
with some generator ϕ ∈ H2(G,M). Here, if M,N ∈ ModG, we can consider the tensor product
M⊗N as a G-module with the action g(m⊗n) = gm⊗ gn.

Now a cup product is a family of Z-bilinear maps

Hr(G,M)⊗Hs(G,N)→ Hr+s(G,M⊗N)

given by the following properties:

1. The cup product is functorial in both M,N.

2. For r = s = 0, it is given by the natural map MG ⊗NG → (M⊗N)G.

3. If 0→M ′ →M→M ′′ → 0 is a short exact sequence such that

0→M ′ ⊗N→M⊗N→M ′′ ⊗N→ 0

is also exact, then for all m ′′ ∈ Hr(G,M ′′) and n ∈ Hs(G,N), we have δm ′′ ∪ n = δ(m ′′ ∪
n) ∈ Hr+s+1(G,M ′ ⊗N).

4. If 0→ N ′ → N→ N ′′ → 0 is a short exact sequence such that

0→M⊗N ′ →M⊗N→M⊗N ′′ → 0

is also exact, then for all m ∈ Hr(G,M),n ′′ ∈ Hs(G,N ′′), we have m ∪ δn ′′ = (−1)rδ(m ∪
n ′′).

The cup product exists and is unique. Given cocycles ϕ,ψ, we write

(ϕ∪ψ)(g1, . . . ,gr+s) = ϕ(g1, . . . ,gr)⊗ g1 · · ·grψ(gr+1, . . . ,gr+s)

and this is unique by dimension shift. If G is finite, then the cup product extends to Tate
cohomology.
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Local Class Field Theory

Now our goal is to understand Hi(Gal(L/K),L×) for i = 1, 2. This will allow us to construct the
local Artin reciprocity map.

4.1 Vanishing of first cohomology

This result was proved by Hilbert in 1894 Zahlbericht for cyclic extensions and then by Noether
for general extensions.

Theorem 4.1.1 (Hilbert Theorem 90). Let L/K be a finite Galois extension of fields. Then

H1(Gal(L/K),L×) = 0.

Remark 4.1.2. Note that this applies to extensions of arbitrary fields, not just local fields.

Proof. Choose ϕ ∈ Z1(Gal(L/K),L×). We want ϕ(g) = gm
m for some m ∈ L×. For any a ∈ L×,

construct

m :=
∑

g∈Gal(L/K)

ϕ(g) · ga.

Because g : L× → L× are distinct characters of L× for g ∈ G := Gal(L/K), we know that they are
L-linearly independent, so the map ∑

g∈G
ϕ(g) · g

35
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is not the zero map and thus there exists a ∈ L× such that m 6= 0. But now we compute

gm = g
∑
h∈G

ϕ(h) · ha

=
∑
h∈G

gϕ(h) · gha

=
∑
h∈G

ϕ(gh)

ϕ(g)
· gha

=
1

ϕ(g)

∑
h∈G

ϕ(gh) · gha

=
1

ϕ(g)

∑
h∈G

ϕ(h) · ha

=
m

ϕ(g)
,

and thus ϕ(g) = n
gm = gm−1

m−1 , so ϕ ∈ B1(G,L×).

Example 4.1.3. In the case where L/K is a cyclic extension and G = 〈σ〉, then Ĥ−1(G,L×) =
H1(G,L×) = 0, and thus ker NmG = Im(σ− 1), which means that if a ∈ L× satisfies NmL/K(a) =
1, then a = σb

b for some b ∈ L×.

Example 4.1.4. Let L/K = Q(i)/Q be the simplest quadratic extension. Let a = x+ iy ∈ L× with
x,y = Q. Then we know NmL/K(a) = x2 + y2. If b = m+ in ∈ L× for m,n ∈ Q, we see that

σb

b
=
m− in

m+ in
=
m2 −n2

m2 +n2 +
2mn
m2 +n2 · i.

By Hilbert 90, if x2 + y2 = 1, then there exist m,n ∈ Z such that

x =
m2 −n2

m2 +n2 y =
2mn
m2 +n2 .

In particular, this tells us how to classify all Pythagorean triples.

Remark 4.1.5. We may also consider infinite Galois extensions L/K, for example L = Ksep,Kab.
Then we know

Gal(L/K) = lim←−
L ′⊆L

L′/K finite Galois

Gal(L ′/K).

This allows us to define continuous Galois cohomology

Hrcts(Gal(L/K),L×) := lim−→
L ′
Hr(Gal(L ′/K), (L ′)×).

The Hrcts can be computed using continuous cochains.
Remark 4.1.6. More generally, if G = lim←−HG/H is a profinite group and M is a discrete G-module
(which means G×M → M is continuous with respect to the profinite topology on G and the
discrete topology on M), we may consider the continuous group cohomology

Hrcts(G,M) := lim−→
H

Hr(G/H,MH),

where the maps in the directed system are inflation.



37

Notation 4.1.7. Let G = Gal(L/K). We will simply write

Hr(L/K,M) := Hrcts(Gal(L/K),M) Hr(K,M) := Hrcts(Gal(Ksep/L),M)

for the continuous Galois cohomology.

Example 4.1.8. Hilbert Theorem 90 implies that H1(K, (Ksep)×) = 0. Equivalently, we have
H1

ét(SpecK, Gm) ∼= Pic SpecK = 0. In other words, all line bundles on a point are trivial.

4.2 Second Cohomology

Let L/K be a finite unramified extension of local fields. Recall that

G = Gal(L/K) ' Gal(`/k) =
〈

FrobL/K
〉

,

where `/k is the extension of residue fields. Our goal is to compute H2(L/K,L×) ∼= Z/nZ, where
n = [L : K]. The idea is to break L× into pieces, so choose a uniformizer πL. Then we have
L× ∼= O×L × π

Z
L . Because L/K is unramified, we may choose πL = πK ∈ K×. Therefore, as a Galois

module, we have L× ∼= O×L ⊕Z.

Definition 4.2.1. Let UK = O×K . Then write U(i)
K := 1 +miK for all i > 1.

This gives us a natural filtration

UK ⊇ U
(i)
K ⊇ U

(2)
K ⊇ U(3)

K ⊇ · · ·

with short exact sequences

1→ U
(1)
K → UK → k× → 1

and similarly

1→ U
(i+1)
K → U

(i)
K → k→ 1

for i > 1.

Lemma 4.2.2. We have Ĥr(G, `×) = Ĥr(G, `) = 0 for all r ∈ Z.

Proof. By Hilbert Theorem 90, we know H1(G, `×) = 0. Because G is cyclic and `× is finite, we can
understand the Herbrand quotient. Therefore h(`×) = 1, so H2(G, `×) = 0. Because G is cyclic, we
may apply period 2 to obtain the desired result.

Now we consider `. We know that ` is actually an induced module by the homework, so all
Tate cohomology vanishes by period 2.

Corollary 4.2.3. The norm map Nm`/k : `× → k× and the trace map Tr`/k : `→ k are surjective.

Proof. We know that Ĥ0(G, `×) = k×

Nm`/k(`×)
= 0, so the norm map is surjective. Similarly, we

know Ĥ0(G, `) = k
Tr`/k(`)

= 0, so the trace is surjective.

Lemma 4.2.4. The norm map NmL/K : UL → UK is surjective.
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Proof. Consider the commutative diagram

UL UK U
(i)
L U

(i)
K

`× k× ` k.

Nm Nm

Nm Tr

Given any a ∈ UK, we want b ∈ UL such that Nm(b) = a. Because Nm : `× → k×, we may find
b0 ∈ UL such that Nm(b0) ≡ a (mod πK). Now let a1 := a

Nm(b0)
∈ U(1)

K . Because Tr : ` → k is

surjective, we may find b1 ∈ U
(1)
L such that a2 := a1

Nm(b1)
∈ U(2)

K . Repeating this to infinity, we can

find bi ∈ U
(i)
L such that ai+1 := ai

Nm(bi)
∈ U(i+1)

K . Setting

b :=

∞∏
i=1

bi,

we know
a

Nm(b)
∈
∞⋂
i=0

U
(i)
K = {1},

so a = Nm(b).

Corollary 4.2.5. For all r ∈ Z, we have Ĥr(G,UL) = 0.

Proof. By the Lemma, we know that Nm : UL → UK is surjective, so Ĥ0(G,UL) = 0. But then we
know H1(G,UL) ⊆ H1(G,L×) = 0 is a direct factor, so H1(G,UL) = 0. The desired result is simply
an application of period 2.

Theorem 4.2.6. If L/K is an unramified extension, then H2(G,L×) ∼= Hom(G, Q/Z) ∼= 1
nZ/Z.

Proof. We know H2(G,L×) ∼= H2(G,UL)⊕H2(G, Z) = H2(G, Z) = Hom(G, Q/Z) by the home-
work. The final isomorphism is obvious.

Definition 4.2.7. Define the invariant map

invL/K : H
2(L/K,L×) ' H2(L/K, Z) ' Hom(G, Q/Z) ' 1

n
Z/Z ⊆ Q/Z.

Taking the limit over all unramified extensions, we obtain a map

H2(Kur/K, (Kur)×)
∼−→
⋃
n

1
n

Z/Z = Q/Z.

To simplify our notation, we will write H2(L/K) := H2(L/K,L×), so we have

invK : H2(Kur/K) ' Q/Z.

Our goal now will be to extend this to H2(Ksep/K) ' Q/Z.

Remark 4.2.8. We always have an injective inflation map H2(Kur/K)
Inf−→ H2(Ksep/K). The map

exists, and injectivity is by Hilbert 90 and inflation-restriction. We want to prove that this is indeed
an isomorphism.
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Lemma 4.2.9. Let L/K be a finite extension of degree n. Then the diagram

H2(Kur/K) H2(Lur/L)

Q/Z Q/Z

invK

Res

invL
×n

commutes.

Remark 4.2.10. Because Lur = L ·Kur, we may view Gal(Lur/L) as a subgroup of Gal(Kur/K), and
the inclusion is comparible with (Kur)× → (Lur)×, so restriction makes sense.

Proof. Recall that invK is computed by H2(Kur/K) ' H2(Kur/K, Z) ' H1(Kur/K, Q/Z) ' Q/Z.
Now we need to see the effect of restriction on the groups on the right of the chain of isomorphisms.
Note that if e = e(L/K) and f = f(L/K), then πeL = πK, so the diagram

(Kur)× Z

(Lur)× Z

ordK

×e

ordL

commutes. Therefore, the maps on H2(Kur/K, Z)→ H2(Lur/L, Z) are given by multiplication by e.
Finally, for ϕ ∈ H1(Kur/K, Q/Z) = Hom(Gal(Kur/K), Q/Z), we see that ϕ 7→ ϕ(FrobK). Because
FrobL = FrobfK, we see that Res(ϕ)(FrobL) = fϕ(FrobK). Therefore, the final map is simply
f · e ·Res = n ·Res.

Corollary 4.2.11. Let L/K be a finite Galois extension of degree n. Then H2(L/K) contains a subgroup of
1
nZ/Z.

Proof. By Hilbert 90 and inflation-restriction, we have a commutative diagram

0 H2(L/K) H2(Ksep/K) H2(Lsep/L)

0 1
nZ/Z H2(Kur/K) H2(Lur/L)

Q/Z Q/Z.

Inf Res

Res

×n

∼= ∼=

Therefore, 1
nZ/Z injects into H2(L/K).

Proposition 4.2.12. We have
∣∣H2(L/K)

∣∣ = n. In particular, H2(L/K) ∼= 1
nZ/Z.

Proof. We know this is true with L/K is cyclic. We know h(L×) = n and H1(L/K) = 0, so∣∣H2(L/K)
∣∣ = n. In general, we will reduce to the cyclic case because L/K is always solvable

(because K is a local field). We will induct on [L : K]. Choose a tower of fields K ⊂ K ′ ⊂ L such
that K ′/K is cyclic. Applying inflation-restriction, we have an exact sequence

0→ H2(K ′/K)
Inf−→ H2(L/K)

Res−−→ H2(L/K ′).
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We know that
∣∣H2(K ′/K)

∣∣ = [K ′ : K] because it is cyclic. We also know that
∣∣H2(L/K ′)

∣∣ = [L : K ′]

by the inductive hypothesis, so
∣∣H2(L/K)

∣∣ 6 [K ′ : K] · [L : K ′] = [L : K] = n. But we know that
H2(L/K) contains a subgroup of order n, so

∣∣H2(L/K)
∣∣ = n.

Corollary 4.2.13. We have a commutative diagram

0 H2(L/K) H2(Ksep/K) H2(Lsep/L)

0 1
nZ/Z H2(Kur/K) H2(Lur/L).

Inf Res

Res

In particular, we may view H2(L/K)
Inf−→ H2(Kur/K).

Theorem 4.2.14. There is an isomorphism H2(Kur/K)
Inf−→ H2(Ksep/K).

Proof. Recall that H2(L/K) ↪→ H2(Kur/K) ↪→ H2(Ksep/K). Taking the limit over finite Galois exten-
sions L/K, we have an injection H2(Ksep/K) ↪→ H2(Kur/K) ↪→ H2(Ksep/K), but the composition is
the identity, so all inclusions are equalities.

Definition 4.2.15. We can extend the invariant map to invK : H2(Ksep/K) ' Q/Z.

Remark 4.2.16. For any field K, define the Brauer group Br(K) := H2(Ksep/K, (Ksep)×). This is in fact
H2

ét(SpecK, Gm). The goal of local class field theory is to compute Br(K) ' Q/Z for a local field
K.

Remark 4.2.17. Classically, the group Br(K) classifies central simple algebras over K. In fact, it
classifies central simple algebras up to the relation A ∼ B if and only if A⊗KMn(K) ' B⊗Mm(K)
for some n,m. The group structure is defined by [A]⊗ [B] = [A⊗K B] with identity 0 = [Mn(k)].

Theorem 4.2.18 (Wedderburn). Each class of Br(K) is represented by a central division algebra over K.

Example 4.2.19. If K is a local field, then we may define the invariant invK(B) for any central
division algebra B over K. If B = K, then invK(K) = 0. Now if B is the quaternion algebra over
K, we have invK(B) = 1

2 . In fact there is an explicit construction of a central division algebra
associated to 1

n for every n. If L/K is a quadratic extension, then

invL(B⊗K L) = [L : K]invK(B) = 2 · 1
2
= 0 ∈ Q/Z,

so B⊗K L =M2(L).

Example 4.2.20. Call the element uL/K ∈ H2(L/K) with invK(uL/K) =
1
n the fundamental class of

L/K.

Remark 4.2.21. The local Artin reciprocity isomorphism Ĥ−2(G, Z)→ Ĥ0(G,L×) can be realized
as the cup product by the fundamental class uL/K.
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4.3 Proof of Local Class Field Theory

Our goal is to prove the following result:

Theorem 4.3.1 (Local class field theory).

1. (Local Artin reciprocity) There exists a unique homomorphism

φK : K
× → Gal(Ksep/K)ab

such that

a) For any finite Galois extension L/K, we have a commutative diagram

K× Gal(Ksep/K)ab

K×/Nm(L×) Gal(L/K)ab.

φK

φL/K

∼

b) For any finite unramified extension, φL/K(π) = FrobL/K, where π is an uniformizer of K.

2. (Local existence theorem) There is a bijection between norm subgroups of K× and finite index open
subgroups of K×. In addition, if charK = 0, then the finite index open subgroups of K× are precisely
the finite index subgroups of K×.

4.3.1 Proof of local Artin reciprocity To construct φK, we will use Tate’s theorem. Recall
that by Hilbert 90, we have H1(L/K,L×) = 0. We also computed H2(L/K,L×) = 1

nZ/Z, where
n = [L : K]. By Tate’s theorem, we have an isomorphism Ĥr(L/K, Z) ' Ĥr+2(L/K,L×) for all
r ∈ Z. We will specialize to the case where r = −2, and this gives us an isomorphism

Ĥ−2(L/K, Z) Ĥ0(L/K,L×)

Gal(L/K)ab K×/Nm(L×).

∼

∼

Then we define φab
L/K

∼−→ Gal(L/K)ab to be its inverse. Taking the limit over all finite Galois
extensions L/K, we obtain a map

φK : K
× → Gal(Ksep/K)ab.

By construction, the property a) is satisfied.
To finish the proof, we need to check property b). Let L/K be a finite unramified extension.

Our goal is to explicitly describe the shift by 2 isomorphism produced by Tate’s theorem. Recall
that Tate’s theorem comes from M = L× and G = Gal(L/K). Then we construct the splitting
module for some ϕ ∈ H2(G,M) = H2(L/K,L×) = 1

nZ/Z by defining

M(ϕ) =M⊕
⊕
g 6=1

Xg g1Xg2 = Xg1g2 −Xg1 +ϕ(g1,g2).
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Then we have short exact sequences

0→M→M(ϕ)
Xg 7→g−1
−−−−−−→ Ig → 0

and
0→ IG → Z[G]

g 7→1−−−→ Z→ 0.

Now we need to trace through the isomorphisms

Ĥ−2(G, Z) Ĥ−1(G, IG) Ĥ0(G,M)

G =
〈

FrobL/K
〉

IG/I
2
G K×/Nm(L×).

∼ ∼

∼ ∼

The first isomorphism is given by FrobL/K =: σ 7→ σ− 1. Therefore it remains to write down the
connecting homomorphism Ĥ−1(G, IG)→ Ĥ0(G,M). This is described using the exact sequences

MG M(ϕ)G (IG)G = IG/I
2
G 0

0 MG M(ϕ)G (IG)
G

Nm Nm Nm

by lifting (σ− 1) ∈ IG/I2G to M(ϕ)G and then taking Nm. This will automatically land in MG.
An obvious list of σ− 1 to M(ϕ)G is Xσ, so we need to compute Nm(Xσ). Therefore we have

Nm(Xσ) = (1 + σ+ · · ·+ σn−1)Xσ

= Xσ + σXσ + · · ·+ σn−1Xσ

= Xσ + (Xσ2 −Xσ +ϕ(σ,σ)) + · · ·+ (Xσn −Xσn−1 +ϕ(σn−1,σ))

= Xσn +ϕ(σ,σ) +ϕ(σ2,σ) + · · ·+ϕ(σn−1,σ)

= ϕ(1, 1) +ϕ(σ,σ) +ϕ(σ2,σ) + · · ·+ϕ(σn−1,σ).

Now it remains to describe this explicitly for ϕ ∈ H2(G,M) = H2(L/K,L×) = 1
nZ/Z.Recall that

this comes from H2(L/K,L×) ∼−→ H1(L/K, Q/Z) = Hom(G, Q/Z) coming from the exact sequence

0→ Z→ Q→ Z/Q→ 0.

Now if f ∈ Hom(G, Q/Z) such that f(σ) = 1
n , then we can lift f to f̃ ∈ Z1(G, Q) and take df̃. This

gives us f̃(σi) = i
n ∈ Q. If ϕ = df̃, then we have

ϕ(σi,σj) = σif̃(σj) − f̃(σi+j) + f̃(σi)

=
j

n
−

(i+ j) mod n
n

+
i

n

=

{
0 0 6 i+ j 6 n− 1
1 i+ j > n.
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This gives us

ordK(Nm(Xσ)) = ϕ(1, 1) +ϕ(σ,σ) +ϕ(σ2,σ) + · · ·+ϕ(σn−1,σ)
= 0 + 0 + 0 + · · ·+ 1
= 1

and thus Nm(Xσ) = π ∈ K×/Nm(L×).

4.3.2 Proof of Local Existence We will assume that charK = 0. We will establish a bijection{
norm subgroups of K×

} 1:1←→
{

finite index subgroups of K×
}

.

Recall that any subgroup of K× containing a norm subgroup is also a norm subgroup. Also note
that any finite index subgroup of index n contains (K×)n. Therefore it suffices to show that (K×)n

is a norm subgroup. Our goal is to study the n-th power may using the Kummer sequence

1→ µn → (Ksep)×
x 7→xn−−−−→ (Ksep)× → 1.

This is an exact sequence in ModG for G = Gal(Ksep/K), so it induces a long exact sequence in
cohomology

0→ µn(K)→ K×
x 7→xn−−−−→ K× → H1(G,µn)→ H1(G, (Ksep)×) = 0.

This gives us the Kummer isomorphism K×/(K×)
n ∼= H1(G,µn).

1. In the simplest case, when µn ⊆ K×, then the isomorphism becomes

K×/(K×)
n ∼= Hom(G,µn) ∼= Hom(Gal(L/K),µn),

where L/K is the maximal abelian extension of exponent n. Now the pairing

K×/(K×)
n ×Gal(L/K)→ µn (b,σ) 7→ σ( n

√
b)

n
√
b

is in fact a perfect pairing. Therefore
∣∣K×/(K×)n∣∣ = |Gal(L/K)|, so by local Artin reciprocity,

we have the map
φL/K : K

×/Nm(L×)
∼−→ Gal(L/K).

Also, we know Nm(L×) ⊇ (K×)
n, and therefore (K×)

n
= Nm(L×).

2. In general, if µn is not contained in K×, then take K1 = K(µn). Now we can find L1/K1 such
that Nm(L×1 ) = (K×1 )

n. Now take L/K Galois such that L1 ⊆ L. Then

NmL/K(L
×) = NmK1/K

(NmL/K1
(L×))

⊆ NmK1/K
(NmL1/K1

(L×1 ))

= NmK1/K
((K×1 )

n
)

⊆ (K×)
n.

Therefore (K×)
n contains a norm subgroup, and is thus also a norm subgroup.
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Global class field theory

Recall that a number field K is a finite extension of Q. The goal of global class field theory is to

understand Gal(K/K)ab, or equivalently to understand finite abelian extensions of K in terms of
intrinsic data associated to K. Analogously to the local case, we would like to construct a global
Artin reciprocity map

φK : Ck → Gal(K/K)ab

which induces isomorphisms

φL/K : Ck/Nm(CL)
∼−→ Gal(L/K).

Remark 5.0.1. When K is a local field, we took CK = K×. When K is global, we can again try to
take CK = K×, but in fact this fails.

Example 5.0.2. Choose L/K = Q(i)/Q. Then Gal(L/K) = Z/2, but

Q×/Nm(Q(i)×) = Q×/
{
x ∈ Q× | x = a2 + b2,a,b ∈ Q

}
6= Z/2Z.

For example, any p ≡ 3 (mod 4) cannot be written as a2 + b2, and in fact the quotient is infinite.

Instead of K×, we will take CK to be a generalization of the ideal class group ClK, which is the
quotient of all fractional ideals by the principal ones. Thus the class group measures the failure of
unique factorization in K.

5.1 Idèles

Our generalization of ideals will be the idèle class group of K, which is again given by

CK :=
IK

K×

for some group IK. We need to define IK and NmL/K : CL → CK.

Notations 5.1.1. We will denote a (finite or infinite) place of K by v and |−|v the absolute value
associated to v such that ∏

v

|a|v = 1

44
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for all a ∈ K×. Then we will denote the completion of K with respect to |−|v by Kv. When v is a
finite place, we write OV ⊆ KV for the ring of integers, pv ⊆ OK the corresponding maximal ideal,
and p̂v ⊆ Ov for the completion of the maximal ideal.

Remark 5.1.2. We may attempt to take IK =
∏
v K
×
v . The problem is that this group is too large in

the sense that it is not locally compact.

Instead of this, we will allow only finitely many coordinates to be not a unit in Ov. This will
make our group locally compact.

Definition 5.1.3. The group of idèles (from the French élément idéal for ideal element) is

IK :=

{
(av)v ∈

∏
v

K×v | av ∈ O×V for all but finitely many v

}
.

This is the restricted product of
∏
v K
×
v with respect to

∏
v O
×
V .

Remark 5.1.4. The idèles are equipped with the restricted product topology with a basis of open
neighborhoods given by ∏

v

Uv ⊆ IK,

where Uv is open in K×v for all v and Uv = O×V for all but finitely many v.

Let S be a finite set of places containing S∞ = {v infinite}. Then define

IK,S :=
∏
v∈S

K×v ×
∏
v/∈S

O×v ⊆ IK.

Note the first factor is locally compact and the second product is compact, so IK,S is locally
compact. Then we can write

IK =
⋃
S

IK,S

and each IK,S is open in IK, so in particular IK is locally compact.

Remark 5.1.5. The group IK has a basis of open neighborhoods of 1 given by

U(S, ε) := {(av) ∈ IK | |av − 1| < ε for all v ∈ S, |av| = 1 for all v /∈ S}.

Remark 5.1.6. For all places v, there is a natural injection

K×v ↪→ IK a 7→ (1, . . . , 1,a, 1, . . .),

where a goes in the coordinaate corresponding to v. The induced topology on K×v agrees with the
usual topology.

Remark 5.1.7. If IK is the group of fractional ideals of K, then there is a natural surjection

IK � IK (av) 7→
∏
v-∞ p

ordv(av)
v

with kernel given by ∏
v|∞K

×
v ×
∏
v-∞O×v = IK,S∞ .

In particular, IK can be thought of as an enlargement of IK with extra information from the infinite
places and units at finite places.
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Remark 5.1.8. The group IK is completely local.

Proposition 5.1.9. The natural map

K× ↪→ IK a 7→ (a,a, . . . ,a, . . .)

has discrete image.

Proof. It suffices to show that 1 ∈ K× is open in its imaage. Equivalently, for some S ⊇ S∞ and
some ε > 0, we have K× ∩U(s, ε) = {1}. Let a ∈ K× ∩U(S, ε). Then |a− 1|v < ε for all v ∈ S and
|a|v = 1 for all v /∈ S. Note that |a− 1|v 6 1 for all v /∈ S. Therefore∏

v

|a− 1|v < ε
|s|.

On the other hand, by the product formula, we know
∏
v |a− 1|v = 1 unless a − 1 = 0. In

particular, for S sufficiently large and ε sufficiently small, we must have a = 1.

Remark 5.1.10. Note that K× ↪→ K×v has dense image for any single v. However, the product
formula implies that for a ∈ K×, its absolute values |a|v at different places v “repel” each other
and makes K× ↪→ IK have discrete image.

Example 5.1.11. Consider the ring Z[
√

2] ↪→ R. Because
√

2 is irrational, this has dense image.
However, the embedding

Z[
√

2] ↪→ R×R a+ b
√

2 7→ (a+ b
√

2,a− b
√

2)

has discrete image. In fact, the image is a lattice in R2.

Similarly, Z
[

1
p

]
↪→ R, Qp both have dense image, but

Z

[
1
p

]
↪→ R×Qp

has discrete image.
Now it should not be surprising that K× ↪→ IK has discrete image. This is simply an infinite

dimensional generalization of this phenomenon.

Definition 5.1.12. Define the idèle class group Ck := IK/K
× and equip it with the quotient topology.

Because K× is discrete, this group is locally compact.

Remark 5.1.13. The IK � IK descends to CK � ClK. In particular, CK can be viewed as an
enlargement of ClK.

Definition 5.1.14. Let L/K be a finite extension. Recall that

L⊗K Kv ∼=
∏
w|v

Lw,

given Kv[x]/f(x) =
∏

(Kv[x]/fi(x)), where fi are the irreducible factors of f after the extension.
Therefore, for all α ∈ L×, we have

NmL/K(α) =
∏
w|v

NmLw/Kv(α).

Now we can define

NmL/K : IL → IL (aw)w 7→ (bv)v bv :=
∏
w|v

NmLw/Kv(aw).
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Definition 5.1.15. By definition, we have a commutative diagram

IL IK

L× L×.

NmL/K

NmL/K

Therefore, we have an induced map NmL/K : CL → CK.

5.2 Statement of global class field theory

Our goal is now to construct the global Artin reciprocity map. We hope to do this using the local
Artin reciprocity maps. First, we recall some properties from algebraic number theory.1 If L/K is
a finite Galois extension of number fields, v a place of K, and w | v a place of L above v, we can
define the decomposition group

D(w) := {σ ∈ Gal(L/K) | σw = w} = Gal(Lw/Kv).

Remark 5.2.1. Suppose that w ′ | v is another place of L above v. Then D(w),D(w ′) are conjugate
in Gal(L/K). In particular, if Gal(L/K) is abelian, then D(w) = D(w ′) only depends on v. By local
class field theory, we obtain

φv : K
×
v → Gal(Lw/Kv) = D(w) ↪→ Gal(L/K)

which only depends on v.

Proposition 5.2.2. There exists a unique continuous homomorphism

φK : IK → Gal(K/K)ab

such that for any finite abelian extension L/K and any place v of K, the diagram

IK Gal(L/K)

K×v Gal(Lw/Kv)

φL/K

φv

commutes.

Proof. Let a = (av) ∈ IK. If av ∈ O×v and Lw/Kv is unramified (true for all but finitely many
places), then φv(av) = 1 ∈ Gal(Lw/Kv). Now φK is uniquely determined by a finite product

φK((av)) =
∏
v

φv(av) ∈ Gal(L/K),

where v runs over the places where av /∈ O×v or Lv/Kv is ramified. Therefore, varying L/K and
taking a limit, this determines φK uniquely.

1The note taker does not actually know any number theory. Please send help.
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Now it remains to check that φK is continuous. In particular, we need the kernel to be open.
Let S be the set of ramified places of L/K. Then by local class field theory, the diagram

IK,S Gal(L/K)

IL,S Gal(L/L)

φL/K

NmL/K
φL/L

commutes. Therefore ker(φL/K) ⊇ NmL/K(IL,S), which is open. Therefore the kernel itself is also
open.

Theorem 5.2.3 (Global class field theory).

1. (Global Artin reciprocity) The homomorphism φK : IK → Gal(Kab/K) satisfies

a) φK(K×) = 1. Therefore we obtain a global Artin map φK : Ck → Gal(Kab/K).
b) For any finite abelian extension L/K, φK induces an isomorphism

φL/K : Ck/Nm(CL) ' Gal(L/K).

2. (Global existence theorem) For any finite index open subgroup N ⊆ CK, there exists a finite abelian
extension L/K such that N = Nm(CL).

Corollary 5.2.4. We have a bijection between finite abelian extensions L/K and finite index open subgroups
of CK.

Before we turn to the proof of global class field theory, we will describe some consequences of
this bijection. We will begin with ray class fields.

Definition 5.2.5. A modulus of K is a function

m: {places of K}→ Z>0

such that

1. m(v) = 0 for all but finitely many places v.

2. m(v) = 0, 1 if v is a real place.

3. m(v) = 0 if v is a complex place.

Definition 5.2.6. For a modulus m, define the principal congruence subgroup

ImK :=
∏
v-∞Uv,m(v) ×

∏
v|∞K

×
v,m(v)

,

where Uv,0 = O×v and Uv,i = 1 + piv for i > 1 for finite places. For infinite places, we have
K×v,0 = K×v , and K×v,1 = R>0.

Definition 5.2.7. For a modulus m, define

Cm
k :=

ImK ·K
×

K×
.

Then define the ray class group to be
Clm := CK/C

m
K .
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Here, the term “ray” comes from a positivity condition R>0 ⊂ R× at real places, which
geometrically means specifying a ray.

Definition 5.2.8. Write m =
∏
v p

m(v)
v = m0 ·m∞. Then we have a description

Clm :=
{fractional ideals coprime to m0}{

x ∈ K×, x ∈ Uv,m(v)(v | m0), x ∈ Rv,>0(v | m∞)} .

In particular, if m(v) ≡ 0, then m =
∏
v p

0
v = 1 and Cl1 = ClK. On the other hand, if m = m∞, then

Clm∞ =
{fractional ideals}

{x ∈ K× | x totally positive}
= Cl+K .

This is called the narrow class group.

Definition 5.2.9. The abelian extension L/K associated to Clm ∼= Gal(L/K) under global class field
theory is called the ray class field of m. The case of m = 1 is called the Hilbert class field and is
denoted by H with ClK = Gal(H/K). The case where m = m∞ gives us the narrow Hilbert class field
and is denoted by H+. This is characterized by Cl+K = Gal(H+/K). In particular, H ⊆ H+.

Remark 5.2.10. By local class field theory, the ramified places of the ray class field of m is contained
in m. In particular, H/K is the maximal abelian abelian extension unramified everywhere, and
H+/K is the maximal abelian extension unramified at all finite places.

Example 5.2.11. If K = Q, then ClK = Cl+L ∼= {1} and thus H = H+ = Q.

Example 5.2.12. If K = Q(
√

3), then ClK = {1}. However, we have

Cl+K =
K×

K×>0 ·O
×
K

= Z/2.

Therefore H = K = Q(
√

3) and H+ = K(i) = Q(
√

3, i).

Example 5.2.13. Let K = Q and let m = (m) for some m ∈ Z. Then

Cl(m) =

{(
r
s

)
∈ Q× | (r,m) = (s,m) = 1

}{
r
s ∈ Q× | rs ≡ 1 (mod m)

} = (Z/m)×/(±1).

If m = (m) ·∞, then Cl(m)·∞ = (Z/m)×.
Now the ray class fields L/Q for either 2 - m or 4 | m are given by Cl(m)·∞ ∼= Gal(L/Q), where

L = Q(ζm), and the field given by Cl(m) is L = Q(ζm + ζ−1
m ). In particular, by varying m, we

obtain the Kronecker-Weber theorem.

Theorem 5.2.14 (Kronecker-Weber). We have Qab =
⋃
m>1 Q(ζm) and thus

Gal(Qab/Q) = lim←−
m

(Z/m)× = Z̃× =
∏
p

Z×p .

Remark 5.2.15. Hilbert’s 12th problem asks for an explicit description of the ray class fields for a
general number field. For K = Q, we have the Kronecker-Weber theorem. For imaginary quadratic
fields, we have modular functions and elliptic curves with complex multiplication. In general, this
problem is still open.
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We will use the following strategy to prove global Artin reciprocity:

1. We will prove the first inequality2 that [CK : Nm(CL)] > [L : K]. This will be a consequence
of the cohomology of IK,CK. In particular, we will show that h(CK) = [L : K]. This will

imply that
∣∣∣Ĥ0(G,CL)

∣∣∣ > [L : K], but this is precisely the index we need.

2. Next, we will prove the surjectivity of IK
φL/K−−−→ Gal(L/K). This is an application of the first

inequality and the weak Chebotarev density theorem.

3. We will prove the second inequality3 [CK : Nm(CL)] 6 [L : K]. This is a consequence of
Chebotarev density and we will use the analytic tool of L-functions.4

4. We will prove that φK(K×) = 1. This will follow from the determination of the Brauer
groups of K.

5.3 Cohomology of Idèles and first inequality

Let L/K be a finite Galois extension of number fields. Recall that if v is a place of K, then
L⊗K Kv =

∏
w|v Lw. The action of Gal(L/K) on L⊗ Kv induces an action on the product by

permuting the places above v. If α = (αw)w|v and σ ∈ Gal(L/K), then (σα)σw = σ(αw) ∈ Lσw.

Proposition 5.3.1. Fix w0 | v. Then there exists an isomorphism of G := Gal(L/K)-modules∏
w|v

Lw ∼= IndGGw0
Lw0 ,

where Gw0 = D(w0) is the decomposition group.

Proof. Recall that IndGGw0
Lw0 :=

{
f : G→ Lw0 | f(τσ) = τf(σ) for all τ ∈ Gw0 ,σ ∈ G

}
. For any

α = (αw)w, we define
fα : G→ Lw0 σ 7→ σ(ασ−1w0

).

Then it is easy to compute

fα(τσ) = τσ(ατσ−1w0
) = τ(σασ−1w0

) = τfα(σ).

Conversely, for f ∈ IndGGw0
Lw0 , we define (αf)σw0

:= σf(σ−1). This is well-defined by Gw0-
equivariance, and we can check that these two assignments are inverse to each other.

Corollary 5.3.2. By Shapiro’s lemma, we have Hr
(
G,
∏
w|v Lw

)
= Hr(Gw0 ,Lw0) for all r > 0.

Similarly, we have

Corollary 5.3.3. For all r > 0,Hr
(
G,
∏
w|v L

×
w

)
= Hr(Gw0 ,L×w0

) andHr
(
G,
∏
w|vUw

)
= Hr(Gw0 ,Uw0).

In particular, all of these are independent of the choice of w0 | v. To stress the independence,
we write Gv := Gw0 ,Lv := Lw0 , and so on and so forth.

2Some other references will call this the second inequality because they prove this second.
3In the first proof of class field theory, this was the first inequality.
4This is the difference between algebraic geometry and number theory. In number theory, there are infinite places, so

analysis cannot be avoided.
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Proposition 5.3.4. We have the following cohomology of the idèles:

1. H0(G, IL) = IK.

2. For all r ∈ Z, Hr(G, IL) =
⊕
v Ĥ

r(Gv, (Lv)×).

Proof.

1. We know that a = (aw) ∈ IL is G-invariant if and only if (aw)w|v is G-invariant for all
places v of K if and only if aw ∈ K×v is independent of the choice of w | v for all v, and this
is equivalent to a = (av)v ∈ IK.

2. Let S be a finite set of places of K containing S∞. Write

IL,S =

∏
v∈S

∏
w|v

L×w

×
∏
v/∈S

∏
w|v

Uw

.

Then IL = lim−→ IL,S and therefore

Ĥr(G, IL) = lim−→ Ĥ
r(G, IL,S)

= lim−→

(∏
v∈S

Ĥr(Gv, (Lv)×)

)
×

∏
v/∈S

Ĥr(Gv,Uv)

.

If S contains all places of K that are ramified in L, then for all v /∈ S, Lv/Kv is unramified. By
local class field theory, Ĥr(Gv,Uv) = 0, so

Ĥr(G, IL) = lim−→
∏
v∈S

Ĥr(Gv, (Lv)×) =
⊕
v

Ĥr(Gv, (Lv)×).

Corollary 5.3.5. We have H1(G, IL) = 0 and H2(G, IL) =
⊕
v

1
nv

Z/Z, where nv = [Lv : Kv].

These statements follow from collecting all of the local information.

Corollary 5.3.6. Assume L/K is cyclic. Assume S contains all places of K that are ramified in L and the
infinite places. Then h(IL,S) =

∏
v∈S nv.

Proof. By local class field theory, we have

h(IL,S) =
∏
v∈S

h((Lv)×)
∏
v/∈S

h(Uv) =
∏
v∈S

nv
∏
v/∈X

1 =
∏
v∈S

nv.

Definition 5.3.7. Let T := {w | v : v ∈ S} be a finite set of places of L. Define the group of T -units
of L to be

U(T) := L× ∩ IL,S =
{
α ∈ L× | α ∈ Uw,w /∈ T

}
.

Our next goal is to compute h(U(T)) and use this to prove the first inequality. First, we must
compute the cohomology of units. Let L/K be a finite Galois extension of number fields and S be
a finite set of places containing S∞. Let T be the set of places of L above S.
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Proposition 5.3.8. Assume L/K is cyclic. Then

h(U(T)) =

∏
v∈S nv
n

,

where nv = [Lv : Kv],n = [L : K].

Proof. We need to use the following comparison result for Herbrand quotients from the homework:
let G be a cyclic group and V an R[G]-module. If M,N ⊆ V are two G-stable lattices, then
h(M) = h(N). We will apply this to the case where V = R|T | = HomSet(T , R).

1. Consider N = HomSet(T , Z). This is clearly a G-stable lattice. As a G-module, we have

N =
⊕
v∈S

HomSet(G/G
v, Z)

=
⊕
v∈S

IndGGv Z.

In particular, we have

h(N) =
∏
v∈S

h(IndGGv Z)

=
∏
v∈S

h(Z)

=
∏
v∈S

|Gv|

=
∏
v∈S

nv.

2. Now consider λ : U(T) → V = R|T | given by α 7→ (log |α|w)w∈T . If M0 = Im(λ), Dirich-
let’s unit theorem for U(T) says that M0 is a lattice of rank |T | − 1 in the hyperplane{∑

w∈T xw = 0
}

. Then M =M0 ⊕Z · (1, . . . , 1) is a G-stable lattice.

Now we know that h(M) = h(N), so h(U(T)) = h(M0) because the kernel of λ is the set of
roots of unity in L, which is finite. Now we obtain

h(U(T)) = h(M0) =
h(M)

h(Z)
=

∏
v∈S nv
n

,

as desired.

Now we are able to compute the cohomology of the idèle class group CK.

Lemma 5.3.9. For L/K, we have H0(G,CL) = CK.

Proof. The short exact sequence in ModG

1→ L× → IL → CL → 1

gives a long exact sequence

0→ H0(G,L×)→ H0(G, IL)→ H0(G,CL)→ H1(G,L×) = 0,

where the last equality is by Hilbert 90. This implies that H0(G,CL) = IK/K
× = CK.
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We need to compute the Herbrand quotient of the idèle class group, so first we will rewrite IK
in terms of S-units.

Lemma 5.3.10. Choose S containing a generating set of prime ideals in ClK. Then IK = K× · IK,S.

Proof. Recall that we have a surjection

IK � IK (av)v 7→
∏
v-∞ p

ordv(av)
v .

with kernel IK,S∞ . In particular, we can write

ClK = IK/K
× = IK/K

×IK,S∞ .

By the choice of S, we have

IK/K
×IK,S = ClK / 〈p ∈ S〉 = ClK /ClK = 0.

Theorem 5.3.11. Assume L/K is cyclic. Then h(CL) = [L : K]. In particular, [CK : Nm(CL)] > [L : K].

Proof. Choose S such that T a generating set of prime ideals for ClL. Then we can rewrite

CL = IL/L
× = L×IL.T/L

× = IL,T/IL,T ∩ L× = IL,T/U(T).

Now we have

h(CL) =
h(IL,T )

h(U(T))
=

∏
v∈S nv

1
n

∏
v∈S nv

= n = [L : K].

As an application of the first inequality, we will prove

Lemma 5.3.12. Asssume L/K is solvable. If there existsD ⊆ IK such thatD ⊆ Nm(IL) and K× ·D ⊆ IK
is dense, then L = K.

Proof. Assume L 6= K. Then we may find a tower K ⊆ K ′ ⊆ L such that K ′/K is cyclic. Then
we know D ⊆ Nm(I ′K). By local class field theory, Nm(IK ′) ⊆ IK is an open subgroup, so
K× ·Nm(IK ′) is also an open subgroup. Therefore K× ·Nm(IK ′) is also closed. By density, we see
that K×Nm(IK ′) = IK. In particular, [CK : Nm(CK ′)] = 1, so [K ′ : K] = 1, which is a contradiction.
Thus L = K.

Proposition 5.3.13. Assume L/K is solvable. If all but finitely many places v of K split completely in L,
then L = K. Equivalently, if L 6= K, then there are infinitely many places v of K that do not split completely
in L.

Proof. Choose S to contain the set of all v that do not split completely in L. Also choose

D =
{
(av)v | av ∈ K×v (v ∈ S),av = 1(v /∈ S)

}
⊆ IK.

Then if v /∈ S, it splits completely in L, so Lv/Kv is a trivial extension. Therefore D ⊆ Nm(IL). On
the other hand, by weak approximation, any (av)v∈S can be approximated by a global element
a ∈ K×, so K× ·D is dense in IK. By the previous lemma, L = K.

Proposition 5.3.14. Assume that L/K is solvable. Then
{

Frobw/v
}
v unramified

generate Gal(L/K).
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Proof. Take H =
〈

Frobw/v
〉
⊆ Gal(L/K). Choose E = LH. If v is unramified in L, then v splits

completely in LH. But this means that E = K because only finitely many places are ramified, so
H = Gal(L/K).

Corollary 5.3.15. Assume L/K is abelian. Then the Artin map φK : IK → Gal(L/K) is surjective.

Proof. By local class field theory, if v is unramified in L, then φK(1, 1, . . . ,πv, 1, . . .) = Frobw/v. We
know that the Frobw/v generate Gal(L/K), so φK is surjective onto Gal(L/K).

5.4 Analytic aspects and second inequality

Recall that if L/K is solvable and L 6= K, then there exist infinitely many places of K that do
not split completely in L. For example, if L/K = Q(i)/Q, then p splits in L if and only if p ≡ 1
(mod 4). Thus there are infinitely many primes p ≡ 3 (mod 4). This result is sometimes called
the weak Chebotarev density theorem, so what is the strong Chebotarev density theorem? In our
example, we expect that half of all primes are congruent to 1 modulo 4 and that the other half are
congruent to 3 modulo 4. Of course, there are infinitely many primes, so we need to understand
what is meant by “half of all primes” here.

Definition 5.4.1. Let P be a set of primes in Z. Define the natural density of P to be

µ(P) := lim
x→∞ #{p ∈ P | p < x}

#{p prime | p < x}

if this limit exists.

Definition 5.4.2. Let P be a set of finite places of a number field K. Define the natural density of P
to be

µ(P) := lim
x→∞ #{p ∈ P | Np < x}

#{p finite place | Np < x}

if this limit exists.

Of course, this definition is a terrible way to do analysis because we are throwing away so
much information, so we would like a definition better suited to analytic methods.

Definition 5.4.3. Define the Dirichlet density

δ(P) := lim
s→1+

∑
p∈PNp−s∑
pNp−s

if this limit exists.

The fundamental fact, proved in any first course in analytic number theory, is that if µ(P)
exists, then δ(P) exists and µ(P) = δ(P). Thus natural density is a stronger notion than Dirichlet
density. The proof of this fact uses the prime number theorem and is omitted here because this is
not a course in analytic number theory.

Remark 5.4.4. It is possible that the Dirichlet density exists, but the natural density does not. For
a ∈ {1, . . . , 9}, choose Pa to be the set of primes starting with the digit a. Then µ(Pa) does not

exist, but δ(Pa) = log10

(
1 + 1

a

)
, a result due to Bombieri.5

5This pattern also appears in many other places, and is called Benford’s law.
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Dirichlet density is easier to study because we can use the tool of L-functions, which generalize
the Riemann zeta function.

Definition 5.4.5. The Riemann zeta function is defined by

ζ(s) :
∑
n>1

1
ns

=
∏
p

1
1 − p−s

.

For a general number field K, the Dedekind zeta function is defined by

ζK(s) :=
∑

a⊆OK
ideal

1
Nas

=
∏

p⊆OK
prime ideals

1
1 −Np−s

.

These series converge when Re(s)� 0. When K = Q, ζQ(s) = ζ(s).

Definition 5.4.6. Let χ : (Z/m)× → C× be a character. The Dirichlet L-function of χ is given by

L(s,χ) :=
∑
n>1

χ(n)

ns
=
∏
p

1
1 − χ(p)p−s

,

where χ(n) = 0 if (n,m) 6= 1. When χ = 1, then L(s, 1) = ζ(s).

Definition 5.4.7. Let K be a number field and m be a modulus of K. Let χ : Clm → C× be a
character. The Weber L-function of χ is given by

L(s,χ) :=
∑

a⊆OK
ideal

χ(a)

Nas
=

∏
p⊆OK

prime ideals

1
1 − χ(p)Np−s

.

Again, we write χ(a) = 0 if (a,m) 6= 1. These series converge absolutely when Re(s)� 0. When
K = Q, m = (m) ·∞ and we have Cl(m)·∞ = (Z/m)×, so the Weber L-function recovers the
Dirichlet L-function. Of course, when χ = 1, we recover the Dedekind zeta function.

Theorem 5.4.8 (Analytic properties of Weber L-functions).

1. If χ 6= 1, then L(s,χ) has an analytic continuation to all s ∈ C and L(1,χ) 6= 0.

2. If χ = 1, then L(s,χ) = ζK(s) has an analytic continuation to all s ∈ C \ {1} and a simple pole at
s = 1. The residue Ress=1 ζK(s) is given by the class number formula for K.

3. The function L(s,χ) satisfies the functional equation relating the values at s and 1 − s.

Remark 5.4.9. In general, there are more complicated complicated notions of L-functions, although
this is a vaguely defined notion. In general, L-functions are series of the form

∑
n>1

an
ns satisfying

1. The series has an Euler product
∏
p

1
polynomial(p−s) .

2. The series has an analytic continuation to C except for poles for ζ(s) at s = 1.

3. The analytic continuation satisfies a functional equation relating the values at s and 1 − s.

Corollary 5.4.10. For any number field K, log ζK(s) ∼ log 1
s−1 (this means the difference is analytic at

s = 1).
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Proof. By the theorem, ζK(s)(s− 1) is analytic at s = 1, so log ζK(s) = log ζK(s)(s− 1) − log(s− 1).
Because log ζK(s)(s− 1) is analytic at s = 1, so we obtain the desired result after rearranging.

Proposition 5.4.11. We have the identity

log ζK(s) ∼
∑
p

1
Nps

.

Proof. We compute

log ζK(s) = log
∏
p

1
1 −Np−s

= −
∑
p

log
(
1 −Np−s

)
=
∑
p

∑
n>1

Np−ns

n

=
∑
p

1
Nps

+
∑
p

∑
n>2

Np−ns

n
.

The second term is analytic at s = 1, so we obtain the desired result.

Corollary 5.4.12. We can rewrite

δ(P) = lim
s→1+

∑
p∈PNp−s

log 1
s−1

.

Theorem 5.4.13. Let L/K be a finite Galois extension and P be the set of primes of K splitting completely
in L. Then

δ(P) =
1

[L : K]
.

Example 5.4.14. Let K = Q,L = Q(i). Then we have δ(p ≡ 1 (mod 4)) = δ(p ≡ 3 (mod 4)) = 1
2 .

Proof. We can rewrite

∑
p∈P

1
Nps

=
1

[L : K]

∑
q⊆OL
f(q)=1

1
Nqs

∼
1

[L : K]

∑
q⊆OL

1
Nqs

∼
1

[L : K]
log

1
s− 1
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because the terms with f(q) > 2 contribute to an analytic function and the second item on the
right hand side is ζL(s). Now we obtain

δ(P) = lim
s→1+

∑
p∈PNp−s

log 1
s−1

= lim
s→1+

1
[L:K] log 1

s−1

log 1
s−1

=
1

[L : K]
.

Now we want to use these tools to prove the second inequality. The idea is to show that

1
[CK : Nm(CL)]

>
1

[L : K]
.

We will reinterpret the right-hand side as the density of primes of K that split completely in L.
Now we will reinterpret the left-hand side as a certain density also. Recall that for m = m0 ·m∞ a
modulus of K, we have the ray class group Clm.

Theorem 5.4.15. Let Km ⊆ H ⊆ ImK . Then let A ∈ ImK/H be an ideal class. Then

δ({p ∈ A}) = 1
[ImK : H]

.

Proof. Let χ be a character of ImK/H. This is a quotient of Clm, so it induces a quotient of Clm.
Now let L(s,χ) be the Weber L-function. But now

logL(s,χ) ∼
∑
p-m

χ(p)

Nps

=
∑

B∈ImK/H

∑
p∈B

χ(p)

Nps

=
∑

B∈ImK/H
χ(B)

∑
p∈B

1
Nps

.

But now we want to pick out a single ideal class, so we need to use some Fourier analysis. We use
the fact that ∑

χ

χ(g) =

{
|G| g = 1
0 g 6= 1

for any g ∈ G. Multiplying χ(A)−1 and summing over all χ, we see that∑
χ

χ(A)−1 logL(s,χ) ∼
∑
χ

∑
B

χ(A−1B)
∑
p∈B

1
Np

s

log
1

s− 1
= [ImK : H]

∑
p∈A

1
Np2 ,

and thus δ(p ∈ A) = 1
[ImK :H] , as desired.
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Remark 5.4.16. Every finite abelian extension L/K admits a modulus m such that

Ck/Nm(CK) ' ImK/K
m ·Nm(ImL ).

is a quotient of the ray class group Clm. In particular, we may reinterpret the global Artin map as
a map φL/K : ImK → Gal(L/K) given by p 7→ Frobp.

Theorem 5.4.17 (Second inequality). We have [ImK : Km ·Nm(ImL )] 6 [L : K].

Proof. Apply the previous theorem to H = Km ·Nm(ImL ) and A = [0]. Then we know

δ(p ∈ A) = 1
[ImK : Km ·Nm(ImL )]

.

On the other hand, we know

δ(p splits completely in L) =
1

[L : K]
.

But now we know p splits completely in L only if p ∈ Nm(ImL ), which is the same thing as p ∈ A.
Thus δ(p ∈ A) > δ(p splits completely in L), as desired.

Before we continue with the proof of global class field theory, we will prove an important
result in analytic number theory.

Theorem 5.4.18 (Chebotarev density theorem). Let L/K be a finite Galois extension of number fields.
Let σ ∈ G := Gal(L/K) and Cσ be the conjugacy class of σ. Then

δ(p | Frobp ∈ Cσ) =
|Cσ|

|G|
.

Proof. We will use global Artin reciprocity, so in the future we will not be using the Chebotarev
density theorem. By global Artin reciprocity for abelian extensions, we have an isomorphism
Imk /H→ Gal(L/K) for some modulus m. But then it is easy to see that

1
|G|

=
1

[ImK : H]
= δ(p ∈ A) = δ(p ∈ Cσ)

because G is abelian. Now when L/K is nonabelian, we will reduce to the abelian case. Let σ ∈ G
and write M = L〈σ〉. Applying the abelian case to the abelian extension L/M, write

S1 := {q ⊂ OM | Frobq = σ ∈ Gal(L/M)}.

We know δ(s1)
1
|σ|

. Now consider a subset of degree 1 primes of M and write

S2 := {q ∈ S1 | f(q/p) = 1}.

We know that δ(S1) = δ(S2). Finally, consider

S3 := {p | Frobp ∈ Cσ}.

Now we have a surjection S2 � S3 and the fiber has size |ZG(σ)|
|σ|

. This is because if q 7→ p with

Frobp = σ, then τq 7→ p if and only if Frobτq = τFrobq τ
−1 if and only if τσ = στ. Therefore

τq = q if and only if τ ∈ D(q) = 〈σ〉 = Gal(L/M). Then we know that

1
|σ|

= δ(S2) = δ(S3) ·
|ZG(σ)|

|σ|
,
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and therefore

δ(S3) =
1

|ZG(σ)|
=

|Cσ|

|G|
.

Example 5.4.19. Suppose σ = 1. Then Cσ = {1}, so Chebotarev density tells us that

δ(p splits completely in L) =
1

[L : K]
.

Example 5.4.20. Choose K = Q and L = Q(ζN), where either N is odd or 4 | N. Then we know
G = (Z/N)×. If we choose σ = a ∈ (Z/N)×, then Cσ = {a}, so by Chebotarev, we see that

δ(p ≡ a (mod N)) =
1

φ(N)
.

Thus we have recovered a strengthening of Dirichlet’s theorem on primes in arithmetic progression!

Remark 5.4.21. The original proof of Chebotarev density does not rely on global Artin reciprocity.
Instead, it reduces to the cyclotomic case, where global Artin reciprocity is known explicitly. In
fact, Artin’s proof of global Artin reciprocity was inspired by Chebotarev’s proof (will be reduced
to the cyclotomic case).

Example 5.4.22 (Simplest nonabelian example). Let K = Q and L = Q[x]/(x3 − x2 + 1). This is the
cubic extension with minimal |dL|, and here dL = −23. Then Gal(L̃/Q) ∼= S3. Now S3 has three
distinct conjugacy classes (1), (12), (123). These correspond to f(x) splitting completely in Fp, f(x)
splitting into a quadratic and a linear factor in Fp, and f(x) being irreducible in Fp, respectively.
Now we can compute (possibly using a computer) the table

Table 5.1: Primes in each conjugacy class

σ p

(1) 59, . . .
(12) 5, 7, 11, 17, 19, 37, 43, 53, . . .
(123) 2, 3, 13, 29, 31, 41, 47, . . .

Chebotarev predicts that the three classes will occur in a ratio of 1 : 3 : 2.

Remark 5.4.23. There is no simple congruence condition on p to determine Frobp. However, there
is a criterion on p in terms of modular forms. For example, for z ∈ H, we may consider the function

f(z) = q
∏
n>1

(1 − qn)(1 − q23n) q = e2πiz

=
∑
n>1

anq
n an ∈ Z.

Now some of the coefficients are

Table 5.2: Coefficients at primes

p 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59

ap −1 −1 0 0 0 −1 0 0 1 −1 −1 0 −1 0 −1 0 2
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So we see that the conjugacy classses corresppond to the coefficients being 2, 0,−1. In fact,
these are the character values for the two-dimensional irreducible representation ρ of S3. By a
miracle, we have Tr ρ(Frobp) = ap!

Remark 5.4.24. Recall that abelian extensions can be understood in terms of the idèle class group
using Artin reciprocity. But if we write IQ = A×

Q
, we can consider the idèle class group as a space

related to GL1. But now abelian extensions now correspond to 1-dimensional representations of
Gal(Q/Q), and the Langlands program gives a conjectural correspondence between n-dimensional
representations of Gal(Q/Q) and automorphic forms on [GLn] = GLn(AQ)/GLn(Q). For example,
when n = 2, the 2-dimensional representations correspond to modular forms relating Tr ρ(Frobp)
and coefficients ap of the modular form f(z).

5.5 Brauer groups and proof of global Artin reciprocity

We have already proved the first inequality that [CK : Nm(CL)] > [L : K], at least when L/K is
cyclic. We have also proved the second inequality that [CK : Nm(CL)] 6 [L : K] in general.

Corollary 5.5.1 (Global version of Hilbert 90). Let L/K be finite Galois. Then H1(G,CL) = 0.

Proof. We begin in the case when G is cyclic. Here, [CK : Nm(CL)] = [L : K]. However, h(CL) =
[CK:Nm(CL)]

|H1(G,CL)|
= [L : K], so H1(G,CL) = 0.

Now it remains to reduce the general case to the cyclic case. First, we will consider G solvable
and induct on |G|. Consider H /G such that G/H is cyclic. Then inflation-restriction gives us an
exact sequence

0→ H1(G/H,CLH)
Inf−→ H1(G,CL)

Res−−→ H1(H,CL).

Now the two outside terms vanish by G/H being cyclic and the inductive hypothesis, so
H1(G,CL) = 0.

Finally, if G is an arbitrary group, we simply consider the restriction to all Sylow subgroups

H1(G,CL)
Res−−→
∏
p

H1(Gp,CL) = 0.

However, this restriction is injective by a past homework, so we are done.

Now our goal is to compute the Brauer group H2(K). We will do this in terms of the local
Brauer groups.

Proposition 5.5.2. The natural restriction map H2(L/K)→
⊕
vH

2(Lv/Kv) is injective.

Proof. The short exact sequence

0→ L× → IL → CL → 0

gives a long exact sequence

0→ H1(G,CL)→ H2(G,L×)→ H2(G, IL).

But now from the computation of the cohomology of idèles and the previous corollary, we have
an injection

H2(G,L×) = H2(L/K) ↪→ H2(G, IL) =
⊕
v

H2(Lv/Kv).
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Corollary 5.5.3. Given β ∈ H2(K), there exists a cyclic extension L/K with L ⊆ K(ζm) for some m such
that β is split by L (β ∈ H2(L/K) = ker(H2(K)→ H2(L))).

Proof. By the proposition, we know that β ∈ H2(K) is completely determined by its local restric-
tions {βv}v. We also know that all but finitely many βv vanish. By local class field theory, we
know that β ∈ H2(Kv) = Q/Z (the isomorphism is given by the invariant map). But now there
exists m > 1 such that m · invv(βv) = 0 for all v. However, by functoriality of invv for w | v, we
obtain

invw(ResL(β)) = [Lv : Kv]invv(βv)

by one of the homeworks. Once we prove the following lemma, we will be done.

Lemma 5.5.4. Let S be a finite set of finite places of K and m > 1. Then there exists a cyclic cyclotomic
extension L/K such that m | [Lv : Kv] for all v ∈ S.

Proof. First we reduce to the case K = Q. Here, we can just take the composite with K and replace
m with m · [K : Q]. Also, we will reduce to the case where m = `s, wheere ` is some prime.
Here, we can just take the composite of the extensions for all prime power factors of m. We need
`s | [Lp : Qp] for some cyclic cyclotomic extension L/Q. Now

Gal(Q(ζ`r/Q)) = (Z/`r)× =

{
Z/`− 1×Z/`r−1 ` odd
Z/2×Z/2r−2 ` = 2, r > 2.

Now we can form a cyclic cyclotomic extension

L :=

{
Q(ζ`r)

Z/`−1 ` odd
Q(ζ2r)

Z/2 ` = 2.

Now we can compute for all p ∈ S that

[Qp(ζ`r) : Qp] =

{
φ(`r) p = `

t p 6= `

Where t is the smallest integer such that `r |
∣∣∣F×
pt

∣∣∣ = pt − 1. In particular, as we increase r,
[Qp(ζpr) : Qp] → ∞, so [Lp : Qp] → ∞ as we increase r, so we may choose r � 0 such that
`s | [Lp : Qp].

We have already proved that φL/K : IK → Gal(L/K) is surjective, so it remains to show that it
factors through CK/Nm(CL). We need to prove that

Theorem 5.5.5. K× is contained in the kernel of φL/K. This means φL/K(K×) = 1.

This will imply that the global Artin map is an isomorphism. To prove this, we will use a
global relation from Brauer groups.

Theorem 5.5.6. For all β ∈ H2(L/K), we have

β ∈ ker

(
H2(L/K)→

⊕
v

H2(Lv/Kv)

∑
v invv−−−−−→ Q/Z

)
.

Equivalently,
∑
v invv(β) = 0.
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Our strategy will contain the following steps:

0. We will prove Theorem 5.5.5 for L/K = Q(ζm)/Q.

1. Next, we will prove Theorem 5.5.5 for L/K cyclic cyclotomic.

2. Next, we will prove Theorem 5.5.6 for L/K cyclic cyclotomic.

3. Next, we will prove Theorem 5.5.6 for L/K finite abelian.

4. Finally, we will prove Theorem 5.5.5 for L/K finite abelian.

5.5.1 Step 0 Choose a ∈ Q×. We need to show that φ(a) = 1 ∈ Gal(Q(ζm)/Q) = (Z/mZ)×.
It suffices to treat the case where m = `r is a prime power, so we compute explicitly φ =

∏
pφp.

There are several cases:

1. p 6= ` is finite. Then p is unramified, so φp(a) = (ζ`r 7→ ζ
ps

`r ) = ps ∈ (Z/`r)×, where
a = u · ps.

2. p = `. Here p is ramified, so φp(a) = (ζ`r 7→ ζu
−1

`r ) = u−1 ∈ (Z/`r)×, where a = u`s.

3. p =∞. Here, φ∞(a) = sign(a) ∈ {±1} = Gal(C/R).

To show that φ(a) = 1, it suffices to consider a = p, `,−1.

1. If p 6= `, then φp(p)φ`(p) = p · p−1 = 1.

2. If p = `, then φ(`) = φ`(`) = 1−1 = 1.

3. Finally, φ(−1) = φ`(−1)φ∞(−1) = (−1)−1(−1) = 1.

5.5.2 Step 1 We will prove the following result. Because we already proved Theorem 5.5.5
for cyclotomic extensions, this will give us the result for cyclic cyclotomic extensions.

Lemma 5.5.7. If Theorem 5.5.5 holds for L/K, then it also holds for subextensions M/K of L/K and for
composites L ′/K ′, where L ′ = L ·K ′.

Proof. By functoriality of the local Artin maps, φM/K = IK
φL/K−−−→ Gal(L/K)� Gal(M/K). There-

fore if φL/K(K×) = 1, φM/K(K×) = 1 also.
For the composites, we use functoriality of the local Artin maps to obtain a commutative

diagram

IK ′ Gal(L ′/K ′)

IK Gal(L/K).

φL ′/K ′

Nm
φL/K

But now the desired result follows from diagram chasing with (K ′)×.

5.5.3 Step 3 Every β ∈ H2(K) is split by a cyclic cyclotomic extension by Corollary 5.5.3. This
means there exists L/K cyclic cyclotomic such that β ∈ H2(L/K). This reduces the finite abelian
case to the cyclic cyclotomic case.
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5.5.4 Steps 2 and 4 We will relate the global Artin maps with Brauer groups. Recall that
H2(G, Z) = H1(G, Q/Z) = Hom(G, Q/Z). Denote this map by δχ 7→ χ. Now the cup product
with δχ gives us a map H0(G,M) → H2(G,M). If L/K is an extension of local fields, then for
M = L×, we have a commutative diagram

H0(G,L×) = K× G = Gal(L/K)

H2(G,L×) = H2(L/K) Q/Z.

φL/K

∪δχ χ

inv

If L/K is an extension of global fields, we consider M = IL. Then we have a commutative diagram

(5.1)

K× IK G = Gal(L/K)

H2(L/K) H2(G, IL) =
⊕
vH

2(Lv/Kv) Q/Z.

∪δχ

φL/K

∪δχ χ∑
invv

5.5.5 Step 2 Assume that Theorem 5.5.5 holds for L/K cyclic cyclotomic. Then the top row is
trivial, so because G is cyclic, the bottom row is also trivial (in the cyclic case, the shift in degree
map is an isomorphism). But this means that β ∈ H2(L/K) satisfies

∑
invv(β) = 0, which is the

same thing as Theorem 5.5.6 holding for L/K cyclic cyclotomic.

5.5.6 Step 4 Assume that Theorem 5.5.6 holds for L/K finite abelian. But this means the
bottom row of (5.1) is trivial, so in particular, χ(φL/K(K×)) = 0. But χ is arbitrary in Hom(G, Q/Z),
so φL/K(K×) = 1. This gives Theorem 5.5.5 for all finite abelian extensions.

5.5.7 Brauer groups As a consequence of global Artin reciprocity, we can determine the
Brauer group of an arbitrary number field.

Theorem 5.5.8. Let K be a number field. Then

H2(K) = ker

(⊕
v

H2(Kv)

∑
v invv−−−−−→ Q/Z

)
.

Proof. By Theorem 5.5.6, we know that H2(K) is contained in the kernel. It remains to prove the
reverse inclusion. Consider (βv) ∈ ker. We know there exists L/K cyclic cyclotomic such that
(βv)v ∈

⊕
vH

2(Lv/Kv). Because L/K is cyclic, we have an isomorphism of exact sequences

0 K×/Nm(L×) IK/Nm(IL) CK/Nm(CL) 0

0 H2(L/K) H2(G, IL) =
⊕
vH

2(Lv/Kv)
1

[L:K]Z/Z 0.

∪δχ ∪δχ ∼∑
v invv

By definition, the top row is exact, so the bottom row is also exact. But this means that for
(βv) ∈ ker (

∑
invv), there exists β ∈ H2(L/K) such that (βv) = β.
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Example 5.5.9. Consider K = Q. Then we have a map

H2(Q) = {central simple algebras B/Q}→
⊕
v

H2(Kv) = {(Bv) | Bv CSA over Qv}.

This is given by Bv = B⊗Qv. Now by the theorem, we note that (Bv)v comes from B/Q if and
only if

∑
invv(Bv) = 0. For example, we have

invv(Bv) =

{
0 Bv =M2(Qv)
1
2 Bv is quaternion algebra.

This means that quaternion algebras B/Q are in bijection with the set of (Bv)v where an even
number of Bv are not M2(Qv).

5.6 Proof of global existence

We will now complete the proof of global class field theory. We need to prove the following
statement:

Theorem (Global existence). For any finite index open subgroup U ⊆ CK, there exists a finite abelian
extension L/K such that U = Nm(CL).

Definition 5.6.1. A subgroup of CK is a norm subgroup if it is of the form Nm(CL) for some finite
abelian extension L/K.

Now global existence is the same thing as every finite index open subgroup being a norm
subgroup.

Lemma 5.6.2. Any subgroup containing a norm subgroup is also a norm subgroup.

Proof. Assume U = Nm(CL) and V ⊇ U. Then global Artin reciprocity implies that CK/U '
Gal(L/K). Now we have a commutative diagram

CK/U Gal(L/K)

CK/V Gal(M/K)

∼

∼

by the fundamental theorem of Galois theory. By construction, V = ker(CK → Gal(M/K)), so in
particular, V = Nm(CM) by global Artin reciprocity.

Now it suffices to produce a enough norm subgroups such that every finite index open
subgroup contains a norm subgroup. Here, we will use Kummer extensions. Let K be a field and
µn ⊆ K. Then if Ln is the maximal abelian extension of K with exponent n, then by considering
the Kummer sequence

1→ µn → (Ksep)× → (Ksep)× → 1

we obtain a perfect pairing Gal(Ln/K)⊗K×/(K×)
n → µn given by (σ,b) 7→ σ(

n√
b)

n√
b

. This gives a

bijection between finite subgroups of K×/(K×)n and finite abelian extensions of K of exponent n.
Here, to a subgroup B, we associate field L = K( n

√
B) given by adjoining all n-th roots of elements

in B and to an extension L/K we simply take the n-th powers of all elements in L×. Here, it is
easy to see that |B| = [L : K].
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Example 5.6.3. Let K be a local field and assume µn ⊆ K. Then Ln/K is finite and

[Ln : K] =
∣∣∣K×/(K×)n∣∣∣ = n2

|n|K
.

Here, we know K× = O×K ×Z, so K×/(K×)n = O×K/(O
×
K)
n ×Z/n. Because O×K contains a finite

index subgroup isomorphic to OK, we have
∣∣∣O×K/(O×K)n∣∣∣ = ∣∣µn(O×K)∣∣ · |OK/nOK| = n 1

|n|K
, as

desired.

Now assume K is a number field.

Lemma 5.6.4. Assume µn ⊆ K. Assume that S ⊇ S∞ ∪ {v | n}. Assume S is large enough so that
IK = K× · IK,S. Let a ∈ K× such that a ∈ (K×v )

n for all v ∈ S and a ∈ Uv for all v /∈ S. Then
a ∈ (K×)

n.

Proof. Let L = K( n
√
a). Then we see that Lv = Kv for all v ∈ S and Lv/Kv is unramified for all

v /∈ S. By local class field theory, in the first case we have Nm((Lv)×) = K×v , and in the second
case Nm(Uv) = Uv. Therefore Nm(IL) ⊇ IK,S, so K×Nm(IL) ⊇ K×IK,S = IK, and therefore
Nm(CL) ⊇ CK, so L = K.

Proposition 5.6.5. Assume µn ⊆ K. Let U ⊆ CK be a finite index open subgroup and assume CK/U has
exponent n. Then U is a norm subgroup.

Proof. Let S ⊇ S∞ ∪ {v | n} and

E :=
∏
v∈S

(K×v )
n
∏
v/∈S

Uv ⊆ IK.

Then let V := K× · E/K× ⊆ CK. Because CK/U has exponent n, we know U ⊇ V for S sufficiently
large. It remains to show that V is a norm subgroup. Enlarging S we may assume that IK =
K×IK,S.

Let U(S) = K× ∩ IK,S be the S-units. By the previous lemma, K× ∩ E = U(S)∩ E = U(S)n. Set
L = K( n

√
U(S)). This is a finite abelian extension of exponent n unramified away from S. By local

class field theory, we know Nm((Lv)×) ⊇ (K×v )
n for all s ∈ S and Nm(Uv) = Uv for all v /∈ S. But

now E ⊆ Nm(IL) and thus Nm(CL) ⊇ V . Now we show that Nm(CL) = V .
We will show that [CK : Nm(CL)] = [CK : V]. But now we have

[CK : V] = [IK : K× · E]
= [K× · IK,S : K× · E]

=
[IK,S : E]

[K× ∩ IK,S : K× ∩ E]

Now we compute

[IK,S : E] =
∏
v∈S

[K×v : (K×v )
n
]

=
∏
v∈S

n2

|n|v

= n2|S|.
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We also compute

[K× ∩ IK,S : K× ∩ E] = [U(S) : U(S)n]

=
∣∣∣(Z/n)|s|∣∣∣

= n|s|

by Dirichlet’s unit theorem. Thus [CK : V] = n|S|. On the other hand, we have

[CK : Nm(CL)] = [L : K]

=
∣∣∣U(S) · (K×)n/(K×)n∣∣∣

=
∣∣∣U(S)/U(S)∩ (K×)n∣∣∣

= |U(S)/U(S)n|

= n|S|

using Kummer theory and the Dirichlet unit theorem. This implies that V = Nm(CL).

To finish the proof of global existence, we reduce to the case of Kummer extensions.

Lemma 5.6.6. Let U ⊆ CK be a finite index open subgroup and V = Nm−1
K ′/K(U) for some finite extension

K ′/K. If V is a norm subgroup, then so is U.

Proof. Write V = NmL/K ′(CL) for some finite abelian L/K ′. Now let M be the maximal abelian
subextension of L/K. Then

NmM/K(CM) = NmL/K(CL) = NmK ′/K(NmL/K ′(CL)) = NmK ′/K(V) ⊆ U.

Therefore U is a norm subgroup.

We are now able to complete the proof of global existence. We will induct on [CK : U] and
assume p | [CK : U]. If µp ⊆ K, choose U1 ⊆ CK containing U such that [CK : U1] = p. Then U1
is a norm subgroup, so write U1 = Nm(CL). Now NmL/K : CL → CK/U has image U1/U with

kernel V := Nm−1
L/K

(U). Then [CL : V] = |U1/U| =
[CK:U]
p , and by the inductive hypothesis, V is a

norm subgroup, so U is also a norm subgroup.
If µp 6⊆ K, then take K ′ = K(µp). Now U ′ = Nm−1

K ′/K(U). Then U ′ is a norm subgroup by the
above, so by the lemma, U is also a norm subgroup.

5.7 Primes of the form x2 +ny2

In this section we discuss a classical application of class field theory. This was discussed at
the beginning of these notes. Recall that if K = Q(

√
d) with discriminant dK, then the splitting

behavior of

(p) =


p1p2

(
dK
p

)
= 1

p
(
dK
p

)
= −1

p2 p | dK

is determined by the Legendre symbol
(
dK
p

)
.
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Example 5.7.1. Consider K = Q(
√
−1) with dK = 4. Then p splits in K if and only if

(
−4
p

)
= 1,

which is equivalent to
(
−1
p

)
= 1, is equivalent to p ≡ 1 (mod 4) by basic arithmetic.

On the other hand, OK = Z[i] is a PID, so p splits in K if and only if p = (x+ iy)(x− iy),
which is equivalent to p = x2 + y2 for integers x,y ∈ Z. Combining the two equivalences, we see
that p = x2 + y2 if and only if p ≡ 1 mod 4.

Example 5.7.2. Consider K = Q(
√
−5) with dK = −40. Then p splits in K if and only if

(
−5
p

)
= 1,

and by quadratic reciprocity this is equivalent to p ≡ 1, 3, 7, 9 (mod 20). However, OK = Z[
√
−5]

is no longer a PID, so we have a different criterion for p = x2 + 5y2.

Theorem 5.7.3. If p 6= 2, 5, then p = x2 + 5y2 if and only if p ≡ 1, 9 (mod 20).

Some examples are given below.

Table 5.3: Primes of the form x2 + 5y2

p (x,y)

29 (3, 2)
41 (6, 1)
61 (4, 3)
89 (3, 4)

Similarly, we have

Theorem 5.7.4. If p 6= 2, 3, then p = x2 + 6y2 if and only if p ≡ 1, 7 (mod 24).

Some examples are given below.

Table 5.4: Primes of the form x2 + 6y2

p (x,y)

7 (1, 1)
31 (5, 1)
73 (7, 2)

Our goal is to explain the proof of these results using class field theory.

Lemma 5.7.5. Let p be a finite prime for a number field K. Then p is principal if and only if p splits
completely in HK, where HK is the Hilbert class field of K.

Proof. By global Artin reciprocity, ClK ∼= Gal(HK/K). But then p is principal if and only if [p] ∈ ClK
is trivial. However, this is equivalent to Frobp being trivial, which is equivalent to p splitting
completely in HK.

Proposition 5.7.6.

1. If p 6= 2, 5, then p = x2 + 5y2 if and only if p splits completely in Q(
√
−5,
√
−1).

2. If p 6= 2, 3, then p = x2 + 6y2 if and only if p splits completely in Q(
√
−6,
√
−3).
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Proof.

1. If p 6= 2, 5, then p = x2 + 5y2 if and only if (p) = p1p2 splits as a product of principal
ideals in K = Q(

√
−5). By the lemma, this is equivalent to p1, p2 splitting completely in

HK = Q(
√
−5,
√
−1), and combining, we see this is equivalent to p splitting completely in

HK.

2. This is the same argument, except HK = Q(
√
−6,
√
−3) when K = Q(

√
−6).

Therefore, to prove the main theorems, it remains to prove the following result.

Proposition 5.7.7.

1. p splits completely in Q(
√
−5,
√
−1) if and only if p ≡ 1, 9 (mod 20).

2. p splits completely in Q(
√
−6,
√
−3) if and only if p ≡ 1, 7 (mod 20).

The key to this result is that in these cases, HK/Q is an abelian extension, so we may apply
global Artin reciprocity. Recall that for Q, Cl(N)·∞ = Gal(Q(ζN)/Q) = (Z/N)×. Then under the
Artin reciprocity map, p ≡ 1 (mod N) if and only if p splits completely in Q(ζN).

Example 5.7.8. When N = 4, we have Q(ζ4) = Q(i), so we recover the result that p ≡ 1 (mod 4)
if and only if p splits in Q(i).

More generally, the global existence theorem gives a bijection between finite index open
subgroup of CQ and finite abelian extensions of Q. In particular, we obtain a bijection between
finite subgroups of (Z/N)× and finite abelian subextensions K/Q of Q(ζN). This is given by
Gal(K/Q) = (Z/N)×/H. Thus we see that p ∈ H if and only if p splits completely in K.

Example 5.7.9. Let N = 5. Then (Z/5)× ∼= Z/4, and so the possibilities for H are H =

{1}, {±1}, (Z/5)×. Clearly the trivial subgroup corresponds to Q(ζ5) and (Z/5)× corresponds
to Q, and {±1} corresponds to Q(ζ5 + ζ

−1
5 ) = Q(

√
5). By global class field theory, this is the only

abelian subextension K/Q of Q(ζ5).

Note that because quadratic extensions are abelian, every quadratic extension is contained in a
cyclotomic extension. For example,

√
5 = ζ5 − ζ

2
5 − ζ

3
5 + ζ

4
5.

Example 5.7.10. Consider N = 20. Then (Z/20)× ∼= Z/4 ×Z/2. Now the subgroups and
corresponding subextensions are given below.

Table 5.5: Subgroups and subfields

H ⊆ (Z/20)× K

{1} Q(ζ20)

{±1} Q(ζ20 + ζ
−1
20 )

{1, 11} Q(ζ5)

{1, 9, 11, 19} Q(
√

5)
{1, 9, 13, 17} Q(ζ4) = Q(i)

{1, 9} Q(
√

5,
√
i)

{1, 3, 7, 9} Q(
√
−5)

(Z/20)× Q
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This gives us the following diagram of field extensions:

Q(ζ20)

Q(ζ20 + ζ
−1
20 ) Q(ζ5) Q(

√
5, i)

Q(
√

5) Q(i) Q(
√
−5)

Q.

In particular, we see that p ≡ 1, 9 (mod 20) if and only if p splits completely in Q(
√
−5,
√
−1).

Example 5.7.11. When N = 24, then (Z/24)× = Z/2×Z/2×Z/2. Then we see that Q(
√
−6)

corresponds to {1, 5, 7, 11} and Q(
√
−3) corresponds to {1, 7, 13, 23}, so Q(

√
−6,
√
−2) corresponds

to {1, 7}. Therefore p ≡ 1, 7 (mod 24) if and only if p splits completely in Q(
√
−6,
√
−3).

Remark 5.7.12. When K/Q is abelian, class field theory gives us a congruence condition for primes
splitting completely in K. On the other hand, when K/Q is nonabelian, then such a congruence
condition does not exist.

Lemma 5.7.13. Denote by Spl(L/K) to be the set of primes p of K splitting completely in L. Then L1 ⊆ L2
if and only if Spl(L1/K) ⊇ Spl(L2/K). In particular, L1 = L2 if and only if Spl(L1/K) = Spl(L2/K).

Proof. One direction is clear. In the other direction, suppose Spl(L1/K) ⊇ Spl(L2/K). Then
Spl(L1L2/K) ⊇ Spl(L2/K). But now Chebotarev density tells us that [L1L2 : K] 6 [L2 : K], and this
is only possible if L1L2 = L2, which means L1 ⊆ L2.

Proposition 5.7.14. If K/Q is nonabelian, then there does not exist a congruence condition for p splitting
completely in K.

Proof. If there exists such a congruence condition, then choose p ∈ Spl(K(ζN)/Q). Thus p ∈
Q(ζN/Q), and therefore p ≡ 1 (mod N). By the criterion, {p ≡ 1 (mod N)} ⊆ Spl(K/Q). But this
means that Spl(Q(ζN)/Q) ⊆ Spl(K/Q), so Q(ζN) ⊇ K. This implies K/Q is abelian.

Example 5.7.15. If K = Q(
√
−14), then ClK = Z/4, so HK = Q(

√
2
√

2 − 1) with Gal(HK/Q) ∼= D4.
Thus there is no congruence condition for p = x2 + 14y2.

Remark 5.7.16. Even though there is no congruence condition, non-abelian reciprocity gives us a
condition using coefficients of modular forms.


	Contents
	Motivation
	A Special Case of CFT
	Back to Fermat

	Local Fields
	Absolute Values
	Completions
	Extension of Absolute Values and Unramified Extensions
	Unramified Extensions
	Totally Ramified Extensions
	Statement of Local Class Field Theory
	Norm Subgroups

	Group Cohomology
	Definition of Cohomology
	Change of Groups
	Group Homology
	Tate Cohomology

	Local Class Field Theory
	Vanishing of first cohomology
	Second Cohomology
	Proof of Local Class Field Theory
	Proof of local Artin reciprocity
	Proof of Local Existence


	Global class field theory
	Idèles
	Statement of global class field theory
	Cohomology of Idèles and first inequality
	Analytic aspects and second inequality
	Brauer groups and proof of global Artin reciprocity
	Step 0
	Step 1
	Step 3
	Steps 2 and 4
	Step 2
	Step 4
	Brauer groups

	Proof of global existence
	Primes of the form x2 + ny2


