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may differ between lectures. If you find any errors, please contact me at plei@math.columbia.edu.

Unfortunately, I cannot guarantee that the notation in these notes is consistent. Please do not
judge this too harshly.

Description

Graduate level introduction to modern mathematical physics with the emphasis on the geometry
and physics of quantum gauge theory and its connections to string theory. We shall zoom in on a
corner of the theory especially suitable for exploring non-perturbative aspects of gauge and string
theory: the instanton contributions. Using a combination of methods from algebraic geometry,
topology, representation theory and probability theory we shall derive a series of identities obeyed
by generating functions of integrals over instanton moduli spaces, and discuss their symplectic,
quantum, isomonodromic, and, more generally, representation-theoretic significance.

Quantum and classical integrable systems, both finite and infinite-dimensional ones, will be a
recurring cast of characters, along with the other (qq-) characters.
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Classical mechanics

We will be discussing three types of physics in an attempt to create something mathematically
interesting:

• Classical physics;

• Statistical physics;

• Quantum physics;

1.1 Classical physics

1.1.1 Hamiltonian dynamics We will begin with a space of classical states, which is most
commonly known as a phase space. This is a symplectic manifold (M,ω), where dimM = 2m and
ω ∈ Ω2(M) satisfies

dω = 0
ω∧ · · ·∧ω ̸= 0.

This carries a function
H : M→ R,

called a Hamiltonian. Then there is a vector field VH described by

dH = ιVH
ω,

which generates a 1-parameter group gt of symplectomorphisms of M. The evolution law of the
physical system is given by

ẋ = VH(x).

Because gt acts by symplectomorphisms, the graph

Γgt =
{
(m,gt(m))

}
⊂M×M

is a Lagrangian submanifold. Recall that a submanifold L ⊂M of a symplectic manifold is called
Lagrangian if dimL = m and ω|L = 0.
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Exercise 1.1.1. Locally any symplectic manifold is given by M = R2m with the symplectic form

ω =

m∑
i=1

dpi ∧ dqi .

This coordinate system on R2m is unique up to Sp(2m).

Now if V is a vector field such that LieV ω = 0, then dιVω = 0. Thus there locally exists a
Hamiltonian hV . We also need the Hamiltonian vector field to be linear in the local coordinates,
so the Hamiltonian itself must be quadratic.

Example 1.1.2. An important example of a symplectic manifold is T∗B for any smooth manifold
B. There is a 1-form θ on T∗B given by the following formula. If v is a tangent vector at the point
(p,b), then

θ(v) := p(π∗v).

Then ω = dθ is a symplectic form.

Example 1.1.3. Another large class of examples are obtained by symplectic reduction. Here, we
suppose that a symplectic manifold M carries the action of a compact Lie group G by exact
symplectomorphisms. This defines a moment map M µ−→ g∗ by the formula

⟨µ(m), ξ⟩ = hVξ
(m).

There is some ambiguity in the choice of constants, but in the end we obtain a new space

M�G := µ−1(0)/G.

In practice, we want the moment map µ to be equivariant with respect to the coadjoint action on
g∗. Then the manifold M�G has a canonical symplectic form, but this requires a lot of work.

Now consider M = R2m and G = U(1), where we write M = (R2)m and U(1) acts by rotations.
Then the moment map is actually

µ =

m∑
i=1

1
2
(p2

i + q
2
i) − r,

so µ−1(0) is a sphere. We then obtain

R2m �U(1) = S2m−1/U(1) = Pm−1.

We made no use of the complex numbers, so the fact that we obtain a complex manifold will be
viewed as a bonus. The reduced symplectic form is simply r times the Fubini-Study form.

Note that Pm−1 is compact, so the interpretation that phase space records position and
momentum breaks down. In this case, our phase space is called the classical spin phase space, where
the motion is by rotations rather than by translation.

Remark 1.1.4. We will often consider time-dependent Hamiltonians, where ẋ = VH(t)(x).
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1.1.2 Lagrangian mechanics There is another point of view, where dynamics on M are
given by an optimization problem on the space

PM := Map([0, 1],M)

of paths in M. We will consider an action

S[γ] :=

∫
γ
θ−

∫1

0
γ(t)∗H(t)dt ,

where we assume that ω = dθ. If we further require that γ(0) ∈ L0 and γ(1) ∈ L1, our dynamics
are well-defined if L0,L1 are Lagrangian submanifolds. Of course, we are looking for paths were
δS = 0.

1.1.3 Classical field theory Classical field theory should be thought of as an infinite-
dimensional version of classical mechanics, where we study loopified versions of finite-dimensinoal
manifolds. We want to consider integrals

S :=

∫
(Σ,h)

L[ϕ,∂ϕ]volh,

where Σ is the spacetime, h is a metric, and ϕ are the fields. Fields could be one of several options:

• Scalars f : Σ→ X, where X is a Riemannian manifold;

• Connections ∇ on principal bundles

G P

Σ,

called gauge fields;

• The metric h itself, called gravity.

We can introduce more complexity into the problem by varying the action and looking for
solutions of PDEs, introducing boundary to Σ, and other operations. Also note that Lagrangian
mechanics can be interpreted as a 1-dimensional classical field theory.

1.2 Statistical physics

In statistical physics, a point is replaced by a cloud of points, or a probability measure. For
example, the measure could contain the term e−βH, where H was the classical Hamiltonian and
β is a parameter of our distribution (inverse temperature). The system often flows to a stationary
distribution, which is determined by the outside world. In reality, the distribution will have the
form

1
Z
e−βH Z =

∫
M
e−βHω∧ · · ·∧ω

m!
.

This factor Z is called the partition function, and most of our energy is spent on computing this
partition function.
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1.3 Classical physics with multiple times

Suppose we have Hamiltonians H1, . . . ,Hk such that [VHi
, . . . ,VHj

] = 0. Then we obtain dynamics

γ : [0, ε]p →M

and an action

S =

∫
θ−

p∑
k=1

γ∗Hk dtk

defined on paths inside the cube [0, ε]p. The extreme case of this is an integrable system where the
Hi are functionally independent, and the maximum possible value of p is m.

Theorem 1.3.1 (Liouville-Arnold). If the motion is finite (fits in a compact set), then locally M is a
fibration

Tm M

B

such that the Hi factor through B and the VHk
span the rotations on each S1 factor of Tm.

A typical trajectory is a winding of the torus, where if θi are the angle coordinates on Tm,
there is the formula

θi(t) = θi(0) +ωit.

Generically, these paths will have dense image.
In the special case of an integrable system, there are action-angle variables, where the symplectic

form is

ω =

m∑
i=1

dIi ∧ dθi .

The θi are defined up to SL(m, Z) affine transformations. If Ci ∈ H1(T
m, Z) form a basis, then

the Ii are defined by

Ii =
1

2π

∮
Vi

d−1ω.

Here, Ci is transported to other fibers via the Gauss-Manin connection. We should note that the
Ii are not well-defined, but the quantities Ii(b ′) − Ii(b) are well-defined.

Because the Hk are defined on the base B, we can write Hk(I1, . . . , Im). Fixing τ1, . . . , τm ∈ R,
we can flow along

H =

m∑
k=1

τkHk,

we obtain
ωi =

∂H

∂Ii
.

In “reality,” which is non-integrable, consider an approximation

H(I, θ) = H0(I) + εH1(I, θ).

Then we can understand the approximate evolution with respect to H by averaging H1 over Tm.
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1.4 Gauge symmetry

We would now like to discuss the idea of gauge symmetries and gauging in the Lagrangian
formalism. Recall that the phase space (P,ω) carries an action

S[γ] =

∫
γ

d−1ω−

∫
I
γ∗H|dt|,

and we want to consider the effect of an action of a group G on P. The moment map

µ : P → G∗

is equivariant with respect to the coadjoint representation. Note that P �G has a symplectic form
ω̃, and locally P looks like

T∗G× P �G π−→ P �G.

Thus ω restricted to a tubular neighborhood of µ = 0 has the form

π∗ω̃+ (tautological form on T∗G).

Recall that we are looking for extrema of S, and we need to find a path on the quotient space.
We need to enlarge the space of variables to include A ∈ Ω1

I(g). Now we will define

S̃[γ,A] = S[γ] −

∫
I
⟨γ∗µ,A⟩ .

The space of possible A has an infinite-dimensional symmetry generated by

G = Maps(I,G) ∋ g(t)

The action is given by

(g(t)) · (γ(t),A) := (g(t)γ(t), Adg(t)A+ g−1 dg).

Note that A transforms as a connection, not as a 1-form.

Remark 1.4.1. The translation by g−1 dg compensates for the change of d−1ω =
∑
pi dqi under

the action of G.

1.4.1 Rational Calogero-Moser model The first example is called the Calogero-Moser-
Sutherland model. The phase spaces are

P̃ = T∗(RN \∆ or (S1)N \∆)

with the standard form

ω =

N∑
i=1

dpi ∧ dxi .

For any ν ∈ R+, the Hamiltonian is given by

H =

N∑
i=1

1
2
p2
i + ν

2
∑

1⩽i<j⩽N

 1
(xi − xj)2 or

1

4 sin2
(
xi−xj

2

)
.
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These are systems of n particles where they start out very far away from each other, are brought
closer together, and then repel themselves apart again. These turn out to be integrable systems,
and in fact they can be obtained by reduction of a system on a higher-dimensional symplectic
manifold.

Define the unreduced phase space

P = T∗(u(N))× CN.

This is a pair of N×N Hermitian matrices (P,Q) with a vector z ∈ CN. The Liouville form will
be written as

Tr
(

dP∧ dQ+
Tr dz∧ dz†

2
√
−1

)
=

N∑
i,j=1

dPij ∧ dQji +
1

2
√
−1

N∑
i=1

dzi ∧ dz∗i .

Then we may define the Hamiltonians

Hk =
1
k

TrPk.

The flows look like
(P,Q; z) 7→ (P,Q+

∑
k

tkP
k−1; z),

so they clearly commute. This system carries a U(N)×U(1) symmetry, where

(u, c) · (P,Q, z) 7→ (u−1Pu,u−1Qu,u−1z).

Because this preserves the symplectic form, we may perform the symplectic reduction. Becuase
U(n) is not simple, there is a free parameter ν, so the moment map is given by

µ(P,Q, z) = [P,Q] +
√
−1(zz† − ν · 1N).

We only need to solve µ = 0 up toU(N), so we choose a diagonal representative of
{
u−1Qu

}
. Thus,

assume that Q = diag(x1, . . . , xN) is diagonal with x1 ⩾ · · · ⩾ xN. Generically, the inequalities are
strict. Then

µij = Pij(xj − xi) +
√
−1(ziz∗j − νδij).

If i = j, then |zi|
2 = ν, so the remaining U(1)N-action can be used to set zi = z∗i =

√
ν. We can

now compute

Pij = −

√
−1ν

xi − xj

for the non-diagonal elements. We cannot compute the diagonal elements of P, so we obtain

P = diag(p1, . . . ,pN) +

∥∥∥∥ √
−1ν

xi − xj
(1 − δij)

∥∥∥∥N
i,j=1

.

In this form, the Hamiltonians become

H1 =

N∑
i=1

pi

H2 =
1
2

N∑
i=1

p2
i + ν

2
∑
i<j

1
(xi − xj)2 ,
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which is what we wanted. We need to show that ω =
∑

dpi ∧ dxi, so we will compute the
Poisson brackets of various functions. Recall that functions on (P,ω) form a Lie algebra with the
Poisson bracket

{f,g} = ω−1⌞df∧ dg .

We note that

O(P �G) = O(µ−1(0)/G)

= O(µ−1(0))G

= O(P)G/(µ = 0).

The functions we will consider are the resolvents

R(λ) = Tr
1

Q− λ

S(λ) = TrP
1

Q− λ
.

Because the trace is cyclic, we obtain

dR (λ) = −Tr(Q− λ)−1 dQ (Q− λ)−1

= −Tr
[
(Q− λ)2 dQ

]
Therefore

{R(λ),S(µ)} =
∑
i,j

∂R(λ)

∂Qij

∂S(µ)

∂Pji

= −Tr(Q− λ)2(Q− λ)−1

= −
∂

∂λ

(
R(λ) − R(µ)

λ− µ

)
.

On the reduced space, the functions become

R(λ) =

N∑
i=1

1
xi − λ

S(µ) =

N∑
i=1

pi
xi − µ

.

This is equivalent to
{
xi, xj

}
= 0 =

{
pi,pj

}
, so

{
pi, xj

}
= δij.

Note that this system has an alternative presentation where we assume that P = diag(p̃1, . . . , p̃N)
and

Q = diag(x̃1, . . . , x̃N) +

∥∥∥∥ √
−1ν

p̃i − p̃j

∥∥∥∥.

Then the Hamiltonians reduce to

Hk =
1
k

N∑
i=1

p̃ki ,
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and the flows are given by
x̃i(t) = x̃i(0) +

∑
k

tkp̃
k−1
i .

This system is not very interesting, but we could instead consider

H∨
k =

1
k

TrQk

and obtain a system with position and momentum exchanged.

1.4.2 Trigonometric Calogero-Moser (Sutherland) Now consider P = T∗U(N)× CN.
Then we have a triple (P,g; z) where P is Hermitian and g(= exp

(√
−1Q

)
) is unitary. The moment

map is given by
µ(P,g, z) =

√
−1(P− g−1Pg+ zz† − ν · 1N).

We may choose to either diagonalize P as diag(p̃1, . . . , p̃N) or diagonalize g as diag
(
e
√
−1x1 , . . . , e

√
−1xN

)
.

Making the latter choice, we obtain

P = diag(p1, . . . ,pN) +

∥∥∥∥ ν

e
√
−1(xj−xi) − 1

(1 − δij)

∥∥∥∥.

The Hamiltonians in this case are

H1 =
∑
k

pk

H2 =
1
2

N∑
i=1

p2
i +

ν2

4

∑
i<j

1

sin2
(
xi−xj

2

) .

Making the former choice, we obtain another integrable system called the rational relativistic
Calogero-Moser system or the rational Ruijsenaars model. In this model, the Hamiltonians look like

H∨
k =

∑
ex̃i × (rational functions of p̃i).

Here, a relativistic particle in 1 + 1 dimensions has energy and momentum given by

E = m cosh θ = Tr
(
g+ g−1

)
p = m sinh θ = Tr

(
g− g−1

)
,

so E2 − p2 = m2.

1.5 Infinite-dimensional symmetries

We will now replace g = Lie with ĝ = ̂Maps(S1, g), which is a central extension of the space of
maps with commutator given by

[(f1, c1), (f2, c2)] =

(
[f1, f2],

∫
S1

Tr f1 df2

)
.
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Then ĝ∗ is not g but instead

ĝ∗ =
{
k∂+A | A ∈ Ω1

S1(g),k ∈ R
}

with the pairing

⟨k∂+A, (f, c)⟩ = kc+
∫
S1

⟨A, f⟩ .

We will also consider the Lie algebra Maps(R, g), but this requires us to specify some kind of
boundary conditions at ∞. We may also consider L2(R)⊗ g. In the case of S1, note that

c(f1, f2) :=
∫
S1

Tr f1 df2

is a 2-cocycle and that
H2(Lg, R) ∼= R

is 1-dimensional, so this is the only nontrivial cocycle.
The corresponding group is given by the following construction. Define

LG = Maps(S1,G).

Then L̂G is a nontrivial U(1)-bundle

1 → U(1) → L̂G→ LG→ 1.

Note that H2(LG, R) ≃ R. The cohomology H3(G, Z) is nontrivial with a nontrivial class given by

ω :=
i

8π3 Tr
(
g−1 dg

)3
↭ Tr ξ1[ξ2, ξ3] =: c(ξ1, ξ2, ξ3).

Then there is an evaluation map

e : LG× S1 → G (g(t),u) 7→ g(u),

and then ∫
S1
e∗ω ∈ H2(LG, Z)

represents c1(L̂G→ LG). Therefore, we have an identification

L̂G = ̂Maps(D2,G)/Maps((D2,S1), (G, 1)),

where ̂Maps(D2,G) = Maps(D2,G)×U(1) with multiplication

(g1, c1)× (g2, c2) =

(
g1g2, c1c2 exp

i

4π

∫
D2

Trg−1
1 dg1 ∧ dg2

)
.

To embed Maps((D2,S1), (G, 1)) as a normal subgroup, we make use of the fact that π2(G) = 0, so
any map g can be extended to g̃ : B3 → G. Then we define

φ(g) := (g, exp(2πi)g̃∗ω).

The fact that this construction is well-defined is the Polyakov-Wiegmann formula.
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We will now discuss the adjoint and coadjoint actions of L̂G on ĝ, ĝ∗ respectively. Infinitesimally,
we have

(ϕ, 0) · (ξ, c) =
(
[ϕ, ξ],

∫
S1

Trϕdξ
)

.

The action on the dual space is given by

〈
ad∗

ϕ(A,k), (ξ, c)
〉
=

〈
(A,k),

(
[ϕ, ξ],

∫
Trϕdξ

)〉
= k

∫
S1

Trϕdξ+
∫
S1

TrA[ϕ, ξ]

=

∫
S1

Tr ξ(−kdϕ+ [A,ϕ]).

Therefore, we obtain
Ad∗

g(A,k) = (−kdgg−1 − gAg−1, 0).

Note that A
k is a g-connection 1-form on S1.

There is now a natural candidate for a symplectic form, which is

ΩT∗ĝ = δk∧ δc+

∫
S1

Tr δA∧ δξ.

Here, δ is the differential in the space of fields. The moment map µ : T∗ĝ→ ĝ∗ is given by

µ(k, c,A, ξ) = (G(k, c,A, ξ), 0),

where G(k, c,A, ξ) = −kdξ+ [A, ξ]. We will now compute

Pred = µ−1(0)/LG = {(ξ,A,k, c) | −kdξ+ [A, ξ] = 0}/(ξ,A) 7→ (Adg ξ,kdgg−1 + gAg−1).

We will now solve the moment map equation with the assumption that k ̸= 0. We will scale
k = 1, so the equation becomes

dξ+ [A, ξ] = 0.

This is a first order matrix differential equation with periodic coefficients which can be studied
using Floquet-Lyapunov theory. This says that there exists g such that

g−1 dg+ g−1Ag ∈ t ⊂ g

is constant and lies in a maximal Cartan of g. What this means is that we can write

ξ(t) = G(t)ξ0G(t)
−1 G(t) = P exp

∫t
0
A.

These satisfy the equations ĠG−1 = A and G(0) = 1. The monodromy is

GA := G(2π) = P exp
∫2π

0
A.

This must commute with ξ0, so we can bring

A 7→ g−1 dg+ g−1Ag GA 7→ g(0)−1GAg(0).
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Recall that GA can be brought to T ⊂ G and A can be brought to α ∈ t and gA = exp(2πα). There
is still some remaining symmetry by

g(u) = exp(uλ),

where λ ∈ Λ∨ is in the lattice of coroots and u ∈ S1 = R/2πZ is the coordinate. This shifts
α 7→ α+ λ while preserving monodromy. The second kind of remaining symmetry is the Weyl
group W := N(T)/T . Taking their semidirect product, we obtain the affine Weyl group.

If we consider the weight space decomposition of the moment map equation and β is a root of
g, then the equation for this component is

dξβ + ⟨β,α⟩ ξβ = 0.

Because ξβ(u) = e−u⟨β,α⟩, this is generically not 1, so ξβ = 0. Therefore ξ ∈ t, and we obtain

T∗ĝ� LG = (T∗T)/W.

Note that T parameterizes conjugacy classes of P exp
∮
A and that T = t/Λ∨. Unfortunately, the

reduced space is an orbifold, not a manifold.
We will now attempt to remedy this situation by modifying the quotient. Instead of setting the

moment map to be 0, we want to consider an orbit. We want O = PN−1, and if G = SU(N), LG
acts on PN−1 by evaluation at some 0 ∈ S1. We choose z ∈ CN such that z†z = N up to z ∼ zeiα,
and the modified equation is

dξ+ [A, ξ] = δ(u) · (iν(1N − z ◦ z†)).

Remark 1.5.1. While most of the orbits are infinite dimensional, we are taking some limit where A
becomes a distribution on S1 supported on finitely many points.

We first apply Floquet-Lyupanov to make A = diag(a1, . . . ,aN) diagonal with
∑
ai = 0. Then

on each coordinate we obtain

dξij + (ai − aj)ξij =
√
−1δ(u)ν(−zizj)

dξii =
√
−1ν(1 − |zi|

2)δ(u).

Because ξii(+0) = ξii(2π− 0) = ξii(−0) for any 0 ∈ S1, |zi|
2 = 1. Using the maximal torus, we

may force zi = 1. Then we obtain

ξij(u) = e
−u(ai−aj)ξij(+0)

ξij(2π− 0) = e−2π(ai−aj)ξij(+0) = ξij(+0) +
√
−1ν.

Finally, the initial value is

ξij(+0) =
√
−1ν

e−2π
√
−1(ai−aj) − 1

.

Note that this appeared in our study of the Sutherland system.
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Quantum mechanics

2.1 Quantization

The motivation for complexification of our systems is quantization. Recall that if S is the action of
a Lagrangian system, many systems are not described by solving the variational equation

δS = 0

but by meditating on formal path integrals (due to Feynman)∫
PP
e

iS[γ]
 h [Dγ].

The classical system is obtained via stationary phase approximation. Mathematically, this is
ill-defined, but if X is a finite-dimensional manifold, we can consider oscillating integrals

I =

∫
X
e

iS
 h µ.

Here, X is one of many possible cycles in the complexification XC and µ is viewed as a
holomorphic top-degree form, so this is just a period. If dimX = n, then we may consider other Γ
such that ∫

Γ
e

iS
 h µ

converges. These will satisfy
Γ ∈ Hn(X

C,XC
≪),

where

XC
≪ =

{
z | Re

(
iS(z)

 h

)
≪ 0

}
is set to force the integral to converge. These Γ are chosen to flow from critical points of S
(equivalently, of W = iS) in XC into XC

≪. We can construct cycles using Lefschetz thimbles. We can
choose a critical point p which satsifies dW (p) = 0 and then consider the steepest descent flow
for Re

(
W
 h

)
, or in other words

ẋ = −∇Re
(
W
 h

)
,

15
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where the gradient is taken with respect to some metric on XC, and finally take the union Γp of
descending trajectories. If we choose a Hermitian metric, then Im

(
W
 h

)
is actually constant. For a

generic choice of  h, the critical points have different imaginary parts, but in the special settings
we may have Stokes phenomena and wall-crossing behavior of solutions.

Exercise 2.1.1. What happens for W =
∑n

i=1 z
2
i?

2.2 Holomorphic symplectic dynamics

Now let MC be a holomorphic symplectic manifold and consider XC = Maps(S1,MC) and

W =

∫
pdq−βH(p,q)dt .

We will take S1 = R/Z and we want to find points with dW = 0.

Remark 2.2.1. When we quantize everything, we will obtain

Tr e−iβĤ =

∫
e

iS
 h [Dγ].

We obtain the equations

dp
dt

= −β
∂H

∂q

dq
dt

= β
∂H

∂p

If β is real, this is the usual Hamiltonian dynamics, but there may not be real solutions if β is not
real. On the other hand, if β = iβE is purely imaginary (also known as going to Euclidaen time),
then there may be solutions where q is real and p is purely imaginary.

Example 2.2.2. Let M = R2 and

U(q) =
λ

4
(q2 − a2)2,

where λ,a are parameters. This is usually called the Higgs potential. Then the energy is

E =
p2

2
+U(q).

We can see that there is a q 7→ −q symmetry, so near ±a there are two copies of the same physics.
After complexifying, we obtain MC = C2, while the zero set CE of E is a Riemann surface. If we
compactify, we will obtain an elliptic curve with the hyperelliptic form

p2 = 2
(
E−

λ

4
(q2 − a2)2

)
= −

λ

2
(q2 − a2

+)(q
2 − a2

−).

Note that H1(CE, Z) = Z ⊕ Z, so there are two independent cycles corresponding to classically
allowed physics. Also, it is clear that

a2
± − a2 = ±

√
4E
λ

.
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Therefore, this family degenerates to a union of two copies of P1 when E = 0 (and one of our
distinguished cycles is the vanishing cycle) and has another critical point when E = λa4

4 . Now
ω = dq

p is a holomorphic differential on CE, and the Hamilton equation tells us that any

γ : S1 → CE →MC

must satisfies γ∗ω = βdt. Now in the low-energy region, [γ] ∈ H1(CE, Z) can be specified by
two integers:

[γ] = m[A] +n[B],

where [A] is the vanishing cycle and [B] satisfies A∩B = 1. Note B is described up to multiples of
A, so n is well-defined, but m is defined only up to multiples of 2n. We can then find β by the
period integral

β =

∫
S1
γ∗ω

=

∫
γ(S1)

ω

= m

∮
A
ω+n

∮
B
ω,

which are functions of E. Therefore, the E = Em,n(β) for n ∈ Z,m ∈ Z/2nZ satisfy a transcen-
dental equation

β = mωA(E) +nωB(E).

We can solve this equation approximately in the β→ ∞ limit, where

Em,n ≈ λa4

4
e−

βΩ
n eπi

m
n ,

where Ω2 = 2λa2 is the classical period of very small oscillations around the q = a critical point.
This is all obtained by Picard-Lefschetz theory using the fact that

ωB(E) ∼
2π
Ω

1
πi

logE+ · · ·

ωA(E) ∼
2π
Ω

+ · · · ,

where the + · · · can be computed using knowledge of elliptic integrals. The solution where
n = 0 corresponds to classical physics, while the solution where m = 0 corresponds to tunneling
between the two critical points. Therefore, the general (m,n) solution is some superposition of
classical motion and tunneling.

2.3 Algebraic integrable systems

We will now consider the class of systems which generalize the following feature of the previous
example: our manifold (M2n

C ,ωC) has a Lagrangian fibration M2n → Bn to some open subset of
Cn by polarized abelian varieties. These are called algebraic integrable systems. This structure gives
the structure of special Kähler geometry on Bn.

For us, a polarization is simply an integral class t ∈ H2(F, Z), where F = π−1(b). We will now
define action variables (ai,aD,i) on B. If we have γ ∈ H1(Fb, Z), this path can be transported



18

canonically over paths connecting b to b ′ that avoid the discriminant locus Ξ. We now obtain a
2-chain in MC covering the path, and we can obtain a number

aγ(b
′) − aγ(b∗) =

∫
2-chain

ωC

for a distinguished choice of b∗. Therefore, we obtain a map

a : B̃n \ Ξ→ H1(Fb∗ , C),

where B̃n \ Ξ is the space of choices (b,γ), where b ∈ Bn \ Ξ and γ is a path connecting b∗ to b
in Bn \ Ξ up to homotopy. The image of a is a Lagrangian with respect to t, where if Ai,Bi is a
basis of 1-cycles in H1(Fb∗ , Z), then t(Ai ∩Bj) = δji. Now because

n∑
i=1

dai ∧ daD,i = 0,

locally there exists F(a) such that

aD,i =
∂F

∂ai
.

Definition 2.3.1. This F is called a prepotential.

Example 2.3.2. One example is the elliptic Calogero-Moser system. Here, let E be an elliptic curve
parameterized by τ ∈ H and consider

MC = (T∗En \∆)/S(n).

Then let pi be the coordinates in the fiber directions and zi be the coordinates on the copies of E
and define

H1 =
∑
i

pi

H2 =
∑
i

1
2
p2
i + ν

2
∑
i<j

℘(zi − zj).

This was proven to be an algebraic integrable system by Krichever (before algebraic integrable
systems were defined). Set

L(z) := diag(p1, . . . ,pn) + ν(1 − δij)
θ(zi − zj + z)θ

′(0)
θ(zi − zj)θ(z)

,

where the theta function is defined by

θ(z) = q
1
8 (eπiz − e−πiz)

∞∏
n=1

(1 − qn)(1 − qne2πiz)(1 − qne−2πiz).

Here, we make the usual substitution q = e2πiτ. This operator satisfies the equations

L(z+ 1) = L(z)

L(z+ τ) = gL(z)g−1
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and has an expansion of the form
L(z) ∼

ν

z
(1 − δij).

Therefore, the spectrum of L(z) forms an n-sheeted cover over E, and in T∗E, if g(C) = n, then

C ∼ n[E] + [F].

Then we will obtain a Lagrangian fibration where the fiber is the Jacobian Jac(C).

2.4 How to compute some path integrals exactly

Recall our setting of a symplectic manifold with Hamiltonian (M,ω,H). We will assume that
there is an action of T ∼= U(1)r with moment map µ : M→ t∗. We will also assume that H is linear
in the moment map, so

H = ⟨µ, ξ⟩ .

Example 2.4.1. Consider M = R2n with Darboux coordinates pi,qi, the standard action of U(1)n,
and moment map given by

µj =
1
2
(p2

j + q
2
j).

Then the Hamiltonian

H =

n∑
i=1

ξiµi

generates an action R ↪→ T which is dense for generic ξ.

If we now assume that M is compact and the fixed points of the T -action are isolated, then to
obtain the statistical-mechanical partition function for some inverse temperature β, we have the
Duistermaat-Heckman formula

Z(β) =

∫
M

ωn

n!
e−βH

=
∑

dHp=0

e−βH(p)

βn
∏n

i=1 ⟨mi(p), ξ⟩
,

where mi(p) are the weights of the T -action on TpM. With these weights, H near p behaves like

H = H(p) +
1
2

r∑
i=1

ξi

n∑
j=1

mij(p
2
j + q

2
j).

Example 2.4.2. If M = S2 and H = cos θ is the cosine of the azimuthal angle, we embed
M ⊂ MC

∼= T∗S2, and the contour corresponding to the south pole goes into the cotangent
directions.

The Duistermaat-Heckman formula can be stated in the setting of T -equivariant cohomology.
If G is a Lie group acting on M, we will consider the Cartan model of equivariant cohomology.

Ω∗
G(M) := Fun(g,Ω∗(M))G,

where we require that
f(Adg−1 ξ) = g∗f(ξ).
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The grading on differential forms is deformed to be

2ξ
∂

∂ξ
+ degΩ∗

DR
.

Then the equivariant differential is defined by

D = dDR + ιV(−),

where V : g → Vect(M) is a linear map. We can now compute

D2 = LieV(−) = 0,

so we set H∗
G(M) to be the cohomology of this complex. We can now compute equivariant

integrals of f ∈ Ω∗
G(M). Note that

∫
M f ∈ Fun(g)G and

Z(ξ) =

∫
M
ftop(ξ) = Z(Adg ξ)

for all g ∈ G. Also note that ∫
M
(Dψ) =

∫
M

dψ = 0.

We will now prove the Duistermaat-Heckman formula. If µ : M→ g∗ is the moment map, we
claim that

D(ω+ µ(−)) = 0.

This follows from the definition of the moment map. We then see that

D(exp(ω+ µ(−))) = 0,

and this is actually a Duistermaat-Heckman integral. If the G-action is free (and G is compact),
then every closed form is exact. Because G is compact, there exists a G-invariant metric. Assuming
that G = T for now, choose some generic ξ ∈ Lie T . Then define

α = g(V(ξ),−) ∈ Ω1(M).

We then obtain
Dα = g(V(ξ),V(ξ)) + 2-form

where the function part is nonzero, and finally if

ψ =
α

Dα
f,

we obtain f = Dψ whenever Df = 0. Now we can replace the integral in the Duistermaat-
Heckmann formula with ∫

Mε +
∑
p

∫
Bε(p)

,

where Mε =M \
⋃

p Bε(p), and finally use Stokes’ theorem to obtain the desired result.
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2.5 Infinite-dimensional generalizations and supersymmetry

Now suppose that M = LN, where (N,g) is a Riemannian manifold. Then define for ξ,η ∈ TρM =
Γ(S1, ρ∗TN), we can define a 2-form by

ω(ξ,η) =
∫
S1
g(ξ,∇tη)dt ,

where ∇t is the Levi-Cevita connection. The Hamiltonian that generates the standard S1-action is

H =

∫
g(ρ̇, ρ̇)dt .

Then the partition function of supersymmetric quantum mechanics on N (index of the Dirac
operator on N) is given by ∫

LN
eω−βH =

∫
N
Â(TN),

where Â is the Â-genus. The term on the right should be viewed as the contribution of non-
isolated components of the fixed locus and can be thought of as Fourier modes of infinitesimal
loops. Of course, there is the question of the role of β in this formula.

2.5.1 The Dirac operator First, associated to the metric g|TxN we have the Clifford algebra,
which is generated by symbols �v for v ∈ TxN = V with the relation

�v ·�u+�u · �v = g(u, v)1.

This is the analogue of the the Heisenberg-Weyl algebra over a symplectic vector space (W,ω),
which is generated by elements ŵ for w ∈W with the relation

ŵ1 · ŵ2 − ŵ2 · ŵ1 = ω(w1,w2) · 1.

The Clifford algebra Cl has irreducible representations, which are called spinors. If we choose
an orthonormal basis {ei} of V , we can write any element as

α+
∑
i

βi�ei +
∑
i<j

γij�ei�ej + · · ·

In addition, we see that the Clifford algebra relation is a deformation of the exterior algebra, so
Cl ∼= Λ∗V as R-vector spaces. The space of quadratic elements of the Clifford algebra is in fact
LieO(V). Because O(V) is not simply connected, representations of its Lie algebra integrate to
Spin(V), which is the universal cover of SO(V) (at least if dimV > 2). The group-like elements
take the form

g = exp
1
2

∑
i<j

γij�ei�ej.

Now we impose a complex structure compatible with the metric and define

ca = �e2a−1 +
√
−1�e2a

c∗a = �e2a−1 −
√
−1�e2a

for a = 1, . . . , ⌊dimV
2 ⌋. These satisfy the relation

cacb + cbca = 0.
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Finally, we define the vector space

S := C |vac⟩ ⊕
⊕
a

Cca |vac⟩
⊕
a<b

Ccacb |vac⟩ ⊕ · · · ⊕ Cc1 · · · c⌊ dimV
2 ⌋ |vac⟩ .

We impose that c∗ |vac⟩ = 0, and in general that c∗ moves to the left. We then define Γ = edimV if
dimV is odd. It satisfies

Γ2 = 1, Γc1 + caΓ = 0, Γc∗a + c∗aΓ = 0.

From now on, we will assume that dimV = 2k.
Note that S is an irreducible representation of C↕, but recall that o(V) is much smaller. It is

spanned by elements of the form cacb, cac∗b, c∗ac∗b. There is a Z/2-valued conserved charge called
(−)F which is preserved by o(V). For S, it is defined by

F |vac⟩ = −
k

2
|vac⟩

F(ca1 · · · cap |vac⟩) = p− k

2
.

Therefore, we can split
S = S+ ⊕ S−

by the parity of the F-charge. Then for any u ∈ V , we have

�u : S± → S∓.

These are called Dirac matrices.
Unfortunately, there is not always a global spinor bundle on N. The obstruction is the

Stiefel-Whitney class
w2(TN) ∈ H2(N, Z/2).

If this is nonzero, then we cannot glue spinors into a vector bundle and thus the manifold N does
not have a spin structure. Therefore, we will now assume that w2(TN) = 0. We will now define
the Dirac operator

��D : Γ(S+) → Γ(S−)

by the local formula

��D :=

dimM∑
i=1

γi∇i.

Here, ∇i is a spin cover of the Levi-Civita connection and γi is the physicist notation for �ei. We
also define ��D∗ to be the same operator applied to S−. The symbol of ��D∗

��D or of ��D��D∗ is given by
the well-known formula ∑

i,j

(γi∂ii)(γ
j∂j) =

1
2

∑
i,j

(γiγj + γjγi)∂i∂j

=
1
2

∑
i,j

gij∂i∂j + · · ·

= ∆+ · · ·
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Because of the analogy with the Laplacian, the spaces HS+ = ker��D and HSi
= ker��D∗ are known

as harmonic spinors. There is a lucky coincidence that if Ĥ =��D��D
∗ +��D

∗
��D, then

Index��D = dim ker��D− dim ker��D∗

= TrH
L2(S)

(−1)Fe−βĤ

= −TrL2(S−) e
−β�D�D∗

+ TrL2(S+) e
−β�D∗�D

for any β > 0. Note here that working on Rn,

TrL2(S) e
−β�D�D∗

≈ Tr eβ∆ ≈
∫

dnpe−βp2
∼

1
β

n
2

.

Now suppose that ψ(k) ∈ Γ(S+) satisfies

��D
∗
��Dψ(k) = εkψ(k).

Then ��Dψ(k) = χ(k) ∈ Γ(S−) satisfies

��D��D
∗χ(k) = εkχ(k).

This tells us that

Tr e−β�D∗�D − Tr e−β�D�D∗
= ker��D− ker��D∗ +

∑
k,εk>0

e−βεk −
∑

k,εk>0

e−βεk

= Index��D.

Note that this cancellation is our first example of supersymmetry. Finally, we take the β→ 0 limit.

2.5.2 The heat kernel If we were considering on flat space the ordinary heat kernel

K(x, x ′,β) =
〈
x
∣∣eβ∆

∣∣x ′〉 ,

then Tr eβ∆ is computed by ∫
LN

[Dx(t)] exp

(
−

1
2

∫β
0
g(ẋ, ẋ)dt

)
.

Note that in flat space, the heat kernel must satisfy the PDE

∂

∂β
K = ∆x ′K = ∆xK.

As β→ 0,
K(x, x ′,β) → δ(n)(x− x ′).

There must also be the integral formula∫
dx ′ K(x, x ′;β1)K(x

′, x ′′;β2) = K(x, x ′′;β1 +β2),

so in fact, it is given by

K(x, x ′;β) = exp
(
−
(x− x ′)2

2β

)
1

(2πβ)n/2 .
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In our curved situation, we obtain the limit

lim
M→∞

∫
dx1 · · ·dxM K

(
x1, x2;

β

M

)
· · · ,

which can be well-approximated by the expression in flat space. Considering instead the loop
space LT∗N, we now obtain∫

LT∗N
[Dx(s)Dp(s)] exp

(
i

∫
pdx−β

∫1

0
g−1(p,p)ds

)
.

Note that the [Dx(s)Dp(s)] carries the term
∏

t
1

(2πβ)
dimM

2
. Also, if we integrate out the p, we

obtain the previous term
1

2β

∫1

0
g(ẋ, ẋ)ds .

2.5.3 Supersymmetric Duistermaat-Heckmann We will now rewrite the integral we
wanted to compute at the beginning of this section in new notation as∫

LN
eΩ+εH.

Here, we rewrite

H =
1
2

∫1

0
g(ẋ, ẋ)ds

Ω =
1
2

∫
S1
gijψ

i∇sψ
j ds ,

where (ψi(s)) ∈ Γ(S1, x∗TN). The ψi satisfy the formula

ψi(s)ψj(s ′) = −ψj(s ′)ψi(s).

Finally, here ε = 1
β is the equivariant parameter for the action of U(1) on the cotangent directions.

Now, the Duistermaat-Heckmann normalized integral (which is not the Atiyah-Singer normal-
ized integral) is ∫

LN
eΩ+εH =

∫
M

1∏
n ̸=0

∏
α

(
nε+ 1

εα
)

=

∫
N

∏
α

πσα/ε

sin(πσα/ε)
,

where xi(t) splits into Fourier modes as

xi(t) = xi0 +
∑
n ̸=0

ξine
2πins

and thus splits
NN/LN =

⊕
n ̸=0

(TN)n,

and α are the Chern roots of TN. This exactly reproduces the Â-genus. The Atiyah-Singer
normalized integral has an extra factor of 1∏

s β
dimM

2
.
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2.6 Duality

There are two main examples: T -duality in 2d sigma-models and S-duality in 4d gauge theories.

2.6.1 p-form generalized gauge theory We will begin with p-form generalized gauge
theory in D spacetime dimensions. For some A ∈ Ωp(MD), define

L =

∫
MD

dA∧ ∗dA .

This is invariant under A→ A+ dB. The space of fields in the R-type theory is given by

AR = ΩP(MD)/dΩp−1(MD) .

In the U(1)-type setting, the space of fields is smaller and is given by

AU(1) = Ω
p(MD)/Ωp

Z(MD),

where Ωp
Z is the space of all p-forms alpha such that∫

Zp
α ∈ Z

for all integral cycles Zp.

Example 2.6.1. When p = 0 and D = 2, then the U(1)-type theory describes maps M2 → U(1).
Locally, these look like A : M2 → R such that A ∼ A+n. Of course, not every manifold is simply
connected. Therefore, the true space of fields is

AU(1) = Maps(M2,U(1)).

This has a decomposition by the topological type as follows. Let t ∈ R be a coordinate with∫
R/Z

dt = 1.

Then the topological type is given by

[f∗ dt] ∈ H1(M2, Z).

In general, we will assume that the curvature form dA is not exact, but instead integral, so

dA ∈ Ωp+1
Z (MD).

This can be achieved on an open cover Uα by choosing

Aα ∈ Ωp(Uα)

such that
Aβ −Aα ∈ Ωp

Z(Uα ∩Uβ).

Then the space of fields is the space of connections on all U(1)-bundles and its connected
components are parameterized by

L = Hp+1(MD, Z).
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The partition function is now given by

Z =

∫
AU(1)

[DA]e
− 1

4g2
∫
MDdA∧∗dA+

∫
θ∧dA∧dA

,

where
θ ∈ ΩD−2(p+1)(MD)

is a closed form.
We may also replace f : M2 → U(1) by functions

f : M2 → T ∼= U(1)n = V/Γ .

We introduce tensors
B ∈ Λ2V∗, G ∈ S2

+V
∗.

In this form, the partition function becomes

Z(G,B,h) =
∫
AU(1)

[DA]e−
∫
MD GijdAi∧∗dAj+

∫
Bij∧dAi∧dAj

,

where dBij = 0 and Bij ∈ ΩD−2(p+1)(MD). We also have

B ∈

{
Λ2V∗ p+ 1 odd
S2V∗ p+ 1 even.

We now want to find the critical points of L, where δL = 0. The equations for A become

d ∗ dAi = 0

for all i. If we set Fi := dAi, the equation becomes

d ∗ Fi = 0,

which are the generalized Maxwell equations. Therefore, we obtain

Z(G,B,h) = N(G,h)
∑

c∈Λ=Hp+1(MD,Γ)

exp
[
−Gij

〈
ci, ∗cj

〉
− i
〈
Bij ∧ c

i ∧ cj
〉]

,

where N(G,h) is a regularized version of

det
Ωp/dΩp−1

(∗d ∗ d)−
1
2

which is defined as follows. Define

ζ∆(p)(s) := Tr
(
−∆(p)

)−s
.

This is defined for Re s≫ 0, and taking the analytic continuation, we define

N(G,h) := exp
1
2
ζ ′∆(0).

We may need to assume that D = 2(p+ 1). For example, if D = 2, then the
〈
ci, ∗cj

〉
term knows

only about the conformal structure of M2. Finally, Hp+1(MD, Γ) is taken modulo torsion.
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2.6.2 Duality The duality is given by inverting

τ := iG+B

when D = 4 and inverting
τ = G+ iB

when D = 2. We may consider transformations of the form

τ 7→ −
1
τ

or more generally
τ 7→ (Cτ+D)−1(Aτ+B),

where (
A B
C D

)
∈

{
O(n,n, Z) D = 2
Sp(2n, Z) D = 4.

Applying Poisson resummation, we obtain∫
c∈ΛR

∑
č∈Λ∗

e2πič(c) exp
[
−

1
2
Gij

〈
ci, ∗cj

〉
+
i

2
Bij
〈
ci, cj

〉]
.

Here, we have the identity ∑
j

Gij ∗ cj +
√
−1Bijcj + 2π

√
−1či = 0

in dimension 2. Note that when D = 2, ∗2 = −1, while when D = 4, ∗2 = +1. In the 4-dimensional
setting, if we define

c± =
c± ∗c

2
,

the relation is
τci − τc+ + 2π

√
−1(č+ + č−) = 0.

Therefore,

c− =
2π

√
−1
τ

č−, c+ = −
2π

√
−1
τ

č+.

The duality must give some reassignment of the degrees of freedom. Locally, if

MD = XD−1 × R,

which is noncompact, we must discuss the Hamiltonian system. The phase space is given by the
stack

T∗[Ωp(XD−1,V)/Ωp(XD−1, Γ)].

The symplectic form is given by∫
XD−1

(δE∧ δA(p)) +

∫
XD−1

Bij ∧ δ(dAi)∧ δAj
(p)

,

Here,
E ∈ ΩD−1−p(XD−1,V∗)
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is the electric field and dA is the magnetic field. Now we can write the Hamiltonian as

H =
1
2

∫
X
GijEi ∧ ∗Ej +

1
2

∫
X
Gij dAi ∧ ∗dAj .

We return to the space of spatial fields A, which has a decomposition into connected compo-
nents indexed by

c ∈ Hp+1(XD−1, Γ)/Tors.

The component corresponding to some c is

Ac = Hp(XD−1,V)/Hp(XD−1, Γ),

which is the space of flat p-connections.
All of this can be understood via the quantum mechanics of a particle on S1. If we define

Hθ =

{
f(t) | f(t+ 2π) = eiθf(t),

∫
|f|2 <∞}

,

then θ is the analogue of (Bij). Then if the standard symplectic form on T∗S1 is given by

dE∧ dt ,

E2 quantizes to −∂2
t = Ĥ, and the spectrum of this operator is given by

En = (n+ θ)2, n ∈ Z.

For example, if En = 0, then n and −n have the same eigenvalues, if θ = 1
2 , then the spectrum is

doubly degenerate, and for any other value of θ the spectrum is simple. Therefore, the duality
exchanges the electric and magnetic fields whenever D = 2(p+ 1).
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Instantons

There are three main approaches:

• Morse theory;

• Twisted supersymmetric σ-models;

• Twisted supersymmetric gauge theory.

These have a Hamiltonian and Lagrangian approach, and the latter will motivate the study of
integrals on moduli spaces of instantons.

3.1 Morse theory

Note that this is not the same as what topologists call Morse theory. Let (M,g) be a compact
Riemannian manifold and f : M → R. Suppose all x such that dfx = 0 have nondegenerate
Hessian, or in other words,

det
(

∂2f

∂xi∂xj

)
̸= 0.

We will consider Ω∗(M) with the differential

D := d + df∧ : Ω∗(M) → Ω∗+1(M).

Using the standard scalar form

(α,β)g =

∫
M
α∧ ∗β,

we define the adjoint
D∗ = d∗ + ι∇f.

Physicists refer to the study of this package as supersymmetric quantum mechanics. Here, the
Hamiltonian is

H = DD∗ +D∗D

= −∆d + Lie∇f + Lie∗∇f + g(∇f,∇f).

29
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Note that kerH ∼= H∗(M), and if Hψ = 0, then

0 = (ψ,Hψ)
= (Dψ,Dψ) + (D∗ψ,D∗ψ),

so we see that Hψ = 0 if and only if DΨ = D∗ψ = 0.
There are also excited states where Hψi = Eiψi for Ei > 0. Then we compute

HDψi = DD
∗Dψi

= D(Hψi −DD
∗ψi)

= D(Eiψi)

= EiDψi,

so the states Dψi, D∗ψi, and DD∗ψi are also eigenstates with eigenvalue Ei.
There is then the following trick. If f 7→ tf and g is fixed for t≫ 0, then

H = −∆g + t2∥∇f∥2 + t(· · · )

where ∥∇f∥2 is a very large potential outside of the critical locus of f. We also have

Dt = e−tf detf

on the ground states, which are isomorphic to H∗(M). More generally, we note that

Dt = d + tdf∧

D∗
t = t−1d∗ + ι∇f.

Ignoring the t−1d∗ term, the Hamiltonian becomes

Lie∇f + t∥∇f∥2 = e−tf(Lie∇f)e
tf.

In the world where f 7→ tf and g 7→ tg, we obtain states

ψ→ e−tfψ =: ψout

ψ→ etfψ =: ψin.

As t→ ∞, we obtain Hin and Hout, which are distributions.

Example 3.1.1. Now consider M = R and f = ωx2

2 . Note in this case we need to use L2 differential
forms. Then we have basic operators

H0 := −∂2
x +ω2x2 +ω

= (−∂x +ωx)(∂x +ωx)

Hi := −∂2
x +ω2x2 +ω

= (∂x +ωx)(−∂x +ωx).

Finally, we set α = ψ(x)dx.
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The spectrum is given in the following way. If Hψ = 0, then the equality (∂x +ωx)ψ = 0
implies that ψ = e−f, which is fine if ω > 0 and bad if ω < 0. Then suppose there is ψn such that
Hψn = n|ω|ψn. Then we obtain

ψn =


(−∂x +ωx)n

(
e−

ωx2
2

)
ω > 0

(∂x +ωx)n−1
(
e

ωx2
2

)
ω < 0.

Then if P is a polynomial,

P(∂x)e
−t|ω|x2

→ P(∂x)δ(x)

as t→ ∞ (here t scales ω). This tells us that H0
in

∼= H1
out are regular functions, while eigenstates

of H∞ are monomials. Similarly, H1
in

∼= H0
out are distributions supported at x = 0, while the

eigenstates of H∞ are those of the form ∂nx δ(x). Observe that

H∞ = Lie
x d

dx
.

Then, note that δ(x)dx is an invariant distribution-valued 1-form. The pairing between the in and
out states must be the usual pairing between functions and distributions.

In higher dimensions, there will be both attracting and repelling states, so we can consider
something like

f =

d−m∑
i=1

x2
i

2
−

d∑
j=d−m+1

x2
j

2

and i the end ψin is a distribution supported on the attracting manifold. This concludes the study
of the local picture.

However, we must consider the compact picture. For example, consider S1 = R ∪∞ where
the Morse function f is attracting at x = 0 and repelling at x = ∞. Then near ∞, the states
corresponding to monomials will look like P.V. xn. Applying x d

dx and expanding

ψ = ψ∞ +
1
x
ψ
(1)∞ + · · ·+ 1

xn+1ψ
(n+1)∞ + · · · ,

then the scaling x → tx, εtotε gives us correction terms of log ε and log t to ψ(n+1)∞ . Here, the
principal value

(xn,ψ) = P.V.
∫

R

xnψdx

is the finite part in the ε-expansion of

∫ 1
ε

− 1
ε

xnψdx .

Therefore, we see that critical points can talk to each other via excited states.
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3.2 σ-models

We will consider maps Σ → (X,ω) from a Riemann surface to a symplectic manifold. We will
also choose an almost complex structure J which is tame with respect to ω. If we consider the
functional

S =
1
2

∫
Σ
g(dϕ , ∗h dϕ) + i

∫
Σ
ϕ∗ω,

its critical points are simply harmonic maps.
In the Hammiltonian formalism, consider M = LX. If ξ ∈ TℓLX, then

df (ξ) =
∫
S1
ω(ξ, ℓ̇).

Note that
g(dϕ , ∗dϕ) = ω(Jdϕ , ∗h dϕ)

and
dϕ =

1 + iJ

2
dϕ+

1 − iJ

2
dϕ .

Then S can be rewritten as

S =

∫
ϕ∗(±ω+ iB) +

∥∥∥∥1 − iJ

2
(∂ or ∂)ϕ

∥∥∥∥2
,

where B is the B-field, satisfying dB = 0. Therefore, the absolute minima are solutions to the PDE

1 − iJ

2
∂ϕ = 0.

Example 3.2.1. Consider X = R2 with the standard symplectic form and complex structure. Let

f =

∫
S1
pdq .

Let t be the loop variable and s be the noncompact direction. Then we obtain the equations

dp
ds

= −
δf

δp
= −

dq
dt

dq
ds

= −
δf

δq
= −

dp
dt

,

which are the Cauchy-Riemann equations. If z = s+ it and w = exp(z), the Cauchy-Riemann
equations give

∂z(q+ ip) = 0.

3.3 4d supersymmetric Yang-Mills

The word symmetry here is actually a confusing one. There are two types of symmetries one
encounters in physics, and one is not a symmetry. Sometimes what we mean by symmetry is a
redundancy; mathematically what that means is that we’re studying a quotient of some space
X by some symmetry G, X/G. This is a local symmetry. The other type of symmetry is a global
symmetry where we really have G acting on the space we are studying X. In the case of a local
symmetry, platonically there is a space X with action of G, but that space is not accessible to us.
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Rather we only can see X/G. Occasionally, it’s the case that we find there exists Y/H = X/G. We
call this a duality.

Because the groups we deal with in physics are typically infinite dimensional groups, for
example Maps(M,G) of a manifold into a finite dimensional group, these groups typically have
lots of normal subgroups. Sometimes rather than the full Maps(M,G), our local symmetry is some
sort of normal subgroup that preserves additional structure: for example, possibly the normal
subgroup that sends certain marked points {xi} of M into certain subgroups {Hi} of G. The global
symmetry will then be whatever is left from Maps(M,G), for example in this case ×iG/Hi.

For example, say we are studying (M,g) a smooth Riemannian 4-manifold, with G a compact
simple Lie group, and a principal G-bundle P over M. Let AP the affine space of G-connections
on P. There is a group gP := Γ(M4,G×Ad P) acting on AP; what we really want to study is the
quotient

BP := AP/gP.

The functional we seek to integrate over BP is∫
BP

[DA]e
− 1

4c2
∫
M TrF∧⋆gF+

iθ
2π

∫
M TrF∧F+...

The measure here is induced from the L2 metric, and Tr refers to the killing form. Our integral
consists of two parts.

• The first is the Yang-Mills action;

• The second is a *topological term* which does not depend on the metric and picks out some
topological equivalence class of principal bundles. We normalise it so that the whole thing
is an integral class.

Since the second term is topological, we know eventually that our integral is equivalent to∑
n∈Z

einθZn

where Zn is the integral taken over bundles of Pontryagin class n. We could try to write this on a
lattice, viewing AP as the edges of a graph and gP as the vertices. But if you did this naively you
would find that the coupling has to go to zero. Instead, we can try a trick which we started to
discuss last time. If we write

F+A =
1
2
(FA + ⋆FA),

the Yang-mills term in the functional is equal to

∥∥F+A∥∥2
+

∫
Tr FA ∧ FA.

Then we can rewrite the whole functional as

e
2πiτ(− 1

8π2
∫

TrFA∧FA)− 1
4c2 ∥F+∥2

,

where

τ =
ϑ

2π
+

4πi
c2
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is some function in the upper half-space. We could try to study the limit c2 → 0, while keeping τ
finite. In that limit the functional goes to

δ(F+A)e2πiτc2P.

Studying the moduli space of MP := {A|F+A = 0}/gP, which we roughly expect to be finite
dimensional because Λ2,+R4 ≃ R3, we can at the very least compute its virtual dimension. To do
so, assume

• A0 is so that F+A0
= 0;

• A = A0 + δA so that F+A0+δA
= d+

A0
δA;

• wherein d+
A0

: Ω1(M)⊗ adP → Ω2,+(M)⊗ adP.

To the linear level, it suffices to computer ker d+. Since

d+
A0

dA0 =
1
2
(1 + ⋆)d2

A0
,

the virtual tangent bundle is
Tvir := ker d+

A0
/ Im dA0 ,

which is the first cohomology of the Atiyah-Hitchin-Singer complex

Ω0 ⊕ adP → Ω1 ⊗ adP → Ω2,+ ⊗ adP,

wherein the maps are dA0 , d+
A0

. If H0,H2 of this complex don’t vanish, we could have singularities
or obstructions and therefore trouble counting dimension.

3.3.1 “theory of differential forms on MP” We could try to overcome the infinite
dimensionality of the problem by seeking to develop a theory of differential forms on MP, the
space of anti-self dual connections, i.e. those A such that F+A = 0. To do so, we would need some
notion of local coordinates on MP. Let’s first try to do this on the space of connections without
the ASD condition.

Define
Q = dDR

on the space of connections AP. Then

QA = Ψ ∈ Ω1(M)⊗
∏

adP.

This is a one-form, hence an ’odd’ object, i.e. a fermion. So Q meaps even to odd and vice versa.
But remember that A := Aµdx

µ is a redundant description, because connections related
by gauge transformation are the same. To deal with this, rather than dDR we will deal with
*equivariant differential forms*, and write

Q = dDR + ιV ϕ

on the Cartan model for equivariant cohomology, so that this differential is an operator on

(Ω•(A× Lie(gP))× Fun(Lie(gP)))
gP .
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Since H•((M× EG)/G) ≃ H•(M/G), if we want this relation not only at the level of chomology
but also on the actual space of differential forms, it’s enough to study invariant forms, hence
why we’re taking invariants by gP. This is like passing from M/G → M× g/G, which slightly
improves the situation of stabilisers and therefore the space of equivariant differential forms.
Then,

QA = Ψ(3.1)
QΨ = dAϕ,ϕ ∈ Γ(adP) = Lie(gP)(3.2)
Qϕ = 0.(3.3)

The extra factor of the Lie algebra also defines an object ϕ, so that Qϕ = η where Qη = [ϕ,ϕ].
Here ϕ lives in the Lie(gP) inside our forms itself, whilst ϕ lives in the space Fun(gP) we tensor
by. Then

Q = dDR A + ∂ϕ + ιV(ϕ) + ι[ϕ,ϕ]∂ϕ

on the space of gP-invariant forms, Q2 = 0 since Q is just the Lie derivative associated to
transformation along ϕ.

3.3.2 Finite-dimensional model Suppose we are in a similar finite dimensional situation.

• Suppose G acts on a Riemannian manifold (N,g);

• Suppose f ∈ (Ω•(N)⊗ Fun(Lie(G)))G;

• If G acts freely, then there is a well-defined quotient by G. If f is equivariantly closed,it
should correspond go to ϕ ∈ Ω•(N,G).

Remark 3.3.1. Let π : N→ N/G. If ϕ is closed so that ιVπ⋆ϕ = 0 for all ϕ ∈ g, with ϕ ∈ Ω•(N/G).
Further, characteristic classes of our bundleN→ N/G are represented by invariant polynomials

on our Lie algebra, (S•g∨)G. The functions ϕ should somehow correespond to these, ‘it looks too
good to be a coincidence’. This consideration hits on the fact that we likely want to use a metric
when we make this map.

Let’s do what we already did a previously. Using the metric, we can build a one-form:

g(V(Φ), •) := θ ∈ Ω1(N).

It has the following useful property: if Df = 0, we can multiply

f→ feDθ = f(t)e−g(V(ϕ),V(ϕ))+On,ϕ+dgOϕ .

This will not change the cohomology class, but it will change the representative. For example,

f→ ϕ

is given by ∫
g
f(t)eDθ.

We can write this as

f(ϕ)∏
a(ϕ

bfab + . . . )
ω1 ∧ · · ·∧ωdimG =

∫
g
f(t)eDθ.
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In order to not worry about contours, we treat ϕ,ϕ as complex conjugates. There is a canonical
measure on Lie(G),

[dϕ/Vol(G)],

which is just the Haar measure which we have for free. Insert this into the integral
∫
feDθ as an

additional term by which we integrate out ϕ.
A procedure like this is ‘universal’ in the sense that it produces a differential form on N.

Because all the integrations I’ve done commute with D, this kind of averaging results in a form
which is still equivariantly closed. The secret of Yang-Mills theory is that it does exactly that: it
takes something simple on the space of connections and does some sort of integration like that to
produce a form on the space of connections.

But there’s a second piece, the anti self-dual condition, which we did not consider. If we have
M = s−1(0)/G for some section s of a vector bundle E→ N, how do we restrict differential forms
to the vanishing locus of this section? Naively the idea is to just send

f→ δ(s)f

where δ is just a δ function or δ form. To do this properly we need to add on a Koszul complex into
our complex of forms which effectively has s as a differential.

At the level of mysterious formulae, this is achieved in the following way. Extra complexes
imply we have extra fields; introduce the field χ which for our purposes will be the self dual form
χ ∈ Ω2,+(M)⊗

∏
adP. This χ represents the (−1) term in the Koszul complex, so that the Koszul

differential of χ is δχ := F+A = s
Then we have a vector bundle EP over AP with fibers

F = Γ (Ω2,+(M)⊗ adP).

Naively Q2 is d+A, so not zero on the nose. This is fixed in the following way: we define another
field, χ ∈ Ω2,+(M)⊗

∏
adP, and a further field H ∈ Ω2,+(M)⊗ adP, so that

Qχ = H(3.4)
QH = [χ,ϕ](3.5)

Remember also that we had fields

• A a connection on P;

• ϕ ∈ Ω0 ⊗ adP;

• ψ ∈ Ω4(M)⊗ adP;

• η ∈ Ω0 ⊗ adP;

• ϕ ∈ Ω0 ⊗ adP.

which is a minimal list of fields for Yang-Mills theory. Q acted on these fields by

• Qχ = H;

• QH = [χ,ϕ];

• QA = ψ;

• Qψ = dAϕ;
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• Qϕ = η;

• Qη = [ϕ,ϕ];

• Qϕ = 0.

Note that for all but ϕ there is a canonical pairing between fields just by their type, called Berezin
measure. This gives us a measure:

[DADψ][DχDH][DϕDη]

[
Dϕ

vol(G)

]
,

where we have only ‘cheated’ in the last term, whose definition leaves something to be said in the
fully infinite dimensional setting.

Consider the functional

expQ
∫
M

TrX(F+A −
1
2
c2H) + Trψ∧ ⋆dAϕ+ volg Trη[ϕ,ϕ].

We got these terms from looking at our metric g =
∫

Tr(δA∧ ⋆δA) and applying Q to create the
most general supersymmetric or Q-closed functional. This is the same as

exp
∫

TrHF+A − c2
∫

TrH∧ ⋆H−

∫
Tr dAϕ∧ ⋆dAϕ−

∫
Tr
[
ϕ,ϕ

]cvolg + Tr
(
χd+

Aψ+ . . .
)
.

Since H is quadratic, we could integrate it out.
Also integrating χ,η out represents the Atiyah-Hitchin-Singer complex, because it imposes the

conditions d+
Aψ = 0, d⋆

Aψ = 0, equivalent to ψ ∈ ker d+
A, ψ is orthogonal to Im(dA), which gives

us the first cohomology of the AHS complex.
The zero modes of χ correspond to the second cohomology of the AHS complex, and the

zero modes of η correspond to the first cohomology. It’s something to keep in mind because
zero modes are significant because they drop out of the exponential and so observables ‘have to
provide the missing zero modes’ for the fermionic integrations to be nonzero. Also, we could
determine that the functional implies that ϕ is ‘the curvature of the universal bundle evaluated at
the point x’, but we would need to talk more about this later on.

3.3.3 When M is not compact There is one important change to the whole story when M
is not compact; in other words, if the metric is such that there is some ‘end’ which is infinitely far
away, the story has to be modified. We don’t need to integrate over all fields, rather we want to
restrict to those where the curvature goes to zero at ∞. Naively that’s because the integral would
be divergent if the curvature was not zero.

Since we want ϕ to approach a constant a, ϕ→ a, such that [a,a] = 0, we only use those gauge
transformations which approach unity sufficiently fast at infinity. The rate at which they go to 1 is
fixed by the requirement that ||dϕ||2 <∞. The result of that is that a finite dimensional group of
those gauge transformations preserved now acts as a global symmetry! Instead of integrals over
the moduli space of instantons of closed differential forms, one passes to equivariant differential
forms for the moduli space of framed instantons, where framed means the vanishing condition
above.
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Gauge-theoretic instanton counting

The difference between mathematicians and physicists is that mathematicians like closed 4-
manifolds while physicists like R4. For mathematical precision, we will let M4 be a compact
Riemannian manifold and P →M be a principal G-bundle for some compact Lie group G. These
are classsified by the second Chern class

k := c2(P) ∈ H4(M4, Z),

which physicists call the instanton charge. We are looking for connections ∇ = d +A whose
curvature satisfies

F∇ = − ⋆ F∇,

which are called instantons. This equation in fact only depends on the conformal class of the
metric.

Being anti-self-dual implies that the connection gives a minimum of the Yang-Mills action

S =

∫
M4

Tr F∇ ∧ ⋆F∇.

If M4 is a complex surface and the metric g is Hermitian, then F0,2
∇ = 0, which is equivalent to

requiring that that ∂2
A = 0. Therefore, any representation E of G gives rise to a holomorphic

vector bundle E on M4. This will come into play later when we cheat by replacing instantons with
torsion-free sheaves.

The moduli space of such instantons is

MP =
{
∇ | F+∇ = 0

}
/GP,

where GP is the group of sections of the associated AdG-bundle acting by

A 7→ g−1Ag+ g−1dg.

For generic metrics g, this is a manifold of dimension

4h∨k−
χ+ σ

2
dimG,

where h∨ is the dual Coxeter number. We should note that even though Mk as a space depends
only on the conformal class of the metric, the metric depends on g itself. It also lives inside the

38
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space AP/GP of all connections on P. Our aim is to understand the infinite-dimensional integral∑
[P],c2(P)=−k

e−ϑk

∫
AP/GP

[DA]e
− 1

4g2 SYM .

Here, ϑ is valued on S1. In the g2 → 0 limit, the asymptotics of the integral should become∑
k

qk
∫
Mk

dµ (1 +O(g)),

where q = e
− 8π2

g2 +iϑ
and the measure is obtained by regularity and determinants of δSYM.

Instead of trying to understand this very complicated measure µ, we can try to study simpler
but still interesting integrals. For examples, Donaldson invariants are defined as integrals over
Mk of cohomology classes associated to 2-cycles Σi and 0-cycles p on M4. The problem is that
Mk is non-compact because of the conformal invariance of the equations leading to delta-function
solutions. Uhlenbeck discovered that via a complicated system of gauge transformations, these
points can be filled in by ideal solutions, so there is the Uhlenbeck compactification

Mk =
{
(∇, x1, . . . , xℓ) | c2(P̃) − c2(P) = ℓ

}
= Mk ∪Mk−1 ×M4 ∪Mk−2 × Sym2M4 ∪ · · · ∪M0 × SymkM4.

4.1 The case of R4

This is the case that physicists are worried about. The problem is of course that R4 is non-compact,
so we can view either R4 = S4 \∞ or R4 = C2 = P2 \ P1∞. There are already interesting solutions
in this case, but because our metric is singular at infinity, we will consider the moduli space

Mframed
k =

{
∇ | F+∇ = 0

}
/G∞

P ,

where G∞
P ⊂ GP is the set of those elements satisfying g(x) → 1 as x→ ∞. This is a hyperkähler

manifold of dimension 4kN when G = SU(N).
It is well-known that this (or a slight modification M̃framed

k ) is a Nakajima quiver variety
corresponding to the quiver data

k

N

J

B2

B1

I

Here, we need to modify the instanton equations to

[B1,B2] + IJ = 0

[B1,B†1] + [B2,B†2] + II
† − J†J = ζ · 1k,

which in algebraic geometry corresponds to changing the value of the moment map.
This moduli space has an instanton interpretation if we replace R4 by a noncommutative R4

ζ,
which has coordinates z1, z2, z1, z2 with commutators

[z1, z1] = −
ζ

2
= [z2, z2].
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In the N = 2 case, we have Mframed
2 = R4 × (R4 \ 0)/Z2 while M

framed
k = R4 × R4/Z2 and

M̃framed
k = R4 × T∗S2.

There is also an action of U(2)× SU(N), where for elements

a =

a1
. . .

aN

 ∈ LieU(N)⊗ C

and

ε =


0 ε1

−ε1 0
0 ε2

−ε2 0

 ∈ LieU(2)⊗ C,

the corresponding vector field is denoted by V(a, ε). Given a choice of

λa,ε = G
M̃
(V(a, ε),−),

the partition function is

Zk =

∫
M̃framed

k

exp
(
−G

M̃
(V(a, ε),V(a, ε))

) 1
(2kN)!

(dλa,ε)
2kN.

This is not the most general formulation, but it is a distilled version of Yang-Mills with some
supersymmetry. It turns out that Zk is actually a rational function of degree −2kN in a and ε.

One generalization of this is

Z(a, ε,Λ) = Zpart ×
∞∑

k=0

Λ2kNZk(a, e),

where
Zpart(a, ε) =

∏
i ̸=j

Γ2(ai − aj; ε1, ε2).

Here, Γ2 has the asymptotics

Γ2(x; ε1, ε2) ∼
∏

n,m⩾1

(x+ ε1n+ ε2m)

and solves the equation
Γ2(x+ ε1)Γ2(x+ ε2)

Γ2(x)Γ2(x+ ε1 + ε2)
= x.

In the limit as ε1, ε2 → 0, we expect the asymptotics

exp
(

1
ε1ε2

F(a,Λ) + · · ·
)

,

so the question now is to evaluate F(a,Λ). In the case when G = SU(N), we can do it by
localization.

A standard computation tells us that

Zk(a, ε) =
∑

(λ(1),...,λ(k))

|λ(1)|+···+|λ(k)|=k

1∏N
i,j=1

(∏
□∈λ(i)(ai − aj + f(ε1, ε2))

)(∏
■∈λ(j)(aj − ai + g(ε1, ε2))

) ,
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where f and g are defined using the (relative) arms and legs of the two Young diagrams. For
example, when i = j, we end up with f = ε1(arm□ + 1) − ε2leg□ and g = −ε1arm□ + ε2(leg□ + 1).

Treating Zk as a probability measure on the set of Young diagrams, we obtain the observables

Y(x)[λ(1), . . . , λ(N)] =

N∏
α=1

∏
□∈∂+λ(α)(x− aα − c□)∏

■∈∂−λ(α)(x− aα − c■ − ε1 − ε2)
.

This function knows essentially everything about the shape of the diagrams, and its vacuum
expectation is

⟨Y(x)⟩ = 1
Z

∑
λ⃗

Y(x)[⃗λ]µ
λ⃗
(a, ε)Λ2N|⃗λ|.

It satisfies the property that 〈
Y(x+ ε1 + ε2) +

Λ2N

Y(x)

〉
has no poles in x and is in fact a polynomial of degree N. Physically, this is interpreted as an
interaction between two neighboring instanton sectors.

If we send ε1, ε2 → 0, then ⟨Y(x)⟩ = Y(x) we then obtain the algebraic equation

Y(x) +
Λ2N

Y(x)
= T(x),

where the coefficients of T(x) are defined by∮
Ai

x
dY
Y

∼ ai.

This is a hyperelliptic curve.

4.2 Mathematical realization

From now on, we will set G = U(N) and consider the moduli space

M
framed
k (N) =

{
(B1,B2, I, J) | B1,B2 ∈ End(Ck), I : CN → Ck, J : Ck → CN, ADHM

}
/U(k).

Recall that this is a Nakajima quiver variety corresponding to the Jordan quiver. The ADHM
equations are

µ⃗ = (µR,µC,µC) = 0

µR = [B1,B†1] + [B2,B†2] + II
† − JJ† − ζR1k

µC = [B1,B2] + IJ− ζC · 1k.

Here, ζ⃗ = (ζR, ζC, ζC) ∈ R3 = R ⊕ C. It can in fact be rotated to (ζ, 0, 0) by SO(3), so we can
assume ζ > 0. Here, the action of g ∈ U(k) is given by

g(B1,B2, I, J) = (g−1B1g,g−1B2g,g−1I, Jg).

Then M
framed
k (N) has an action of U(N) given by

h(B1,B2, I, J) = (B1,B2, Ih,h−1J),
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and these are symmetries. There is also a U(2)-action given by

U(2) ∋
(
a b

−b a

)
eiγ(B1,B2, I, J) = ((aB11 + bB2)e

iγ, (−bB1 + aB2)e
iγ, I, Je2iγ).

In fact, if we only consider µC, it in fact has GL(2)-symmetry.

We are interested in the fixed points of our U(2)×U(N) action on M
framed
k (N). To be a fixed

point of (u,h) ∈ U(2)×U(N), the tuple β = (B1,B2, I, J) must obey (u,h)β = gu,hβ for some
gu,h ∈ U(k) depending on u,h. It is in fact enough to consider the maximal torus of U(2)×U(N),
so we may assume that

u =

(
eiε1

eiε2

)
, h =

e
ia1

. . .
eiaN

.

Now we obtain
(u× h)(B1,B2, I, J) = (eiε1B1, eiε2B2, Ih,h−1ei(ε1+ε2)J).

To make this compatible with the gauge transformations, the assignment

(eiε, eia) 7→ gε,a

is a group homomorphism, giving a decomposition

Ck =
⊕
λ

Kλ, gε,a|Kλ
= eiλ(ε,a),

where λ(ε,a) is a Z-linear function.
We will now use the Kempf-Ness theorem and solve µC = 0 and then divide by GL(k). Given

a solution, we want g ∈ GL(k) such that (g−1B1g,g−1B2g,g−1I, Jg) solves µR = 0. This is not
always possible, so we need stable solutions in the sense of geometric invariant theory.

Definition 4.2.1. The tuple (B1,B2, I, J) is stable if and only if for all subspaces K ′ ⊂ Ck such that
B1(K

′) ⊂ K ′, B2(K
′) ⊂ K ′, and I(CN) ⊂ K ′, then K ′ = K. Equivalently, C ⟨B1,B2⟩ I(CN) = Ck.

Theorem 4.2.2. We have an isomorphism

µ⃗−1(0)/U(k) = µ−1
C

(0)s/GL(k).

Using this, write CN =
⊕
Nα as the standard decomposition into eigenspaces of the standard

maximal torus of U(N). Then let Iα = I(Nα). Our equations then become

g−1
ε,aIα = eiaαIα

g−1
ε,aB1 = eiε1B1g

−1
ε,a

g−1
ε,aB2 = eiε2B2g

−1
ε,a.

Then C ⟨B1,B2⟩ Iα = Kα is spanned by eigenvectors of g−1
ε,a with eigenvalues eiaαei(pε1+qε2) for

integers p,q ⩾ 0. Note if ψ ∈ Ck satisfies g−1
ε,aψ = λψ, we have

g−1
ε,a(B1ψ) = e

iε1B1(g
−1
ε,aψ) = (λeiε1)(B1ψ).
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We are still interested in the fate of J, and in fact we will see that J = 0, which will imply that
[B1,B2] = 0.

It is sufficient to replace Ck by Kα and CN by C, so we reduce to the case of N = 1. This gives
us

0 = [B1,B2] + IJ,

so taking the trace gives us Tr IJ = 0. Therefore, J(I) = 0, viewing I ∈ Ck. Next, we see that

J(B1I) = TrB1IJ = Tr(B1[B2,B1]) = Tr(B2[B1,B1]) = 0.

Similarly, J(B2I) = 0. This is also true for any powers of B1,B2, and in fact for any polynomial of
B1,B2, so using the fact that I is a cyclic vector for B1,B2, we see that J = 0.

We now see that to each Kα, we obtain an ideal Iα ⊂ C[x1, x2] to be the annihilator of Iα under
the assignment xi 7→ Bi. Thus we can identify

Kα
∼= C[x1, x2]/Iα.

By a standard argument, the action of C× × C× tells us that Iα must be a monomial ideal, and
this corresponds to a partition of kα := dimKα, or equivalently a Young diagram of size kα. The
only thing we know is that

N∑
α=1

kα = k,

so some of the kα could be zero. We will call the α-th partition λ(α) and its components

λ(α) =
(
λ
(α)
1 ⩾ · · · ⩾ λ(α)

ℓα

)
.

We have therefore proven the following theorem:

Theorem 4.2.3. There is a bijection

M
framed
k (N)T =

⊔
λ(1),...,λ(N)∑N
α=1 |λ

(α)|=k

pt.

Example 4.2.4. When k = 1, we have

M
framed
1 (N) = C2 × T∗Pn−1

and the fixed points are given by {0}× (0, . . . , 1, . . . , 0).

4.3 Explicit localization computation

In order to compute our integrals using equivariant localization, we need to compute

TλM
framed
k (N) =

⊕
w

Cw

as a representation of the maximal torus T. Its equivariant Chern character (also the character of
the representation) is given by

Ch(TλM
framed
k (N)) =

∑
w

e
√
−1w(ε1,ε2,a) ∈ Z[q1,q2,h1, . . . ,hN],
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where hα = e
√
−1aα and qi = e

√
−1εi . Then any

(δB1, δB2, δI, δJ) ∈ TλM
framed
k (N)

must satisfy
[B1, δB2] + [δB1,B2] + IδJ = 0

up to
δB1 = [B1,ϕ], δB2 = [B2,ϕ], δI = −ϕI, δJ = Jϕ = 0.

Therefore, TλM
framed
k (N) is the H1 of a complex

T = End(Ck) → End(Ck)⊕ End(Ck)⊕ Hom(CN, Ck)⊕ Hom(Ck, CN) → End(Ck)⊗Λ2C2,

where the two arrows are given by

d1(ϕ) = ([B1,ϕ], [B2,ϕ],−ϕI, Jϕ)
d2(δB1, δB2, δI, δJ) = [B1, δB2] + [δB1,B2] + IδJ+ δIJ.

Lemma 4.3.1. We have H0(T) = H2(T) = 0.

Proof. Suppose γ ∈ kerd1. Then
γ(C[B1,B2]I(C

N)) = 0.

But this space is all of Ck, so γ = 0.
Now suppose there exists γ̃ ∈ End Ck such that

Tr(γ̃d2(β1,β2, i, j)) = 0

for all (β1,β2, i, j). But this implies that

Tr(γ̃I)j+ Tr(Jγ̃)i+ Tr[B1, γ̃]β2 + Tr[B2, γ̃]β1 = 0,

which is exactly d1(γ̃) = 0, which implies γ̃ = 0.

To compute the character, we note that

χλ(q1,q2;w1, . . . ,wn) = ChH1(T)

= −χT(T)

= −
∑

(−1)i ChHi(T)

= −
∑

(−1)i ChCi(T).

We also know that

N := Ch CN =

n∑
α=1

wα

K := Ch Ck =

n∑
α=1

wαKα(q1,q2),

where
Kα(q1,q2) =

∑
(i,j)∈λ(α)

qi−1
1 q

j−1
2 .
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This also gives us

N∗ =
∑
α

w−1
α

K∗ =
∑
α

w−1
α Kα(q

−1
1 ,q−1

2 ).

We are now able to compute
Ch End(Ck) = KK∗.

It is also easy to see that

ChC1(T) = KK∗(q1 + q2) + NK∗ + KN∗q1q2

and
ChC2(T) = KK∗q1q2,

so
χλ(q1,q2lw1, . . . ,wn) = NK∗ + N∗Kq1q2 − (1 − q1)(1 − q2)KK∗.

This is not obviously a pure character, but taking its dual gives us

χ∗λ = N∗K + NK∗q−1
1 q−1

2 − q−1
1 q−1

2 (1 − q1)(1 − q2)KK∗

= q−1
1 q−1

2 χλ.

Rewriting

χλ =

N∑
α,β=1

wαw
−1Tαβ

β (q1,q2)

and noting that
Tαβ = q1q2T

∗
βα,

we can compute

Tαβ(q1,q2) = T
q1>0
αβ + T

q1⩽0
αβ

= K∗
β +Kαq1q2 − (1 − q1)(1 − q2)KαK

∗
β.

We then see that

(1 − q2)Kα =

ℓ
λ(α)∑
i=1

qi−1
1 (1 − q

λα
i

2 )

(1 − q1)K
∗
β = −q1

λ
(β)
1∑

j=1

q
1−j
2 (1 − q

−λ
(β)t
j

1 ).

Taking only the nonpositive part, we obtain

T
q
⩽0
1

αβ = K∗
β − ((1 − q1)(1 − q2)KαK

∗
β)

q
⩽0
1

=
∑

(i,j)∈λ(β)

q
i−λ

(β)t
j

1 q
λ
(α)
i +1−j

2

=
∑

□∈λ(β)

q
−ℓ

(β)
□

1 q
1+a

(α)
□

2 .
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Putting it all together, we obtain

χλ =

N∑
α,β=1

wαw
−1
β

 ∑
□∈λ(β)

q
−ℓ

(β)
□

1 q
1+a

(α)
□

2 +
∑

□∈λ(α)

q
ℓ
(α)
□ +1

1 q
−a

(β)
□

2

.

We are now able to compute the integrals we wanted as∫
Mk(N)

Ω(4Nk) =

=
∑
|λ|=k

Ω(0)|λ
N∏

α,β=1

∏
λ(β)

(aα − aβ − ε1ℓ
(β)
□ + ε2(1 + a

(α)
□ ))

∏
□∈λ(α)

(aα − aβ + ε1(ℓ
(α)
□ + 1) − ε2a

(β)
□ )

.

We now consider the tautological complex

Sz = [0 → Ck δ1−→ Ck ⊗ C2 ⊕ CN δ2−→ Ck → 0],

which should be thought of as a holomorphic square root of the tangent complex. This is given by
the formulae

δ1(κ) = ((B1 − z1)κ, (B2 − z2)κ, Jκ)
δ2(κ1, κ2,ν) = (B1 − z1)κ2 − (B2 − z2)κ1 + Iν.

In fact, the ADHM equation is equivalent to this being a complex for all z ∈ C2. We see what
happens when z = 0. In this case, we see that if κ̃ ∈ coker δ2, then

κ̃†(B1κ2 −B2κ1 + Iν) = 0

for all (κ1, κ2,ν), so it annihilates all of B1,B2, I, and thus κ̃ = 0. Therefore

H1(S0) = 0.

However, in general, this complex has both H0 and H1. We will compute these over λ. We can
explicitly see that

H0(S0)

is the space of corners. We will compute the character of the H1 using the equation

ChH0(S0) − ChH1(S0) = ChC0(S0) − ChC1(S0) + ChC2(S0)

=
∑
α

wα(Kα −Kα(q1 + q2) − 1 +Kαq1q2)

= −
∑
α

wα(1 − (1 − q1)(1 − q2)Kα).

If we note that
Ch C[q1,q2] =

1
(1 − q1)(1 − q2)

,

we see that
1

(1 − q1)(1 − q2)
−Kα = Ch Iα
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is the character of the ideal corresponding to λ(α). Therefore, the coefficient of wα is simply∑
□∈∂+λ

q□ − q12
∑

□∈∂−λ

q□,

and the first term yields ChH1 while the second term yields ChH0.
To see how this works in practice, fix N = 1. Then I is a codimension k ideal in C[z1, z2]. We

are looking for
f(z1, z2) = z1κ2(z1, z2) − z2κ1(z1, z2) + ν ∈ I,

and this is given by

ν = f(0, 0)

κ1 =
f(0, 0) − f(0, z2)

z2

κ2 =
f(z1, z2) − f(0, z2)

z1
.

4.4 qq-characters

Notation 4.4.1. From now on, we will denote K = Ck and N = Cn.

The main tool for dealing with instanton integrals (equivalently, sums over ensembles of Young
diagrams) is the qq-character. Here, we will have a discrete set S, and the densities µs ∈ C for
s ∈ S must satisfy ∑

s∈S

µs = 1.

For example, we can consider s = (λ(1), . . . , λ(N)). It is important to note that µs depends on

(a1, . . . ,aN, ε1, ε2;Λ),

but we can make choices such that all µs are positive real nnumbers, giving us a probability
measure.

Definition 4.4.2. A function O : S→ C is called an observable if∑
s∈S

µsOs <∞.

Before we continue, we will consider a tautological bundle over instanton moduli spaces,
which we will call K. In fact, it literally corresponds to the Ck in the construction of the Nakajima
variety. Then we are interested in quantities∑∞

k=0Λ
2kN ∫

Mk(N) ci(K)Ξ∑∞
k=0Λ

2kN
∫
Mk(N) Ξ

=
∑
s∈S

µs(a1, . . . ,aN, ε1, ε2,Λ)ci(K)|s,

where

S =

∞⊔
k=0

Nk(N)T.
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We can see that

µs(a, ε,Λ) =

=
1
Z

Λ2ksN−nΞ(k)Ξ|s
N∏

α,β=1

∏
λ(β)

(aα − aβ − ε1ℓ
(β)
□ + ε2(1 + a

(α)
□ ))

∏
□∈λ(α)

(aα − aβ + ε1(ℓ
(α)
□ + 1) − ε2a

(β)
□ )

,

where

Z =
∑
s

Λ2ksN−nΞ(k)Ξ|s
N∏

α,β=1

∏
λ(β)

(aα − aβ − ε1ℓ
(β)
□ + ε2(1 + a

(α)
□ ))

∏
□∈λ(α)

(aα − aβ + ε1(ℓ
(α)
□ + 1) − ε2a

(β)
□ )

normalizes the sum
∑

s µs = 1 and nΞ(k) si the degree of Ξ|s.

Examples 4.4.3.

1. In pure super-Yang-Mills theory, Ξ = 1 and Z is homogeneous in (a1, . . . ,aN, ε1, ε2,Λ);

2. In super-QCD, we set

Ξ =

2N∏
f=1

c(mf,K)

where c denotes the homogeneized Chern polynomial. Here, the input is given by

(a1, . . . ,aN, ε1, ε2,m1, . . . ,m2N,q),

where the mf are the “flavors” and q takes the role of Λ previously.1

3. The N = 2∗ theory, or adjoint super-QCD, is defined by

Ξ = c(m, T∗Mk(N)).

Theorem 4.4.4. The Chern polynomials at the fixed points are given by

c(mf,K∗)|s =

N∏
α=1

∏
(i,j)∈λ(α)

(mf − (aα + ε1(i− 1) + ε2(j− 1))).

Examples 4.4.5. For example, in super-QCD, we obtain

Z =
∑
s

qks

N∏
α=1

2N∏
f=1

∏
(i,j)∈λ(α)

(mf − aα − ε1(i− 1) − ε2(j− 1))

N∏
α,β=1

∏
λ(β)

(aα − aβ − ε1ℓ
(β)
□ + ε2(1 + a

(α)
□ ))

∏
□∈λ(α)

(aα − aβ + ε1(ℓ
(α)
□ + 1) − ε2a

(β)
□ )

.

1The aα are called “colors” in physics. For example, there are six flavors and three colors of quarks in the Standard
Model.
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This series has a finite radius of convergence and is well-defined for |q| < 1. It also admits a
non-trivial analytic continuation.

In the N = 2∗ theory, we obtain

Z =
∑
s

qks

N∏
α,β=1

∏
□∈λ(α)

ε1(a
(α)
□ + 1) − ε2ℓ

(β)
□ +m

ε1(a
(α)
□ + 1) − ε2ℓ

β
□

∏
□∈λ(β)

−ε1a
(β)
□ + ε2(ℓ

α
□ + 1) +m

−ε1a
(β)
□ + ε2(ℓ

(α)
□ + 1)

.

Remark 4.4.6. We should view q as lying on M0,4, and the points 0, 1,∞ become places where the
curve degenerates.

Instead of the tautological bundle, we may also consider the tautological complex

C = K→ K⊗ C2 ⊕ CN → K⊗Λ2C2,

which defines some K-theory class. Here, we set K to live in degree −1. For any K-theory class

E = [E0 − E1],

we may define its total Chern class by

c(x,E) :=
c(x,E0)

c(x,E1)
.

Definition 4.4.7. The Y(x)-observable is defined by

c(x,C∗) = c(x,N∗)
c(x− ε1,K∗)c(x− ε2,K∗)

c(x,K∗)c(x− ε1 − ε2,K∗)

=

N∏
α=1

(x− aα)
c(x+ ε1,K∗)c(x+ ε2,K∗)

c(x,K∗)c(x+ ε1 + ε2,K∗)
.

We may evaluate it at a general fixed point to obtain

Y(x)|s =

N∏
α=1

(x− aα)
∏

(i,j)∈λ(α)

(x− aα − ε1i− ε2(j− 1))(x− aα − ε1(i− 1) − ε2j)

(x− aα − ε1(i− 1) − ε2(j− 1))(x− aα − ε1i− ε2j)


=

N∏
α=1

∏
∂+λ(x− aα − c□)∏

■∈∂−λ(x− aα − c■ − ε1 − ε2)
,

where c□ = ε1(i− 1) + ε2(j− 1). We can then compute the expected value

⟨Y(x)⟩ = 1
Z

∞∑
k=0

qk
∫
Mk(N)

Y(x)Ξk,

which is a meromorphic function of x with poles at

x = aα + ε1(i− 1) + ε2(j− 1),

where (i, j) lie in a finite set with cardinality at most k at order qk and satisfy 1 ⩽ i, j ⩽ k.
Recall the gamma function

Γ(z) =

∫∞
0

dt
t
tze−t,
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which is defined for Re z > 0 and has an analytic continuation which is meromorphic with first
order poles at the nonpositive integers. We will need the generalization

Γ2(z, ε1, ε2).

Before this, recall that zΓ(z) = Γ(z+ 1) and Γ(1) = 1. Similarly, if we set

Γ1(z, ε) = ε
z
ε Γ
(z
ε

)
,

this satisfies the functional equation

Γ1(z+ ε, ε) = zΓ1(z, ε).

The Barnes 2-gamma function will be defined the functional equation

Γ2(z+ ε1, ε1, ε2)Γ2(z+ ε2, ε1, ε2)

Γ2(z, ε1, ε2)Γ2(z+ ε1 + ε2, ε1, ε2)
= z.

Definition 4.4.8. The fundamental qq-character for A1-theory is defined by

χ(x) := Y(x+ ε1 + ε2) + qP(x)Y(x)
−1,

where

P(x) =

2N∏
f=1

(x−mf).

Definition 4.4.9. The A1 qq-character is defined by the formula

χω1,...,ωw(x) :=
∑

I⊔J={1,...,w}

q♯J
∏
i∈I

Y(x+ωi + ε1 + ε2)
∏
j∈J

P(x+ωj)

Y(x+ωj)

∏
i∈I
j∈J

S(ωi −ωj),

where

S(x) =
(x+ ε1)(x+ ε2)

x(x+ ε1 + ε2)
.

Remark 4.4.10. This is the beginning of quantum field theory, where we should think about this as
an operator product corresponding to

χ(x+ω1) · · ·χ(x+ωw)

when we make the ωi collide.

We would also like to discuss the expected value more precisely.

Definition 4.4.11. The expectation value of the Y(x)-observable is〈
Y(x1)Y(x2)Y

−1(X3)
〉
:=

1
z

∞∑
k=0

qj
∫
Mk(N)

Y(x1)Y(x2)Y(x3)Ξk.

Using equivariant localization, we see that〈
Y(x1)Y(x2)Y(x3)

−1
〉
=

1
Z

∑
λ

q|λ|µλ(a,m, ε)Y(x1)|λY(x2)|λ
1

Y(x3)|λ
.
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To speed up our calculations, we will express Y(x)|λ as a plethystic exponential

Y(x)|λ = E[−exS∗λ],

where

E

 ∑
s∈S+

eη
+
s −

∑
s∈S−

eη
−
s

 =

∏
s∈S−

η−s∏
s∈S+

η+s
.

In addition,

Sλ =

N∑
α=1

eaα − (1 − q1)(1 − q2)Kλ,

where

Kλ =

N∑
α=1

eaα
∑

(i,j)∈λ(α)

qi−1
1 q

j−1
2

is the character of K at λ. Using the plethystic exponential, we can write

µλ(a,m, ε) = E

[
−
SλS

∗
λ −NN∗ −MS∗λ

(1 − q−1
1 )(1 − q2)−1

]
= E[NK∗

λ + q1q2N
∗Kλ − (1 − q1)(1 − q2)KλK

∗
λ −MK∗

λ],

where

M =

N∑
f=1

emf .

Theorem 4.4.12. The expected value 〈
χω1,...,ωw(x)

〉
is an entire function of x.

Sketch of proof for fundamental qq-character. We need to check pole cancellation for the expression

⟨Y(x+ ε1 + ε2)⟩+ qP(x)
〈
Y(x)−1

〉
.

Note that x is a pole if there exists α ∈ {1, . . . ,N} and p,q ∈ Z>0 such that

x = aα + ε1(p− 1) + ε2(q− 1)

and (p,q) ∈ ∂−λ(α). Therefore, we have

Res ⟨Y(x+ ε1 + ε2)⟩ =
∑

s=(λ(1),...,λ(N))

(p,q)∈∂−λ(α)

µs Res Y(x+ ε1 + ε2).

Considering the other term, we need to compute the residue∑
s

µsqP(aα + ε1(p− 1) + ε2(q− 1))Res
1

Y(x)|s
.
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The poles of this expression require (p,q) ∈ ∂+λ(α). All of the combinatorics works out, so it
remains to check that the measures work out, or more precisely that

µ
(λ(1),...λ̃(α),...,λ(N))

Resx=aα+c■
■∈∂−λ̃(α)

= qP(aα + c□)µ(λ(1),...,λ(α),...,λ(N)) Resx=aα+c□

1
Y(x)

.

Using the plethystic exponential and setting ξ = eaα+c□ , we can write

µ
λ̃
= µλ × E[q1q2ξS

∗
λ + ξ−1Sλ − 1 + q1 + q2 − q1q2 −Mξ

−1]

= µλ
P(aα + c□)(−1)N

Y ′
λ(aα + c□)Yλ(aα + c□ + ε1 + ε2)

(
ε1 + ε2

ε1ε2

)
.

We are now able to evaluate the residue. We see that

Resx=aα+c□

〈
Y(x+ ε1 + ε2) + q

P(x)

Y(x)

〉
=

1
Z

∑
□∈∂+λ(α)

q|λ|+1µλ
P(aα + c□)

Y ′(aα + c□)
+

1
Z

∑
□∈∂−λ̃α

q|λ̃|µ
λ̃

Resx=aα+c□ Y(x+ ε1 + ε2).

The desired result follows from more computation, namely that

Resx=aα+c□ Yλ̃(x+ ε1 + ε2) = Yλ(aα + c□ + ε1 + ε2)
ε1ε2

ε1 + ε2

and that
E[−ξq1q2S

∗
λ − 1] = Resx=aα+c□ Yλ̃(x+ ε1 + ε2).

In the Â0-theory, the partition function is defined to be

Z =
∑
k

qk
∫
Ck(N)

c(ε3, T∗Mk(N)),

where we magically have new parameters ε3 and ε4 = −(ε1 + ε2 + ε3). In this case, the measure is
given by

µλ(a, ε) = E

[
−

1 − q3

(1 − q−1
1 )(1 − q−1

2 )
(SλS

∗
λ −NN∗)

]
.

This is invariant under swapping ε3, ε4 and ε1, ε2, which corresponds to transposing λ. In this
case, the fundamental qq-character is given by

χ(x) = Y(x+ ε1 + ε2) + q
Y(x− ε3)Y(x− ε4)

Y(x)
+ · · ·

=
∑
µ

q|µ|

∏
□∈∂+µ

Y(x+ ε1 + ε2 + σ□)

∏
■∈∂−µ

Y(x+ σ■)

∏
□∈µ

(
1 +

ε1ε2

(ε3h□ + (ε1 + ε2)a□)(ε3h□ + (ε1 + ε2)(a□ + 1))

)
.

Previously, we were integrating over generalisations of HilbnC2. Today we will generalise
even further, and integrate over products of such:

Mk1(n1)× · · · ×Mkr
(nr)

Definition 4.4.13. We will call spaces like the above moduli spaces of quiver instantons.



53

4.5 The theory for general quivers

Definition 4.5.1. Let Γ = (VΓ ,EΓ , s, t) be a quiver, wherein VΓ is its set of vertices, EΓ its set of
edges, and s, t the source, target maps EΓ → VΓ . sending an edge to where it starts or ends.

Definition 4.5.2. Let Γ a quiver. Let m : VΓ → Z⩾0 be its flavours, and n : VΓ → Z>0 its colors.
Then the moduli space of quiver instantons is

M
Γ
(n) = ⊔k:VΓ→Z⩾0

∏
v ∈ VΓMk(r)(n(r))

Remark 4.5.3. Each C2 is acted on by a torus C× × C×. Further, we can work equivariantly with
respect to each GL(n(v)). Define

GLΓ (n(v)) :=
∏

GL(n(v)).

Remark 4.5.4. Each Mk(v)(n(v)) has a tautological bundle, Kv. We could choose a tuple of complex

numbers ⃗µ(v), one for each vertex, and a tuple of complex numbers ⃗µ(e), one for each edge, and
evaluate ∑

k:Vγ→Z⩾0

∏
v∈VΓ

q
k(v)
v

∫ ∏
v∈VΓ

m(v)∏
f=1

c(Kv,µ(v)f )
∏
e∈EΓ

c(Ee,µ(e)e ).

Definition 4.5.5. Let Hom(F1,F2) denote the sheaf on

P2 ×Mk(s(e))(n(s(e))×Mk(t(e))(n(t(e)))

parametrising the data of two points in our moduli space corresponding to two torsion-free
sheaves. Then define

Ee := (Rπ)⋆Hom(F1,F2)

wherein π is the projection map forgetting the CP2 factor.

In principle, we could imagine integrating the above integral. However, not every Γ leads
to a nice story. One possible restriction would be to hope that our integrals converge. A basic
condition for that would be:

dimC Mk
Γ
(n) ⩾

∑
v

m(v)k(v) +
∑
e

. . . ,

that is, the dimension of our moduli space is at least the degree of the chern class of the bundle
we’re integrating over. (The tautological bundle term is clear, and

χ(Ee) =

∫
P2

ch(F∨
1 ) ch(F2)TdP2

gives a term like ∑
e

k(s(e))n(t(e)) + k(t(e))n(s(e)).

Also note
dimC Mk

Γ
(n) =

∑
v

2k(v)n(v).
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Remark 4.5.6. The above restriction is linear in k on both sides. We could for the restriction to be
true for every k. That leads to the condition that∑

v

(2n(v) −m(v)) −
∑
e

(n(s(e)) −n(t(e))) ⩾ 0.

Theorem 4.5.7. Fix Γ . There exists n⃗, m⃗ satisfying the above condition if either

1. Γ is an ADE Dynkin diagram as an unoriented graph;

2. Γ is an affine ADE Dynkin diagram as an unoriented graph, m = 0, and n is related to the Dynkin
indices.

Example 4.5.8. Choose the quiver with one vertex and ℓ loops. Then the inequality reads

2n−m ⩾ 2nℓ.

This is satisfied if either

1. ℓ = 0, m ⩾ 2n (the A1 case);

2. ℓ = 1,m = 0 (the Â0 case).

In more detail, the solutions are (described here but not drawn due to the note-taker’s
inadequacy)

1. Âr: a cyclic graph with r nodes, all with the mark N;

2. D̂r: a linear graph of r− 3 nodes, with two additional nodes attached to the first and last
nodes. The marks of the linear nodes are all 2N; the marks of the additional nodes are all N.

3. Êr: an exceptional series of graphs.

a) Ê6, the graph with 7 vertices, a linear graph with three nodes with two chains of length
two added at the end. Dynkin marks are N, 2N, 3N on the linear part and then 2N,N
on each chain.

b) Ê8, the graph with 9 vertices, namely a linear graph of length 7 with one addi-
tional node attached to the sixth node. The marks on the linear component are
N, 2N, 3N, 4N, 5N, 6N, 4N, 2N and the added node has mark 3N.

c) Ê7, left as an exercise.

Remark 4.5.9. In physics, this inequality is related to the condition of asymptotic freedom for
the gauge theory associated to the quiver. It’s hard to explain this precisely. These integrals
approximate the partition function of the gauge theory, which is a path integral over the space of
all connections. You could try to define the path integral rigorously by discretising. Asymptotic
freedom, in that picture, is an equation relating to when the discretised path integral is a good
approximation to our original path integral.

Example 4.5.10. The standard model could be related to the A3 quiver with m = 0 and n = 1, 2, 3
(though we are of course modeling supersymmetric versions of the theory with our integrals.)
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Remark 4.5.11. If you’ve found a solution of this inequality, you could take a limit:

µ
(v)
m(v)

→ ∞
qv → 0

This limit is a finite dimensional shadow of renormalisation group flow. Taking this limit removes
one factor from our chern class; essentially it just removes one flavour. This means that, replacing
m → m− 1, we could find a solution to the inequality for the new m. So it suffices to solve
for solutions where the inequality is an equality: together with the trick of ’freezing’ one of the
nodes, this gives all solutions. For example, we can get Ar by freezing a node on Âr+1, sending
qr+1 → 0,q0 → 0.

Remark 4.5.12. We have parameters
qv ∈ C1·1<1

and
a⃗(v) := (a

(v)
1 , . . . ,an(v))

(v))

Example 4.5.13. When we seek to get Ar by freezing Âr+1 as above, after a little bit of computation
we find that

a⃗(0) = (µ1, . . . ,µN)

and
a⃗(r+1) = (µ

(r)
1 + ε1 + ε2, . . . )

Let’s reiterate the idea of how we study integrals like the above, namely the use of qq-
characters. Since there is some ADE structure to this story, it might not be so surprising that
what we called qq-characters have something to do with the characters of algebras related to
the ADE series. Again

∫
M

Γ
(k)n

will be related to a combinatorial sum, namely a sum over a

doubly-indexed set of Young diagrams λv,α, where v ∈ VΓ and α ∈ 1, . . . ,n(v).

Definition 4.5.14. Let

Yv(x)|λ =

n(v)∏
α=1

∏
□∈∂+λ(v,α)

∏
□∈∂+λ(v,α)(x− a

(v)
α − c

ε1,ε2
□ )∏

□∈∂−λ(v,α)(x− a
(v)
α − c

(ε1,ε2)
□ )

Then start to define

Xv(x) := Yv(x+ ε1 + ε2)

+ qv
Pv(x)

∏
e∈s−1(v) Yt(e)(x+ µe)

∏
e∈t−1(v) Ys(e)(x+ ε1 + ε2 − µe)

Yv(x)
+ . . .

Theorem 4.5.15. There is a completion of this sum such that < Xv(x) > has no poles in x. This has the
same size as the sum defining characters of affine Kac-Moody groups.

Example 4.5.16. Let’s study the A2 case with marks N,N and two framing nodes N,N. Redefine
so µe = 0 by rescaling. Then,

Y1(x+ ε1 + ε2) + q1
P1(x)Y2(x+ ε1 + ε2)

Y1(x)
+ q1q2

P1(x)P2(x)

Y2(x)
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Here, the term we needed to add was q1q2
P1(x)P2(x)

Y2(x)
, and this exactly cancels all remaining pools.

So it stops after 3 terms. Why 3 terms? A2 is related to sl3. This looks like a character: a character
of what? The large x asymptotics are like

(1 + q1 + q1q2)x
N + . . .

There’s something called a conformal extension of a simple Lie group G. It has to do with the fact
that there’s a centre. For any group with a centre, we can add a torus factor for every cyclic factor
in the centre. This relates, for example, SL to GL.

Remark 4.5.17. The “fundamental” in qq-characters denotes that they’re related to highest weight.

4.6 General qq-characters

Definition 4.6.1. A general qq-character depends on

ω⃗ ∈ ⊕v∈VΓ
Cw(v)

For w : VΓ → Z⩾0. We could try to define a qq-character Xω⃗(x). It would look like

Xω⃗(x) =
∏
v∈VΓ

w(v)∏
a=1

Yv(x+ω
(v)
a + ε1 + ε2) + . . .

The point is that it’s not just the product of fundamental characters; there are corrections. You’re
trying to encode all orders of expansion of this function.

Once we define a general qq-character, we’ll then be able to set the stage for the limit shape
story, that is, Seiberg-Witten geometry.

Remark 4.6.2. Remember that a quiver is an oriented connected finite graph, possibly with more
than one arrow between nodes. Then quiver gauge theory depends on the data of Ni,Mi, vector
spaces for each i ∈ Vertices(Q).

Recall there is an ADE classification given by imposing the condition that

2ni −mi =
∑

a(e)=i

nt(e) +
∑

t(e)=i

ns(e)

The N,M are discrete parameters of our theory, but there are also continuous parameters a(i) ∈
Lie(T) ⊂ Lie(GL(Ni)), and m(i) ∈ Lie(T) ⊂ Lie(GL(Mi)). Further there are qi ∈ C, complex
numbers of small absolute value.

Finally there are parameters me ∈ C, for e ∈ E(Γ), and there are two parameters

(ε1, ε2) ∈ Cr ⊂ Lie(T) ⊂ Lie(GL(2)).

Definition 4.6.3. We may then define a partition function

Z((a(i),m(i),qi)i∈VΓ
, (me)e∈EΓ

, ε1, ε2) :=
∑
λi,α

µλ(a,m, ε1, ε2)
∏
i∈VΓ

q
∑

α |λ(i,α)|

i

wherein α is the color parameter, and runs from 1 to ni, and

Sλ = {a
(i)
α + ε1(I− 1) + ε2(J− 1)|1 ⩽ I ⩽ λ(i,α),∨

J , 1 ⩽ J ⩽ λ(i,α)
I }.
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Remark 4.6.4. There is some redundancy in this description. For µi ∈ C, i ∈ VΓ , we may shift

me → me + µt(e) − µs(e)

a(i) → a(i) + µi

m(i) → m(i) + µi

Remark 4.6.5. There are physics expectations that as ε1, ε2 → 0, or even just ε2 → 0, the asymptotics
might be computable.

To study all of this, we’ll need another auxiliary object.

Definition 4.6.6. A Nakajima quiver variety depends on the data of a quiver Q and data defined
by tuples of integers v⃗i∈VΓ

, w⃗i∈VΓ
. We want at least one wi > 0 and the remaining wi to be

positive. To this data, we assign complex vector spaces Vi = Cvi ,Wi = Cwi . Then the Nakajima
quiver variety is defined as

MQ(⃗v, w⃗) := (T⋆ Hom(V⃗ , W⃗)⊕ T⋆ Homi→j(Vi,Vj))��GL(⃗v),

where �� denotes the symplectic quotient. We may estimate its dimension to be 2
∑

i vi(wi −
vi) + 2

∑
i→j vivj.

Remark 4.6.7. These spaces carry obvious tautological bundles

Vi,Wi → MQ(⃗v, w⃗)

and hence a tautological complex Ci:

0 → Vi →Wi ⊕
⊕
i→j

Vj
⊕
k→i

Vk → Vi → 0

wherein all the maps are the obvious ones given by the quiver representation. The complex
moment map condition is precisely the condition that this is a complex.

Remark 4.6.8. MQ(⃗v, w⃗) has a GL(w⃗)-global symmetry. There is another symmetry factor, namely
by permuting edges, and finally a C⋆

q which acts by scaling the moment map. There is some
redundancy in this description.

Definition 4.6.9. Let Yi(x) the observable defined by

Yi(x)|λ =

N∏
α=1

∏
□∈∂+λ(i,α)(x− aiα − ε1(I− 1) − ε2(J− 1))∏

□∈∂−λ(i,α)(x− aiα − ε1I− ε2J)

We will now give a general formula for qq-characters. Let’s fix vectors

u⃗ ∈ W⃗,

which we think of as equivariant parameters for GL(W⃗), and an equivariant parameter −ε1+ε2
2

for C×
q , and define

Xu⃗(x)

=
∑

v⃗∈Z
VΓ
+

∏
i∈VΓ

q
vi
i

∫
MQ(v⃗,w⃗)

c(T⋆MQ(⃗v, w⃗, ε1)
∏
i∈VΓ

vi∏
b=1

Pi(x+ ξi,b)
∏
i∈VΓ

∏
a Yi(x+ ε1 + ε2 + ε

+
ia)∏

b Yi(x+ ε1 + ε2 + η
−
ib)

,
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where everything is taken equivariantly with respect to all symmetries listed above and

ch(Vi) :=
vi∑
b

eξi,b ,

Pi(x) =

mi∏
f=1

(x−m
(i)
f ),

ch(C+
i ) =

∑
a

eη
+
i ,a,

ch(C−
i ) =

∑
b

eη
+
ibb.

Definition 4.6.10. Xu⃗(x) is a fundamental qq-character.

Proposition 4.6.11. ⟨Xu⃗(x)⟩ has no poles in x.

Example 4.6.12. Let’s recover the A⃗1-case we studied earlier. Here, MA1(v,w) = T⋆Gr(v,w).
The symmetry group is PGL(w)× C×. The maximal torus T ⊂ PGL(w)× C× acts with isolated
fixed points, labeled by the v-dimensional planes spanned by the coordinate axes in the basis
chosen by our choice of maximal torus. In other words, fixed points are labelled by partitions of
{1, . . . ,w} = I⊔ J into two disjoint sets, so that |I| = v.

In terms of the Nakajima data, let I : W → V , J : V → W, and impose the stability condition
that J is of maximal rank. Hence it’s the space of operators

{I, J | IJ = 0, J of maximal rank}/GL(V),

So the tangent space is

TMA1 = {δI, δJ | δIJ+ JδI = 0}/(δI, δJ) ∼ (δI+ ζI, δJ− Jζ, ζ ∈ End(V))

At the fixed point I = 0, Jeγ = eiγ , we can identify the tangent space as

T = T⋆ Hom(V ,W/V)

Therefore,
ch(T) =

∑
i∈I,j∈J

eui−uj + eε1+ε2+uj−ui

where the first summand comes from TGr, and the second from T⋆Gr.

So the qq-character takes the form

∑
I⊔J={1,...,w}

q|I|
∏

i∈I,j∈J(ui − uj + ε1)(−ε2 + uj − ui)∏
i∈I,j∈J(ui − uj)(−ε1 − ε2 + uj − ui)

∏
i∈I

P(x+ ui)× canonical complex
contribution from

Of course the canonical complex takes the form

V →W → V .

Since I = 0 and J is injective, up to equivariant weight, C+ = W.V , and Ch(C+) =
∑

j∈J e
uj ,

Ch(C−) =
∑

i∈I e
ui−ε1−ε2 .
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Hence the final factor gives an overall answer of

Xu⃗ =
∑

I⊔J={1,...,w}

q|I|
∏

i∈I,j∈J(ui − uj + ε1)(−ε2 + uj − ui)∏
i∈I,j∈J(ui − uj)(−ε1 − ε2 + uj − ui)

∏
i∈I

P(x+ ui)

×
∏

j∈J Y(x+ uj + ε1 + ε2)∏
i∈I Y(x+ ui)

This is the qq character for A1-quiver theory, namely SQCD. It has 2w terms. This formula
is already indicative that not all such formulas come as rational expressions in the Y whose
arguments are just shifted. If we were to set for example ui = uj, we would have a smaller torus.
The fixed point locus would not be isolated but it would still be compact. So this integral is finite.
So even though there’s terms like ui −uj, we should expect the limit as these two things approach
to exist, but we might get some derivatives of Y appearing.

4.7 Limit shapes

We’ve defined many partition functions

Z(a⃗, m⃗, q⃗, ε1, ε2)

dependent on many parameters. The parameters εi were special, recording the weights of GL(2)
symmetry for g(CP2, CP1∞). These partition functions were essentially sums over infinite sets
whose elements are finite subsets of C. So these subsets had the form

λ⃗ =
{
a
(i)
α + ε1(I− 1) + ε2(J− 1) | i ∈ VΓ ,α = 1, . . . ,n, (I, J) ∈ λ(i,α)

}
.

Each such set carries a certain complex weight. There is a way to specify all the parameters of the
problem such that this weight is real and positive. In that case we could talk about the induced
probability distribution. Then we could be interested in the limiting behaviour as ε1, ε2 → 0. In
this probablistic case that would require us to find the limiting measure. We can draw a curve
which describes the boundary of these finite sets, and seek its limiting shape as ε1, ε2 → 0.

Physically, ε1, ε2 effectively confine instantons into a polydisc of volume ≈ (ε1ε2)
−1. Then

taking the limit ε1, ε2 → 0 is a thermoydynamic limit. We view Z = exp(ε−1
1 ε−1

2 F(a⃗, m⃗, q⃗) + . . . ),
and our goal is to extract the function F. The typical size of a partition will be

|λ(i,α)| ∼ (ε1ε2)
−1#(a⃗, m⃗, q⃗).

Remark 4.7.1. A probabilistic interpretation of Z exists at all because the moduli space of instantons,
Mk(n), is a complex symplectic manifold. So each tangent space is a symplectic vector space, and
so the weights of the symmetry group therefore split in pairs. So if w appears in TMk(n), so does
ε1 + ε2 −w. That defines a symplectic form on Mk(n), which roughly descends from that on the
space of all connections: ∫

R4
dz1 ∧ dz2 ∧ Tr δA∧ JA.

If we specialize ε1 + ε2 = 0, then

µλ =

∏
(. . . )∏
(−w2)

.

Each w is a linear function of the a⃗, ε⃗ terms. Choosing ε1 ∈ iR,a(i)α ∈ iR, then (−w2) ∈ R+.
The numerator is trickier, but can also be made positive real by judicious specialisation of our
parameters.
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If we stay away from the locus wherein

a
(i)
α − a

(j)
β ∈ ε1Z+ + ε2Z+,

which is the locus wherein some of the weights could become 0 in the denominator, we won’t
have any convergence issues.
Remark 4.7.2. Remember our

Yi(z) = exp
∫

R

ρi(x)dx log(z− x) =
ni∏
α=1

∏
□∈∂+λ(i,α)(z− a

(i)
α − c□)∏

□∈∂−λ(i,α)(z−a
(i)
α −c□)

has ρi with compact support near a(i)α , and we remember that

c□ = ε1(I− 1) + ε2(J− 1).

Then
ρi|λ =

∑
±δ(x− a(i)α − c□).

All these δ-functions have signs. We should think that the density between these ± will concentrate,
so we might thank that in the limit we might get a continuous function which equals zero almost
everywhere except at a finite number of intervals where the ± signs concentrate. The question is:
can we express µ in terms of this limiting function?

We have

µλ(a⃗, m⃗,q) = exp  h−2
∫∫

dx ′dx ′′
∑
i∈V

ρ1(x
′)ρ2(x

′′)K(x ′ − x ′′)

−
∑
e∈E

ρt(e)(x
′)ρs(e)(x

′′)K(x ′ − x ′′ +me)

+
∑
i

ρi(x)

[
x2

2
logqi +

mi∑
f=1

K(x− µ
(i)
f )

]
,

wherein
K(x) = x2/2

(
log
( x
Λ

)
− 3/2

)
The advantage of writing it this way is that it’s a quadratic functional, so extremising it is
straightforward.

Now let’s extremise µλ subject to the constraints that
∫
Ii,α

ρi(x)dx = 1,
∫
Ii,α

xρi(x)dx = a
(i)
α .

Doing so, we will get linear equations on the ρi. The most concise way to write those linear
equations is via

Y+i (x)Y−i (x) = qiPi(x)
∏

e∈f ′(i)

Ys(e)(x+me)
∏

e∈f ′(i)

Yt(e)(x−me)

wherein Pi(x) =
∏mi

f=1(x− µ
(i)
f ).

After analytic continuation, the only thing we’ll be able to control about the Yi are their
moments

(2πi)−1
∮
Ai,α

d logYi(x) = ai,α.

Studying analytic continuation is related to the action of the Weyl group. So to solve these
equations, it suffices to find the invariants of the Weyl group action. So the strategy now is to find
Weyl invariant functions of the Yi.
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4.7.1 Review of Lie theory and Weyl groups Let’s review some Lie theory so that in the
above formula for Y+Y−. You will recognise something of classical mechanics.

Let Q∨ = coroot lattice = Hom(C⋆, T) wherein T is our maximal torus. The weights form the
dual lattice Λ ⊂ h⋆ (they are subsets of the dual to the Cartan). It’s formed by all elements λ so
that λ(α∨) ∈ Z for every coroot. We let

tλ = exp(2πiλ(x))

for t ∈ T .

Remark 4.7.3. In the lattice Q∨ of coroots, there is a basis of simple coroots (α∨1 , . . . ,α∨r ) such that
the adjoint action decomposes adt(eα) = tαeα, wherein eα is a root (it’s a lattice of weights,
namely the weights of the adjoint representation). This has a basis of roots, Zα1, . . . , Zαr. Finally
there is a lattice of coweights,

Hom(Gm, T/Z),

wherein Z is the centre of G. Also, Z = Weights/Roots.

Definition 4.7.4. For ξ ∈ η, define simple reflection by ri(ξ) = ξ−αi(xi)α∨i . It is an interesting
theorem that Weyl = W = N(T)/T is the action generated by the ri. This can of course also be
defined in a multiplicative form. For t ∈ T , an element of the maximal torus, we may parametrise

t =
∏
z
α∨

i
i . Applying rj to such an element, the coordinates zi of this torus will transform in the

following way:

z̃i = δi ̸=jzi + δijzj

r∏
k=1

z
−Cjk

k ,

wherein Cij is the Cartan matrix. My point is that if you look closely at this formula, you will see
that analytic continuation of the Yi across the cuts is essentially the action of the Weyl group by
simple reflections.

Remark 4.7.5. The more precise statement is the following. Let g(x) ∈ CGΓ , the group associated
to the quiver somewhat extended. Specifically CG denotes the conformal extension of our group,
which is given by

CG = (Gm)#cyclic factors in centre ×Z(G) G

Essentially, it’s where we replace all cyclic factors in the centre by C× factors. Write g(x) =∏
I∈ṼerticesΓ

Yi(x+µi)
α∨

i Pi(x+µi)
−λ∨

i , where Ṽertices denotes that we need to take the universal
cover. The claim is that under analytic continuation

g(x) → rig(x)

Remark 4.7.6. I don’t know how well this is known in the case of matrix models, but at lesat
for some matrix models, there is a very similar property where this is some combination of
resolvents of densities of matrices which, continuing across the cuts, they transform in the vector
representation of the Weyl group. Therefore what I’m about to say here also applies there.

Claim 4.7.7. In any linear representation V , χV (g(x)) is an analytic function of x. With proper normali-
sation, it is just a polynomial in x.

Claim 4.7.8. Choose a fundamental representation of G. The equations χi(g) = Ti(x) define curves in
(C×)r × C. The tori give coordinates Y1, . . . , Yr; the last coordinate is x. There is a Weyl group which acts
on this vector space, under which the curve is Weyl invariant. This curve is called a Cameral curve. Of
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course you have heard about spectral curves, which are curves you can assign to a matrix; its eigenvalues
form a curve. That’s what you would do in the case of GLn. But in general these guys are subject to more
intricate Weyl symmetries, so it’s not really clear what sort of spectral object to consider. What one can do,
for any W ′ ⊂W, one can try to form a smaller curve by taking the quotient.

Example 4.7.9. Let’s take the Ar quiver, and take the case wherein we have fundamental matter
fields at the first and last node and all labels are N. Then g = diag(z1

Y1
P1

, . . . , zr Yr
Y ′
r−1

, zr+1
Pr
Yr

) ∈
GL(r+ 1). Then invariants are given by

1
z1zi

P1(x)TrΛiCr+i(g)

the claim is this is a monic polynomial in x of degree n.
This is an example of a Cameral curve. It maps Cameral → Cx with degree (r+ 1)! since any

permutation gives another solution of our equations. Now Weyl = S(r+ 1) acts on this curve,
and inside we for example have a subgroup S(r+ 1) ⊃ S(r). Now Cameral/S(r) = Spectral is the
spectral curve. It keeps track of one eigenvalue. However, for example, we could also consider
Cameral/S(r− 1) to remember two eigenvalues. This special branched structure of course has to
do with Gelfand-Tsetlin patterns and is special to A-type.

Spaces of curves like this describe either monopoles in R2 × S1 for ADE type or instantons on
R2 × T2 for affine ADE type. This curve in question is actually a quasimap of degree n (in affine
type at least) from P1 into the moduli spaces of G-bundles on an elliptic curve.

4.8 Use of qq-characters

The main idea is to use the analyticity of ⟨Xw⃗(x)⟩, together with the fact that for large x the
observables behave like polynomials, to conclude ⟨Xw⃗(x)⟩ is a polynomial in x. Therefore, the
moments 〈

x−kXw⃗(x)
〉

are zero for k > 0. This will give us a set of equations on the partition function.

Remark 4.8.1. One can amputate legs with ni = 1. Recall that we have a harmonicity condition;
if there exists i ∈ VectΓ for which ni = 1, then it imposes the stringent requirement that
2 = mi +

∑
e∈s−1(i) nt(e) +

∑
e∈t−1(i) ns(e). That is, it cannot be connected to ‘too many’ other

nodes. There were limited possibilities:

1. Â0 theory: one node and one loop.

2. Two more complicated graphs separated by a node with marking 1.

Since ni = 1, there is only one partition λ(i) at this node. Hence,

Yi(x)|λ(i) = (x− ai)
∏

□∈λ(i)

(x− c□ − ε1)(x− c□ − ε2)

(x− c□)(x− c□ − ε1 − ε2)
.

Now, as x→ ∞, to O(x−1), we find

Yi(x) ∼ x− a1 +
ε1ε2

x

∣∣∣λ(i)∣∣∣+O(x−2).
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The good thing about the size of the partition is that its expectation value〈∣∣∣λ(i)∣∣∣〉 = qi
d

dqi
Z

is simply the logarithmic derivative with respect to fugacity of the partition function.

Example 4.8.2. Consider A1-theory wherein the framing node has rank 2 and the other node has
rank 1. Then

Z(q1,µ1,µ2; ε1, ε2) =

∞∑
k=0

qk
∫C⋆

ε1
×C⋆

ε2

Hilbk(C2)
c(K,µ1)c(K,µ2).

We have another formula

Z =
∑
λ

q|λ|
∏
□∈λ

(c□ + µ1)(c□ + µ2)

(ε1(a□ + 1) − ε2ℓ□)(−ε1a□ + ε2(ℓ□ + 1)
,

wherein a□ = λi − j is arm length, ℓ□ = λtj − i is leg length, c□ = ε1(i− 1) + ε2(j− 1) is content.
For this theory, we have a unique qq-character, so〈

Y(x+ ε1 + ε2) + q(x+ µ1)(x+ µ2)Y(x)
−1
〉
= ((1 + q)x+ u(µ1,µ2, ε1, ε2))

since it has no poles.
Now use the computation in the above remark to expand ⟨· · ·⟩. Specifically, let’s try to interact

the coefficient of x−1. From the first term, this is going to be

ε1ε2|λ|+ (x+ µ1 + µ2 + µ1µ2x
−1)(1 −

ε1ε2|λ|

x2 ) = ε ′1ε2|λ|+ µ1µ2 − ε1ε2)|q|.

From this, we derive a differential equoation for Z:

ε1ε2(1 − q)q
d

dq
Z+ µ1µ2qZ = 0,

gotten from
ε1ε2(1 − q) < |λ| > +µ1µ2q < 1 >= 0.

Define ∫
C2

1 = (ε1ε2)
−1

formally. However, we can do better. Take the Gaussian∫
C2
e−k1|k1|

2+ε1dz1∧dz1+··· = (ε1ε2)
−1.

The main point is that you can use tricks like this to get rid of all degree 1 nodes.

Example 4.8.3. Consider the example of D4-theory. Write the shape symmetrically, so that there’s
one central node with ni = 2, three rank one gauge nodes and a framing node also of rank 1
attached. Also give the framing node mass m and give gauge node i the fugacity qi, where 0 is
the label of the central node. Then this can be amputated in the sense that

ZD4(a⃗, q⃗,m) =
∑

ZA1(a1,a2;m1 = a1,m2 = a2, . . . ,q),

where

q = q0
∏ 1 − qi

1 − q0qi

1 − q2
0q1q2q3

1 − q0q1q2q3

(think of q = q0 + small correction).
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Remark 4.8.4. This is related to the phenomenon known as bubbling. In an ideal world we would be
integrating over actual moduli spaces of instantons, but here we have compactified these moduli
spaces by relaxing the condition that they correspond to actual vector bundles. The price we pay
is that the rank 1 story is already nontrivial, even though Maxwell theory doesn’t admit instantons
on manifolds without holes.

Nonetheless, say that you performed a blowup, luing in a small P1. Then this manifold
has nontrivial b2, i.e. it has holes. Then these solve Maxwe’ll’s equations, but from differential
geometeric point of view you have a family of metrics that diverges as the exceptional divisor
goes to 0. Unfortunately it’s not defined at a point unless you blow up this point.

Remark 4.8.5. This is somehow related to mirror maps.

Example 4.8.6. Finally, let’s consider the example of Â0 theory. It’s related to earlier work of
Nekrasov-Okounkov. In full generality,

Z
Â0

(q; ε3 : ε1 : ε2) =
∑
λ

q|λ|
∏
□∈λ

∏ (ε1(a□ + 1) − ε2ℓ□ + ε3)(−ε1a□ + ε2(ℓ□ + 1) + ε3)

(ε1(a□ + 1) − ε2ℓ□)(−ε1a□ + ε2(ℓ□ + 1))
.

Of course,

Z =
∑

qk
∫

HilbkC2
c(T∗HilbkC2, ε3).

Setting µ2 = ε2
3/ε

2
1 and ε1 = −ε2, the sum becomes something like∏

□

(1 − µ2/h2
□),

which vanishes if µ = h□. We will prove some formula like

Z = ϕ(q)−(ε1+ε3)(ε2+ε3)/(ε1ε2).

The fundamental qq-character of this theory is

X(x) = Y(x+ ε1 + ε2) + q
Y(x+ ε3)Y(x+ ε4)

Y(x)
+ . . .

=
∑
λ

q|λ|

∏
□∈λ

(ε3(a□ + 1) − ε4ℓ□ + ε1)(−ε3a□ + ε4(ℓ□ + 1) + ε1)

(ε3(a□ + 1) − ε4ℓ□)(−ε3a□ + ε1(ℓ□ + 1))

× Y(x+ ε1 + ε2)

×
∏
□∈λ

Y(x+ σ□ + ε4(Y(x+ σ□ − ε1))

Y(x+ σ□ + ε1 + ε2)Y(x+ σ□)

 .

This is a complicated formula, but we don’t want to study the full story; we just want to extract
its x−1 coefficient. The result is that

0 =
〈
[x−1]X(x)

〉
= ε1ε2Z(q, ε1 : ε4 : ε3)

〈∣∣∣λ(1)
∣∣∣〉+ ε3ε4q

d
dq
Z(q; ε1, ε4, ε3) ⟨1⟩ .

This is already a differential equation for Z.
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But the partitions λ(1) describe certain ideals in C[z1, z2], i.e. they parametrise 0-dimensional
subschemes in a plane with coordinates ε1, ε2. However, somehow in this story a second plane
emerged with equivariant parameters ε3, ε4 whose points were also related to λ. This relation
says there is some sort of correspondence between instantons on either plane. This is a transverse
intersection of two planes in 4d, and there is no flat deformation of this cross into a smooth
surface. So there is something useful coming out of this. This whole structure is called crossed
instantons.

We don’t know what crossed instantons are, even though we do know what their moduli space
is. Potentially, Z could be singular when ε2/ε1 is a positive rational number or 0 or ∞. However
no poles appear in ε3. Moreover, if ε3 = −ε1, ε3 = −ε2, then this whole thing collapses because if
the partition is nontrivial you have boxes for which the armlength is zero. So we may write

Z = 1 +
(ε1 + ε3)(ε2 + ε3)

ε1ε2
Zregular,

where Zregular is regular. We can more naturally write this as an equation of logarithms as

ε1ε2 + q
d

dq
logZ(q, ε3, ε4, ε2) = −ε3ε4q

d
dq

logZ(q, ε1, ε4, ε3),

which means that if we define

Φ(q, ε3, ε1, ε2) =
ε1ε2

(ε1 + ε3)(ε2 + ε3)
logZ(q, ε3, ε1, ε2)

and note that
(ε1 + ε3)(ε2 + ε3) = (ε1 + ε4)(ε2 + ε4),

the denominator is symmetric under exchanging ε3, ε4. Further in the small q expansion we have
no singularities. Further, the differential equation we wrote above implies we can exchange the εi
to obtain

Φ(q, ε3, ε1, ε2) = Φ(q, ε1, ε4, ε3).

This is a meromorphic function on P2 with no singularities, therefore it is constant in the ε. It
suffices to evaluate it at any point. We find that it’s = − logϕ(q), where ϕ is the Euler function.
Many years ago, Nekrasov-Okounkov proved it by representing this formula as a trace. That
proof was much more complicated than this qq-character method.

Example 4.8.7. Consider the case of an Ar quiver with all gauge nodes rank 1 and framing
nodes of rank 1 at either end. Add Coulomb parameters µ1,µr,a(i) and sometimes write
µ1 = a0,µr = ar+1 for more symmetric notation. Then,

Z[a⃗.q⃗, ε1, ε2] =
∑

λ1,...,λr

· · ·

There are r fundamental qq-characters in this case. The result is that

ZAr
=

∏
0⩽j<i⩽r

(1 − zi/zj)
−p+

i p−
j /(ε1ε2),

where p+i = ε1 + ε2 + ai − ai+1, p−i = ai − ai+1.
Here, we pass to parameters zi so that zi/zi−1 = qi. What this formula should make us think

about is that a chiral block of a partition function of a Gaussian free field living on a sphere with
vertex operators inserted at points zi. This would, for example, be a relevant computation in
string theory with strings coming from infinity somehow. The pieces that go off to infinity would
be represented by a vertex operator.
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Remark 4.8.8. Studying a Gaussian free field

exp−S = e−
∫
Σ ∂X∂X,

the Green’s function of the Laplacian, for Σ a plane, is

⟨XX⟩ = − log |z1 − z2|
2.

There’s a small issue since this quantity isn’t dimensionless, which is related to the fact that the
constant/zero mode does not enter into the action and so we must make a choice. In principle,
we should add

⟨XX⟩ = − log |z1 − z2|
2 + harmonic.

Then we’d like to define vertex operators

: eipX(z,z) :,

which give us 〈
r∏

i=0

: eipX(zi,zi) :

〉
= δ
(∑

p
)∏

i ̸=j

exp
(
−pipjG(zi, zi, zj, zj)

)
= |Ψ|2

= |Analytic|2,

where G is the Green’s function. The analytic piece Ψ will look very much like our expression for
Z except Z has two types of momenta, unless ε1 = −ε2.

One can slightly modify the Gaussian free field action to include a term

−S = −

∫
Σ
∂X∂X+ a(2)RX

depending on the scalar curvature. Having this scalar term with some coefficient modifies our
computations, and can be fine-tuned to exactly reproduce our formula for ZAr

.
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