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Degenerations of holomorphic curves, tropical geometry,
gluing theorems, and exploded manifolds (Brett Parker)

1.1 Geometry of holomorphic curves

Consider a map f : Σ → M, where Σ is a Riemann surface and M is a manifold with metrics
gΣ,gM respectively.

Definition 1.1.1. The L2 energy of f is given by

L2(f) :=

∫
Σ

1
2
|Df|2 dA ,

where |Df| is defined using gΣ and gM on T∗Σ⊗ TM.

This is conformally invariant, as can be seen by computing the energy after scaling gΣ. This is
also analogous to the definition of geodesics, where we consider stationary points of

L(γ) =

∫
1
2
|γ̇|2 dt .

We really want to consider holomorphic maps, so we choose an almost complex structure
J ∈ End(TM) such that

g(J−, J−) = g(−,−).

This defines a 2-form by
ω(v,w) := g(Jv,w),

which is not necessarily closed. We also choose a complex structure j on Σ.

Lemma 1.1.2. The L2 energy of f satisfies the inequality

L2(f) ⩾ Area(f) ⩾
∫
Σ
f∗ω

with inequality if and only if df ◦ j = J ◦ df (meaning that f is holomorphic).

Locally, if we choose coordinates x,y such that the complex structure is x+ iy, then∫
Σ
f∗ω =

∫
Σ
g(Jfx, fy)dx∧ dy

⩽
∫
Σ

(
1
2
|fx|

2 +
1
2
|fy|

2
)

dxdy ,
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with equality if and only if f is holomorphic.

Remark 1.1.3. It is tempting to consider just the area in the inequality, but that would not tell us
how to parameterize the curve, just like how defining geodesics by minimizing length doesn’t tell
us how to parameterize the geodesic.

If ω is closed, then Eω(f) =
∫
Σ f

∗ω is deformation invariant, so f is holomorphic if and only
if f minimizes L2-energy and L2(f) = Eω(f).

1.1.1 Regularity

Lemma 1.1.4 (Monotonicity). Consider a ball of radius R such that a nonconstant holomorphic curve f
passes through its center. Then

L2
(
f|f−1(BR(f(z0)))

)
⩾ εR,

where εR depends on gM and R.

Morally, we should think that it takes some amount of energy for our curve to escape the ball.
Now note that the Cauchy-Riemann equation is elliptic, so we have elliptic regularity. Specifi-

cally, we have

sup
B 1

2
(0)

∣∣∣Dkf∣∣∣ ⩽ ck sup
B1(0)

|Df|,

which gives us bounds on all higher derivatives, so solutions are smooth. Unfortunately, L2 energy
bounds do not guarantee derivative bounds.

Theorem 1.1.5 (Removable singularity). If L2(f) <∞ then f : Σ \ p extends over p.

Lemma 1.1.6. Consider f : B1(0)→M. If L2(f) is small, then

|Df(0)| ⩽ c.

1.1.2 Think-thin decomposition of the domain For a holomorphic curve f : Σ→M with
Eω(f) < ω, our goal is to decompose Σ into long thin annuli A with low energy and “thick”
regions Ci such that

• Eω(f|A) < ε0;

• |df| is bounded on C;

• The diameters of the Ci are bounded;

• Either χ(Ci) < 0 or Eω(f|Ci) > ε0.

Remark 1.1.7. This requires changing the metric in the same conformal class to eliminate bubbling.

Taking the limit as the lengths of the annuli go to infinity, we obtain a degerated holomorphic
curve with many components.



6

1.1.3 Noncompact stuff Some examples of noncompact manifolds we want to consider are
N×R× S1︸ ︷︷ ︸

C×

, where N is compact, or (C×)k ⋊N, where the fibers are holomorphic and J,g are

C×-invariant. In the first case, we are using a C×-invariant metric, so the manifold really does
look like a cylinder. A third case we will consider are those which are asymptotically cylindrical,
for example M \D, where M is a complex manifold and D is a normal crossings divisor.

In these cases, we must use a different taming form ω, so g ̸= ω(−, J−). For example, in the
cylindrical case we can consider

ω = ωN +
∑
h

dρh(th)αh,

αh is a connection form, t, θ are coordinates on R×S1, and ρh looks like a smoothed step function.
We obtain the inequality

Eω ⩾ L
2(f projected to N)

or we consider the L2 energy of f locally on (C×)k ⋊N. Unfortunately, this means we only have
local energy bounds.

Exercise 1.1.8. Let f : A→ C× be holomorphic with
∣∣∣df
f

∣∣∣ < c0. Write A =
{
e−T ⩽ |z| ⩽ eT

}
. Show

that

(a)
∣∣∣ df(z)
(f(z)) −

df(1)
f(1)

∣∣∣ ⩽ e−Tc0

(
|z|+ 1

|z|

)
;

(b) f(z) = eh(z)azm with h(z) ⩽ 2
(
|z|+ 1

|z|

)
e−Tc0.

Therefore, in logarithmic coordinates, a holomorphic curve in (C×)2 has its thin regions
travelling in straight lines and the thick regions are very small. In the tropical limit, we obtain a
piecewise-linear curve.

In all of these cases, we can replace the RHS of the first part of the exercise with

e−δTc0

(
|z0|
δ +

1

|z0|
δ

)
,

where 0 < δ < 1.

1.2 Exploded manifolds

One of the problems that we have is dealing with what happens in our moduli spaces as things go
off to infinity. Of course, the moduli space of the tropical curves is not compact, but it is relatively
nice. To deal with the problem in the usual geometry, we will develop the formalism of exploded
manifolds.

1.2.1 Explosion Let R be a ring. The exploded semiring is RtR with multiplication given by

c1t
a1c2t

a2 = c1c2t
a1+a2

and addition given by

c1t
a1 + c2t

a2 =


c1t
a1 a1 < a2

(c1 + c2)t
a1 a1 = a2

c2t
a2 a1 > a2.
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If R is the ring with one element, then we get the tropical numbers. Then there is a tropical part
homomorphism

RtR → tR cta = a,

where a represents the tropical number 0ta ∈ tR. There is also a smooth part homomorphism

Rt[0,∞) → R ⌈cta⌉ = cδa,0.

The goal is to define the functor

Expl : log→ Exploded manifolds.

First, we will define the exploded point

p† = Spec([0,∞)→ C) = (Spec C, C×t[0,∞)).

For any log-scheme X†, we will define

Expl(X†) = X† × p† = (X,MXt[0,∞)).

Here, the structure morphisms to OX are as expected. A holomorphic morphism of these exploded
objects is simply a morphism X† × p† → Y† × p† over p†.

Example 1.2.1. We will now consider the points p† → Expl(C, 0). These correspond to morphisms

(1.1)
M(C,0)t

[0,∞) OC

C×t[0,∞) C.

h

This is determined by the value h(zt0) ∈ C×t[0,∞). We may now consider a new coordinate z̃ on
Expl(C, 0). Thus, as a set, we have

Expl(C, 0) = C×t[0,∞).

This will admit the notion of a tangent space and a metric, and geometrically we will see C \ 0
with a cylindrical end at 0 and then infinitely many cylindrical ends in the [0,∞) direction.

1.2.2 Exploded manifolds Changing perspective, we will consider Expl(C, 0) as an exploded
manifold. We will have

• A set of points C×t[0,∞);

• A topology induced from the analytic topology on C using the smooth part homomorphism;

• A sheaf of functions valued in C×tR. These functions will look something like f(⌈z̃⌉)z̃mta,
where m ∈ Z, a ∈ R, and f : C→ C× which is regular in some sense.

Here, regular could mean holomorphic, smooth, Ck, or another form of regularity known as
C∞,1. This means that for all δ < 1, the function |f(z) − f(0)||z|−δ extends to be continuous at 0
and so do all of its derivatives

∣∣Dkf(z)∣∣|z|−δ, where the deriatives are defined using the real or
imaginary parts of z ∂∂z .
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Definition 1.2.2. An exploded space B is a set B equipped with

• A topology induced from a surjective map B→ ⌈B⌉, where ⌈B⌉ is Hausdorff;

• A sheaf of C×tR-valued functions E×(B) containing constants.

Example 1.2.3. For the exploded manifold Expl(X†), then the set B is the set of maps p† → X†, the
smooth part is ⌈Expl(X†)⌉ = X with the analytic topology, and E×(Expl(X†)) = M

gp
X t

R.

Example 1.2.4. We will consider an important non-logarithmic example. We will consider
T = C×tR with ⌈T⌉ = pt and E×(T) the set of monomials ctazm.

Exercise 1.2.5. Show that for any exploded space B, maps B→ T correspond to sections of E×(B).

Example 1.2.6. The most general example will be TmP , where P ⊂ Rm is an integral affine polytope
defined by inequalities of the form α · x+ a ⩾ 0, where α ∈ Zm and a ∈ R. We also allow strict
inequalities. We will define the set TmP ⊂ (C×tR)m as the points whose tropical part lie in P.

We will now set
M = Hom(P, [0,∞))/Hom(P, (0,∞))

to be the quotient of integral affine maps on Rm that are nonnegative on P by those which are
strictly positive. As a log scheme, this is

Spec(Hom(P, [0,∞))→ C[M]).

Note that M is finitely generated. Writing an integral affine map α · x+ a, we can write the
monomial zαta, and this gives us ζ = ⌈zαta⌉. Choosing generators for M, we have a map
TP → Ck given by (ζ1, . . . , ζk). The image of this map will be called ⌈TP⌉.

Finally, we can write
E×(TmP ) = {h(ζ1, . . . , ζk)zαta},

where h : Ck → C× is regular.

More generally, our coordinate charts for exploded manifolds will be Rk ×TmP , where the
smooth part and sheaf of exploded functions are as expected.

Example 1.2.7. One relatively simple example is Tm[0,∞)m = Expl(C, 0)m.

Example 1.2.8. Another simple example is T1
(0,∞) = Expl(Spec N→ C).

Definition 1.2.9. An exploded manifold is an exploded space which is locally isomorphic to Rk×TmP .

Exercise 1.2.10.

(a) Maps f : B→ TnQ correspond to n-tuples f1, . . . , fn ∈ E×(B) such that (f) ∈ Q;

(b) Maps TmP → TnQ correspond to integral maps f : P → Q;

(c) Maps f : B → R correspond to global sections f−1(ext0) ∈ E×(B) valued in R>0t0, which
are the same as regular maps ⌈B⌉ → R.
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Example 1.2.11. We will now consider the example of a compact polytope. As a set, we have

T1
[0,ℓ] = C×t[0,ℓ].

Geometrically, the copies of the C× will be asympotically cylindrical only at one end. Note that
the M here is generated by two elements (zero at one of the two endpoints), where ζ1 = ⌈z⌉ and
ζ2 = ⌈z−1tℓ⌉. Next, we note that

⌈T1
[0,1]⌉ = (ζ1ζ2 = 0) ⊂ C2,

which is the model for a node.

Exercise 1.2.12. Show that T1
[0,ℓ] =

{
z1z2 = tℓ

}
⊆ T2

[0,∞) = Expl(C, 0)2.

Note that there is a map Expl(C, 0)2 z1z2−−−→ Expl(C, 0), and so we see T1
[0,1] as a fiber of this map.

1.2.3 Geometric structures As usual, vector fields will correspond to real derivations on
E(B), which is a sheaf of (semi)-rings. Recall that a derivation v must be linear and satisfy the
Leibniz rule:

v(f+ g) = v(f) + v(g)

v(fg) = v(f)g+ fv(g).

Then the condition of being real means that if f is RtR-values, so is v(f). We also require that

v(cta) = 0ta

for constant functions. For example, there is an isomorphism

TTmP
∼= R2m ×TmP

generated by the vector fields

Re
[
zi
∂

∂zi

]
, Im

[
zi
∂

∂zi

]
.

Definition 1.2.13. A vector v ∈ ZTpB ⊂ TpB is integral if vff ∈ Z for all f ∈ E×(B).

Definition 1.2.14. An almost complex structure J is a regular section of T∗B⊗ TB such that J2 = −Id
and (Jv)f = i(vf) for any v ∈ ZTpB.

Definition 1.2.15. An exploded manifold B is complete if ⌈B⌉ is compact and locally isomorphic to
Rn ×Tmp for a closed polytope P.

1.3 Families of exploded curves

1.3.1 Exploded curves

Definition 1.3.1. A curve C is a complete, 2-dimensional exploded manifold with an almost
complex structure. A regular curve in an almost complex exploded manifold (B, J) is a regular map
f : C→ B from a curve. Such an f is holomorphic if df ◦ j = J ◦ df.

The local models for exploded curves are open subsets of:
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• C, corresponding to regular points;

• T1
[0,ℓ], corresponding to nodes;

• T1
[0,∞), corresponding to ends.

The underlying topological space ⌈C⌉ is simply a nodal curve, while the tropical part will have
vertices corresponding to smooth components, edges corresponding to nodes, and infinite legs
corresponding to the ends. At every node, we will have an extra choice of C×t(0,∞) gluing
information, which makes the tropical part a metric graph.

Automorphisms of holomorphic curves are holomorphic automorphisms h : C → C which
commute with f. These induce automorphisms of ⌈f⌉, but not every automorphism of ⌈f⌉ respects
the gluing data, so they may not lift. Thus there are exploded curves with finite automorphism
group as curves, but whose underlying curves are not stable.

Definition 1.3.2. A curve f is stable if the automorphism group Aut⌈f⌉ is finite.1

1.3.2 Families

Definition 1.3.3. A family Π : B̂→ B0 is a complete map such that for all p ∈ B̂, the maps

TpΠ : TpB̂→ TpB0, TpΠ : ZTpB̂→ ZTpB0

are surjective.

For example, the explosion of any normal crossings degeneration is a family in our sense.

Definition 1.3.4. A regular family of curves f̂ in a family B̂ is a regular commutative diagram

(C(f̂), j) (B̂, J)

F(f̂) B0

f̂

such that the left arrow is a family whose fibers are curves. A morphism α : ĝ → f̂ is a pullback
diagram

C(ĝ) C(f̂) B̂

F(ĝ) F(f̂) B0.

ĝ

f̂

Using this, we may define the moduli stack M∞,1(B) of C∞,1 curves in B. Then there is a
sequence of inclusions

M
closed
⊂ Mst open

⊂ M∞,1(B),

where M is stable holomorphic curves and Mst is C∞,1 stable curves. This carries a topology,
where an open substack U ⊂ M∞,1 is such that its preimage U(f̂) ⊂ F(f̂) is open and for any
morphism α : f̂→ ĝ, F(α)−1U(ĝ) = U(f̂).

1This is automatically satisfied if C = T.
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1.3.3 Gromov compactness Given an appropriate taming form ω on B, the open substack

Mg,n,E ⊂M∞,1

of stable curves with at most a prescribed energy E is in fact compact. Equivalently, any sequence
of Mg,n,E has a subsequence fi such that there exists a regular family f̂ and maps αi : fi → f̂ such
that ⌈F(α)⌉ ⊂ ⌈F(f̂)⌉ converges.

1.3.4 Kuranishi structure Recall that TfMst give first-order deformations of f. We can also
consider

∂f =
1
2
(df+ J ◦ df ◦ j),

which is a section of Y(f) = (T∗C⊗ f∗TB)0,1 that vanishes on the edges of C. We will call the
sections of this Y(f) and this is a vector bundle on Mst. For any holomorphic f, we obtain a
linearization

Df∂ : TfM
st → Y(f)

of the ∂-equation.

Theorem 1.3.5. If Df∂ is surjective, then there exists an open neighborhood U ⊂Mst of f and a regular
family f̂ ⊂ U with finite automorphism group G such that M∩U = f̂/G.

Therefore, when we have transversality, the moduli space is an exploded orbifold. Unfortu-
nately, this does not always hold.

Theorem 1.3.6. For an arbitrary f ∈M, there exists an open U ⊂Mst and a nice finite rank V ⊂ Y over
U, f̂ ⊂ U, and G as above such that ∂−1

(V) = f̂/G and and M∩U = ∂
−1

(0).

1.3.5 Refinements

Definition 1.3.7. A refinement of an exploded manifold B is a complete, bijective submersion
B ′ → B.2

If we consider the fiber product diagram

B ′ B ′

B ′ B,

id

id

of a refinement with itself, it must always look like the above.

Example 1.3.8. Let (Xn,D) be a compact toric variety. Then there is a refinement map

Expl(X,D)→ Tn

whose tropical part is the toric fan of X in Rn.

2Note that for ordinary manifolds, this is simply a diffeomorphism.
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If we do a subdivision of the tropical part of an exploded manifold, then on the smooth part
we obtain some kind of degeneration. For example, refining the toric fan of P2 as gives a new
scheme. Importantly for us, the virtual fundamental class [M(B ′)]vir is a refinement of [M(B)]vir.

Finally, we would like to discuss the relationships between various moduli spaces. There is a
diagram as follows:

log M ⌈M ′⌉

⌈M⌉.

Expl

Tehrani

Ionel

Example 1.3.9. Consider the example of lines in P2. If we move a general line into one of
the boundary divisors, the tropical picture gets shifted in the direction we move in. Rescaling
(following Ionel), we can produce a new rubber, and the curve then lives in the rubber, as
in Figure 1.1.

⇝ ⇝

Figure 1.1: Tropical shift

A more complicated example is shown in Figure 1.2.

⇝ ⇝

Figure 1.2: More interesting tropical shift

The moduli space is simply M(T2) = T2, and after the refinement, we obtain that M(P2) has
tropical part the toric fan of P2 blown up at the three fixed points. The smooth part is simply
P2 blown up at 3 points, and the moduli space itself is its explosion. As in the case of relative
enumerative geometry, the rubber components need to be quotiented out by symmetries in the
approaches of Ionel and Tehrani. However, we should note differences in the two approaches, as
seen in Figure 1.3.

1.4 Computations with Calabi-Yau manifolds

We will do another example of a surface, and then we will move on to threefolds. Consider
X = Bl(0,1)(P

1 ×P1) with the strict transform of the toric divisor. Our goal is to compute the
number nd of degree d covers of the exceptional divisor E. The blowup modifies our integral
affine structure by introducing a cut as in Figure 1.4.

We can compute n1 by using the gluing formula for a tropical invariant as in Figure 1.5: We
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Figure 1.3: Ionel’s approach can distinguish between the two situations, Tehrani’s cannot.

cut

Figure 1.4: Cut

=

Figure 1.5: Computing n1
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then see that 1 = 1×n1, so n1 = 1.
To compute nd, we obtain the picture in Figure 1.6, which gives us∑

|λ|=k

∏
λinλi

Aut λ
= 0.

If you are a combinatorialist, it is easy to obtain

=

?

Figure 1.6: Computing nd

nd =
(−1)d+1

d2 .

We will now consider some threefold examples. Let B be a Calabi-Yau 3-exploded manifold.
Then B is a 3-dimensional integral affine manifold with codimension 2 singular locus Γ . In some
sense, we generically expect that Γ has

• Edges (span a wall coming out of the edge where holomorphic curves can go);

• Framing changes (where the edge changes the direction by the wall does not);

• Positive vertices where three edges meet with the sum of their normal directions is 0;

• Negative vertices whose normal directions are all the same.

In principle, we can compute invariants for all of these local models, but this is actually very
difficult.

The nonsingular case is simply T3. There are inward arrows v,w,−v−w and we obtain (via a
quantum deformation)

[M[γ],n]
vir =

∑
g

[M[γ],g,n]
vir h2g−2+n.

We then obtain

[M[γ]]
vir = [T3]

[n]q
n

, [n]q =
q
n
2 − q

−n
2

i
,

where q
1
2 = e

i h
2 .

We will now consider Expl(X,D)×T (the edge). In fact the picture in Figure 1.5 is still valid,
but instead we obtain 1 = [1]q ×n1, so n1 = 1

[1]q
. To compute nd, we have the formula

∑
|λ|=k

∏
[λi]qnλi
Aut λ

= 0,

which yields us

nd =
(−1)d+1

d[d]q
.
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We will now consider the case of curves lying on a wall. For each edge on the singular locus,
we need to glue over Expl(X,D). Fortunately gluing constrained to the wall factors through
intersection with E, so we obtain a Fock space Hℓ associated with the edge.

In any situation as in Figure 1.7, we obtain an operator Wv,ℓ : Hℓ → Hℓ. These satisfy the
commutation relation

[Wv,ℓ,Ww,ℓ] = [v∧w]qWv+w,ℓ + cℓ(v)δ−v,w.

These are the relations for the quantum torus W1,∞.

v

Hℓ Hℓ

Figure 1.7: Obtaining an operator

Performing another tropical computation as in Figure 1.8, we obtain the formula

Wv,ℓ ◦Ww,ℓ =Ww,ℓ ◦Wv,ℓ + [v∧w]qWv+w,ℓ.

v w

=

v w

+
v+w

[v∧w]

Figure 1.8: On the wall

Moving on to the framing change, let the legs be ℓ1 and ℓ2. The framing change is a map

F : Hℓ1 → Hℓ2

which is in fact an isomorphism of representations of W1,∞. To show this, we consider the tropical
picture in Figure 1.9.

F

v

=
F

v

Figure 1.9: Framing change

Now we consider the positive vertex. We will have ℓ1, ℓ2 pointing inward and ℓ3 pointing out.
The vertex will be an intertwiner

T : Hℓ1 ⊗Hℓ2 → Hℓ3

of representations of the quantum torus. The pictures are as in Figure 1.10.
In the case of the negative vertex (point all edges inwards), the operator N diagonalizes as

N =
∑
λ

c|λ|qc(λ)
∏
□∈λ

[h□]qλ⊗ λ⊗ λ.

There is a nice interpretation of this due to Bryan-Pandharipande in terms of representations of
the symmetric group as usual.
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v
=

v v

·

Figure 1.10: Positive vertex
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Logarithmic and punctured Gromov-Witten invariants,
tropicalization, and gluing formalism (Bernd Siebert)

2.1 Introduction to log geometry

We will be relatively liberal in the category we work in. We may consider either algebraic varieties
or complex manifolds/analytic spaces. These get generalized to algebraic stacks (or analytic
stacks), which we will consider later.

2.1.1 Normal crossings divisors Let X be smooth and D ⊆ X be a divisor such that locally,
D = V(z1 · · · zk), where z1, . . . , zn are local coordinates. This is really bad for algebraic geometry.
Instead, we may consider

Definition 2.1.1. A simple normal crossings divisor is such that there exists U ⊆ X open and a
smooth π : U→Ar such that D∩U = π−1(V(z1 · · · zr)).

All such D can be written as D =
⋃
Di, where the Di ⊆ X are smooth divisors intersecting

transversely. In general, we need an étale U→ X such that the preimage of D is a simple normal
crossings divisor.

For a simple normal crossings divisor D =
⋃
Di, we obtain line bundles Li with sections si

and corresponding sheaves Li = OX(Di). Every section si is a map OX → OX(Di), or equivalently,
a map OX(−Di)→ OX. In addition, the normal bundles of Di ⊆ X is

NDi/X = ODi(Di) = Li|Di .

Iterating, we see that Di ∩D ⊆ Dj is a simple normal crossings in Di with normal bundle

NDi∩Dj/X = NDi∩Dj/Di ⊕NDi/X.

All of this is contained in MX := O×
X/D

∩OX ↪→ OX. Unfortunately, this is a sheaf of multiplicative
monoids and has no additional structure.

Example 2.1.2. Consider A2
z,w with D = V(zw). If we consider the sheaf MX, away from D we

see all h ∈ O×, on the z-axis we have h ·wb,h ∈ O×, and at the origin we see h · zawb. As a
monoid, we have

MX,0 ≃N2 ×O×
X,0.

17
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We can then take the associated abelian sheaf Mgp
X , which replaces the N-factors by Z-factors.

This has a discrete part MX = MX/O
×
X with quotient map κ. In general, in the simple normal

crossings case, we have

MX =
⊕
i

NDi .

We may recover the line bundles in the simple normal crossings case. Taking the groupification,
we obtain

1→ O×
X →M

gp
X →M

gp
X → 0,

and thus M
gp
X is a O×

X -torsor. Considering T := κ−1((a1, . . . ,ar)), we can brute force the sheaf

(T ⊕OX)/O
×
X = OX

(
−
∑

aiDi

)
.

2.1.2 Toric geometries Consider a finitely generated submonoid P ⊆ (Zn,+). Explicitly,
we can write P = Nm1 + · · ·+ Nmr. The most imporant case is when we take σ∨ ∩Zn, where
σ ⊆ (Rn)∗ is a rational polyhedral cone. It is customary to write (Rn)∗ ≃ N⊗R and P ⊆M for
the two different Zn.

Using P, we obtain a finitely-generated C-algebra C[P] =
{∑

m∈P amz
m
}

, where the sums are
finite. Explicitly, we can consider the map

φ : C[u1, . . . ,ur]↠ C[P] ui 7→ zmi ,

which give equations for the ring. The relations always come from relations in P, so kerφ is
generated by binomial equations zm1zm2 = zm

′
1zm

′
2 (in the saturated case). Applying the Spec

functor, we obtain
Spec C[P] ↪→Ar.

In fact, we always have P ⊆ σ∨ ∩M with σ = Hom(P, R⩾0) with equality if and only if P is
saturated.

Example 2.1.3. Consider P ⊆N · 2 + N · 3 ⊆ Z =M. Then C[P] = C[x,y]/(x3 − y2).

Examples 2.1.4.

(a) Consider the cone generated by (0, 1) and (k, 1) in NR. Then the dual cone is generated
by (−1,k) and (1, 0) over R, and the monoid P = σ∨ ∩M is generated by (1, 0), (0, 1), and
(−1,k). Writing the corresponding variables as z,w, t, we obtain

C[P] = C[z,w, t]/(zw− tk),

which is the Ak−1 singularity. Note that this is the base change under t 7→ tk of the normal
crossings degeneration (zw− t).

(b) Let σ∨ be the cone over the convex hull of the square {(0, 0), (1, 0), (1, 1), (0, 1)}. Then

C[σ∨ ∩M] ≃ C[x,y, z,w]/(xy− zw)

is a tensor product
C[x,y]⊗C[t] C[z,w] xy←[ t 7→ zw.
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Because we have P = σ∨ ∩M, we obtain C[P] ⊆ C[M]. This gives us an M-grading, which
induces a (C×)n-equivariant embedding

(C×)n = Spec C[M] ↪→ Spec C[P] = Xσ.

Definition 2.1.5. A toric variety is a (C×)n-equivariant partial compactification of (C×)n.

Remark 2.1.6. We will want P to be saturated, which corresponds to the toric variety being normal.

Definition 2.1.7. The toric divisor is the complement xσ \ (C×)n, and its components Di can be
read off from the facets of P (or PR = R⩾0 · P).

An alternative construction of toric varieties is as follows. Consider N ≃ Zn. Then let σ(1) be
the set of rays, labelled ρ1, . . . , ρr. Then we define the Cox ring to be

R := C[Map(σ(1), N)] = C[χ1, . . . ,χr].

Then there is a map M→Map(σ(1), Z) given by m 7→ (ρi 7→ ⟨m,ni⟩), where ni is the primitive
generator of ρi. Grading R by Γ = Map(σ(1), Z)/M, we obtain an action of (C×)r−n-action on R.
Taking the categorical quotient SpecRΓ , we obtain Xσ.

Exercise 2.1.8. Show that RΓ = C[P] where P = σ∨ ∩M.

The upshot is that an affine toric variety can be written as Spec C[P] = Ar �0 (C
×)r−n.

In this case, if X = Xσ, then generalizing MAn = OAn\V(z1···zn) ∩OAn ↪→ OAn , we can write

MX := O×
X\D

↪→ OX.

As long as 0 is the only invertible element of P, we have

MX,0 = P.

Now we have an embedding

Γ(M
gp
X ) ↪→ Zr f 7→ (ordD1 f, . . . , ordDr f).

The image corresponds to principal Cartier divisors.

Example 2.1.9. If σ is the cone over the square, then D =
∑
aiDi is Cartier if and only if

a1 + a3 = a2 + a4.

2.1.3 Abstract log structures Consider α : MX → OX in the étale topology such that

α−1(O×
X)

≃−→
α

O×
X . This definition is useless in this generality, but it does automatically provide us

with
MX,Mgp

X , κ

as before.
We will instead provide an alternative point of view, due to Deligne-Faltings. We want the

following data:

• A sheaf of finitely generated M inside M
gp
X constructible;

• For all U ⊆ X, a map

M(U)→ Div(U) = {(line bundle, section) on U} m 7→ (αm : κ−1(m)→ OX)
∨.



20

• We have compatibility M→ DivX which is morally a symmetric monoidal functor.

Examples 2.1.10.

(a) Consider log points, which are given by Spec(Q→ C) = (Spec C,Q⊕C×). Here, we need Q
a finitely generated monoid with Q× = {0}, and we have

α(q,a) =

{
0 q ̸= 0
a q = 0.

(b) We can consider pullback log structures for morphisms f : Y → X with a log structure MX on
X. We obtain a log structure on Y by writing

f∗MX = (f−1MX ⊕O×
Y )/f

−1O×
X

and send (s,h) 7→ f∗α(s) · h.

Note that if Q = σ∨ ∩M and 0 ↪→ Xσ is the inclusion of a 0-dimensional orbit, the pullback
log structure is f∗MXσ = Spec(Q→ C).

An important class of examples are those with charts. Consider an open set U ⊆ X (maybe in
the étale topology) and a map f : U→ Spec C[P], where P is as in the previous subsection, with
isomorphisms MX|U ≃ f∗MSpec C[P]. The fine log structures are those with local charts and a fine
saturated log structure is one with P saturated.

Definition 2.1.11. A log morphism f : (X,MX) → (Y,MY) is a map f : X → Y (which gives us
f♯ : f−1OY → OX) and a morphism of sheaves f♭ : f−1MY →MX making the diagram

f−1MY MX

f−1OY OX

f♭

f−1αY αX

f♯

commute.

We will refer to M as the ghost sheaf. Others call it the characteristic sheaf, but Bernd prefers to
call it the ghost sheaf.

2.1.4 Log smooth morphisms These morphisms are locally given by toric morphisms.
Suppose we have a morphism Q→ P of monoids. Then we require the existence of a diagram

X Y ×AQ AP Spec C[P] = AP

Y Spec C[Q]

smooth

f

φ

Example 2.1.12. The basic example is the diagram

X Y ×A1 Ar Ar

Y A1

f

φ

∏
zi
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Examples 2.1.13.

(a) We can allow Q = 0. Then we require the existence of a divisor D ⊆ X such that (X,D) is a
toroidal pair.

(b) If we consider Q = N and P = Nr with the map 1 7→ (1, . . . , 1), these are base changes of
normal crossings degenerations.

(c) Let 0† = Spec(N→ C) be the standard log point. Then if Y is a curve, the central fiber

X0 X

0† Y

is a normal crossings degeneration.

(d) Let f ∈ C[z0, . . . , z3] be homogeneous of degree 4. Define

X ′ = V(tf(z1, . . . , z3) + z0 · · · z3) ⊆A1
t ×P3

z0...z3
.

This is singular, where the singular locus (X ′
0)sing ∩ V(f) consists of 24 A1 singularities. If

we consider X ′
0 ⊆ X ′, this is a very bad at the singularities, meaning they are not fine. To

resolve this, we can simply blow up the singularities in some order to obtain a smooth total
space X which is a normal crossings degeneration and hence log smooth.

Suppose we have a normal crossings degeneration X0 ⊆ X. Then this X0 is d-semistable in
the sense of Friedman. What this means is that

Ext1(Ω1
X0

) ∈ Pic((X0)sing)

is a trivial bundle. He proved that a d-semistable K3 surface is smoothable. In higher
dimension, this is very tricky.

This story can be reinterpreted in terms of log geometry following Kawamata and Namikawa.
They showed that a normal crossings variety X0 is d-semistable if and only if there exists a
log structure MX0 and a log smooth morphism

(X0,MX0)→ Spec(N→ C).

All of this has a symplectic analogue due to McLean-Tehrani-Zinger, which states that
symplectically d-semistable implies symplectically smoothable.

2.1.5 Kato-Nakayama spaces For any (X,MX), this is a topological space (X,MX)KN → X
which provides a “topological smoothing”, where if we have a diagram

X0 X

Spec(N→ C) S,

π

then the KN functor will give us a map XKN
0 → S1 which should be thought of as a restriction of

π to the locus lying over a small circle.
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2.2 Tropicalization

Traditionally, we would begin with a valued C-algebra, for example

K = C{{t}} =
⋃
k>0

C((t1/k).

If we choose an ideal I ⊆ K[z±1 , . . . z±n ], we obtain an algebraic subvariety V(I) ⊆ (K×)n. Applying
the valuation

val : (K×)n → Rn,

we can define the tropicalization in various ways:

Trop(X) = val(V(I))
= {w ∈ Rn | inw(I) ̸= (1)}
= V(trop(I)),

where trop(I) ⊆ (R, max,+)[x±1 , . . . , x±n ] is the tropicalization of I.
If we have convergent Puiseux series, we can consider (Xt)t ̸=0 ⊆ (C×)n, and then take

logt(Xt)
t→0−−−→ Trop(X).

2.2.1 Tropicalization in log geometry Consider a fine log space X = (X,MX). For all
x ∈ X, we will write Px = MX,x. This is a finitely generated monoid with P×x = {0}. In algebraic
geometry, if y ∈ X is a non-closed point and x is a specialization of Y, then there is a generization
map

Px ↠ Py = (Px + F
gp)/Fgp.

Here, F ⊆ Px is a face
{
p | α(p) ∈ O×

X,y

}
.

In the analytic world, we can instead find an open set U around x such that MX(U)→MX,x =
Px is an isomorphism. Then, we have a diagram

MX(U) PX

PY

≃

defining the generization map.
Dualizing, consider the rational polyhedral cone σx = Hom(Px, (R⩾0,+)). Because we have

the surjective generization map which is projection along a face F, we have

σy
≃−→ σX ∩ F⊥ ↪→ σx.

In the case of P1 ×P1, we can recover the correspondence between orbits and the fan, and finally
we set

TropX := lim−→
x∈X

σx.

Proposition 2.2.1. If X is the toric variety corresponding to a fan Σ, then TropX = Σ with the embedding
into NR forgotten.
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Warning 2.2.2. It should be noted that if X = Bl1(P1 ×P1) and D =
⋃

4 P1, then

TropX = TropP1 ×P1.

In fact, if we take any toric surface with four boundary divisors (for example a Hirzebruch surface),
we obtain the same tropicalization. This is in fact a feature of the theory.

Example 2.2.3 (Whitney umbrella). Consider coordinates x,y, z on A3 and consider D̃ = V(xy).
Consider the Z/2Z action given by

(x,y, z) 7→ (y, x,−z).

Taking the quotient, we obtain

D̃/(Z/2Z) ≃ V(uv2 −w2) ⊆A3.

Removing the origin, we can set X = A3 \ {0} with divisor D̃/(Z/2Z). If we consider ℓ̃ to be the
z-axis, we note that

M(A3, D̃)|ℓ = N2,

so MX|ℓ is locally constant (it sees the monodromy of swapping x and y). Finally, we get that
Trop(X) is the generalized cone complex (locally a limit of cone complexes) shown in Figure 2.1.

lim−→

id

(a,b) 7→ (b,a)

=

Figure 2.1: Tropicalization of the Whitney umbrella

2.3 Log smooth curves

These are simply normal crossings degenerations of smooth curves with marked points. These
will be domains for stable log maps, which will define logarithmic Gromov-Witten theory. There
are three types of local models for MC|C0 . Let z be the fiber direction and t be the base direction.

• At the generic points η of C0, the map is given by (z, t) 7→ t, so

MC0,η = N = ⟨t⟩ .

• At a marked point p of C0, we can see both the base and fiber directions, so we obtain

MC0,p = N⊕N = ⟨z, t⟩ .

Here, this receives a map from N going into the first factor.

• At a node q, we have (z,w) 7→ zw = t, and thus

MC0,q = N2 = ⟨z,w⟩ .

This receives a map from N where 1 7→ (1, 1).
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Generally, we want to consider curves C→ Spec(N→ C) which are log smooth, integral, have
C reduced, have fine separated log structures, and are of relative dimension 1. In this case, C is a
nodal curve, and locally on C:

• At η, MC,η = Q;

• At p, MC,p = Q⊕N;

• At q, MC,q = Q⊕N N2. Here, the map from N is given by 1 7→ (s, (1, 1)). We should note
that

Q⊕N N2 = (Q⊕N2)/((s, (0, 0)) ∼ (0, (1, 1))).

In the universal case, we have Q = Nnumber of nodes. Interpreting this as a (semi-)universal
deformation, where each node gets smoothed in a different direction. The log structure is then
given by

MC,η = Nr=number of nodes

MC,p = Nr ⊕N

MC,1 = Nr ⊕N N2

If the curve is stable, we obtain the moduli space Mg,k with universal curve Cg,k. Considering
the nodal locus Dg,k, we also have normal crossings divisors (in the sense of Deligne-Mumford
stacks) D̂g,k ∪ Γk, where the Γk are the marked points. This gives us a log smooth smooth
morphism

(Cg,k,MCg,k)→ (Mg,k,MMg,k
).

Restricting to one fiber, we obtain the universal log structure on stable curves.

2.3.1 Tropicalization of log curves Over the standard log point, consider a curve C π−→ 0†.
Tropicalization will give us a tropical curve

ΣC
πtrop
−−−→ Σ0† = R⩾0.

In fact, if Γ denotes the fiber over 1, then in fact ΣC is the cone over Γ as a polyhedral complex.

• At η, we obtain a vertex Vη of Γ . Note that Hom(MC,η, R⩾0) = R⩾0, so we get a copy of a
line.

• At a node q, we have

N⊕N N2 ≃ ⟨(1, 0), (0, 1), (k,−1)⟩ =: σ∨ ∩Z2 (a, (b, c)) 7→ (a+ bk, c− b).

Therefore, we can consider the two projections x1 (to the y-axis) and x2. Dualizing, σ is
the cone generated by (1, 0) and (1,k), and so πtrop is the projection to the first coordinate.
Therefore, we obtain an interval of length k.

• At a marked point p, we obtain a copy of R⩾0.

The upshot is that Γ is the dual graph of C with vertices corresponding to components, edges
corresponding to nodes, and legs corresponding to marked points. We also give Γ a Z-affine
structure, which means that each of the edges have a length k, which corresponds to the local
equation of the node (an Ak−1 singularity).

Over a more general log point Spec(Q → C), the tropicalization ΣC lives over the cone
τ = Hom(Q, R⩾0). Note that faces of τ corespond to collapsing some edges. In the universal case,
then τ = Rnumber of nodes

⩾0 .
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2.4 Logarithmic Gromov-Witten invariants

2.4.1 Stable log maps As in the case of (non-logarithmic) stable maps, we can simply write
down the definition as expected (although the automorphisms of the underlying map need to be
finite). The targets will be a fine separated log scheme X = (X,MX), and later we will require our
target to be log smooth and projective.

Over a log point W := Spec(Q → C), we will have a map f : C → X, where C is a log curve
over W. Note that we need Q ̸= 0 to allow nodal domains. The stability condition is that C→ X
is a stable map in the ordinary sense.

Problem 2.4.1. The set of possible values for Q are not bounded. This is common in log moduli problems,
so we need to use the geometry of the moduli problem to constrain the choice of Q. For example, for nodal
curves, we will choose Q = Nnumber of nodes.

The solution here is to consider basic stable log maps. If we consider the tropicalization

ΣC ΣX

τ,

this is something called a tropical stable map. Now for all s ∈ τ◦, the map

hs : Γs → ΓX

has the same type, which is given by

• The combinatorial type of Γs. In other words, no contraction of edges is allowed;

• The smallest cells σ(−) of ΣX containing h(Vη),h(Eq),h(Lp);

• The contact orders up at Lp and uq at Eq. For example, at a marked point, hs maps the ray
Lp (with endpoint Vη) to a ray inside σ(p) starting somewhere on σ(η). Then the unit vector
along this ray is called up. For an edge, the story is similar, but it depends on an implicit
orientation of Eq.

We now obtain a (local) tropical moduli space of type

τ = (Γ ,σ = {σ(p), . . .},u = {up, . . .}),

where τ is also a rational polyhedral cone. The moduli space parameterizes tropical space maps
of a given type.

Examples 2.4.2.

1. Let X = P2 with the toric log structure and C be a line. We will take the rays of ΣP2 to be
the opposite of the usual ones and suppose that up1 = (1, 1),up2 = (−1, 0),up3 = (−1,−1)
as in Figure 2.2. We then obtain

τ = {(a,b ∈ R)} = R2
⩾0.

This forces the curve to have two components, where the one containing p3 maps to the
vertical divisor and the one containing p1,p2 is collapsed to a point.
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a
bEq

up2 = (−1, 0)

up1 = (1, 1)

up3 = (−1,−1)

1, 2

3

Figure 2.2: Most generic (tropically) case

b

1, 2

3

Figure 2.3: a→ 0 limit of the previous example

a

1

2

3

Figure 2.4: b→ 0 limit of the previous example
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1

2

3

Figure 2.5: (a,b)→ (0, 0) limit of the previous example

Taking the a→ 0 limit as in Figure 2.3, then τ = R⩾0 and the image of p3 moves along the
bottom divisor. In the b→ 0 limit, shown in Figure 2.4, we unbreak the curve, and taking
the total limit as (a,b)→ (0, 0) (see Figure 2.5), we obtain the most general (in the geometric
sense) situation.

This appears from a degenerating family of general lines. If we consider a family C→A1
t

with maps C→ P2, then ΣC0 can be any of the possibilities we discussed before.

Recall that the expanded degneration is point of view was done originally by Jun Li in the
case of a smooth divisor and by Ranganathan for a general divisor. In our world, Trop(C)
defines a cone subdivision Σ of ΣX ×R⩾0 (if dimX > 2, choose a subdivision such that
Γ ⊂ Σ(1)).
In the previous example, let X = XΣ, which is a blowup of P2 ×A1. Then over A1 \ {0}, we
simply obtain P2 ×A1 \ {0}, but

X0 =
⋃

ρ∈Σ(1)

XΣρ ,

where Σρ is some fan. In the dual picture, we obtain a polyhedral decomposition. Therefore,
we obtain a morphism from the expanded degeneration moduli space to our moduli space.
An example expanded degeneration is shown in Figure 2.6.

P1 ×P1

P2

P2

Figure 2.6: Example of an expanded degeneration
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2. This example will have τ ̸= Rk⩾0. We will choose X = (P1, 0) and suppose C has five
components in a chain with C2,C3,C4 each containing one marked point. Then the contact
orders Lp1 ,Lp2 are vertical while Lp3 is finite. In the end, we obtain

τ = {(a,b, c,d) | a+ b = c+ d}.

Definition 2.4.3. A stable log map

C X

Spec(Q→ C)

is basic if and only if ΣC → ΣX is the universal tropical stable map of some type.

2.4.2 Moduli spaces

Theorem 2.4.4 (Abramovich-Chen, Gross-Siebert). There exists a good moduli space of basic stable log
maps which is a Deligne-Mumford stack (with log structure) locally of finite type over C that fulfills the
valuative criterion of properness and has a perfect obstruction theory to the stack M of log curves with any
fine separated log structure on the base. Fixing the topological data

β = (g,n,A ∈ H2(X)),

the stack is proper and we obtain a virtual fundamental class [M(X,β)]vir.

2.5 Artin fans

Consider P = σ∨ ∩M. Suppose that Xσ has dimension n, and then we will define the toric stack

Aσ = [Xσ/Gnm].

For any scheme W, any map W → Aσ is a diagram

Y Xσ

W Aσ

of a Gnm-bundle Y →W and an equivariant map Y → Xσ.
This has the property that if τ ⊆ σ is a face, then Aτ ⊆ Aσ is an open substack. Recall that

τ∨ ∩Mτ = ((σ∨ ∩M) + τ⊥)/τ⊥,

and therefore Xτ × (C×)codim ⊆ Xσ is open. For example, we can consider

[A1/Gm] = [A1 ×Gm/G2
m] ⊆ [A2/G2

m].

Now for any X = (X,MX), we obtain a diagram of cones ΣX.

Definition 2.5.1. The Artin fan of X is the algebraic stack

X := lim−→
σ∈ΣX

Aσ.
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The Artin fan algebraizes tropical geometry in the following precise sense.

Proposition 2.5.2. Assume that X has a Zariski covering by various Aσ (for example if X is a Zariski fine
separated log scheme which is log-smooth over C). Then for all finite separated log-schemes T , there is a
canonical bijection

Homlog(T ,X) = Homcone complexes(ΣT ,ΣX).

As an application, we may define the algebraic stack M(X) of log maps into X, whose data
consists of a domain C→ Spec(Q→ C) and a tropical stable map

ΣC ΣX

Hom(Q, R⩾0).

2.6 Log Gromov-Witten invariants of fixed type

Let τ be the type of tropical stable maps to ΣX = ΣX.

Definition 2.6.1. A marking of a stable log map

C X

Spec(Q→ C)

by τ is an identification of τ with a face of

ΣC ΣX

Hom(Q, R⩾0).

These markings define closed substacks M(X, τ) ⊆ M(X). Pulling back to X, we obtain the
Cartesian diagram

M(X, τ) M(X)

M(X, τ) M(X).

ε

In order to have Gromov-Witten invariants, we need a virtual fundamental class. We need the
following:

• The stack M(X, τ) is pure-dimensional of dimension 3g− 3 + k+ dimB− dim τ;

• The morphism M(X)→M(X) is virtually smooth, so M(X, τ)→M(X, τ) is as well.

Now we can define
[M(X, τ)]vir := ε![M(X, τ)].
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2.7 Punctured Gromov-Witten invariants and the gluing formalism

2.7.1 Rigid tropical curves and virtual decomposition

Example 2.7.1. Let X ′ = V(tf3(z0, z1, z2, z3) + z0 · · · z2) ⊆ P3
z0,...,z3

×A1
t be a degeneration of cubic

surfaces. We resolve X ′ to obtain X, whose central fiber X0 is a union
⋃

3 Bl3 P2, as displayed
in Figure 2.7. Then Σ(X) = Σ(X0) is the cone over the unit right triangle.

p1

p2

Figure 2.7: Central fiber X0

Now consider the invariant of g = 0 curves of degree d = 3 passing through p1,p2. There are
12 = 9 + 3 such curves. The two possibilities are shown in Figure 2.8. The first gives 3 · 3 = 9 and
the second gives 3 possibilities.

We have the decomposition result

[M(X0,β)]vir =
∑
τ rigid

mτ

|Aut(τ)|
[M(X0, τ)]vir.

In this example, we obtain 12 = (3 + 3 + 3) + 3.

2.7.2 Splitting Now we will consider X→ B where B is a point or a curve over a log point.
Our goal is now to compute

[M(X, τ)]vir

(whether or not τ is rigid) by splitting τ along edges.

Example 2.7.2. We will consider the splittings as in Figure 2.9. Split edges give a pair of “punctured
points” which in turn produce punctured stable maps.

Theorem 2.7.3. There is a Cartesian diagram

M(X, τ)
∏
iM(X, τi)

Mev(X, τ)
∏
iM

ev(X, τi)
δev

where the vertical arrows are virtually smooth. The “ev” makes the bottom arrow representable and finite,
and is defined by

Mev(X, τ) = M(X, τ)×Xk X
k,

where there is one choice for each puncture from splitting or node to split. We should note that the morphism
X→ X is smooth (in the ordinary sense), so the fiber product is a harmless operation.
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p1

p2

E

p2

p1

p1

p2

p1

p2

Figure 2.8: Two possibilities (above and below)

split

Figure 2.9: Splittings τ1, τ2, τ3, τ4 of τ
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Corollary 2.7.4. If we know δev
∗ [Mev(X, τ)] on

∏
iM

ev(X, τi), we obtain a gluing formula GW(τ) =
F(GW(τi)).

Theorem 2.7.5 (Gluing theorem). There is an fs-Cartesian diagram

M̃ ′ev
(X, τ)

∏
i M̃

′ev
(X, τi)

Xk Xk ×Xk.

ev ev

∆

Here, the tilde gives a bigger log structure, and the prime changes the non-reduced structure. Finally,
fs-Cartesian means that the fiber product is modeled on the fiber product of cones in the following sense for
toric varieties:

Xσ1 ×
fs
Xτ
Xσ2 = Xσ1×τσ2 .

For example, if Xτ = A2 and Xσ1 ,Xσ2 are lines with different slopes, then the fs-fiber product is empty.

By work of Yixian Wu, the gluing stratum of X (contained in type τ) are toric, so we obtain the
gluing formula

δev
∗ [Mev(X, τ)] =

∑
ω=(ωi)⊇τi

(tropical multiplicity) ·
∏
i

[Mev(X,ωi)].

The ω are obtained as solutions to perturbation problems for τ via displacement along edges.
There is a similar formula in a different setting due to Venugopalan-Woodward.

Example 2.7.6. Consider a degeneration of P1 × P1 to
⋃

2 P2 via the cone over the skeleton
in Figure 2.10. If we consider curves of bidegree (1, 1), then τ is simply the skeleton. We can split

Figure 2.10: Skeleton

along the diagonal edge and then perturb by the tangent vector ξ = (1, 0). The possibilities for
ω1,ω2 are shown in Figure 2.11.

2.7.3 Punctured curves and punctured GW invariants

Definition 2.7.7. A punctured curve C◦ = (C,MC◦) → Spec(Q → C) is defined almost as a log
curve is before, but instead of Q⊕N at marked points, we admit submonoids Q◦ ⊆ Q⊕Z such
that Q⊕N ⊆ Q◦ and for any (g,k) with k < 0 implies that α(q,k) = 0. This is a fine log structure,
but is not separated.

Example 2.7.8. Let C = C1 ∪C2 with node q. Let ι : C1 ↪→ C and q = ι(p). Then

MC◦ = ι∗MC

is a puncturing at p.
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ξ

ξ

Figure 2.11: Possible perturbations of the skeleton

Definition 2.7.9. A stable punctured map is a stable map C◦ → X such that MC◦,p is generated by

Q⊕N and f♭(MX,f(p)) for all punctures p.

The second condition on generation of MC◦,p is equivalent tropically to saying that the
bounded leg Lp for the punctured point p extends as far as possible. After some work, we may
define tropical punctured maps, their types, and moduli spaces of punctured stable maps as
before.

Example 2.7.10. Recall the example of Bl1(P1 ×P1), where we blow up on the interior of one of
the boundary divisors. Then we consider a line degenerating to the strict transform of the blown
up boundary divisor. We will have two marked points and one puncture which moves to the
exceptional divisor. The classical and tropical pictures are shown in Figure 2.12.

E

Figure 2.12: A comparison of punctured and unpunctured invariants. Punctures are blue and the
exceptional divisor is orange.

The virtual dimension is 0, and in fact we have

deg[M(X, τ)]vir = 1.

As an application, we may consider a degeneration X → S of a Calabi-Yau or (X,D) a log
Calabi-Yau. Let B ⊆ Σ(X) be the Kontsevich-Soibelman skeleton, which is an integral affine
manifold. From 1-punctured invariants, we obtain a wall structure on B (for example in the
previous example, consider E) with walls swept out by images of tropical punctured maps of wall
type, which are not defined here. From the wall structure, we produce an intrinsic mirror ring
from 1-punctured invariants with up to 2 marked points. Then the formula of Yixian Wu tells us
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that enumerative and algebraic wall crossings are the same. For a reference, see The canonical wall
structure and intrinsic mirror symmetry by Gross and Siebert.
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A spin on Hurwitz theory and topological recursion (Danilo
Lewanski)

The impatient reader may skip to Figure 3.4 for a flowchart which summarizes this chapter.

3.1 Hurwitz theory

We are interested in studying d : 1 branched covers f : C→ D from a curve C of genus g to a curve
D of genus h. Then we know that f has k ramification points, above which we see ramification
profiles, which are partitions µi of d. Therefore, Hurwitz theory enumerates branched coverings of
Riemann surfaces with specified ramification data. There are several common specializations:

1. We choose one or two partitions to be special, and their parts are variables. All other
ramification profiles are of the same type.

2. We can also set h = 0, so we are looking for coverings of P1.

Definition 3.1.1. Let B be a connected and compact Riemann surface and fix x1, . . . , xk ∈ B and
partitions µ1, . . . ,µk. Then the Hurwitz number is defined to be

Hd(B;µ1, . . . ,µk) :=
∑
[f]

1
|Aut(f)|

,

where the sum is over equivalence classes [f] of branched covers f. We will write H◦
d to enforce

connected domains and H•
d to have possibly disconnected domains.

Examples 3.1.2.

1. Consider the map
f : P1 → P1 z 7→ zd.

Then we know that Aut(f) = µd is the d-th roots of unity, and therefore

H◦
d(P

1, (d), (d)) =
1
d

.

2. Let E be given by the equation y2 = x3 + ax+ b. There is a unique map f : E→ P1 of degree
2. This map has a unique involution given by y 7→ −y, and therefore

H◦(P1, (2), (2), (2), (2)) =
1
2

.

35
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Exercise 3.1.3. We list a few more invariants:

1. H◦(S1 × S1; (2, 1)4) = 9;

2. Compute H◦(Σ2; (3), (2, 1)6) and H◦(Σ5, (3)4, (2, 1)6).

It is unclear from the specification of the problem that a single cover even exists for a given
g,h,µi. We of course do have a classically known linear condition.

Theorem 3.1.4 (Riemann-Hurwitz). For any f, we have

2g− 2 = d(2h− 2) +
k∑
i=1

(d− ℓ(µi)).

This theorem is proved by lifting a triangulation of B passing through the xi. Any cover
satisfies this formula, but not all data which satisfy the formula admit a connected covering.

3.1.1 Spin Hurwitz numbers

Definition 3.1.5. A spin structure on B is a holomorphic line bundle θ on B such that θ⊗2 ∼= ωB.

Examples 3.1.6.

1. Let B = P1. Then there is a unique spin structure given by O(−1).

2. If θ is a spin structure on B and all µij are odd, then

θf : f
∗θ⊗O

∑
i,j

(µij − 1)

2
x
(j)
i


is a spin structure on the domain of f. Here, x(j)i is the j-th preimage of xi. This follows
from the formula

ωC ∼= f∗ωB ⊗O

∑
i,j

(µij − 1)x(j)i

.

Note that if we compute the degree of both sides, we obtain the Riemann-Hurwitz formula.

Definition 3.1.7. The spin Hurwitz number is defined by

Hd(B, θ;µ1, . . . ,µk) :=
∑
[f]

(−1)Arf(f)

|Aut(f)|
,

where Arf(f : C→ B) = h0(C, θf).

It turns out that all spin Hurwitz numbers are positive, but this is somewhat unexpected.
However, we can enumerate spin structures on curves.

Theorem 3.1.8. On any curve of genus g, there are 2g−1(2g + 1) even spin structures and 2g−1(2g − 1)
odd spin structures.

In Table 3.1, we can see these numbers for low genus.
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Table 3.1: Enumeration of even and odd spin structures

g even spin structures odd spin structures

0 1 0
1 3 1
2 10 6
3 36 28

3.1.2 Burnside formula

Problem 3.1.9. Computing Hurwitz or spin Hurwitz numbers directly from the geometry is extremely
hard.

The solution to this is that there exists an automorphism-preserving bijection
θf even/odd

ramification data µi
ramified at xi

C possibly disconnected
isomorphism classes f : C→ B


φ←→

 with/without lift to S̃d

of type (µ1, . . . ,µk)
ρ : π1(B \ {xi},y)→ Sd

Monodromy representations
,

where
S̃d =

〈
t1, . . . , td−1, ε | ε2 = 1, t2j = ε, (tjtj+1)

3 = ε, tjt2k = ε for |j− k| > 1
〉

is an extension
0→ Z/2Z→ S̃d → Sd → 0

defined by Giachetto-Kramer-Lewanski.
For example, we can now compute

H•
d(P

1;µ1, . . . ,µk) =
1
d!

[id]Cµ1 · · ·Cµkk
h,

where
Cµ :=

∑
σ∈Sd

cycle type=µ

σ.

Also, this kh is defined in Cavalieri-Miks and is a correction factor. For example, C(2,1,...,1) is the
sum of all transpositions and C(d) is the sum of all cycles of length d. This formula is can be
generalized to the spin setting, but we will instead give a different formula. We will now restate
the formula using characters.

Definition 3.1.10. For a partition λ, define

Fλ :=
dim(λ)

d!

∑
µ : |µ|=|λ|

χλ(µ)Cµ.

By orthogonality of characters, we obtain FλFφ = Fλδλφ, so the Fλ form an idempotent basis.
Inverting this formula, we obtain

Cµ =
∑
λ

|Cµ|
χλ(µ)

dim(λ)
Fλ,

and inserting us into the previous formula, we obtain
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Theorem 3.1.11 (Burnside formula).

H•(B;µ1, . . . ,µk) =
∑
λ

∏k
∣∣∣Cµi ∣∣∣χλ⊢d(µi)

dim(λ)

(dim(λ)

d!

)2−2h
.

In the spin setting, there is the following theorem:

Theorem 3.1.12.

H•
d(B, θ;µ1, . . . ,µk) = 2A

∑
λ⊢d
strict

(−1)ℓ(λ)·h0(B,θ)
∏
i=1k

∣∣∣C̃µi ∣∣∣ χ̃λ(µi)dim(λ)

(
dim(λ)

2p(λ)/2

)2−2h
,

where χ̃, C̃ are the same as the ones without tildes but for S̃d and

p(λ) =

{
1 ℓ(λ) odd
0 ℓ(λ) even.

Finally, here

A =

k∑
i=1

ℓ(µi) − d

2
− (2 − 2h).

It should also be noted that strict partitions must be strictly decreasing.

We will now fix a positive integer r. Classically, we consider (r+ 1)-completed cycles and
Hurwitz numbers with B = P1. We will write

µ1 := (µ1, . . . ,µn),

and all other µi will be
µi = (r+ 1, 1, . . . , 1) + correction terms,

where the correction terms generate 1
2 sinh(z/2) . In the spin setting, we will consider B =

(P1,O(−1)), force the µi to be odd, and have the correction terms generate 1
2 coth(z/2).

Remark 3.1.13. We should note that we would like to generalize the Gromov-Witten/Hurwitz
correspondence of Okounkov-Pandharipande to the spin case, where we consider spin (r+ 1)-
completed cycles. The other motivation is the Zvonkine conjecture/theorem relating to the ELSV
formula.

Definition 3.1.14. Define the function

ϕ : ZQ[Sd]→ QPd Cµ 7→ fµ,

where

fµ := |Cµ|
χ•(µ)

dim(•)
=

∏
pµi∏
µi

+ lower order terms.

Adding a tilde to everything, we get the spin version. Here, we have

pµ =

n∏
i=1

pµi pS(λ) :=
∑
k>0

[(
λk − k+

1
2

)s
−

(
−k+

1
2

)s]
.
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In the spin case, we define

p̃S(λ) =
∑
k>0

λsk.

Then the completed cycles are defined to be

Cr+1 := ϕ−1
(p(r+1,1,...,1)

r+ 1

)
.

In the spin case, the definition is the same.

Definition 3.1.15. We will define the (r+ 1)-completed cycles Hurwitz numbers by

h•,r
g;µ :=

Aut(µ)
b!

H•
d(P

1,µ, (Cr+1)
b),

where

bRH =
2g− 2 + ℓ(µ) + d

r
.

In the spin case, simply consider (P1,O(−1)) and add a tilde to everything,

These are very hard to compute, and closed formulae are very hard, so we instead develop
recursions, such as cut and join, topological recursion, and the Toda equations. The following
result was conjectured by Pandharipande.

Theorem 3.1.16 (Okounkov). The series

H(x,y) :=
∑

g=0,d=1

h◦,r=1
g;(1)dx

2g+2d−2yd

satisfies the equation (
y

d
dy

)2
H(x,y) = yeH(x,yex)−2H(x,y)+H(x,ye−x),

which is the first equation of the Toda lattice.

3.1.3 Operator interpretation of Hurwitz numbers One of the main ingredients in this
is a Fock space interpretation of Hurwitz numbers h•,r

g;µ,ν as a vacuum expectation value of the
operator 〈

αµ1 ◦ · · · ◦αµn
(Fr+1)

b

b!
α−ν1 ◦ · · · ◦α−νm

〉
,

where

b =
2g− 2 + ℓ(µ) + ℓ(ν)

r

is determined by the Riemann-Hurwitz formula.

Definition 3.1.17. The vacuum v∅ is defined to be the Maya diagram in Figure 3.1.
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− 1
2 − 3

2
1
2

3
2

Figure 3.1: Vacuum vector

Figure 3.2: Vector corresponding to λ = (3, 2, 2)

Note that there exists a bijection between partitions and the charge zero sector of Maya
diagrams (where the are the same number of black stones on the left and white stones on the
right). For example, the partition (3, 2, 2) corresponds to the Maya diagram in Figure 3.2;

Now we will define the operator

αm :=
∑

k∈Z+ 1
2

: ψk−mψ
†
k :∈ ĝl(∞),

where ψ†
k attempts to remove a black stone from position k, ψk−m attempts to drop a black stone

in position k−m, and

ĝl(∞) :=

{
c+

∑
r,s
ar,s : ψ−rψ

†
s :| ar,s = 0 if |r− s|≫ 0

}
.

Note that even though αm is an infinite sum, when applied to any charge zero Maya diagram, it
only has finitely many nonzero elements. Also, recall that the normal ordering is defined by

: ψiψ
†
j :=

{
ψiψ

†
j j > 0

−ψ†
jψi j < 0.

We can also build Maya diagrams from partitions by using the Russian notation for partitions as
seen in Figure 3.3. If we apply α2, we obtain

α2vλ = −v(3,1,1) + v(3,2).

This is exactly the same as the Murnaghan-Nakayama rule, which implies that

α−µ1 ◦ · · · ◦α−µn =
∑

|λ|=|µ|

χµ(λ)vλ.

The αn also satisfy the relations
[αn,αm] = nδn+m.
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Figure 3.3: Maya diagram and Russian partition notation corresponding to λ = (3, 2, 2)

It now remains to define Fr+1 such that its eigenvalue is the completed cycle. We want

Fr+1vλ = pr+1(λ)vλ,

and the correct definition is

Fr+1 :=
∑

k∈Z+ 1
2

kr+1 : ψkψ
†
k :∈ ĝl(∞).

We will also define other operators

Em(z) =
∑

k∈Z+ 1
2

ez(k−
m
2 ) : ψk−mψ

†
k : +

δm

ζ(z)
,

where ζ(z) = 2 sinh
(
z
2
)
. As studied by Okounkov-Pandharipande, these satisfy the relation

[Ea(z),Eb(w)] = ζ
(∣∣a b
z w

∣∣)Ea+b(z+w).
Note that if we set z = 0, Em(0) = αm and if we set m = 0, then

(r+ 1)![zr+1]Em(z) = Fr+1.

In the spin setting, we may define

E
spin
m (z) =

1
2

∑
k∈Z

e(k+
m
2 )z(−1)kφkφ−k−m +

δm

4
coth

(z
2

)
,

where we define

φm :=
1√
2

[
ψ
m− 1

2
+ (−1)mψ†

−m− 1
2

]
to be the uncharged fermion. The commutation relations become

[E
spin
a (z),Espin

b (w)] =
1
2
ζ
(∣∣a b
z w

∣∣)Espin
a+b(z+w) +

1
2
ζ
(∣∣ a b

−z w

∣∣)Espin
a+b(−z+w)(−1)a.
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There is also the very nice property that

E
spin
m (−z) = (−1)m+1E

spin
m (z),

so the spin operators are either even or odd.

3.2 Topological recursion

Topological recursion was introduced by Eynard-Orantin (with work from Chekhov) from random
matrix theory, where integrals of the form

ZN :=

∫
HN

dMe−NTr(V(M))

over some space of N×N matrices are considered. In the N → ∞ limit, we want to expand
these integrals in terms of powers of N−1. There are various matrix models, including the one
used to prove Witten’s conjectures and other including Hurwitz numbers. The problem is to
compute all correlators in this model, so we first compute the spectral curve of the matrix model
and then use topological recursion to compute the correlators, which give the coefficients. It
was realized in 2007 that the matrix model is not necessary in this setup, but we can still apply
topological recursion from the spectral curve. For example, we can compute both psi-integrals
on Mg,n and the Weil-Petersson volumes from some spectral curves, but these do not have well-
defined matrix models. In 2017, Kontsevich-Soibelman found a way to do without the spectral
curve, but there must be a replacement. Also in 2017, a “categorification” was introduced by
Andersen-Borot-Orantin, called Geometric Recursion.

Definition 3.2.1. A spectral curve is the data S := (Σ, x(z),y(z),B(z1, z2)) and a point p ∈ Σ, where:

• Σ is a not necessarily compact or connected Riemann surface;

• x : Σ → C is a function such that dx is meromorphic with finitely many simple zeroes
c := {c1, . . . , cr};

• y : Σ→ C is a meromorphic function not branched at c;

• B is a symmetric bidifferential on Σ×Σ with a double pole on the diagonal with biresidue
equal to 1 and no other pole. In other words,

B(z1, z2)z1→a
z2→b

=

[
δa,b

(z1 − z2)2 + holomorphic
]

dz1 ⊗ dz2 .

Definition 3.2.2. Topological recursion is a process that takes a spectral curve S and returns a system{
ωg,n ∈ H0(Σn,K⊠n

Σ (−2∆))Sn
}

2g−2+n>0

of symmetric n-differentials on Σn with poles at most at the branch points c of x as follows:
First set

ω0,1(z) := y(z)dx (z)
ω0,2(z) := B(z1, z2).
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Now we need a recursion kernel K. Recall that x has simple poles, so locally there exists a Galois
involution σi such that x(z) = x(σi(z)) locally near ci. Then we may set

Kci(z1, z) :=
1
2

∫z
σi(z)

B(z1, •)
(y(z) − y(σi(z)))dx (z)

.

We are now able to define

ωg,n(z1, . . . , zn) :=
∑
ci∈c

Resz=ci Kci(z1, z)

[
ωg−1,n+1(z,σi(z), z2, . . . , zn)

+

N0(0,1)∑
g1+g2=g

J1⊔J2={2,...,n}

ωg1,|J1|+1(z, zJ1)ωg2,|J2|+1(σi(z), zJ2)

]
.

This should be thought of as constructing a genus g surface (with n punctures) by either gluing
the kernel K (a pair of paints) to a genus g− 1 surface (with n+ 1 punctures) or by using K to
glue a disjoint union of surfaces of genus g1,g2.

Example 3.2.3. This example comes from the paper arxiv:0709.1453 by Bouchard, Klemm,
Marino, and Pasquetti, which is about mirror symmetry of toric Calabi-Yau threefolds (here the
mirror object is the spectral curve). There is a spin-off, which arises from considering the framed
topological vertex as the framing f→∞.

Theorem 3.2.4 (Eynard, Mulase, Safnuk). Consider the spectral curve SH with the data x(z) =
log(z) − z,y(z) = z,B = Bcan. Topological recursion in this case produces the Hurwitz numbers via the
expansion ∫x1

· · ·
∫xn

ωSH

g,n(x̃1, . . . , x̃n) =
∑
µ1,...µn

h◦,r=1
g,µ

n∏
i=1

exiµi .

This example can be generalized to any h◦,r
g,µ by replacing x(z) = log(z) − zr.

Example 3.2.5. Consider the spectral curve Sψ given by x(z) = z2

2 ,y(z) = z,B = Bcan. Running
topological recursion, we obtain the intersection numbers of psi-classes on the moduli spaces of
curves via the expansion

ωS
ψ

g,n =
∑

d1,...,dn

(∫
Mg,n

ψ
d1
1 · · ·ψ

dn
n

)
n∏
i=1

(2di + 1)!!

z
2di+2
i

dz1 · · ·dzn .

In practice, running topological recursion gives us integrals over Mg,n of some cohomological
field theory, but this requires some technical conditions.

3.2.1 Running topological recursion in practice We will now check some cases of Theo-
rem 3.2.4. We will begin with the unstable cases, where we compute

ω0,1(z) = y(z)dx(z)
= z · d(log(z) − z)
= (1 − z)dz ,

https://arxiv.org/abs/0709.1453
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and this implies that ∫x
ω0,1 = z−

z2

2
.

We cannot see the Hurwitz numbers here, but we may consider the Lambert function

W(z) := −
∑
µ=1

µµ−1

µ!
(−z)µ,

which has the property that WeW = z. Here, we can see the Hurwitz numbers using the ELSV
formula

h0,r=1
g,µ =

ℓ(µ)∏
i=1

µ
µi
i

µi!

 ∫
Mg,n

Λ(−1)∏
(1 − µiψi)

,

where we make the conventions∫
M0,2

1
(1 − xψ1)(1 − yψ2)

:=
1

x+ y∫
M0,1

1
1 − xψ1

:=
1
x2 .

This gives us

z−
z2

2
=

∑
µ=1

1
µ2
µµ

µ!
exµ

=
∑
µ=1

(∫
M0,1

)
1

1 − µψ1

µµ

µ!
exµ

=
∑
µ=1

h0,r=1
g,µ exµ,

In the spin case, there is a similar result.

Theorem 3.2.6 (Alexandrov-Shadrin). Consider the spectral curve given by the data

x(z) = log(z) − z2R

y(z) = z

B(z1, z2) =
1
2

dz1 dz2

(z1 − z2)2 +
1
2

dz1 dz2

(z1 + z2)2 ,

which has new poles on the antidiagonal. Usually, the rank of the CohFT is equal to the number of branch
points, but in the spin case, we have the action of G = Z/2Z, and so the the number of branch points is
twice the rank of the CohFT.

3.3 The ELSV formula

Consider the cohomological field theory from Theorem 4.3.3

Λ(x) = c(E∨
g ) = 1 + xλ1 + · · ·+ xgλg,
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where λi = ci(Eg). In the spin setting, we will consider the moduli space

C

M
1/r,s
g;a1,...,an Mg,n

ε

parameterizing curves with a line bundle L such that L⊗r ∼= K⊗s
log(−

∑
aixi), where we require that

(2g− 2+n)s ∼=
∑
ai (this suffices for the existnece of an L). Then we will define the cohomological

field theory

Ω
[x]
g,n(r, s; a⃗) := ε∗ exp

( ∞∑
m=1

(−x)m(m− 1)! chm(Rπ∗L
r,s
a⃗ )

)
,

where Lr,s
a⃗ is the universal line bundle on the universal curve C. These Chern characters can be

written in the form

chm =
Bm+1

(
s
r

)
(m+ 1)!

κm −

m∑
i=1

Bm+1
(ai
r

)
(m+ 1)!

ψmi +
r

2

r−1∑
a=0

Bm+1
(
a
r

)
(m+ 1)!

(ja)∗
(ψ ′)m − (−ψ ′′)m

ψ ′ +ψ ′′ ,

where Bm(x) are the Bernoulli polynomials defined by∑
m=0

Bm(x)
tm

m!
=

tetx

et − 1

and κm := π∗ψ
m−1
n+1 is the pushforward of ψn+1 under forgetting the last marked point. In

addition, ja is the gluing map, where ψ ′ has label a and ψ ′′ has label r− a.
This cohomological field theory can be used to obtain double ramification cycles, Masur-Veech

volumes, χ(Mg,n), ELSV-type formulae for (spin) Hurwitz numbers, the Gromov-Witten theory
of P1, and the object Θg,n.

Theorem 3.3.1 (Shadrin, . . . ). The Hurwitz numbers can be computed as

h◦,r
g,µ = const

(∏ µ
[µi]
i

[µi]!

) ∫
Mg,n

Ω(r, 1;
−−−−−→
r− ⟨µi⟩)∏ (

1 − µi
r ψi

) ,

where µi = [µi]r+ ⟨µi⟩ is the Euclidean division.

The goal now is to find a spin analogue for this formula.

Theorem 3.3.2 (Lewanski-Popolitov-Shadrin-Zvonkine,15). Topological recursion yields h◦,r
g,µ if and

only if the previous theorem holds.

Theorem 3.3.3 (Giachetto-Kramer-Lewanski). Topological recursion yields h◦,r,spin
g,µ if and only if

h
◦,r,spin
g,µ = const

(∏ µ
[µi]
i

[µi]!

) ∫
Mg,n

Ωspin(r, 1; r− ⟨µi⟩)∏ (
1 − µi

r ψi
) .

Note that in the r = s = ai = 1 case, Mumford’s formula yields

c(Eg) = exp

( ∞∑
m=1

(m− 1)! chm

)
.

We can obtain the right hand side via topological recursion, but it is hard to find a geometric
interpretation of such. Fortunately it does exist in our setting.
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Theorem 3.3.4. Applying the recipe for topological recursion, Ωspin is almost given by

chm =
Bm+1

(
1

2R

)
(m+ 1)!

κm −

m∑
i=1

Bm+1

(
2ãi
2R

)
(m+ 1)!

ψmi +
1

2R

2R−1∑
a=0

Bm+1
(
a

2R
)

(m+ 1)!
(ja)∗

(ψ ′)m − (−ψ ′′)m

ψ ′ +ψ ′′ ,

up to various prefactors and an oddness gluing condition.
In fact, Ωspin(r, 1) = (ep2

1)∗
(
Wr=2 ∩ (ε2R

2 )∗(r, 1)
)
. Here, we consider the diagram

M
1/2R,1
g,a⃗

ε2R
2−−→M

1/2,1
g,a⃗

ε2
1−→Mg,n.

In the simplest possible case, we set r = 2. Then R = 1, and thus we obtain

chm =
Bm+1

(
1
2

)
(m+ 1)!

κm −

m∑
i=1

Bm+1

(
1
2

)
(m+ 1)!

ψmi +
1
2

1∑
a=0

Bm+1
(
a
2
)

(m+ 1)!
(ja)∗

(ψ ′)m − (−ψ ′′)m

ψ ′ +ψ ′′ .

In the end, we obtain

Ωspin(2, 1; 1, . . . , 1) = (prefactor) exp

( ∞∑
m=1

)
(−1)m

m(m+ 1)
Bm+1

(
1
2

)
[R+ψ+ j∗]

= exp

(∑
m

(
−

1
2

)m
· · ·

)
exp

(∑
m

(+1)m · · ·

)

= Λ(1)Λ
(
−

1
2

)
.

Therefore, we can rephrase Theorem 3.3.3 as

Theorem. Topological recursion yields h◦,r,spin
g,µ if and only if

h
◦,r,spin
g,µ = const

(∏ µ
[µi]
i

[µi]!

) ∫
Mg,n

Λ(1)Λ
(
− 1

2

)
∏ (

1 − µi
r ψi

) .

There is a correspondence as follows. With a single Λ, we obtain a 1-dimensional theory,
which yields the Gromov-Witten theory of P1, which is Hurwitz numbers. The Spin Hurwitz case
corresponds to Kähler surfaces, which are 2-dimensional and yields ΛΛ. In dimension 3, we can
consider Mariño-Vafa, the Gromov-Witten theory of Calabi-Yau threefolds, and CohFTs of the
form ΛΛΛ.

3.4 Gromov-Witten theory

Recall that Gromov-Witten invariants of a smooth projective variety X are defined by

〈
τd1(γ1) · · · τdn(γn)

〉X,β
g,n :=

∫
[Mg,n(X,β)]vir

n∏
i=1

ev∗
i γiψ

di
i .

Also recall that the virtual dimension of Mg,n(X,β) is∫
β
c1(X) + (dimX− 3)(1 − g) +n.
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In the case when dimX = 0, we obtain the Gromov-Witten theory of a point, which is simply
computing integrals ∫

Mg,n

∏
ψ
di
i ,

which by the famous result of Kontsevich is a τ-function for the KdV hierarchy. When dimX = 1,
the Gromov-Witten theory of curves was studied in three papers by Okounkov-Pandharipande.
In this section, we will consider dimX = 2.

Recall that a spin curve is a curve (C, θ) where θ⊗2 ∼= ωC. If D ∈ |KX| is a smooth canonical
divisor, then (D,ND/X) is a spin curve by the adjunction formula

KD ∼= (KX +D)|D.

Theorem 3.4.1 (Lee-Parker, Kiem-Li). The Gromov-Witten theory of surfaces with smooth canonical
divisors localizes on spin curves. In particular,〈∏

τdi(γi)
〉X,β

g,n
=

{
0 β ̸= d · [D] for any d∫
[Mg,n(D,d)]loc,θ

∏
ev∗
i (γi · [D])ψdii otherwise.

Here, note that virdimMg,n(D,d) = g− 1 +n+ d(1 − g(D)).

Theorem 3.4.2 (Kiem-Li). In the case when g(D) = 0, recall there is only one spin structure on P1. Then

[Mg,n(P
1,d)]loc,O(−1) = [Mg,n(P

1,d)]vir ∩ ctop(R
1π∗f

∗O(−1)),

where we have the diagram

C P1

Mg,n(P
1,d)

f

π

of the universal map to P1.

3.4.1 Spin GW/H Following the strategy of Okounkov-Pandharipande, there is a spin GW/H
correspondence, but unfortunately the degeneration formula for spin curves is not understood.

Conjecture 3.4.3 (Lee, 2019). The stationary Gromov-witten invariants are given by∫
[Mg,n(C,d)]loc,θ

∏
ev∗
i (pt)ψdii = h◦,θ

g(C), (−1)d1d1!
(2d1)! pspin

2d1+1,..., (−1)d1d1!
(2d1)! pspin

2d1+1

.

Theorem 3.4.4 (Giachetto-Kramer-Lewanski, 2021). Conjecture 3.4.3 is true for P1;

The idea of the proof is to use virtual localization to obtain something like

Mg,nΛ(1)Λ
(
−

1
2

)
,

and then transform this into the ELSV formula. We encode the spin Gromov-Witten theory of
equivariant spin (P1,O(−1)) by the generating series∫

[Mg,n(P1,d)]loc,O(−1)

(
n∏
i=1

ev∗
i ([0])

1 − ziψi

) m∏
j=1

ev∗
n+j([∞])

1 −wn+jψn+j

,
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and this can be expressed in terms of

∫
Mg,n

Λ(1)Λ
(
− 1

2

)
∏

(1 − ziψi)(1 −wj+nψj+n)
.

Remark 3.4.5. Exploiting the expression of Hurwitz numbers as vacuum expectations of uncharged
fermions, one can write an explicit algorithm to compute the Gromov-Witten invariants of
(P1,O(−1)). In particular, applied to d = 1 and d = 2 obtains Conjecture 3.4.6.

Conjecture 3.4.6 (Maulik-Pandharipande). Define Ud(z1, . . . , zn) by

〈
τk1 · · · τkn

〉•,P1,O(−1)
g,d =:

2d

(d!)2

m∏
i=1

(−2)k · ki[zkii ]Ud(z1, . . . , zn).

Then in low degree,

U1(z1, . . . , zn) =
1
2

m∏
i=1

sinh(zi)

U2(z1, . . . , zn) =
1
2

m∏
i=1

sinh(2zi).

Because of corrections in the completed cycles, there are corrections in the expressions for Ud
for d ⩾ 3. For example,

U3(z1, . . . , zn) =
1
2

m∏
i=1

sinh(3zi) +
1
4
[sinh(2zi) + sinh(zi)].

We may also consider the case of n = 1 but arbitrary degree. Then

Ud(z) =

〈(
α

spin
1

)d
Ê

spin
0 (z)

(
α

spin
−1

)d〉
.

But now positive energy operators annihilate the vacuum, all operators in the vacuum expectation
are cases of Espin

m (z), and the E
spin
m are closed under commutation, so we commute operators to

the right until we reach

⟨E0(z)⟩ =
1
4

coth(z).

In the first step of the recursion, we obtain

Vd =

〈(
α

spin
1

)d
E

spin
−1 (z)

(
α

spin
−1

)d〉
.

The Ud and Vd are enough to compute everything, and in the end, we obtain

(
Ud(z)
Vd(z)

)
=

d−2∏
k=0

Ad−k(z)

(
sinh

(
z
2
)

cosh
(
z
2
)

1
2 cosh

(
z
2
) )

+

d−2∑
m=0

(
m−1∏
k=0

Ad−k(z)

)
td−m(z),



49

where

Ap(z) =

(
4 sinh2 (z

2
)
+ p 2(p− 1) sinh

(
z
2
)

2 sinh
(
z
2
)

p− 1

)
tp(z) =

(
(p− 1) sinh

(
z
2
)

cosh
(
z
2
)

p−1
2 cosh

(
z
2
) )

.

For example, we can write

U8(z) =
1
8

sinh(8z) + 9 sinh(7z) + 49 sinh(6z) + 81 sinh(5z)

+ 18 sinh(4z) + 67 sinh(3z) + 81 sinh(2z) + 59 sinh(z).

3.4.2 Integrability In the non-spin case, the Hurwitz number h◦,r
g,µ,ν obey the 2D Toda hierar-

chy by a theorem of Okounkov, and then we can use the Gromov-Witten/Hurwitz correspondence
of Okounkov-Pandharipande to obtain that the Gromov-Witten theory of P1 satisfies the 2D Toda
hierarchy also. This has a Z-grading, so in fact it is harder than the spin case. In the spin case, the
Hurwitz numbers h◦,r,spin

g,µ,ν satisfy the 2BKP hierarchy, so the Gromov-Witten theory of (P1,O(−1))
does as well. In fact, in the spin case τ0 = τ1. Here, we mean that

τ(x, x∗;u,q) :=
∑
g,d

ug−1qd

〈
exp

(
2
∑
k=0

xkτk([0])

)
+

∑
k=0

x∗kτk([∞])

〉spin,P1

g,d

=

〈
e
∑
xiBieα

spin
1

(q
u

)energy
eα

spin
−1 e

∑
x∗iB

∗
i

〉
is a tau function of the 2BKP hierarchy.

Now there are several missing ingredients for the Gromov-Witten theory of spin curves,

Theorem 3.4.7. The spin degeneration formula implies the spin stationary Gromov-Witten/Hurwitz
correspondence.

The other missing ingredients are:

• Virasoro constraints (to deal with insertions of 1);

• How to deal with odd cohomology classes.
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Teleman’s classification of semisimple cohomological field
theories and applications (Dimitri Zvonkine)

Cohomological field theories are a union of two topics:

1. Topological field theories (equivalently, fusion algebras or commutative Frobenius algebras);

2. The moduli space Mg,n of curves.

4.1 Topological field theories

Definition 4.1.1. Let V be a finite-dimensional C-vector space. A topological field theory on V is a
series of maps

ωg,n,m : V⊗n → V⊗m

satisfying the following axioms:

0. For any g,n,m, ωg,n,m is Sn × Sm-invariant;

1. ω0,1,1 = id : V → V ;

2. The ωg,n,m satisfy the following gluing axioms:

(a) For any g,n,m,
ωg,n,m = trn+1,m+1ωg−1,n+1,m+1.

(b) For any g1,g2,n1,n2,m1,m2, we have

ωg1+g2,n1+n2,m1+m2 = trn+2+1,m1+1(ωg1,n1,m1+1 ⊗ωg2,n2+1,m2).

If we choose a basis eµ of V , we can write a tensor (ωg,n,m)
ν1,...,νm
µ1,...,µn . As an application of the

axioms, we can see that for any g1,g2,

ωg1+g2,1,1 = ωg1,1,1 ◦ωg2,1,1.

Remark 4.1.2. This definition is a result of a dialogue between physicists and mathematicians and
encodes (in a nice encapsulated way for mathematicians) the data of a diffeomorphism-invariant
quantum field theory.

Examples 4.1.3.

51
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(a) Let V = C. Then all ωg,n,m are simply numbers. For example, we can consider c ̸= 0 and
set ωg,n,m = c2−2g−n−m. In the case where dimV = 1, this is the only example.

(b) Now suppose r ⩾ 1 and set V = C ⟨e0, . . . , er−1⟩. We can then solve the combinatorial
problem of labelling half-edges graphs with remainders modulo r such that each edge or
vertex sums to 0, and define

(ωg,n,m)
b1,...,bm
a1,...,an := rg · δ∑ai−∑

bi mod r.

Now consider the 2-form η := ω0,2,0 : V
⊗2 → C. Then in this example ηab = δa+b mod r.

We may also define η∨ := ω0,0,2.

Proposition 4.1.4. η and η∨ are inverses of each other. Here, we consider η : V → V∗ and
η∨ : V∗ → V .

Proof. Simply apply the gluing axiom and obtain ω0,1,1, which is the identity by definition.

With the data of η and η−1, inputs and outputs are symmetric, so the data of a topological
field theory is determined by ωg,n,0.

(c) Let G be a finite group and set V = ZC[G]. We know that V is spanned by conjugacy classes.
Now define

α :=
∑
g1,g2

g1g2g
−1
1 g−1

2 ∈ V .

We can define

ωg,n,0(v1, . . . , vn) :=
1
|G|

[1G]v1 · · · vn ·αg.

For example, if G = Sd is the symmetric group, then V is spanned by partitions of d, and
ωg,n,0 is a Hurwitz number.

Stepping back, note that a finite-dimensional commutative C-algebra is either C⊕ · · · ⊕C

or has at least one nilpotent element. The Burnside formula allows us to move to the
idempotent basis from the usual basis

Definition 4.1.5. A commutative Frobenius algebra is a commutative associative algebra with unit
(V , ·, 1) with a counit δ : V → C such that η(u, v) := δ(u · v) is nondegenerate.

Example 4.1.6. The ring C[x,y]/(x2, xy,y2) cannot be promoted to a Frobemius algebra.

Example 4.1.7. The counit δ = 1
|G|

[1G](−) turns V = ZC[G] into a Frobenius algebra.

Theorem 4.1.8. Topological field theories are equivalent to Frobenius algebras.

Proof. Let’s begin with a topological field theory. Given V , we can construct

• The unit as ω0,0,1;

• The counit as ω0,1,0;

• The product as ω0,2,1.
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We can see that the product is associative by cutting ω0,3,1 in two different ways and commutative
by S2-equivariance of ω0,2,1. Clearly, η = ω0,2,0 is nondegenerate from the axioms of a TFT.

In the other direction, we can define ωg,n,m by cutting any surface into pairs of pants. We
already know that pairs of pants are simply the product in the Frobenius algebra, so we get the
answer. To check consistency, we can modify our decomposition and repeatedly use associativity
of the Frobenius algebra.

Now suppose we actually want to compute ωg,n,1(v1, . . . , vn) from the Frobenius algebra
structure. First, we set α = ω1,0,1 ∈ V , and then the gluing axiom tells us that

α =
∑

ηµνeµ · eν.

Then we may compute
ωg,n,1(v1, . . . , vn) = v1 · · · vn ·αg.

4.2 Moduli of curves

Recall that there is a moduli space Mg,n parameterizing smooth and proper curves of arithmetic
genus g over C with n distinct (numbered) marked points whenever 2 − 2g−n < 0. This has a
compactification Mg,n of stable curves. Recall that a stable curve has:

• The only singularities allowed are nodes;

• The marked points are all smooth;

• The condition 2 − 2g−n < 0 applies to every component if we treat all nodes and marked
points as special.

Recall that Mg,n is a smooth proper Deligne-Mumford stack of dimension 3g− 3 +n.

Example 4.2.1. Consider the space M0,4. Classically, there is an isomorphism

(C, x1, x2, x3, x4) ≃ (P1, 0, 1,∞, t),

where
t =

x4 − x1

x2 − x1
:
x4 − x3

x2 − x3

is the cross-ratio, and thus M0,4 = P1 \ {0, 1,∞}. Compactifying, we obtain M0,4 = P1, where the
points 0, 1,∞ correspond to the t→ 0, t→ 1, t→∞ limits and are geometrically represented by
curves with two components. The markings on the components are (14)(23), (13)(24), (12)(34) in
the three cases.

We will conclude this section by giving a picture of Mg,n, which can be seen in Figure 4.1.
A general point corresponds to a smooth curve, and then there are various boundary divisors
corresponding to curves with nodes. There is a boundary divisor corresponding curves with
non-separating nodes, and these have self-intersections which correspond to having more nodes,
where the codimension is given by counting the number of nodes. The boundary is a normal
crossings divisor. There are other boundary divisors which correspond to separating nodes, and
they have a combinatorial description based on how the genus and marked points are split among
the components.



54

×

×
×

×

×
×

×

×
×

×

×
×

×

×
×

×

×
×

Figure 4.1: Picture of M2,3. The divisor with self-intersection is the image of q : M1,5 →M2,3 while
the other divisor is the image of s : M1,2 ×M1,3 →M2,3.

It is important to note that the components of the boundary are given by products of smaller
moduli spaces. In the boundary components with reducible curves, we can form the gluing map

q : Mg1,n1+1 ×Mg2,n2+1 →Mg1+g2,n1+n2 .

In the components with a non-separating node, there is of course the map

s : Mg−1,n+2 →Mg,n,

which is 2-to-1 onto the image (since we forgot the last two markings, we can swap the two and
obtain the same glued curve).

The last interesting map we should discuss are the forgetful maps

p : Mg,n+1 →Mg,n,

which are defined by deleting a marked point and then stabilizing the resulting curve by collapsing
rational tails (one node and either zero or one marked points) and bridges (two nodes and no
marked points).
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4.3 Cohomological field theories

Definition 4.3.1. Let V be a finite-dimensional C-vector space. A cohomological field theory on V is
the data of a unit vector 0 ̸= 1 ∈ V , a nondegenerate symmetric bilinear form η, and a collection

(Ωg,n : V
⊗n → H∗(Mg,n))2−2g−n<0

satisfying the following axioms:

0. Each Ωg,n is Sn-equivariant, where Sn acts on Mg,n by permuting the marked points (here,
we will only consider the even part of the cohomology of Mg,n);

1. For all u, v ∈ V , Ω0,3(u, v, 1) = η(u, v);

2. We have the following gluing axioms:

(a) For any g,n, we have

s∗Ωg,n(v1 ⊗ · · · ⊗ vn) = Ωg−1,n+1(v1 ⊗ · · · ⊗ vn ⊗ η−1).

(b) Choose a basis (eµ) for V . Then we have

q∗Ωg,n(v1, . . . , vn) =
∑
µ,ν

Ωg1,n1+1(v1, . . . , vn, eµ)× ηµν ×Ωg2,n2+1(vn1+1, . . . , vn, eν).

3. (Optional, flat unit, string equation) For any g,n, we have

p∗Ωg,n(v1, . . . , vn) = Ωg,n+1(v1, . . . , vn, 1).

We will now give several examples of cohomological field theories.1

Definition 4.3.2. Recall that if C π−→Mg,n is the universal curve, then there is a sheaf

E := π∗ωπ

on Mg,n. Above any stable curve C, the fiber is simply H0(ωC). Recall that because nodes are
Gorenstein, ωC is a line bundle. In the more analytic setting, the sections are abelian differentials,
which are simply meromorphic 1-forms on each component with poles allowed only at the nodes
and opposite residues on the branches. By Serre duality, connectedness, and flatness, E is a vector
bundle of rank g, called the Hodge bundle.

Theorem 4.3.3. If we set V = C, 1 = 1, η = (1), and

Ωg,n(1, . . . , 1) = c(Eg),

we obtain a cohomological field theory.

Proof. The first two axioms are clearly satisfied, so we check the gluing axioms. We will first show
that

q∗c(Eg) = c(Eg1)c(Eg2).

1Dimitri claims that all examples of cohomological field theories are intimidating.
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Because poles are not allowed at the node (by the residue formula), we have q∗Eg = Eg1 ⊕Eg2 .
By the splitting axiom for the total Chern class, we are done. We now turn to showing that

s∗c(Eg) = c(Eg−1).

There is an exact sequence
0→ Eg−1 → s∗Eg → O→ 0

given by α 7→ Resn+1 α, so by the trivial bundle axiom for the total Chern class, we are done. In
fact, the string equation is also satisfied because E does not depend on the marked points.

Remark 4.3.4. For any CohFT, if we restrict Ωg,n to the H0(Mg,n) = C, we obtain a topological
field theory.

Remark 4.3.5. For any ai, we may consider any characteristic class of the form

exp
(∑

ai chi(Eg)
)

and obtain a CohFT.

Definition 4.3.6. Let (C, x1, . . . , xn) be a smooth curve with marked points and KC be the cotangent
bundle. Then an r-spin structure on C is a line bundle L with an isomorphism L⊗r ≃ KC(−

∑
aixi),

where a1, . . . ,an ∈ {0, . . . , r− 1}. Now note that if we fix the ai, then there are r2g possible choices
of L corresponding to the possible choices of r-torsion in Pic(C).

We now obtain a moduli space M
1/r
g;a1,...,an with an étale map

M
1/r
g;a1,...,an

r2g:1−−−→Mg,n.

We can compactify this to M
1/r
g;a1,...,an , but now the map to Mg,n is ramified at the boundary. Then

we may define Witten’s class on M
1/r
g;a1,...,an and push it forward to Mg,n.

We may now set V = C ⟨e0, . . . , er−2⟩, write 1 = e0, and set ηab = δa+b,r−2 to be the
antidiagonal form. Then we will setΩg,n(ea1 , . . . , ean) to be Witten’s class. This is a cohomological
field theory.

Definition 4.3.7. Suppose that h0(C,L) = 0 (this only happens in genus 0). Then if π : C →
M

1/r
g;a1,...,ar is the universal curve, R1π∗L is a vector bundle. Then we may define the Witten class

Wg;a1,...,an := e(V∗).

In the complicated case when h0 doesn’t vanish, the Witten class may be defined using cosection
localization. In our situation, let X be the space of sections of L. Then if s ∈ Γ(C,L), we have

sr−1 ∈ Γ(C,L⊗r−1) = Γ
(
C,K

(
−
∑

aixi

)
⊗L∗

)
= H1(C,L)∗ = V∗,

which gives us sr−1 : V → O.

Remark 4.3.8. Suppose σL→ O is a (meromorphic) cosection. Then we can consider c1(L) = P−Z,
so in the case of an obstruction bundle V and a cosection L→ O, we may consider [X]∩ c1(L) · e(V).
For example, if we consider

σ : C2 ax+by−−−−−→→ C

over C2
x,y, σ is surjective except over (x,y) = (0, 0). We can then blow up to obtain the situation of

V ⊕ L.
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Example 4.3.9. These Witten classes can be hard to compute, but there are some relatively simple
examples. First, there is

W0,3(a1,a2,a3) =

{
1 a1 + a2 + a3 = r− 2
0 otherwise,

and a second relatively accessible example is

W0,4(a1,a2,a3,a4) =


1 a1 + a2 + a3 + a4 = r− 2, other conditions
1
r min(ai, r− 1 − ai) a1 + a2 + a3 + a4 = 2r− 2
0 otherwise.

For the final example, let g be a simple Lie algebra, for example slN. Then let G be the compact
real form of the Lie group associated to g, for instance SUN. Then let T ⊆ G be the maximal
torus with Lie algebra t. Then we may consider positive weights, which in the case of slN are
parameterized by Young diagrams of length at most N− 1. We will define the level ℓ to be all
partitions with width at most ℓ. We will then set the data

V = C ⟨eµ⟩level ℓ ,
1 = e0,

ηµν = δµ,ν∗ ,

where µ∗ is the complement of µ in an N×N square (corresponding to the adjoint representation).

Example 4.3.10. In the simplest example, irreducible representations of SU2 are given by integers
(or really weights on the half-line). They are really just SymnC2, where C2 is the defining
representation.

We will now construct the Verlinde bundle V on Mg,n. We will do the construction for U(1) = S1

(although this will break down) and for a simple group G.

Table 4.1: Construction of Verlinde bundle

U(1) = S1 Simple group G

Curve C Curve (C, x1, . . . , xn)
Jac(C) parameterizing flat connections on
C×U(1)

Moduli space M of flat connections on C×G
with monodromies exp(µi/ℓ) at xi.

ω = [Θ] Canonical symplectic form ω
Line bundle L = O(ℓΘ) on Jac(C) Line bundle L on M such that c1(L) = ℓω
Vector bundle H0(Jac(C), ℓ) of θ-functions of
weight ℓ

Vector bundle VC = H0(M,L)

We have defined a vector bundle V on Mg,n, which by a theorem of Faltings extends to Mg,n
as a vector bundle. Then there are the formulae

q∗Vg,n(µ1, . . . ,µn) =
⊕
µ

[
Vg1,n1+1(µ1, . . . ,µn1 ,µ)⊗Vg2,n2+1(µn1+1, . . . ,µn,µ∗)

]
s∗Vg,n(µ1, . . . ,µn) =

⊕
µ

Vg−1,n+2(µ1, . . . ,µn,µ,µ∗).

These imply that taking ch(Vg,n) is a cohomological field theory.
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Remark 4.3.11. It is in extending to Mg,n where the construction for U(1) breaks down because
line bundles have degrees, and when we degenerate a bundle of degree 0, the two components
could have nonzero degrees.

Remark 4.3.12. The topological part of this cohomological field theory is simply ch0(V) = rk(V)
and is given by the Verlinde formula (using the idempotents of the Frobenius algebra).

4.4 Givental group action

4.4.1 Stable graphs Recall our picture Figure 4.1 of Mg,n. If π : C→Mg,n is the univeral
curve and si : Mg,n → C is the section corresponding to the i-th marked point, we may construct
the line bundle

Li := s
∗
iωπ

corresponding to the i-th cotangent line. Then we define the psi-classes

ψi = c1(Li) ∈ H2(Mg,n).

The boundary strata correspond to stable graphs which have vertices corresponding to components,
edges corresponding to nodes, and half edges (legs) corresponding to marked points. Each vertex
is labelled with a nonnegative integer corresponding to a genus, and each leg is labelled with a
number. An example is displayed in Figure 4.2.

2

3

0

α

β

3

γ

1

ψ2

ψ2

2

ψψ3

ψ

ψ2

ψ

Figure 4.2: Example of a stable graph in M7,3 and associated tautological class. Red half edges are
forgotten from larger moduli spaces. This stable graph describes the image of a map M2,4+1 ×
M3,2+2 ×M0,5 →M2,4 ×M3,2 ×M0,5 →M7,3.

For the forgetful morphism p : Mg,n+1 →Mg,n, we may define the kappa-class

κm := p∗ψ
m+1
n+1 .

Then the tautological classes are those which can be obtained from 1 using the maps p,q, s.

4.4.2 Group action on cohomological field theories Define the formal variable

T = t2ψ
2 + t3ψ

3 + · · · ∈ ψ2V[[ψ]],

where ti ∈ V . Then we define

(TΩ)g,n(v1, . . . , vn) :=
∑
m⩾0

1
m!

(pm)∗Ωg,n+m(v1, . . . , vn, T(ψn+1), . . . , T(ψn+m)).
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Composing these translations corresponds to addition of power series. If we consider the action
Ta + Tb, we see that adding ma copies of Ta and mb copies of Tb gives us a leading coefficient of

1
m!

m!
ma!mb!

=
1

ma!mb!
.

We may check that T preserves the gluing axiom, but nodes are always glued using η−1, so we are
fine. The only thing that is not preserved is the string equation (or flat unit).

We will also consider operators

R(ψ) = Id + R1ψ+ R2ψ
2 + · · · ∈ End(V)[[ψ]].

These are required to satisfy the symplectic condition

R(ψ) · R∗(−ψ) = Id,

where the adjoint is taken with respect to η. Now define the cohomological field theory
(RΩ)g,n(v1, . . . , vn) as a sum over stable graphs Γ of genus g with n legs of Ω modified by
the following procedure in Figure 4.3:

• At every vertex, place a copy of Ω;

• For any leg corresponding to the ith marked points, insert R−1(ψi)vi;

• At any edge, insert a copy of

∆ =
η−1 − R−1(ψ ′)η−1R−1(ψ ′′)t

ψ ′ +ψ ′′ ,

where ψ ′,ψ ′′ are the ψ-classes at the two components of the node.

• Divide by |Aut Γ |.

2

3

0

∆
∆

∆
∆

R−1(ψ3)v3

R−1(ψ3)v3

R−1(ψ3)v3

Figure 4.3: Contribution of a stable graph to RΩ

We need to prove that:

1. This gives a group action: Ra(RbΩ) = (RaRb)Ω;

2. If Tb = RTa, then R(TaΩ) = Tb(RΩ);

3. This RΩ is a cohomological field theory.
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This is complicated, so we will restrict ourselves to computing q∗(RΩ). Recall that q corre-
sponds to creating a new edge, so if Γ does not have an edge separating the curve into curves
which can be glued by q, we create a new edge and insert η−1. If the edge is already present, then
the normal line bundle to the boundary divisor corresponding to q has c1 = −(ψ ′ +ψ ′′), so we
replace ∆ with

∆ · c1(N) = −∆(ψ ′ +ψ ′′).

We therefore sum over all contributions to obtain

η−1 − (ψ ′ +ψ ′′)∆ = R−1(ψ ′)η−1R−1(ψ ′′)t.

This is precisely what is needed to satisfy the gluing axiom.

4.5 Teleman’s classification

We are now ready to formulate Teleman’s theorem.

Theorem 4.5.1 (Teleman). Let Ω be a cohomological field theory, ω be its topological part, and assume
that the Frobenius algebra corresponding to ω is semisimple. Then there exists a unique T ∈ ψ2V[[ψ]],R ∈
End(V)[[ψ]] such that

Ω = RTω.

Moreover, Ω satisfies the string equation if and only if

T = ψ(1 − R(1))ψ

= −R1(1)ψ
2 − R2(1)ψ

3 − · · · ,

which is equivalent to the condition that RT preserves the vector −1ψ.

Remark 4.5.2. The condition of preserving −1ψ is the same as preserving the vertex of Givental’s
Lagrangian cone, which is the dilaton shift −1ψ.

We are now ready to return to our examples.

(a) In the case of the Hodge bundle E, the R-matrix is given by

R(ψ) = exp

∑
m⩾1

Bm+1

m(m+ 1)
(−ψ)m

,

where Bm+1 is the Bernoulli number. This is computed using Mumford’s formula, which
computes the Chern characters of E. For example,

λ1 = c1(E)

=
1

12

(
κ1 =

∑
ψi + δ

)
,

where δ is the sum of all boundary divisors.

(b) We will now consider Witten’s 3-spin class. In this case

V = ⟨e0, e1⟩ , 1 = e0, η =

(
0 1
1 0

)
.
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The product is given by

W0,3(a1,a2,a3) =

{
1

∑
ai = 1

0 otherwise,

and therefore the only nonzero element is W0,3(0, 0, 1) = 1. Therefore, the product is given
by:

e0 · e0 = e∗1 = e0

e0 · e1 = e∗0 = e1

e1 · e1 = 0.

Because e1 is nilpotent (in fact the algebra is C[x]/x2), we are not semisimple. The solution
to this is to shift the Witten class by 3e1 to obtain

W̃g,n(a1, . . . ,an) :=
∑
m⩾0

3m

m!
(pm)∗Wg,n+m(a1, . . . ,an, 1, . . . , 1).

This brings us to a semisimple point in the Frobenius manifold, where we also have

W̃0,3(1, 1, 1) = p∗W0,4(1, 1, 1, 1) = 1

and thus the product is modified to have

e1 · e1 = e0.

It is easy to see that the algebra is C[x]/(x2 − 1) and the idempotents are

e0 + e1

2
,
e0 − e1

2
.

The shifted Witten class is no longer of pure degree, but the correction terms have lower
degrees of the same parity.

We may now apply the classification theorem. From the product and the quadratic form, the
topological part is

ωg,n(a1, . . . ,an) = 2g · δ∑ai+g+1 mod 2.

We can now write the R-matrix. First, define the power series (asymptotic expansions of the
Airy function)

A(ψ) =
∑
m⩾0

(6m)!
(2m)!(3m)!

(
−
ψ

1728

)m
B(ψ) =

∑
m⩾0

1 + 6m
1 − 6m

(6m)!
(2m)!(3m)!

(
−
ψ

1728

)m
.

Now set

R−1 =

(
Aeven Bodd

Aodd Beven

)
.

If we extract the part of degree g−1+
∑
ai

3 , we obtain a formula for Witten’s class, and
if we consider the higher degree parts, we obtain tautological relations on the moduli
space of curves. The simplest tautological relation is the WDVV equation on M0,4. A new
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relation, due to Getzler, lives on M1,4. If we consider the simpler case of Mg, then there
are no relations between the κi up to degree g3 . There is a conjecture that all tautological
relations come from Witten’s class, and for example, if we consider the degree 2 part of the
g = 1,n = 4,a1 = · · ·a4 case, we obtain Getzler’s relation.

(c) We now consider the Verlinde bundle for sl2(C) at level ℓ = 1. There are only two represen-
tations e∅ = 1, e□, and η is diagomal. Then the Verlinde bundle is a pullback except in the
case

ch (Vg,n(□, . . . ,□)) = e−
λ1
2
∑
Γ

·2
g−h1(Γ)

|Aut Γ |
· contribution,

where Γ runs over stable graphs with vertices of even degree. The contribution of Γ is given

by inserting e−
ψi
4 at marked points and inserting

∆ =
1 − e−

ψ ′+ψ ′′
4

ψ ′ +ψ ′′

at the edges.

4.6 Relation to topological recursion

Consider a disk near xi with simple ramification, so we have the coordinate zi =
√
x− xi. Recall

from Definition 3.2.2 that topological recursion requires the specification of the data yi(z) for all i,
the Bergman kernel B(zi, zj)dzi dzj for all i, j, and the series ξi(x).

Applying the Laplace transform, we obtain T(ψ) and ∆(ψ ′,ψ ′′) in place of y and B (which
yield Ω), where we drop even powers of z and send

a2k+1z
2k+1 ⇝

a2k+1

(2k+ 1)!!
ψk.

Then topological recursion produces forms given by∑∫
Ωg,nψ

k1
1 · · ·ψ

kn
n

∏
ξ
(ki)
i (xi).
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