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Abstract

Topics to be covered: smooth manifolds, smooth maps, tangent vectors, vector fields, vector
bundles (in particular, tangent and cotangent bundles), submersions,immersions and embed-
dings, sub-manifolds, Lie groups and Lie group actions, Whitney’s theorems and transversality,
tensors and tensor fields, differential forms, orientations and integration on manifolds, The De
Rham Cohomology, integral curves and flows, Lie derivatives, The Frobenius Theorem.
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1 Lecture 1 (Sep 4)

1.1 Overview We will be following Lee’s book on smooth manifolds. Because this is no longer
an exam class, there will be homework and a take home final. Prereqs are calculus, point-set
topology and a little bit of π1. Homework 0 will be to go to math.stonybrook.edu/Videos/IMS/
DifferentialTopology or search for “John Milnor 1965 Hedrick Lectures.”12

We will give an overview. In topology, we have the notion of continuity with equivalence being
either homeomorphism or homotopy equivalence. Then we specialize to differential topology
by introducing smoothness. Inside differential topology, we have Riemannian geometry (O(n)),
complex geometry (GLn(C)), and symplectic geometry (Sp(2n)). The intersection of these three
things is Kähler geometry (U(n)).

We will begin with some examples and nonexamples of manifolds.

Example 1. Some examples of manifolds are circles, spheres, tori, and Rn.

Example 2. Some non-examples of manifolds are two intersecting lines, a sphere with a line
attached, and the graph of y = |x|.

We may also consider functions from a manifold to R and the consider the level sets. Then
the preimages of generic values are manifolds, while at critical points, the preimages are not
manifolds.3 In addition, manifolds can be intersected transversally to form new manifolds.

1.2 Basic Notions and Examples

Definition 3. A topological n-manifold M is a second-countable Hausdorff topological space M that
is locally Euclidean of dimension n.

Definition 4. Two charts (U,ϕ), (V ,ψ) are smoothly compatible if the transition map ψ ◦ϕ−1 is a
diffeomorphism.

Definition 5. A smooth atlas on M is a collection of smoothly compatible charts U = {(Uα,ϕα)}α
that cover M.

Definition 6. A smooth structure on M is a maximal smooth atlas.

Lemma 7. Every smooth atlas on M is contained in a unique maximal smooth atlas. Two smooth atlases
determine the same smooth structure iff their union is a smooth atlas.

1Mike says he prepared this lecture and then watched these videos and thought “I should have taught it this way.”
2Milnor was also the person who invented differential topology and won the Fields Medal.
3He just did Morse theory without saying it.
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Example 8. The simplest example of a manifold is Rn with the standard smooth structure.4 We
can also consider the set of matrices Mm×n(R) identified with Rmn.

Remark 9. Hausdorffness and second-countability are preserved under both subspace and product
topologies.

Example 10. If N ⊆ M is open, then N is a smooth n-manifold. For example, we can consider
GLn(R) ⊂Mn(R).

Example 11. If M1,M2 are smooth of dimensions n1,n2, then M1 ×M2 is a smooth (n1 + n2)-
manifold.

Example 12. Consider S2 ⊂ R3. The standard smooth structure is defined using stereographic
projection to R2 by

(x1, x2, x3) 7→
(

x1

1± x3
,
x2

1± x3

)
.

Homework 0.1 is to check that the transition is smooth.

More generally, we can define the standard structure on Sn ⊂ Rn+1. However, there may be
exotic smooth structures on Sn. For example, there are exotic spheres of dimension 7, 13, 14, 15,
16, and many higher dimensions. This question is open for n = 4.

Example 13. The torus T2 ' S1 × S1 has a unique smooth structure.

Example 14. RP2 is the space of lines through the origin in R3. We will attempt to build a natural
smooth structure.

Lemma 15. Given a set M and a collection {Uα} of subsets with injections ϕα : Uα ↪→ Rn with

1. For all α, ϕα(Uα) is open;

2. ϕα(Uα ∩Uβ) is open;

3. The transitions ϕα ◦ϕ−1
β are diffeomorphisms;

4. M is covered by countably many Uα;

Then M has a topology with basis ϕ−1
α (V) for all V ⊂ Rn open. Moreover, if the topology is Hausdorff,

then M has a unique smooth structure where {(Uα,ϕα)} is a smooth atlas.

Continuing Example 14, we will take the sets Uα = (xα 6= 0) to be the standard Euclidean charts.
Clearly the ϕα are injective (in fact they are bijective). Next, the intersections are both open. Third,
the transitions are given by

ϕ2 ◦ϕ−1
1 : (x1, x2) 7→

(
1
x1

,
x2

x1

)
,

so they are diffeomorphisms. Next time we will check that RPn is Hausdorff.

4This is misleading because there are uncontably many exotic R4.
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2 Lecture 2 (Sep 9)

The first homework has been posted. It is due in 14 days. The problems from the book are 1.1, 1.5,
1.7, 2.1, 2.4, 2.10, and 2.14. In addition, prove that diffeomorphism is an equivalence relation and
construct a smooth structure on the square.

Today we will complete Example 14 and show that RP2 is Hausdorff. First assume that l1, l2 ∈ RP2

are in the same Euclidean patch. Then R2 is Hausdorff, so there are disjoint neighborhoods Vi 3 li.
Now suppose l1 ∈ U1 \U2, l2 ∈ U2 \U1. Thus l1 = [1 : 0 : u1], l2 = [0 : 1 : u2]. Then we can write
ϕi(li) = (0,ui) ∈ R2 for some ui 6= 0. Then set Vi = Bε(0,ui).

Finally, we show that for small ε, the ϕ−1
i (Vi) are disjoint. If they intersect, then we obtain

l = [1 : y1
1 : y1

2 + u1] = [y2
1 : 1 : y2

2 + u2], which implies that y1
1y

2
1 = 1, contradicting our assumption

on the size of ε.

Definition 16. A topological manifold M is a complex n-manifold if M admits a holomorphic
atlas {(Uα,ϕα)} to Cn. Here holomorphic is taken to mean J ·Df = Df · J, where J is a matrix
corresponding to multiplication by I.5

Theorem 17. Lemma 15 holds in the holomorphic setting.

Example 18. CPn is the set of (complex) lines in Cn+1 through the origin. Homework 1 will
show that this is a complex n-manifold.

2.1 Morphisms We will now construct morphisms of smooth manifolds.

Definition 19. Let M be a smooth manifold. f :M→ R is a smooth function if for all p ∈M there
exists a chart (U,ϕ) with p ∈ U such that f ◦ϕ−1 is smooth.

Definition 20. Let M,N be smooth manifolds. f :M→ N is a smooth map if for all p ∈M there
exist charts (U,ϕ) with p ∈ U and (V ,ψ) with f(p) ∈ V such that ψ ◦ f ◦ϕ−1 is smooth.

Remark 21. Smoothness is independent of the choice of charts.

Definition 22. Let F :M→ N be a smooth map. F is a diffeomorphism if F−1 exists and is smooth.

Definition 23. F :M→ N is a local diffeomorphism if for all p ∈M there exists an open U 3 p such
that F(U) is open and F|U is a diffeomorphism to F(U).

Proposition 24. The following are true:

1. Smooth implies continuous, but the converse is false;

2. Smooth maps make Diff into a category;

3. The set of smooth functions C∞(M) is a commutative ring;

4. Smooth maps M→ N pull back smooth functions C∞(N)→ C∞(M).6

Example 25. Consider the following basic examples:

1. If N ⊂M is open and M is a smooth manifold, then the inclusion ι : N ↪→M is smooth;

5Note that in general this only gives us an almost complex structure.
6This is entirely analogous to the case of algebraic geometry.
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2. Diff has products. In addition, the inclusions m 7→ (m, 0) are smooth.

Example 26. We will see that the inclusion S2 ↪→ R3 is smooth. To do this, compute with the
coordinate charts. Also, the inverses of the coordinate charts are given by

(y1,y2) 7→
1

y2
1 + y

2
2 + 1

(2y1, 2y2,±(1 − y2
1 − y

2
2)).

Example 27. We show that the projection R3 \ {0}→ RP2 is smooth. In the charts, we have

(x1, x2, x3) 7→
[

1 :
x2

x1
:
x3

x1

]
,

which are smooth.

Example 28. The Hopf fibration S3 → CP1 is smooth.7

Example 29. The smooth composition of Examples 26 and 27 is a local diffeomorphism. In fact,
this is a 2-to-1 cover of RP2 and demonstrates that π1(RP2) = Z/2Z.

3 Lecture 3 (Sep 11)

We began class with Mike getting to know everyone. There are people enrolled in the class who
were not here, but there was apparently a good mix of algebra, analysis, and geometry.

3.1 Example 29 Continued We will show that the map S2 → RP2 in Example 29 is a local
diffeomorphism. Assume l = F(p) is contained in the first Euclidean chart. Then

p = ± 1√
1 + x2

1 + x
2
2

(1, x1, x2).

Then for some small ε > 0 let W = Bε(y1,y2) and set V = ϕ−1
1 (W). Then note that the preimage

of any point consists of two antipodal points. Thus for sufficiently small ε, F−1(V) is a disjoint
union of two open sets. Then this is easy to see that F|U is injective. Next we prove that the inverse
of F|U is smooth. We can do this by computing the inverse explicitly in charts.

Now recall the definition of a covering map from topology. We may replace Top with Diff,
obtaining the notion of a smooth covering map.

Example 30. S2 → RPn is a smooth cover.

Proposition 31. If M is a connected smooth n-manifold and π : M̃→M is a topological covering map,
then M̃ has a unique smooth structure such that π is a smooth cover.

Now note that any manifold is locally contractible, so it is locally connected and locally simply
connected. Therefore any smooth connected manifold has a smooth universal cover.

7The existence of this morphism shows that π3(S
2) 6= 0.

Page 6 of 46



Math 718 Manifolds Lecture Notes

Definition 32. A Lie group G is a group object in Diff. More concretely, it is a group which is
also a smooth manifold such that multiplication and inverse are smooth.

Example 33. Some examples of Lie groups are:

1. G = Rn is the simplest Lie group;

2. G = GLn(C);

3. G = S1 ↪→ C∗ = GL1(C);

4. G = S3 ↪→H \ {0}.

Theorem 34. Let G be a connected Lie group. Then there exists a smooth universal cover π : G̃ → G
which is a morphism of Lie groups.

Remark 35. Lee has a chapter on Lie groups, but we will probably not get to them in this course.

3.2 Partitions of Unity

Definition 36. Let M be a topological space and X = {Uα} be any open cover of M. A partition of
unity subordinate to X is a collection of continuous functions {fα} such that:

1. 0 6 fα 6 1;

2. supp fα ⊂ Uα.8

3. For all x ∈M, there exists U 3 x such that only finitely many fα have support intersecting U.

4.
∑
α fα(x) = 1 for all x ∈M.

Theorem 37. Let M be a smooth manifold and X = {Xα} be an open cover of M. Then there exists a
partition of unity {fα} subordinate to X.9

Before we prove Theorem 37, we need some preliminary notions.

Lemma 38. There exists an h ∈ C∞(R) such that

h(t) =


1 t 6 1
0 t > 2
h(t) ∈ (0, 1) 1 < t < 2

Sketch of Proof. First note that

f(t) =

{
e−1/t t > 0
0 t 6 0

is smooth. Then we can build h.

Lemma 39. The bump function H : Rn → R given by x 7→ h(|x|) is smooth.

8These do not need to be compactly supported, but in practice they will be.
9This is like Seifert-Van Kampen and Mayer-Vietoris in algebraic topology, which allow us to compute things locally.
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Definition 40. Suppose X is a topological space. Given an open cover U of X, another open cover
V of X is a refinement of U if for all V ∈ V there exists U ∈ U such that V ⊂ U.

Definition 41. X is paracompact if every cover of X admits a locally finite refinement.

Definition 42. Let X be a smooth manifold. Let {Wi} be an open cover of M. Then W is regular if
the following holds:

1. The cover {Wi} is countable and locally finite;

2. Each Wi is the domain of a smooth coordinate map ϕi such that ϕi(Wi) = B3(0) ⊂ Rn.10

3. Let Ui = ϕ−1
i (B1(0)). Then the {Ui} cover M.

Proposition 43. Let M be a smooth manifold. Then every open cover of M has a regular refinement.In
particular, M is paracompact.11

Proof of Theorem 37. First we will build a partition of unity subordinate to a regular refinement
{Wi} of our cover X. Let Ui = ϕ−1

i (B1(0)) and Vi = ϕ−1
i (B2(0)). Recall that Wi = ϕ−1

i (B3(0)).
Now define

fi =

{
H ◦ϕi x ∈Wi
0 c ∈M \Wi

and set

gi(x) =
fi(x)∑
j fj(x)

.

This is well-defined because the Ui cover M. Also, 0 6 gi(x) 6 1. In addition,
∑
i gi(x) = 1 and

suppgi ⊂Wi. Thus {gi} is a partition of unity subordinate to {Wi}.

We now need to construct {fα}. Because {Wi} is a refinement of X, then for all i there exists
α = ρ(i) such that Wi ⊂ Xα. Then for all α, define fα =

∑
i∈ρ−1(α) gi. Then it is clear that

conditions 1, 4 of being a partition of unity hold.

It is also easy to see that supp fα ⊂ Xα. Fixing x ∈ supp fα, define {yn} such that yn → x and
fα(yn) = 0. Because

fα =
∑

i∈ρ−1(α)

,

for each n there exists in such that gin(yn) 6= 0. Because {Wi} is locally finite, there exists a
neighborhood U 3 x such that Ix = {i ∈ I |Wi ∩U 6= ∅} is finite. Then there exists i ∈ Ix such that
{n | in = i} is infinite. yn ∈ suppgi ⊂ Vi.

Finally, we show that {supp fα} is locally finite. Because Wi is locally finite, there exists U 3 x
such that Ix as defined above is finite. Then for all α such that U∩ supp fα 6= ∅, there exists y ∈ U
such that fα(y) 6= 0. This implies gi(y) 6= 0 for some i ∈ ρ−1(α). Thus y ∈ U∩Wi, so i ∈ Ix. Thus
α = ρ(i) ⊂ ρ(Ix).

10This is specifically for the proof. We are staying in the integers for the number theorist in the room.
11I asked if we needed the condition of countable refinement, then Connor said that refinements of partitions add points,

and Mike made an analogy to refining flour.
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4 Lecture 4 (Sep 16)

We began class by finishing the proof of Theorem 37. Everything there has been added to the
notes from last time. Today we will discuss tangent vectors.12

4.1 Tangent Spaces

Definition 44. Let M be a smooth manifold and p ∈M. Then an R-linear map X : C∞(M)→ R

is called a tangent vector at p if for all f,g ∈ C∞(M), X(fg) = f(p)X(g) + g(p)X(f).

Notation 45. The set of all tangent vectors at p is denoted TpM. It is easy to see that this is an
R-vector space.13

Definition 46. Let F :M→ N be smooth. The differential of F at p F∗ : TpM→ TF(p)N is given by

(F∗X)(f) = X(f ◦ F)

for all f ∈ C∞(N).14 Usually, this is denoted by dFp.

Proposition 47. The following are true:

1. (G ◦ F)∗ = G∗ ◦ F∗;

2. If F :M→ N is a local diffeomorphism, then F∗ is an isomorphism.

Proposition 48 (“Localization”). Let M be a smooth manifold and U ⊂M open with inclusion i : U→
M. Then for all p ∈ U, i∗ : TpU→ TpM is an isomorphism.

Lemma 49. Fix p ∈ M and f,g ∈ C∞(M). If there exists a neighborhood B 3 p such that f|B = g|B,
then X(f) = X(g) for all X ∈ TpM.

Proof. Let X = {B,M \ {p}} and ψ1,ψ2 be a partition of unity subordinate to X. Let h = f− g. Then
ψ2 = 1 on M \ B. Thus h = hψ2 on M \ B. Because h = 0 on B, then h = hψ2 on B. Finally,
ψ2(p) = 0. Thus X(h) = X(hψ2) = h(p)X(ψ2) +ψ2(p)X(h) = 0.

Lemma 50. Consider A ⊂ U ⊂M, where A is closed and U is open. Then there exists an extension map
C∞(U)→ C∞(M) given by f 7→ f̃ such that f̃|A = f and supp f̃ ⊂ U.

Proof. Let ψ1,ψ2 be subordinate to {U,X \A}. Define f̃ = ψ1f.

Proof of Proposition 3.7. Fix a ball B 3 p such that B ⊂ U. Suppose i∗X = 0. Let f̃ ∈ C∞(M) be the
extension of f by Lemma 50. Then X(f) = X(f̃) = X(f̃ ◦ i) = i∗X(f) = 0.

Now we show that i∗ is surjective. For Y ∈ TpM, define X ∈ TpU by X(f) = Y(f̃). Checking that X
is linear and satisfies the Leibniz rule is straightforward, and it is easy to see that i∗X = Y.

12There are many ways to define this. For example, we can define the tangent space as the stalk of the tangent sheaf.
Alternatively, we can make a construction analogous to the Zariski tangent space from algebraic geometry. Finally, we can
embed M into Rn by Whitney and use the classical notion of tangent space.

13Later we will define the tangent bundle.
14This is also called the pushforward induced by F.
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Proposition 51. Fix p ∈ Rn. Define D : Rn → TpRn by v 7→ Dv where Dv is the directional derivative.
Then D is an isomorphism. If x1, . . . , xn are coordinates of Rn and v = (v1, . . . , vn), then Dvf = v · (∇f).

Definition 52. Now consider some chart ϕ : U → Rn and the projections πi : Rn → R. Let
xi = πi ◦ϕ. Then {xi} are called local coordinates of U.

5 Lecture 5 (Sep 18)

Last time, we defined local coordinates on Rn at the end of class. Note that a chart ϕ can be
written as ϕ(q) = (x1(q), . . . , xn(q)). We may define local coordinates on an arbitrary manifold
analogously.

5.1 Working in Coordinates Fix p ∈ U ⊂ M and let f ∈ C∞(U). Denote p̂ = ϕ(p) ∈ Rn and
f̂ = f ◦ϕ−1. Because ϕ(U) ⊂ Rn, we can use multivariable calculus to define

∂f̂

∂xi

∣∣∣∣∣
p̂

∈ C∞(U).

This allows us to define the directional derivative on M as(
∂

∂xi

∣∣∣∣
p

)
:= ϕ−1

∗

(
∂

∂xi

∣∣∣∣
p̂

)
).

Proposition 53. The set of directional derivatives with respect to the local coordinates is a basis for TpM.
In particular, TpM ' Rn.

This allows us to compute tangent vectors by pushforward:

(
∂

∂xi

∣∣∣∣
p

)
(f) = ϕ−1

∗

(
∂

∂xi

∣∣∣∣
p̂

)
(f)

=
∂

∂xi

∣∣∣∣
p̂

(f ◦ϕ−1)

=
∂f̂

∂xi

∣∣∣∣
p̂

.

Now we may define the Jacobian of a smooth map. Let F : M → N be a smooth map with
p ∈ M,q = F(p) ∈ N. Define charts U 3 p,V 3 q with charts ϕ,ψ with local coordinates
x1, . . . , xm and y1, . . . ,yn. We will write F∗ as a matrix with respect to the standard bases.
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Let F̂j = yj ◦ F ◦ϕ−1, so the induced map ϕ(U)→ ψ(V) is given by (F̂1, . . . , F̂n). Then(
F∗

∂

∂xi

∣∣∣∣
p

)
(yj) = F∗

(
∂

∂xi

∣∣∣∣
p̂

)
(πj ◦ψ)

=

(
∂

∂xi

∣∣∣∣
p̂

)
(πj ◦ψ ◦ F ◦ϕ−1)

=

(
∂

∂xi

∣∣∣∣
p̂

)
(πj ◦ F̂)

=

(
∂

∂xi

∣∣∣∣
p̂

)
(F̂j)

=
∂F̂

∂xi

∣∣∣∣
p̂

.

From multivariable calculus, we get that

F∗

(
∂

∂xi

∣∣∣∣
p

)
=

n∑
j=1

(
∂F̂j

∂xi

∣∣∣∣
p̂

)(
∂

∂yj

∣∣∣∣
q

)
.

Writing this as a matrix, we get exactly the Jacobian.

Example 54. We will compute the pushforward of the identity on two different charts. In particular,
F∗ = id. Then we see that

∂

∂xi

∣∣∣∣
p

=

n∑
j=1

(
∂(ψ ◦ϕ−1)j

∂xi

)
∂

∂yj

∣∣∣∣
p

.

Example 55. Suppose F :M→ R. Then F∗ : TpM→ FF(p)R ' R. Thus for all F ∈ C∞(U), we can
consider dFp = F∗ ∈ (TpM)∗.15 Note that dFp(X) = X(F).

In local coordinates, observe that (
∂

∂xi

∣∣∣∣
p

)
(xj) = δij.

Thus {dxip} is the dual basis of (TpM)∗.

Example 56. Let γ : (−ε, ε) ⊂ R → N such that γ(0) = q ∈ N. Then γ is called a smooth curve
through q. Note that T0(−ε, ε) = T0R = R1 = R{(∂/∂t)|0}. We denote the tangent vector

γ∗

(
∂

∂t

∣∣∣∣
0

)
∈ Tγ(0)N

by γ ′(0) and call it the tangent vector of γ at the point q.

15This is called the cotangent space for obvious reasons.
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5.2 Alternative Approaches to Tangent Spaces We present alternative ways to define the tan-
gent space. The first way is to use equivalence classes of smooth curves:

Fix p ∈M. Let Cp = {γ : I→M | γ(0) = p}. Then let γ1 ∼ γ2 if they share a tangent vector (after
pushing forward to Rn and using the calculus notion of tangent vector.)

The second way, which will not be discussed, is as the stalk of the tangent sheaf.16

5.3 Vector Fields.

Definition 57. Let M be a smooth manifold. The tangent bundle of M is

TM =
⊔
p∈M

TpM

as a set.

Theorem 58. The following are true:

1. If dimM = n, then TM is naturally a smooth (2n)-manifold.

2. Moreover, the projection π : TM→M is a smooth map.

3. For any smooth F :M→ N, there is a smooth F∗ : TM→ TN, defined in the obvious way.

Proof of (1). Let U ⊂M. Then consider π−1(U) = TU. Now let {(Uα,ϕα) be a smooth atlas of M.
Then we will define local trivializations:

Let x1, . . . , xn be local coordinates and consider the standard basis of TpM. Thus we can write
X =
∑n
i=1 X

i ∂
∂xi

∣∣
p

. Then we can define ϕ̃α(p,X) = (ϕα(p),X1, . . . ,Xn). It is easy to see that the
conditions of Lemma 15 hold. Applying Lemma 15, we have a smooth structure.

6 Lecture 6 (Sep 23)

Mike cannot be here on Wednesday, December 11, so we will need to make up the lecture. We will
begin at 2 PM on three days that are to be determined.

6.1 Vector Fields, Continued

Definition 59. A (continuous, smooth) section M → TM of the tangent bundle is called a
(continuous, smooth) vector field.

Remark 60. An open question is to find a necessary and sufficient condition on manifolds M,N
such that TM ' TN.

Lemma 61 (Smoothness Criteria). A section X of the tangent bundle is smooth if and only if one of the
following two conditions holds:

1. The representative on charts X̂ = ϕ̃ ◦X ◦ϕ−1 is smooth.

16This is closer to the algebraic point of view.
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2. For all open U ⊂M and f ∈ C∞(U), the function Xf : p→ Xp(f) is smooth.

Notation 62. We will denote the space of global sections of the tangent bundle by X(M).

We can check that X(m) is a nonempty module over C∞(M).17

Definition 63. A map Y : C∞(M)→ C∞(M) is called a derivation if it satisfies the Liebniz rule.

Proposition 64. Y is a derivation if and only if Y(f) = Yf for some Y ∈ X(M).

Now let F :M→ N be a smooth map. If F is a diffeomorphism, for X ∈ X(M) define Y ∈ X(N) by

Y := F∗ ◦C ◦ F−1.

Thus Y ◦ F = F∗ ◦X. However, if F is not a diffeomorphism, such a Y need not exist.

Example 65. Consider the figure-eight S1 → Rn. Then we cannot push forward a vector field
onto the double point. Also, how do we push forward the vector field onto points that are not
mapped onto?

Definition 66. Let F :M→ N be a smooth map and X ∈ X(M), Y ∈ X(N). Then X, Y are F-related
if F∗ ◦X = Y ◦ F,

Example 67. Consider the vector field ∂t ∈ X(R). Then if F : R→ R2 is the covering map of the
circle, an F-related vector field on R2 is Y = x∂y − y∂x.

6.2 Lie Algebras Note that if X, Y are vector fields, then X · Y is not necessarily a vector field.
However, their Lie bracket is a vector field.

Example 68. Let ϕ : U ⊂ M → Rn be a chart with coordinates x1, . . . , xn. Then we have the
relations generating the Weyl algebra on the Lie bracket of the standard basis vectors. Proof boils
down to symmetry of mixed partials after symbol pushing to get us into Rn.

Note that X(M) is a Lie algebra.18

Proposition 69. [fX,gY] = fg[X, Y] + (fXg)y− (gYf)X. Also, if Xi is F-related to Yi for i = 1, 2, then
[X1,X2] is F-related to [Y1, Y2].

We can express the Lie bracket locally. If X =
∑
xi∂i, then

[X, Y] =
∑
i

∑
j

(Xj∂jY
i − Yj∂jX

i)∂i =
∑

[X, Y]i∂i.

Recall the definition of a Lie algebra.19

Example 70. Some examples of Lie algebras are:

1. g = X(M) with the Lie bracket defined above.

17In fact, we can extend this to define the tangent sheaf.
18Apparently the thing we are supposed to study is∞-algebraic structures. Mike wishes there was a course here on

higher algebra taught by Ivan or Owen.
19This can be internalized to any category enriched over Ab.

Page 13 of 46



Patrick Lei University of Massachusetts, Amherst Fall 2019

2. g = Rn with zero Lie bracket.20

3. g =Mn(R) with the commutator. In fact, this generalizes to any associative R-algebra.

4. In Homework 2 we will find the 2-dim and 3-dim Lie algebras.

5. The category of Lie algebras has products.

6. Suppose the vector space g has basis X1, . . . ,Xn. Define

[Xi,Xj] =
n∑
k=1

ckijXk.

Then Jacobi holds if and only if for all s,

n∑
`=1

(c`jkc
s
i` + c

`
kic

s
j` + c

`
ijc

2
k`).

Let G be a Lie group. Then define the left translation Lg : G → G by h 7→ gh. This is a
diffeomorphism with inverse (Lg)

−1 = Lg−1 .

Definition 71. X ∈ X(G) is left-invariant if (Lg)∗(X) = X for all g ∈ G.

Define Lie(G) be the set of left-invariant vector fields. We can check that Lie(G) is a Lie algebra
with the usual Lie bracket.

Theorem 72. Let G be a Lie group with e ∈ G the identity. Define ε : Lie(G)→ TeG by X 7→ Xe. Then
ε is an isomorphism of vector spaces. In particular, dim Lie(G) = dimG.

Theorem 73. Let G,H be Lie groups with Lie algebras g, h. Then suppose F : G→ H is a morphism of Lie
groups. Then for X ∈ g = TeG, there exists a unique Y ∈ TeH which is F-related to X. This defines a Lie
algebra homomorphism F∗ : g→ h.

Corollary 74. If G is a Lie subgroup of H, then g is a Lie subalgebra of h.

Corollary 75. If π : G→ H is a smooth cover of Lie groups, then g ' h.

Example 76. Let G = GLn(R) (Mn(R). Then TInG = TInM =Mn(R).

Proposition 77. Under the identification ε : TInG → Lie(G), the Lie bracket of Lie(G) is sent to the
commutator of matrices.

7 Lecture 7 (Sep 25)

Today we will begin discussion of vector bundles.

20This is called abelian.
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7.1 Vector Bundles

Definition 78. Let X be a topological space. A real vector bundle of rank n over X is a morphism
π : E→ X such that

1. For all p ∈ X, the fiber over p is an n-dimensional real vector space.

2. For all p ∈ X, there exists U 3 P and a homeomorphism Φ : π−1U → U×Rn such that
π1 ◦Φ = π and such that for all q ∈ U, Φ|Eq is an isomorphism of vector spaces.

Example 79. The tangent bundle of a smooth manifold is a vector bundle.

Definition 80. A complex vector bundle is as in the above definition, but R is replaced with C.

Suppose E→ X is a vector bundle. Suppose {Uα} is an open cover with trivializations Φα. Then
we have the following diagram:

(Uα ∩Uβ)×Rn π−1(Uα ∩Uβ) (Uα ∩Uβ)×Rn

Uα ∩Uβ
π

π

Φβ Φα

π
.

Then we consider the map Φβ ◦Φ−1
α . Over every point q, we obtain some τβα(q) ∈ GLn(R).

Thus the transitions maps of E are smooth maps Uα ∩Uβ → GLn(R).

Proposition 81. τγβτβα = τγα.

Example 82. On the tangent bundle, the transitions are simply the Jacobians.

7.2 Pullback Bundles

Lemma 83. Let X be a topological space, E a set, and π : E → X surjective. Suppose the fibers of π are
vector spaces of dimension n and that there exists a cover {Uα} of X such that:

1. For all α there exists a bijection Φα : π−1(Uα) → Uα ×Rn commuting with projections and
Φα|Eq is an isomorphism.

2. For all α,β, τβα : Uα ∩Uβ → GLn(R) is continuous.

Then E→ X is a topological vector bundle.

Remark 84. Lemma 83 holds in the smooth category.

Example 85. The trivial bundle M×Rk is a smooth vector bundle.

Example 86. Let E = {(x, v) ∈ RPn ×Rn+1 | v ∈ x}. This is the tautological line bundle over RPn.
We will choose the standard affine charts. The trivializations will be the obvious ones (projection of
v to the ith coordinate.) It is easy to see that the transitions are simply rescaling, so the transitions
satisfy the conditions of Lemma 83.

Example 87. Consider E = {(x, v) ∈ CPn ×Cn+1 | v ∈ x}. This is the tautulogical bundle over
CPn.21

21This generalizes to any field. Also, this is a holomorphic line bundle.
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Suppose E →M is a vector bundle and F : N →M is a smooth map. Then we will give the set
E×MN the structure of a vector bundle over N.22

Theorem 88. Vector bundles can be pulled back.

Proof. Let {Uα} be an open cover of M with trivializations Φα. Now pull everything back to N in
the natural way. It is a mechanical exercise to verify that everything works and that we can use
Lemma 83.

Example 89. Consider the embedding RPk → RPn. Then pulling back the tautological bundle
from RPn gives the tautological bundle on RPk.

Example 90. Let M be the Klein bottle. Let N = S1 and F sends the circle to a loop around the
cylinder part of the Klein bottle. We know that TM→M is not trivial, but its pullback to S1 is
trivial.

8 Lecture 8 (Sep 30)

Last time we discussed vector bundles. Some examples are the tautological bundles over projective
space. We also defined pullbacks of vector bundles.

8.1 Sections and Frames Let E→M be a vector bundle with U ⊂M open. Then a local section
of E over U is a smooth σ ∈ O(E)|U. A global section is a section σ ∈ Γ(E).

Definition 91. Let E→M be a smooth vector bundle of rank n. Then an ordered tuple {σ1, . . . ,σn}
of local sections of E over U ⊂M open is called a local frame if the values at each p ∈ U form a
basis of Ep. If U =M, then we have a global frame.

Example 92. A section of the tangent bundle is the same thing as a vector field. In addition, every
vector bundle carries a zero section.

Example 93. The tangent bundle TM → M carries standard local coordinate frames on the
trivialiazations.

Proposition 94. Let E→M be a vector bundle. Then there exists a bijection between local (resp. global)
frames and local (resp. global) trivializations.

Proof. Given a local frame, then we do the obvious thing to locally trivialize the vector bundle. In
the other direction, define each frame to be given by the coordinate functions.

Thus a vector bundle is trivial if and only if it has a global frame.

Definition 95. A manifold is parallelizable if TM→M is trivial.

Example 96. S1 is parallelizable. One argument is that all Lie groups are parallelizable. In this
spirit, S3 is also parallelizable. However, S2 is not parallelizable (Brouwer’s fixed point theorem).

Proposition 97. Every Lie group is parallelizable.

22Compare to base change in algebraic geometry.
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Proof. Take a frame for TeG and then apply the g-action to get a left-invariant frame.

Example 98. The tautological line bundle is not trivial.

Example 99. The Mobius strip is a nontrivial vector bundle on S1.

Theorem 100. LetM be a smooth manifold with open cover {Uα}. Given smooth τβα such that τγβτβα =
τγα, then there exists a smooth rank-n vector bundle over M with these transition functions.

8.2 Induced Bundles Let G ⊂ GLn(R) be a Lie subgroup and let ρ be a Lie group homo-
morphism. Then suppose E → M is a smooth rank n vector bundle with transition functions
τβα : Uα ∩Uβ → G ⊂ GLn(R). Then postcomposing with ρ : G → GLn(R) induces a vector
bundle Ẽ, called the induced bundle of E by ρ.

Example 101. The dual bundle is induced by taking the inverse of the transpose of each transition
function.

9 Lecture 9 (Oct 2)

9.1 Examples of Dual Bundles

Example 102. Let E = TM. Then the dual is E∗ = T∗M, which is the cotangent bundle of M. This
is the main example of a symplectic manifold. Also, we call a local trivialization of TM a frame
and a local trivialization of T∗M a coframe.

Physically, we can think of M as position, TM as position and velocity, and T∗M as position and
momentum. In particular, the laws of mechanics can be phrased in both TM and T∗M.

Example 103. Consider the projection RPm → RPn−1 given by projection onto the first n
coordinates.23. Now remove the point where π is not regular. We claim E∗ is the tautological line
bundle on RPn.24

Example 104. Let E1,E2 be vector bundles of rank n1,n2. Then define E = E1⊕E2 is a vetor bundle
of rank n1 +n+ 2 with transitions given by the obvious morphism GLn1 ×GLn2 → GLn1+n2 .

9.2 Subbundles and Quotient Bundles

Definition 105. Let E→M be a rank n vector bundle. Then E ′ ⊂ E is a subbundle of rank k if

1. For all p ∈M, E ′p is a k-dimensional subspace of Ep.

2. For all p ∈M, there exists a local frame of E over some neighborhood U 3 p such that for all
q ∈ U, σ1(q), . . . ,σk(q) are a basis for E ′q.

Proposition 106. For any smooth vector bundle E with subbundle E ′ we can cover M by Uα such that

1. Both E,E ′ are trivial Uα.

23This is a standard example in algebraic geometry
24In particular, E = O(1).
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2. The transition functions are block upper-triangular of the form
(
A B
0 C

)
.

Now define

ρ1 :

(
A B
0 C

)
7→ A, ρ2 :

(
A B
0 C

)
7→ C.

Definition 107. The bundle induced from E by ρ2 is called the quotient bundle.

9.3 Cotangent Bundle We have the cotangent bundle T∗M→M with coframe {dxi}. A section
of the cotangent bundle is called a covector field.25

Example 108. Let M be a smooth manifold and f ∈ C∞(M). The differential df of f is defined by
dfp(Xp) = Xpf. By the cotangent version of Lemma 61, this is a smooth covector field.

We may ask whether all smooth covector fields arise this way, and the answer is no, because of
H1(M). We may read on our own how to integrate covector fields over paths.

Differentials do satisfy the usual calculus rules. In particular, df = 0 if and only if f is constant.

Pushforwards of tangent vectors are replaced by pullbacks here. If F : M → N is smooth, then
the pullback is given by F∗ω(X) = ω(F∗X) pointwise. Thenwe can check that this pulls smooth
covector fields to smooth covector fields.

9.4 Submersions, Immersions, Embeddings .

Definition 109. Let F : M → N be smooth. Then we define the rank of F at p to be the rank of
(F∗)p.

• F is a submersion if (F∗)p is surjective for all p ∈M.

• F is an immersion if (F∗)p is injective for all p ∈M.

• F is a smooth embedding if F is an immersion that is a homeomorphism onto its image.

Example 110. The map A1 → (y2 = x3 − x2) ⊂A2 is an immersion but not an embedding.

Remark 111. An injective immersion must be a smooth embedding if it is proper; in particular
when M is compact.

Theorem 112 (Inverse Function Theorem). Euclidean Version: First, we have the Euclidean version:
Suppose U,V ⊂ Rn and F : U→ V a smooth map. If the Jacobian DF(p) is nonsingular, then there
exists a connected neighborhood U0 ⊂ U of p and V0 ⊂ V 3 F(p) such that F|U0 is a diffeomorphism
onto V0.

Manifold Version: Let F : M → N be smooth. If (F∗)p is a bijection, then F is a local diffeomorphism
near p.

Theorem 113 (Rank Theorem). Euclidean Version: Let U ⊂ Rm,V ⊂ Rn and F : U → V be a
smooth map of constant rank k. Then for all p ∈ U, there exist charts (U0,ϕ) of p and (V0,ψ) of
F(p) such that the coordinates satisfy

25Later, this will be called a 1-form.
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(x1, . . . , xk, xk+1, . . . , xm) (x1, . . . , xk, 0, . . . , 0)

(x1, . . . , xk)

ψ◦F◦ϕ−1

π .

Manifold Version: Let F :M→ N be a smooth map of constant rank k. Then for all p ∈M, there exist
local coordinates x1, . . . , xm at p and y1, . . . ,yn at F(p) such that the coordinate representation of F
is given by (x1, . . . , xm) 7→ (x1, . . . , xk, 0, . . . , 0).

We may read about the Implicit Function Theorem on our own.

10 Lecture 10 (Oct 07)

Theorem 114. Let F :M→ N be smooth of constant rank. Then

1. If F is surjective, then F is a submersion.

2. If F is injective, then F is an immersion.

3. If F is bijective, then F is a diffeomorphism.

Example 115. Define f : S1 × S1 → R3 given by

(q1,q2,q3,q4) 7→ (q1(2 + q3),q2(2 + q3),q4).

This embeds S1 × S1 into R3.

10.1 Submanifolds

Definition 116. Let M be a smooth manifold of dimension n and S ⊂M. We say S is an embedded
submanifold of dimension k 6 n if for all p ∈ S, there exists a smooth chart U 3 p of M such that

S∩U = {(x1, . . . , xn) ∈ U | xk+1 = · · · = xn = 0}.

Here (U,ϕ) is called a slice chart for S, x1, . . . , xn are the slice coordinates for S, and n− k is the
codimension.

Theorem 117. Let S ⊂M be an embedded submanifold of dimension k. With the subspace topology, S is
a topological manifold of dimension k and has a unique smooth structure such that S ↪→M is a smooth
embedding.

Theorem 118. The image of a smooth embedding is an embedded submanifold.

Example 119. The torus is a submanifold of R3.

Example 120. Smooth embeddings of S1 in R3 are knots and their study is called knot theory. In
general, we can study Sk ↪→ Rn and the story varies by codimension.
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Proof of Theorem 117. First we show that S is a topological manifold. It is easy to check that S is
Hausdorff and second-countable in the subspace topology. To see that S is locally Euclidean, we
simply project the slice charts down to Rk.

Now we need to give S a smooth structure. We will simply use the slice charts from M with their
transition functions restricted. Now restricting a smooth map to a coordinate subspace is smooth,
so S ↪→M is an immersion and topological embedding.

Finally, we show that the smooth structure is unique. What we want to show is that ψ, θ are two
charts from different atlases. Then ψθ−1 is a homeomorphism and is smooth. We can also see that
ψθ−1 is an immersion. Because the domain and target have the same dimension, this is a local
diffeomorphism.

Definition 121. Let F :M→ N be a smooth map. Then a point c ∈ N is a regular value of F if for
all p ∈ F−1(C), (F∗)p is surjective. Otherwise, c is a critical value of F.

Corollary 122. For any regular value c of a smooth map F :M→ N, the preimage F−1(c) is an embedded
submanifold of M of codimension dimN. Moreover, Tp(F−1(c)) = ker(F∗)p.

Example 123. Consider a smooth map F : Rn → R given by

(x0, . . . , xn) 7→
n∑
k=0

x2
k.

Then 1 ∈ R is a regular value of F and F−1(1) = Sn is an embedded submanifold. Then
TxS

n = {y | y ⊥ x}.

Example 124. Consider the function F : R3 → R given by

(x,y, z) 7→ (
√
x2 + y2 − 2)2 + z2.

Example 125. Let f : M → N be a smooth map. Then consider the graph of f in M×N. Then
define F : M → M×N given by F(p) = (p, f(p)). This is a smooth embedding and Γ(f) is the
image of F, so it is a submanifold of M×N.

Proposition 126. Let F :M→ N be smooth. Suppose S ⊂ N is an embedded submanifold and F(M) ⊂ S.
Then the range restriction FS :M→ S is smooth.

Remark 127. There is a similar result for domain restriction.

Example 128. Consider multiplication of quaternions on H = R4. Then multiplication restricted
to S3 is smooth.

11 Lecture 11 (Oct 09)

11.1 Lie Subgroups

Definition 129. A Lie subgroup of a lie group G is a subgroup of G with a smooth structure making
it an immersed submanifold of G.
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Proposition 130. If G is a Lie group and H is any subgroup which also is an embedded submanifold, then
H is an closed Lie subgroup.

To prove this, we need to check that multiplication and inversion are smooth on H and that H is
closed.

Example 131. SLn(R) is a closed Lie subgroup of GLn(R) of codimension 1, and the Lie algebra
sln(R) is the set of trace 0 matrices.

To show this, we simply show that 1 is a regular value of the determinant function. The easy way
to see this is that det is a Lie group homomorphism with derivative tr.

Example 132. In general, SLn is a closed algebraic subgroup of GLn over any field k.

Example 133. GLn acts on Pn−1 and the group of actions is called PGLn. This has dimension 3
over k.

Example 134. The orthogonal group O(n) is a Lie group with Lie algebra o(n) consisting of
matrices that satisfy AT +A = 0.

11.2 Lie Group Actions Let M be a smooth manifold and G be a Lie group.

Definition 135. A left-action of G on M is a smooth map Theta : G×M → M that satisfies the
usual group action axioms.

Recall that an action is transitive if for some p, G.p =M. The stabilizer is called the isotropy group,
and the action is free if every point has trivial stabilizer.

Example 136. The simplest example of a Lie group action is the trivial action, where every element
of G acts by the identity.

Example 137. If M is a vector space V , then a G-action is called a representation.

Example 138. Consider the action of G on itself by conjugation. Then differentiate the action to
obtain a Lie group homomorphism G→ GL(TeG), which is called the adjoint representation of G.

Definition 139. An action G×M → M is called proper if the map G×M → M×M given by
(g,p) 7→ (g.p,p) is proper.

Proposition 140. Let g.K be the image of K under the action of G, and let GK = {g ∈ G | g.K∩K 6= ∅}.
Then the action of G is proper if for all compact K ⊂M, GK is compact.

Proposition 141. The action of G on M is proper if for all convergent subsequences {pi} of M and any
sequence {gi} of G such that {gi.pi} is convergent, then there exists a subsequence of gi converging in G.

Remark 142. 1. For a proper action, GK is compact when K = {p}.

2. Compact Lie group actions are proper.

3. For a discrete group, the action is proper only if Gp is finite for any p ∈M. Thus there exists
an invariant neighborhood of p.
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12 Lecture 12 (Oct 15)

Recall that last time we discussed Lie group actions. Today we will relate them to manifolds.

12.1 Equivariance

Theorem 143. Suppose a Lie group G has a proper free action on a manifold M. Then the orbit space is a
topological manifold of dimension dimM− dimG and there exists a unique smooth structure on M/G
such that the quotient map M→M/G is a submersion.

Example 144. Recall that the Hopf fibration is the quotient map S3 → S3/S1 = CP1.

Example 145. Consider the smooth Z/2Z-action on Sn by ±1. Then the quotient Sn/(Z/2Z) is
RPn.

Definition 146. Suppose M,N are smooth G-manifolds. Then a smooth map F : M → N is
G-equivariant if it induces a natural transformation of functors G→ Diff.

Theorem 147. Suppose F : M → N is an equivariant map between G-manifolds. Then suppose G acts
transitively on M. Then F has constant rank and F−1(c) ⊂M is an embedded submanifold.

Proof. Fix p0 ∈M. Then for all p ∈M there exists g ∈ G such that p = g · p. Then by equivariance,
the diagram

Tp0M TF(p0)N

TpM TF(p)N

F∗

g g

F∗

commutes. Thus F must be of constant rank.

Corollary 148. Let G have a smooth, free, proper action on M. Then the orbit G.p is an embedded
submanifold for all p ∈M.

Proposition 149. Let F : G→ H be a Lie group homomorphism. Then ker F is an embedded Lie subgroup
of G.

Proof. Consider the action of G on itself and its induced action on H. Then use Theorem 147,

Definition 150. A smooth manifold M is called a homogeneous space if it admits a smooth transitive
Lie group action for some G.

Theorem 151. Let M be a homogeneous space with a transitive Lie group action of G. Fix any point
p ∈ M. Then the map G/Gp → M is an equivariant diffeomorphism. Moreover, Gp is an embedded
submanifold of M.
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Alternatively, let G be a Lie group and H ⊂ G be a closed Lie group. Then consider the right
H-action on G. Then this action is smooth and proper, and the quotient space G/H is a smooth
manifold of dimension dimG−dimH. Then it is easy to see that the G-action on G/H is transitive,
so we can define a homogeneous space to be G/H.

Proof of Theorem 151. The F is clearly well-defined by basic properties of groups. Then note that

F(g ′gH) = (g ′g)p = g ′F(gH).

Now set Gp = F−1(p), which is an embedded submanifold of G. Finally, it is easy to see that F is
a bijection. Because F has constant rank, then F is a diffeomorphism.

Example 152. Consider M = Sn and G = O(n+ 1). Then M has a natural transitive G-action. Let
p = (0, 0, . . . , 0, 1) be the north pole. Then Gp = O(n), so Sn = O(n+ 1)/O(n).

Example 153. Let M = G2(R
4). Then consider the natural transitive action of G = GL2(R). Let p

be the plane spanned by e1, e2. Then Gp is the set of matrices of the block form
(
A B
0 C

)
.

Therefore G2(R
4) = G/Gp.

12.2 Whitney’s Embedding and Approximation Theorems

Theorem 154 (Whitney Embedding Theorem). Let M be a compact smooth n-manifold. Then there
exists a smooth embedding of M into R2n+1 and there exists a smooth immersion of M into R2n.

Theorem 155 (Whitney’s Approximation Theorem). Let f :M→ Rk be a smooth map with k > 2n+ 1.
Then for all ε > 0 there exists a smooth embedding f̃ such that ‖f(p) − f̃(p)‖∞ < ε.
Proof of Theorem 154. First we need to embed M into Rr for some very large dimension r. By
Proposition 43, there exists a finite regular cover {Wi} of M. Now we build our regular partition
of unity λi :Wi → R. Now define f :M→ Rm(n+1) given by

x 7→ (f1, . . . , fm),

where fi(x) = (λiϕi(x)λi(x)). We show that f is a smooth embedding. It is easy to see that every
pushforward is injective and that f is injective. Because M is compact, f is a smooth embedding.

Now given an embedding M→ Rr with r > 2n+ 1, we will attempt to embed M into Rr−1. For
v ∈ Sr−1, define πV : Rr → Rr−1 be the projection parallel to v. We want to choose v ∈ Sr−1 such
that πV :M→ Rr−1 is an embedding. We need two conditions on v:

1. v 6= (p− q)/‖p− q‖ for all p,q ∈M.

2. v 6= w/‖w‖ for w ∈ TM ⊂ TRn.

For the first condition, define the smooth map F1 :M×M \∆→ Sr−1. We need v ∈ Sr−1 \ Im(R1).
For the second condition, let T1M = {w ∈ TM | |w| = 1. Then T1M is a smooth (2n− 1)-manifold,
so let F2 : T1M → Sr−1 given by projection in the second coordinate. Thus we need to choose
v ∈ Sr−1 \ Im(F2).

Now we need the following result:
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Theorem 156. Let M,N be smooth manifolds with dimM < dimN and let F :M→ N be a smooth map.
Then the subset N \ Im(F) is dense in N. In fact, the image of F has measure 0.

Therefore the desired v exists. Running this procedure until r = 2n+ 1, we have the desired
embedding. Doing it again, we obtain an immersion M→ R2n.

13 Lecture 13 (Oct 16)

Last time we stated Theorem 156, which says that the image of a smooth map M → N from a
lower-dimensional manifold is measure zero. Recall the definition of measure from analysis. Here,
we will consider the Lebesgue measure.

Remark 157. 1. Being measure 0 is a local property.

2. Qn ⊂ Rn has measure 0,

3. If k < n, then Rk ⊂ Rn has measure 0.

Theorem 158 (Sard). Let F :M→ N be a smooth map. Then the set of critical values has measure zero.

13.1 Tensors Let V be a real vector space, and define Tk(V) = (V∗)⊗k, called the space of
covariant k-tensors. Equivalently, this is the space of multilinear maps V⊗k → R.

Example 159. The determinant is an alternating multilinear map
∧n V → R.

Define T`(V) = V⊗` to be the space of contravariant `-tnesors. Similarly, we can define Tk` V =

Tk(V)⊗ T`(V), the space of mixed vectors of type (k, `).

Now we will pass to the vector bundles. Let E→M be a real vector bundle of rank n. We may
define the associated tensor bundles Tk` (E) analogously to the case of vector spaces.

Let {ei} be a basis of V with dual basis {εi}. Then we can form a basis {εi1 ⊗· · ·⊗εik ⊗ej1 ⊗· · ·⊗ej` }
of Tk` (V).

Example 160. Given a vector bundle E→M, we can produce a smooth vector bundle E⊗ E→M.

To do this, we use the construction lemma. To trivialize, we simply use the standard basis. The
transition functions are simply given by the tensor powers of the original transitions. Finally, it is
not hard to show that the transition functions are smooth.

Definition 161. Let M be a smooth n-manifold. Then define TkM to be the bundle of covariant
k-tensors. Analogously, define T`M and Tk`M.

Remark 162. T1M = T∗M, T1M = TM, ad T0M = T0M = T0
0M =M×R.

Definition 163. A (k, `)-tensor field is a smooth section of Tk`M.

Example 164. H0(M, T0M) = H0(M, T0M) = H0(M, T0
0M) = C∞(M).

In local coordinates, we can write a tensor field as

σ =
∑

σJIdx
⊗I ⊗ ∂⊗Ix .
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Proposition 165. Consider an R-linear map φ : X(M)⊗k → C∞(M). Suppose that φ is C∞(M)-linear.
Then there exists a unique σ ∈ H0(M, TkM) such that σp(x1, . . . , xk) = φ(x1, . . . , xk)(p).

Definition 166. Let F : M → N be smooth. Then there is a pullback F∗ : H0(N, TkN) →
H0(M, TkM) defined analogously to the pullback of 1-forms.

Remark 167. If k = 0, then this is just the pullback of smooth functions.

If k = 1, this is given by

(F∗ df))p(X) = dfF(p)(F∗,pX)

= F∗,p(X)(f)

= Xp(f ◦ F)
= d(f ◦ F)p(X).

Therefore F∗(df) = d(F∗f).

In local coordinates, the computations become very cumbersome. Fortunately, in actual mathemat-
ics, people rarely work with more than four indices.

Proposition 168. Let ξ ∈ H0(N, TkN),η ∈ H0(N, T`N). Then F∗(ξ⊗ η) = F∗(ξ)⊗ F∗(η). In addition,
(G ◦ F)∗ = F∗ ◦G∗ and F∗(fσ) = (f ◦ F)F∗σ.

13.2 Riemannian Metrics

Definition 169. A smooth covariant 2-tensor field g ∈ H0(M, T2M) is a Riemannian metric if for all
p ∈M, gp is a symmetric, positive definite, nondegenerate bilinear form. The pair (M,g) is called
a Riemannian manifold.

In local coordinates, we write g =
∑
gijdx

i ⊗ dxj. Then g is a Riemannian metric if (gij) is a
positive-definite symmetric matrix.

Example 170. The standard example is the Euclidean metric on Rn. A non-example from physics
is the Lorentz spacetime metric, which has signature (3, 1).

14 Lecture 14 (Oct 21)

We continue our example of Riemannian manifolds from last time.

14.1 Riemannian Manifolds Continued

Definition 171. Let (M,g) be a Riemannian manifold and let γ : [a,b] →M be a smooth curve.
Define the length of γ to be

Lg(γ) =

∫b
a
g(γ ′(t),γ ′(t)) dt.

Definition 172. Let M,g be a connected Riemannian manifold. Define the distance between p,q to
be the infimum over all paths γ from p to q of L(γ).

Proposition 173. Distance is well-defined.
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Proposition 174. Every manifold is Riemannian.

Proof. Let (Uα,ϕα) cover M. Now let fα be a partition of unity subordinate to Uα. Define gα to
be the standard Riemannian metric on Rn. Then let g =

∑
fαgα. It is easy to see that this is a

metric.

Theorem 175. TM and T∗M are isomorphic vector bundles.

Proof. Choose a metric g on M. Define g̃ : TM→ T∗M by

X 7→ gp(X,−).

This is the standard isomorphism V → V∗ given by a nondegenerate bilinear form. This is a
fiberwise isomorphism, so we simply need to check that this is smooth, which can be done locally,
and is easy.

Definition 176. Let (M,g) be a Riemannian manifold. Then consider a local frame {ei} on U ⊂M
is an orthonormal frame with respect to g if g(ei, ej) = δij.

Definition 177. Let G ⊂ GLn(R) be a Lie subgroup. Then a (smooth) rank-n vector bundle E
admits a G-reduction to a G-bundle if there exists a trivialization of E such that the corresponding
transition functions have image lying in G. With such a reduction, E is called a G-bundle.

Example 178. If E is a trivial bundle. Then E admits a reduction to a {e}-bundle.

Example 179. If E is an O(n)-bundle, then E is self-dual. This follows from the definition of O(n).

14.2 Almost Complex Structures Recall that Hom(V ,W) = V∗ ⊗W. Thus H0(M, T1
1M) =

H0(M, End(TM)).

Definition 180. Let J ∈ H0(M, T1
1M. J is called an almost complex structure on M if for all p ∈M,

Jp : TpM→ TpM satisfies J2p = −Idp.

Proposition 181. IfM admits an almost complex structure, then M has even dimension. Also, TM admits
a reduction to a GLn(C)-bundle.

Now from linear algebra, if J : R2n → R2n satisfies J2 = −Id, then there exists a basis {xi,yi}
of R2n such that J acts like multiplication by i ∈ C. For vector bundles, this applies to local
trivializations and loca frames. Now consider the complex conjuation of J, allowing us to form the
complex vector bundle EJ ' E∗J .

14.3 Differential Forms Differential forms form a basis for the link between analysis and
topology, which culminates in the Atiyah-Singer index theorem. We begin with some multilinear
algebra, then build forms over a manifold.
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14.3.1 Multilinear Algebra Let V be a n-dimensional real vector space and consider the symmetric
group Sk. Recall the notion of the sign of a permutation σ.

Definition 182. T ∈ Tk(V) is alternating if for all X1, . . . ,Xk ∈ V , T(X1, . . . ,Xn) = σT(X1, . . . ,Xn).

Denote by
∧k V to be the subspace of alternating elements of Tk(V).

Definition 183. Define the alternating projection by

T 7→ 1
k!

∑
σ

sign(σ) σT .

A basis for
∧2 V is simply ei ⊗ ej − ej ⊗ ei. This space has dimension

(
n
2
)
. Also, the top exterior

power has dimension 1 and basis element T0 =
∑
σ ε
⊗σsign(σ).

We can verify that T0 acts by the determinant and that any linear map V → V pulls back to
∧k V .

On the top exterior power, the pullback is multiplication by the determinant.

15 Lecture 15 (Oct 23)

Notation 184. For I = (i1, . . . , ik), define εI = k!Alt(εi1 ⊗ · · · ⊗ εik). We call this the elementary
alternating tensor.

Recall the standard basis for
∧k V . Also, note that

εI(X1, . . . ,Xk) = det

ε
i1(X1) · · · εi1(Xk)

...
...

εik(X1) · · · εik(Xk)

 .

Definition 185. For ω ∈
∧k(V),η ∈ ∧`(V), define the wedge product by

ω∧ η =
(k+ `)!
k!`!

Alt(ω⊗]eta).

Proposition 186. 1. εI ⊗ εJ = εIJ if I, J are distinct.

2. The wedge product is bilinear.

3. The wedge product is associative.

4. The wedge product is graded-commutative.26

5. If ω1, . . . ,ωk ∈ V∗, then (ω1 ∧ · · ·∧ωk)(X1, . . . ,Xk) = det(ωj(Xi)).

Definition 187. The exterior algebra of V is given by

∗∧
(V) =

n⊕
k=0

k∧
(V).

26This suggests a cohomology theory.
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Note that the exterior algebra is graded-commutative.

Definition 188. The contraction or interior multiplication on
∧∗(V) is defined by

iX(ω)(x1, . . . ,Xk−1) = ω(X,X1, . . . ,Xk−1).

Lemma 189. 1. i2X = 0.

2. iaX+bY = aiX + biY .

3. For all ω ∈
∧k(V),η ∈ ∧`(V), iX(ω∧ η) = iX(ω)∧ η+ (−1)kω∧ (iXη).

Example 190. For I = (i1, . . . , ik), then ie`ε
I = 0 if ` /∈ I, and (−1)s+`εi1 ∧ · · ·∧ ε̂is ∧ · · ·∧ εik if

` = is.

Example 191. Let ω ∈
∧2(V). Ten write ω =

∑
wikε

i ∧ εj. Now form an antisymmetric matrix
from the ωij. Then define ω̃ : V → V∗ by X 7→ iXω. Writing X =

∑
Xiei and computing, we find

that ω̃ is an isomorphism if det(wij) = 0.

Definition 192. If ω ∈
∧2(V) is nondegenerate, then ω is a symplectic form on V .

Lemma 193. Suppose (V ,ω) is symplectic. Then there exists a basis e1, . . . , em, f1, . . . , fm such that
ω(ei, ej) = ω(fi, fj) = 0 and ω(ei, fj) = δij. This is called a symplectic basis.

Note the standard symplectic form is ω =
∑
dxi ∧ dyi.

Proof of Lemma 193. First, for e1, choose f1 such that ω(e1, f1) = 1.Let W be the span of e1, f1. Then
take the orthogonal complement W⊥.

First we show taht W ⊕W⊥ = V . To see that the intersection is trivial. Then given v ∈ V ,

Next we show that ω is a symplectic form restricted to W⊥. This is easy assuming the above and
using nondegeneracy of ω.

Definition 194. Let (V ,ω) be a symplectic space. A subspace W ⊂ V is

• Symplectic if W ∩W⊥ = {0};

• Isotropic if W ⊂W⊥;

• Coisitropic if W ⊃W⊥;

• Lagrangian if W =W⊥.

Exercise 195 (Hw4 Problem 12-9). For each W ⊂ (V ,ω) of the above type, there exists a symplectic
basis e1, . . . , em, f1, . . . , fm such that

1. If W is symplectic, then e1, . . . , ek, f1, . . . , fk is a basis for W.

2. If W is isotropic, then W is the span of e1, . . . , ek.

3. If W is coisotropic, then W is the span of e1, . . . , en, f1, . . . , fk.

4. If W is Lagrangian, then W is the span of e1, . . . , en.
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There are two generalizations. First, we relax nondegeneracy of ω and obtain vectors g1, . . . ,gk
that kill all of the ei, fi. The gi measure the degeneracy of ω.

If (V ,ω) is a symplectic space and g is a metric, then there exists a symplectic basis which is
orthonormal with respect to g.

16 Lecture 16 (Oct 28)

Today we will discuss manifold versions of the constructions we performed last time.

16.1 Differential Forms on Manifolds Define
∧kM to be the k-th exterior power of the tangent

bundle. This is a smooth vector bundle of rank
(
n
k

)
.

Definition 196. A smooth section of
∧kM is called a differential k-form.

We will denote the space27 of differential k-forms by Ωk(M). This is a subspace of H0(M, TkM).
We may define the wedge product and contraction of differential forms as we did for vector spaces.
This is a graded derivation. In addition, we may define local versions of all of these notions.

Definition 197. The pullback of differential k-forms is defined by F∗ω(X) = ω(F∗X).

Lemma 198. Let F :M→ N be a smooth map. Then

1. The pullback is linear.

2. The pullback respects the wedge product.28

3. If X ∈ H0(M, TM), Y ∈ H0(N, TN) are F-related, then iX(F∗ω) = F∗(iYω).

4. In any smooth chart, F∗(
∑
IωIdy

∧I) =
∑
I(ωI ◦ F)d(y∧I ◦ F).

Proposition 199. If M,N have equal determinant, then F∗ is simply the determinant of the Jacobian.

Definition 200. The exterior algebra29 Ω∗(M) is defined by
⊕
kΩ

k(M).

16.2 Exterior Differentiation

Theorem 201. Let M be a smooth manifold. Then there exists a unique R-linear map d : Ωk(M) →
Ωk+1(M) such that:

1. For f ∈ C∞(M) = Ω0(M), df is the differential of f as defined before.

2. d is a graded derivation.

3. d2 = 0.

Moreover, these imply:

(a) In local coordinates, d
(∑

IωIdx
∧I
)
=
∑
I dωI ∧ dx

∧I.

27sheaf
28Cohomology, anyone?
29complex
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(b) If ω = ω̃ on open U ⊂M then dω = dω̃.

(c) For U ⊂M open, d(ω|U) = (dω)|U.

Lemma 202. Let F :M→ N be a smooth map. Then d(F∗ω) = F∗(dω).

The proof involves computing in a local chart using Lemma 198.

Proposition 203. Let ω ∈ Ω1,X, Y ∈ H0(M, TM). Then dω(X, Y) = X(ω(Y)) − Y(ω(X)) −ω([X, Y]).
More generally, for ω ∈ Ωk(M) and X1, . . . ,Xk+1 vector fields, we have

dω(X1, . . . ,Xk+1) =
∑
i

(−1)i−1Xiω(X1, . . . ,Xk+1) +
∑
i6j

(−1)i+jω([Xi,Xj],X1, . . . ,Xk+1).

Example 204. Let X, Y be vector fields. Then if [X, Y] = 0, α,β are dual to X, Y, and αp(Yp) = 0 =
βp(Xp), then dα = 0 = dβ.

Definition 205. ω ∈ Ωk(M) is closed if dω = 0. It is exact if ω = dη for some η ∈ Ωk−1(M).

Note that exact forms are closed. Thus we may define a cohomology theory, called de Rham
cohomology, and denoted HkdR(M).

Example 206. All de Rham cohomology groups are trivial on Rn. However, H1(S1) is not trivial.

Definition 207. ω ∈ Ω2(M) is called a symplectic form if it is closed and nondegenerate.

The pair (M,ω) is called a symplectic manifold.

Definition 208. Let (M,ω) be a symplectic manifold of dimension 2N. Let Q ⊂M be a submani-
fold of dimension N. Let i : Q ↪→M be the smooth embedding. Then Q is a Lagrangian submanifold
if i∗ω = 0.

Example 209. Let (M,ω) be R2n with the standard symplectic form. Then let Q be given by
setting all yi to be constant.

Definition 210. A diffeomorphism F : (M,ω)→ (M ′,ω ′) is a symplectomorphicm if F∗ω ′ = ω.

Exercise 211 (Homework). Suppose F :M→M is a symplectomorphism. Then let N =M×M.
Let ωN = π∗1ω− π∗2ω. Then

1. N is a symplectic manifold.

2. The graph of F is a Lagrangian submanifold of N.

Example 212. Suppose M is smooth. Then T∗M has a canonical symplectic form. We will define
τ ∈ Ω1(T∗M) as follows:

For all p ∈M, v ∈ T∗pM, let τ(p,v) = π
∗(p, v) ◦ V . τ is called the tautological 1-form for T∗M. Then

we define the canonical symplectic form to be ω = −dτ.

17 Lecture 17 (Oct 30)

We will have our makeup class on November 11th at 1PM.
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Definition 213. Two submanifolds N1,N2 ⊂M are transverse if for all p ∈ N1 ∩N2, TpN1, TpN2
span TpM.

Exercise 214 (Homework). Let S ⊂ T∗M. Then S is Lagrangian and is transverse to each fiber
T∗pM and intersects each fiber at one point if and only if S is the image of a closed 1-form.

Example 215. For K ⊂ R3 a knot, define LK = {ξ ∈ T∗R3 | ξ(v) = 0 for all v ∈ TpK,p ∈ K}. Then
LK is Lagrangian.

17.1 Orientations We first define orientations for vector spaces and then for manifolds.

Definition 216. An orientation for an R-vector space V is an equivalence class of ordered bases of
V . Here (e1, . . . , en) ' (f1, . . . , fn) if the change of basis matrix A has positive determinant.

Lemma 217. Alternatively, an orientation is a choice of a nonzero element Ω ∈
∧n(V).

The proof of this is a basic fact about the top exterior power of a vector space.

Definition 218. Given a choice of orientation [(e1, . . . , en)], we say (e ′1, . . . , e ′n) is positively oriented
if it is in the same equivalence class. Otherwise, we call it negatively oriented.

Definition 219. Given an orientation [Ω], we say that Ω is positively oriented if Ω(e1, . . . , en) > 0.

Now let M be a smooth manifold.

Definition 220. An orientation onM is an equivalence class of non-vanishing continuous sections of
the canonical bundle KM. Here Ω,Ω ′ ∈ H0(M,KM) are equivalence if Ω = λΩ ′ where λ ∈ C0(M)
is a everywhere positive continuous function.

Definition 221. M is orientable if it admits an orientation. A global frame (e1, . . . , en) is positively
oriented if (e1|p, . . . , en|p) is positively oriented with respect to Ωp.

Definition 222. A choice of Ω ∈ [Ω] is called a volume form.30

Remark 223. S2, T2 are orientable, but RP2 is not. Also, all parallelizable manifolds are orientable.
Finally, if M is connected and orientable, there are only two orientations of M.

Definition 224. A collection of charts {(Uα,ϕα)} is consistently oriented if det J(ϕβϕ−1
α ) > 0 for all

α,β.

Exercise 225 (Lee, Exercise 13.3). M is orientable if and only if it has a consistently orientable
collection of charts.

Definition 226. A local diffeomorphism F : M → N between smooth oriented manifolds is
orientation preserving (resp reversing) if [F∗ΩN] = [ΩM] (resp. −[ΩM]).

Proposition 227. Let M have dimension at least 2 and N ⊂M be a hypersurface. Suppose there exists a
continuous section S : N→ TM|N such that for all p ∈ N, S(p) /∈ TpN. Then for all orientations ΩM on
M, there exists an induced orientation ΩS on N determined by S.

Remark 228. S and −S induce the two orientations on N if N is connected. In addition, define
νN = i∗(TM)/TN the normal bundle of N in M. Then S descends to a section of N. If M is

30More on this later in the course.
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orientable, then ΩM induces an orientation on N if and only if νN is trivial. In this case, we call
N co-orientable.

Example 229. Consider Sn ⊂ Rn+1. Choose the standard orientation on Rn+1. If Sn is embedded
as the unit sphere, let S(p) = p ∈ Rn+1. then ΩS is an orientation for Sn.

Example 230. RP2 is not orientable. To show this, define the antipodal map A : S2 → S2. This
gives a smooth covering π : S2 → RP2. Now let S : S2 → TR3|S2 be as in the previous example
and let ΩS be the orientation defined above. It is easy to see that A is orientation reversing.

Now suppose RP2 is orientable with volume form Ω. Then let Ω̃ = π∗Ω. Then π ◦A = π, which
implies that A∗Ω̃ = −Ω̃, which gives us a contradiction.

Exercise 231 (Homework). RPn is orientable if and only if n is odd.

Example 232. Let M be orientable and f ∈ C∞(M). Then f−1(r) is an orientable hypersurface for
all regular values r of f.

18 Lecture 18 (Nov 4)

The makeup class has been moved to November 11 at 10 AM with bagels, cream cheese, and lox.

18.1 Orientation Coverings

Lemma 233. Let M be a smooth manifold of dimension n. Then R+ acts on
∧nM by fiberwise multipli-

cation. This action is smooth, free, and proper.

Definition 234. The quotient space M̃ is called the orientation covering of M.

Theorem 235. Let M be a smooth connected n-manifold. Then we have a smooth surjective map M̃→M.
Then:

• M is orientable if and only if there exists a global section.

• M is not orientable if and only if M̃ is connected.

Theorem 236. Let M be a smooth connected n-manifold which is not oriented. Then there exists a unique
double cover M̃→M such that M̃ is orientable. Moreover, M̃ is diffeomorphic to the orientation covering.

Proposition 237. Suppose M is a connected oriented smooth manifold and Γ is a discrete group acting
smoothly, freely, and properly on M. We say the action is orientation-preserving if each diffeomorphism
γ ∈ Γ is orientation preserving. Then M/Γ is orientable if and only if Γ is orientation-preserving.

Corollary 238. If π1(M) has no subgroups of index 2, then M is orientable. More generally, there is a
bijection between nontrivial line bundles over M and morphisms π1(M)→ Z/2Z.

The idea of the proof is to construct the first Stiefel-Whitney class31 of E.

Proposition 239. Let (M,g) be an orientable Riemannian manifold of dimension n. Then there exists a
unique orientation form Ω such that for all oriented local orthonormal frames, we have Ω(e1, . . . , en) = 1.
Ω us called a volume form for (M,g).

31This is a characteristic class like the Chern class.
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Lemma 240. Let (M,g) be as above. Write g = (gij) in a local positively oriented coordinate chart. Then
locally, the volume form is given by √

det(gij)dx1 ∧ · · ·∧ dxn.

Proof. Let Ω = f dx1 ∧ · · ·∧dxn with f > 0. Let (e1, . . . , en) and ε1, . . . , εn be a positively oriented
orthonormal frame and its coframe. The rest of the proof is computing the determinant of the
change of basis matrix A from ej to the δi coordinates.

18.2 Manifolds with Boundary Define Hn to be the closed upper halfspace in Rn.

Definition 241. M is an n-dimensional smooth manifold with boundary32 if

1. M is Housdoeff and second-countable;

2. M has a cover {Uα,ϕα} where ϕα is a homeomorphism onto its image in Hn or Rn;

3. The transition functions are smooth.

The notion of a manifold with boundary extends to a manifold with corners, which are modeled
on intersections of closed half-spaces. For simplicity, we will stick to boundaries.

We may also define smooth maps between manifolds with boundaries and also TpM the space of
derivations with local representations.33 We can also construct the cotangent bundle, tensor fields,
and differential forms as before. In addition, we can define pushforwards and pullbacks.

Definition 242. We may define the interior and the boundary of a manifold with boundary M.

Proposition 243. M is the disjoint union of the interior and the boundary. In addition, the boundary has
a unique smooth structure such that ∂M→M is a smooth embedding.

Definition 244. Let p ∈ ∂M, N ∈ TpM such that N /∈ Tp(∂M). Then N is inward pointing if there
exists ε > 0 and smooth path γ : [0, ε]→M such that γ ′(0) = N.

Lemma 245. 1. If N is inward pointing then for all charts, dxi(N) > 0.

2. If there exists a chart such that dxn(N) > 0, then N is inward-pointing.

Lemma 246. There exists a smooth outward pointing vector field N along ∂M.

Corollary 247. The normal bundle of ∂M is trivial.

19 Lecture 19 (Nov 6)

Proof of Lemma 246. Take charts with ϕα : Uα →Hn. Then let Vα = Uα \ ∂M. This is an atlas for
the boundary.

Now let {fα} be a partition of unity subordinate to {Vα}. Then we define N(p) =
∑
α fα(p)Nα(p),

and it is easy to check that this is inward pointing.
32For some notions of stratification, this admits a stratification.
33All tangent spaces here still have the same dimension.
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Proposition 248. Let M be an oriented smooth manifold with orientation ΩM and suppose M has
nonempty boundary. Define Ω∂M = i−NΩM. Then this is a well-defined orientation for the boundary.

Proof. Let N ′ be another inward pointing normal vector field. Thus N ′ = fN+ T , where f is a
positive smooth function and T is a vector field on ∂M. Then we simply compute i−N ′ΩM(p)
and see that the orientation is well-defined.

Example 249. Let M = Hn and take the standard orientation form dx1 ∧ · · ·∧dxn. Then we have

i∂n(dx
1 ∧ · · ·∧ dxn) = (−1)ndx1 ∧ · · ·∧ dxn−1.

Lemma 250. Let M be connected and let S be a connected submanifold of codimension 1. Suppose
M \ S =M1 tM2 is disconnected. Then Mi are manifolds with boundary S. Also, νS → S is trivial.

Example 251. Let M = S2,S = S1 Then S2 \ S1 is not connected, so the normal bundle is trivial.

Example 252. If M = T2,S = S1, then νS is trivial but M \ S is not trivial.

Example 253. If M = RP2,S = RP1, then νS is the tautological bundle. Therefore RP2 \ RP1 =
R2 is connected.

Theorem 254 (Tubular Neighborhood Theorem). If ∂M is compact, then there exists a neighborhood of
∂M in M diffeomorphic to ∂M× [0, ε).

19.1 Integration Let U ⊂ Rn with orientation dx1 ∧ · · ·∧ dxn. Suppose ω ∈ Ωn(U) with
compact support. Thus we have ω = fdx1 ∧ · · ·∧ dxn for some compactly supported f. Then D is
an oriented compact manifold with boundary, which we call the domain of integration.

Then we define ∫
U
ω :=

∫
D
fdx1 · · ·dxn

as the usual Riemann (or Lebesgue) integral. Similarly, we can define integrals on subsets of Hn.

Proposition 255. Let D,E be domains of integration in Rn with ω ∈ Ωn(E). Let F : D→ E be smooth
such that F is a diffeomorphism on the interior of D that is orientation preserving. Then∫

E
ω =

∫
D
F∗ω.

The proof of this fact is a change of basis calculation in multivariate calculus.

To turn all of this into a global story, we use a partition of unity. Here, M is an oriented smooth
n-manifold. Let ω ∈ Ωn(M) with compact support. Choose a positively oriented atlas Uα and fα
be a partition of unity subordinate to Uα. Then we define∫

M
ω =

∑
α

ϕα(Uα)(ϕ
−1
α )∗fαω.

Lemma 256. The integral is independent of the chart and the partition of unity.
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Proposition 257. Integration is linear and orientation-sensitive. In addition, integration is invariant
under diffeomorphism.

For a 0-dimensional manifold, a 0-form is simply a function to R, and an orientation is an
assignment of a sign to each point. Then the integral is simply a finite sum.

Theorem 258 (Stokes). Let M be an oriented smooth manifold of positive dimension. Then suppose
ω ∈ Ωn−1(M) has compact support. Then∫

M
dω =

∫
∂M

ω.

Proof. It suffices to prove this locally. We have a chart V with ϕ : V →Hn a positively oriented
chart. Then write

ω =

n∑
i=1

ωidx
1 ∧ · · ·∧ d̂xi ∧ · · ·∧ dxn.

Then we have

dω =

n∑
i=1

n∑
j=1

∂ωi
∂xk

dxj ∧ dx1 · · ·∧ d̂xi ∧ · · ·∧ dxn.

Therefore we have

∫
dω =

∫R
−R
· · ·
∫R
−R

∫R
0

n∑
i=1

(−1)i−1 ∂ωi
∂xi

dx1 · · · dxn

= (−1)n
∫R
−R
· · ·
∫R
−R
ωn(0) dx1 · · · dxn−1

=

∫
ϕ(V)∩∂Hn

ω.

20 Lecture 20 (Nov 11)

We will complete the global proof of Stokes’ theorem. We simply cover the support of ω by finitely
many positively oriented charts and let fα be a partition of unity subordinate to Vα. Then we
simply have
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∫
ω =

∫∑
fαω

=
∑∫

fαω

=
∑∫

d(fα)ω

=
∑∫

dfα ∧ω+ fαdω

=

∫
dω.

Now we take a detour into geometry and analysis,

Definition 259. Let (M,g) be an oriented Riemannian manifold with dimension n. A Riemannian
volume form is dVg = ξ1 ∧ · · ·∧ ξn, where ξi form a positively oriented orthonormal coframe. The
volume of M is

∫
M dVg. More generally, if f is a compactly supported continuous function on M,

define the integral of f over M to be ∫
M
f =

∫
M
f dVg.

Remark 260. The volume form generalizes to densities, which in turn generalize to measures.

Lemma 261. Let (M,g) and f be continuous and compactly supported. Then if f > 0,
∫
M f > 0. In

addition, f = 0 if and only if f > 0 and
∫
M f = 0.

Now let g̃ be an induced Riemannian metric on ∂M and let N be an outward-pointing unit normal
vector field along ∂M. Now define the volume form on ∂M by dṼg = iN(dVg).

Note that for any X ∈ H0(M, TM), we have X = 〈N,X〉gN+ T . This allows to write

iXdVg = 〈N,X〉gdṼg.

Definition 262. For all vector fields X, define the divergence div(X) by div(X)dVg = d(iXdVg).

Theorem 263 (Divergence Theorem). Let (M,g) be a Riemannian manifold with outward pointing unit
normal vector field N. Then ∫

M
div(X)dVg =

∫
∂M
〈X,N〉gdṼg.

This is simply a special case of Stokes’ theorem. Also, the Divergence theorem is called Gauss
theorem in R3.

Example 264. Consider Rn with the usual metric. Then the volume form is simply dx1 ∧ · · ·∧dxn.
Then define X =

∑
xi∂xi . Then we can verify that div(X) = n.

Page 36 of 46



Math 718 Manifolds Lecture Notes

20.1 De Rham Cohomology Note here we do not need to know algebraic topology for this. Let
M be a smooth n-manifold. Recall the de Rham complex

0→ Ω0(M)→ · · · → Ωn(M)→ 0.

This is known as a (co)chain complex. For any such complex, we may define (co)cycles Zp as
ker(d) and (co)boundaries Bp = Im(d). Then we may define the (co)homology as Hp = Zp/Bp. The
cohomology of the de Rham complex is known as de Rham cohomology, denoted by H∗dR(M).

Proposition 265. Let G :M→ N be smooth. Then this induces a graded map G∗ : H∗dR(N)→ H∗dR(M).
Moreover, cohomology is a functor from Diffop → Ab.

Proof. Note that we have a map between the de Rham complexes of M,N that commutes with d.
This induces a map on the cohomology.

Definition 266. F,G : M → N are smoothly homotopic if there exists a smooth homotopy H :
M× [0, 1]→ N between them.

Lemma 267. For all p, there exists a linear h : Ωp(M× I)→ Ωp−1(M) such that h ◦d+d ◦h = i∗1 − i
∗
0 .

Remark 268. This is known as a chain homotopy.34

Proof. Define hω =
∫1

0 i∂tω.

Theorem 269. If F,G :M→ N are smoothly homotopic, then F∗ = G∗.

Proof. Let ω be a closed form. Then

G∗ω− F∗ω = d(h ◦H∗ω).

Definition 270. Any two spaces M,N are homotopy equivalent if there exist maps F :M→ N,G :
N→M such that F ◦G and G ◦ F are homotopic to the identity.

Remark 271. Homotopy equivalence is the weakest equivalence relation on manifolds.35

Corollary 272. If M,N are homotopy equivalent, then they have the same de Rham cohomology.

Proof. Use the Whitney approximation theorem to construct a smooth homotopy from a continuous
homotopy. Then use Theorem 269.

34This is the wrong notion of homotopy equivalence for chain complexes. The right notion leads to the derived category.
35For more general spaces, there is weak homotopy equivalence.

Page 37 of 46



Patrick Lei University of Massachusetts, Amherst Fall 2019

21 Lecture 21 (Nov 13)

We will compute some examples with de Rham cohomology. We note that:

1. If M =M1 tM2, then H∗(M) = H∗(M1)×H∗(M2).

2. If M is connected, then H0(M) = R.

3. If M is contractible, then H∗(M) = H0(M) = R.

4. If M is simply connected, then H1(M) = 0.

Theorem 273. Let G be a finite group acting freely on M. Recall that the quotient π to M/G is smooth.
Then π∗ has image the left-invariant cohomology classes and is injective.

Proof. It is easy to see that g∗π∗ = π∗, so π∗ maps to the invariant elements. Now let ω be a closed
form such that π∗ω = 0 in cohomology. Therefore we have π∗ω = dη. Then we consider

η̃ =
1
|G|

∑
g∈G

g∗η.

This will be completed later.

Corollary 274. If πi(M) is finite, then H1(M) = 0.

21.1 Some Homological Algebra Here we will introduce the Mayer-Vietoris sequence.

Definition 275. A (co)chain map F : A∗ → B∗ is a graded map Ak → Bk that commutes with d.

It is easy to check that this induces a map on cohomology.

Definition 276. A short exact sequence is a sequence 0→ A∗ → B∗ → C∗ → 0 that is exact at every
level.

Lemma 277 (Snake Lemma). A short exact sequence of (co)chain complex induces a long exact sequence
of cohomology.

Proof of this is given by a standard diagram chasing argument.

Remark 278. The connecting morphism δ : Hp(C)→ Hp−1(A) is useful to know.

Theorem 279 (Mayer-Vietoris Sequence). Consider a smooth manifold M = U∪ V . then the following
is a short exact sequence:

0→ Ω∗(M)→ Ω∗(U)⊕Ω∗(V)→ Ω∗(U∩ V)→ 0.

Proof. At M, we see that U,V form an open cover of M. At the middle term, all the terms are
given by restriction, so the kernel contains the image. Then, we note that if (i∗ − j∗)(η,η ′) = 0,
then η,η ′ agree on U∩ V . Then because Ωp is a sheaf, we have the desired result.

Finally, at U∩ V , let ω ∈ Ωp(U∩ V). Let ϕ,ψ be a partition of unity subordinate to U,V . Then
define η = ψω on U∩ V and 0 elsewhere. In addition, let η ′ = −ϕω on U∩ V and 0 elsewhere.
Then we have (i∗ − j∗)(η,η ′) = ω.
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Corollary 280. Given ω ∈ Zp(U∩ V), let η = ψω as in the above proof. Extend by 0 elsewhere. Then
δ(ω) = dη.

Theorem 281. Hp(Sn) = R if p = 0,n and 0 otherwise.

Proof. Note we have 0 → H0(Sn) → H0(Rn)⊕H0(Rn) → H0(Sn−1) → H1(Sn) → H1(Rn)⊕
H1(Rn) = 0. Thus H1(Sn) = 0. In addition, because Rn is contractible, we have Hp(Sn−1) =
Hp−1(Sn) for 0 < p < n. Finally, we have Hn(Sn) = · · · = H1(S1) = R.

22 Lecture 22 (Nov 18)

Mike gave the proof of Theorem 273. The idea is that π∗ is injective and surjective at the level of
differential forms by definition. Then we compute.

Corollary 282. HpdR =


0 0 < p < n
R p = 0
0 p = n = 2m
R p = n = 2m+ 1

.

Proof. The antipodal map on Sn is orientation preserving if and only if n is odd.

More generally, we have:

Theorem 283. Let M be a compact connected smooth manifold. Then if M is not orientable, the top
cohomology class vanishes, and if M is orientable, Hn(M) ' R.

Proof. Let [Ω0] be an orientation of M. Let b :=
∫
MΩ0 6= 0. Thus we have a surjective map to R

given by integration. Now suppose
∫
Mω = 0. Choose a finite cover of M by Ui ' Rn and order

the Ui so that Uk ∩Uk−1 6= 0. Now we proceed by induction.

For the base case, we note that
∫

Rn ω = 0, so ω = dη. Then for the inductive step, choose
η with support contained in Mk ∩Uk+1 with

∫
Mk+1

η = 1. Then ϕ,ψ is a partition of unity
subordinate to Mk,Uk+1. Let c =

∫
Mk+1

ϕω. Then we have
∫
Mk+1

ϕω− cη = 0. By induction,
there exists α such that dα = ϕω− cη. Similarly, we can find β such that dβ = ψω, and we see
that d(α+β) = ω.

Recall the notion of the connected sum of topological spaces. For smooth manifolds, the connected
sum is a smooth manifold, and Hp(M1#M2) = H

p(M1)×Hp(M2).

Proposition 284. Let M be a compact connected orientable manifold with dimension at least 3. Fix q ∈M
and 0 6 k < n. Then the inclusion map M \ {q}→M induces an isomorphism Hk(M)→ Hk(M \ {q}).
If k = n, the induced map is 0.

Proof. Let M1 be an open ball and M2 =M \B. Then for 0 < p < n, because balls are contractible,
we have the desired result. For k = 0, M without a point is connected. Finally, the case of k = n is
a simple application of Mayer-Vietoris.
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Example 285. Consider the Klein bottle. We can cut K into U,V , which are most homotopy
equivalent to S1. Then their intersection is a disjoint union of two S1. By Mayer-Vietoris, we can
see that the cohomology of the Klein bottle is R if p = 0, 1 and 0 if p = 2.

23 Lecture 23 (Nov 20)

Because algebraic topology is not a prerequisite for this course, today we will discuss the de Rham
theorem.

Theorem 286. The de Rham cohomology is equivalent to ordinary cohomology. Equivalently, it satisfies
the Eilenberg-Steenrod axioms.

Definition 287. A p-simplex is the convex hull 〈v1, . . . , vp〉, where the vi are in general position.
The standard p-simplex is given by the basis vectors in Rp.

Definition 288. A singular p-simplex for a topological space M is a continuous map σ : ∆o →M.

Definition 289. The p-singular chains onM of dimension p are Cp(M) = R〈p-singular chains on M〉.

For 0 6 i 6 p, define the ith face map Fi,p by

(e0, . . . , ep−1) 7→ (e0, e1 − e0, . . . , êi, . . . , ep−1 − e0).

Now for a singular chain σ : ∆p →M, we define the boundary

∂σ =

p∑
i=0

(−1)iσ ◦ Fi,p.

By linearity, we can extend to a map ∂ : Cp(M)→ Cp−1(M). This defines a chain complex C∗(M),
so we can define the singular homology H∗(M). Then singular cohomology is defined by taking
Hom(Cp, R) and then taking the cohomology of that.

Proposition 290. Hp(M, R) = Hp(M, R)∗.

Proposition 291. Singular homology and cohomology satisfy the same properties that de Rham cohomology
satisfies.

Theorem 292. Singular homology and cohomology satisfy a Mayer-Vietoris sequence analogous to that of
de Rham cohomology. The connecting homomorphisms satisfy ∂∗γ = γ ◦ ∂∗.

It turns out that we can take some triangulation or cell decomposition of our space to compute
(co)homology. Now we let M be a smooth manifold. Then we can define the notion of a smooth
p-simplex. Thus we can define the smooth chain complex C∞p (M). Because the face maps are
smooth, we can define the smooth homology and cohomology H∞∗ ,H∗∞.

Note that we have a natural chain inclusion C∞p → Cp(M).

Theorem 293. i∗ : H∞p (M)→ Hp(M) is an isomorphism.

Proof of this uses the Whitney approximation theorem to construct a homotopy inverse to i.

The next part of relating analysis to topology is the de Rham theorem:
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Theorem 294 (de Rham). H∗(M, R) ' H∗dR(M).

First, we define an integral over a smooth chain c by

∫
c
ω =

k∑
i=1

ci

∫
∆p

σ∗iω.

Then we have

Theorem 295 (Stokes).
∫
∂cω =

∫
c dω.

Proof. We simply need to consider c = σ. We can check that Fi,p is orientation preserving iff i is
even. Then the result follows from the ordinary Stokes theorem.

Now integration defines a homomorphism J : H∗dR(M) → Hp(M, R). To see that this is well-
defined, we have for homologous chains c, c ′, we have∫

c
ω−

∫
c ′
ω =

∫
∂b
ω =

∫
b
dω = 0.

Then if ω = dη, we have ∫
c
ω =

∫
c
dη =

∫
∂c
η = 0.

Lemma 296. J is natural: it commutes with pullbacks and with the Mayer-Vietoris connecting homomor-
phisms.

Proof. We will prove the Mayer-Vietoris part. We will show that for all [ω] ∈ Hp−1
dR (U ∩ V) and

[e] ∈ Hp(M) that J(δ([ω]))[e] = (δ∗J[ω])[e].

Choose σ ∈ Ωp(M) and c ∈ Cp−1(M) such that [σ] = δ∗[ω] and [c] = ∂∗[e]. Then we have σ = dη
and c = ∂d, where ω = η− η ′, [d+ d ′] = [e]. Therefore

J[ω](∂∗[e]) =

∫
c
ω =

∫
∂d
ω

=

∫
∂d
η−

∫
∂d
η ′

=

∫
d
dη+

∫
d ′
dη ′

=

∫
d
σ+

∫
d ′
σ

=

∫
e
σ

= J(δ[ω])[e].
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Sketch of de Rham’s Theorem. If M is a convex open set of Rn, then HpdR(M) = 0 if p 6= 0 and R

is p = 0. Because M is contractible, the same applies to Hp(M, R). Then it is easy to check that
J[1][σ] = 1, so we have the base case.

Then suppose M = U1 ∪ · · · ∪Uk, where each Ui is diffeomorphic to a contractible open set of Rn.
Assume J is an isomorphism for unions up to Uk−1. Then if U = U1 ∪ · · · ∪Uk−1 and V = Uk, we
have the following diagram:

H
p−1
dR (U)⊕Hp−1

dR (V) H
p−1
dR (U∩ V) H

p
(
dRM) H

p−1
dR (U)⊕Hp−1

dR (V) H
p
dR(U∩ V)

Hp−1(U)⊕Hp−1(V) Hp−1(U∩ V) HpM) Hp−1(U)⊕Hp−1(V) Hp(U∩ V)

Now we use the inductive hypothesis and the five lemma. Finally, we go from a finite union to an
arbitrary manifold using point-set topology and a second countable cover.

24 Lecture 24 (Dec 4)

Today we will discuss integral curves and flows.

Definition 297. For X ∈ H0(M, TM), an integral curve of X is a map γ : [a,b] →M such that for
all t, γ ′(t) = X(γ(t)).

Definition 298. A time-dependent vector field X on M is a smooth map X : I×M → TM that is a
section for each T .

Definition 299. An integral curve of a time-dependent vector field X is a γ : [a,b]→M such that
for all t, γ ′(t) = X(t,γ(t)).

Example 300. Let M = R4 with the standard symplectic form. Then fix constants m,g > 0. Let
H :M→ R (the total energy) be given by

(x1, x2,y1,y2) 7→ mgx2 +
1

2m
(y2

1 + y
2
2).

Define X = ω(X,−) = dH. Then the claim36 is that an integral curve of X lies on H−1(c) for some
c ∈ R (conservation of energy).

24.1 Local Representation Suppose γ : (a,b) → M is an integral curve of X and γ(t) ∈ U for
some chart (U,ϕ). Then locally, note that

γ ′(t)(xi) =
d

dt
(xi ◦ γ) = d

dt
γi(t) = γ

′
i(t).

36For proof, take Inanc’s class.
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In addition, we have

X(γ(t))(xi) =
∑
j

Xj(γ(t))
∂

∂xj
(xi)

= Xi(γ(t)) = (Xi ◦ϕ−1)(ϕ ◦ γ(t))

= X̃i(γ1(t), . . . ,γn(t)).

Therefore, the integral curve equation becomes
γ ′1(t) = X̃1(γ1(t), . . . ,γn(t))
. . .

γ ′n(t) = X̃1(γ1(t), . . . ,γn(t))

. (1)

Next we need a large existence and uniqueness theorem for ODEs:

Theorem 301. Fix U ⊂ Rn with X = (X1, . . . ,Xn) : U → Rn smooth. Then for all t0 ∈ R and
x0 = (x1, . . . , xn) ∈ Rn, consider the first order ODE (1) with initial consition γi(t0) = xi. Then:

1. There exists t0 ∈ (a,b) ⊂ R and x0 ∈ U0 ⊂ U such that for all x ∈ U0, there exists a solution γx of
(1) with the initial condition.

2. Any two differentiable solutions agree on their common domain.

3. Define Θ : (a,b)×U0 → U given by (t, x) 7→ γx(t). Then Θ is smooth.

Remark 302. Integral curves are translation invariant, where the translation is in the source interval.

Lemma 303. For all X ∈ H0(M, TM), for all p ∈M, there exists a unique maximal integral curve of X at
p, γ : Jp →M where 0 ∈ Jp,γ(0) = p.

Proof. For uniqueness, we use uniqueness from Theorem 301. For existence, we know that at least
one (γ, J) exists. Then we order all γ, J by inclusion. Then we use Zorn’s lemma.

Definition 304. X is complete if for all p ∈M, Jp = R.

Example 305. Let M = (R2 \ {(±1, 0)})/(5Z)2 and X = ∂x. X is not complete because J(0,0) =
(−1, 1).

Lemma 306 (Escape Lemma). If X ∈ H0(M, TM) and γ : J → M an integral curve and J 6= R, then
γ(J) does not lie in a compact subset of M.

Proposition 307. Any compactly supported vector field X is complete.

Proof. If X(γ(t)) 6= 0, then use the escape lemma. Otherwise, if there exists t0 ∈ Jp such that
X(γ(t0)) = 0. Then we define the constant curve at γ(t0).

Definition 308. A global flow Θ : R×M→M is a smooth map with the following properties:

1. For all s ∈ R, the map Θs :M→M is a diffeomorphism.
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2. Θ0 = IdM.

3. For all s, t ∈ R, Θs ◦Θt = Θs+t.

Theorem 309. There is a bijection between smooth complete time independent vector fields and global flows
on M.

Example 310. Let M be a smooth compact Riemannian manifold and let f ∈ C∞(M). fix a,b ∈ R

such that there no critical values of f in [a,b]. Let Mr = f−1(r) and M[r1,r2] similarly. Then
M[a,b] 'Ma × [0,b− 1]. In particular, Ma 'Mb. Informally, this means that the topology only
changes when passing through critical values.

Proof. Let 〈−,−〉 be a metric. Define grad f by 〈gradf,y〉 = df(Y). Now let X =
grad f

〈grad f,grad f〉 .
Let M ′ be a neighborhood of M[a,b] such that grad f is nonzero on M ′. Then fix p ∈ M ′ and
let γp : Jp → M be a maximal integral curve. Then we use the escape lemma to show that if
Jp 3 t 6 b− a, then b− a ∈ Jp. Then we define a flow Θ : Ma × [0,b− a] → Ma,b. This is
well-defined. Then with work we show this is a diffeomorphism.

25 Lecture 25 (Dec 09)

Today we will discuss Lie derivatives. First, we mention some properties of flows. Recall
that the ODE theorem is a local existence, uniqueness, and smoothness theorem. Thus for any
X ∈ H0(M, TM), there exists a unique local flow Θ : D ⊂ R×M→M. We say that X generates Θ,
or is the infinitesimal generator of Θ. Our goal will be to measure how a vector field Y and k-form
ω varies under flow associated to a vector field X.

Let Θt be the local flow generated by X defined on D = (−ε, ε)×U for some open U 3 p. We will
define

(LXω)p = lim
t→0

Θ∗t(ω(Θt(p))) −ω(p)

t

(LXY)p = lim
t→0

(Θ−t)∗(Y(Θt(p))) − Y(p)

t

Lemma 311. The assignments p 7→ (LXω)p and p 7→ (LXY)p define smooth forms and vector fields.

Proposition 312. Let X, Y be vector fields, f a function, and ω,η are forms of degree k, `.

1. LXf = X(f);

2. LX(ω⊗ η) = (LXω)⊗ η+ω⊗ LXη;

3. LX(ω∧ η) = (LXω)∧ η+ω∧ LXη;

4. LX(dω) = d(LX)ω;

5. LX(α(Y)) = (LXα)(Y) +α(LXY) for a 1-form α;

6. LXY = [X, Y];

7. LX(iYω) = iLXYω+ iY(LXω).
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8. LX(ω(Y1, . . . ,Yk)) = (LXω)(Y1, . . . ,Yk) +ω(LXY, . . . ,Yk) + · · ·+ω(Y1, . . . ,LXYk).

Theorem 313 (Cartan’s Formula). With the same assumptions as in proposition 312,

LXω = d(iXω) + iX(dω).

Corollary 314. With the same notation as Proposition 312,

(a) LXY = −LYX;

(b) LX[Y,Z] = [LXY,Z] + [Y,LXZ];

(c) LX,YZ = LXLYZ− LYLXZ;

(d) LX(fY) = (LXf)Y + f(LXY);

(e) If X ′, Y ′ are F-related to X, Y, then F∗(LXY) = LX ′Y ′.

Proof of Proposition 312 (1). Note that

(LXf)p = lim
t→0

(Θ∗tf)(Θt(p)) − f(p)

t

= lim
t→0

f(Θt(p)) − f(p)

t

= γ ′p(0)f = Xp(f) = (Xf)p.

Proof of Proposition 312 (4) for functions. Let ∂t|0 denote the limit of the difference quotient. Then

LX(df) = ∂t|0(Θ
∗
tdf)

= ∂t|0d(Θ
∗
tf)

= ∂t|0d(f(Θ(t,p)))

= ∂t|0
∑
i

∂if(Θ(t,p))dxi

=
∑
i

∂i∂t|0f(Θ(t,p))dxi

=
∑
i

∂i(LXf)dx
i

= d(LXf).

Proof of Proposition 312 (6). Fix a smooth function f. Then first we have LX(df(Y)) = LX(Yf) =
X(Y(f)). In addition, we have LX(df)(Y) = d(LXf)(Y) = Y(LXf) = Y(X(f)). Thus LX(df(Y)) =
(LX(df))(Y) + df(LXY), so

df(LXY) = LX(df(Y)) − LX(df)(Y) = X(Y(F)) − Y(X(F)) = d(df(X, Y)) + df([X, Y]) = df[X, Y].
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Proof of Cartan’s Formu4la. We induct. On functions, we have iX(df) + d(iXf) = iX(df) = df(X) =
X(f) = LXf. For 1-forms α = udv, we have

iX(d(udv)) + d(iX(udv)) = iX(du∧ dv) + d(u(Xv))

= (iXdu)∧ dv− du∧ iXdv+ ud(Xv) + (Xv)du

= X(u)dv−Xvdu+ ud(Xv) + (Xv)du

= X(u)dv+ ud(Xv).

On the other hand,
LX(udv) = LXudv+ u(LXdv) = (Xu)dv+ ud(Xv).

For the inductive step, we write ω =
∑
I∈([n]k )

ωIdx
i1 ∧ · · ·∧ dxik , so it suffices to check Cartan

holds for α∧β. The rest is left to Lee.

Definition 315. Vector fields X, Y commute if [X, Y] = 0.

Definition 316. The vector field W is invariant under flow Θ if (Θt)∗Wp =WΘt(p).

Proposition 317. Let X, Y be vector fields that generate flows Θ,Φ. Then the following are equivalent:

1. X, Y commute;

2. LXY = 0;

3. LYX = 0;

4. X is invariant under Φ and Y is invariant under Θ.

5. Φt ◦Θs = Θs ◦Φt.

Example 318. If M = R2, we can check that ∂x,∂y commute, but x∂y + y∂x, x∂x − y∂y do not
commute.

Theorem 319. Let M be a smooth n-manifold and linearly independt vector fields X1, . . . ,Xk for all
p ∈ U ⊂M open. Then TFAE:

1. [Xi,Xj] = 0 for all i, j;

2. There exist smooth coordinates such that Xi = ∂i.

Example 320. Let (M,ω) with vector field X. Let Θ be the flow generated by X. Then Θt is a
symplectomorphism iff iXω is closed.37

Proof. Θ∗tω = ω for all t if and only if 0 = d
dtΘ

∗
tω = Θ∗(LXω) if and only if LXω = 0. By Cartan,

this is iff diXω+ iXdω = 0, which happens iff d(iXω) = 0 because ω is closed.

37This was accompanied by a plug for Math 705.
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