
LINES ON A CUBIC SURFACE

PATRICK LEI

Abstract. I will tell you why there are 27 lines on a smooth cubic surface. Along
the way, we will meet useful geometric notions such as Grassmannians, Chern
classes, Schubert calculus, and intersection theory.

1. Introduction

Enumerative geometry, roughly, is a branch of algebraic geometry that counts that
counts subvarieties of a given variety satisfying certain incidence conditions. For
example, one of the most basic questions is:

Question 1.1. How many lines pass through two distinct points in the plane?

The answer to this question was known probably since the beginning of humanity,
but other questions are of course much harder to answer. For example:

Conjecture 1.2 (Clemens). Let X ⊂ P4 be a smooth quintic threefold. Then for any
positive degree d, X has finitely many rational curves of degree d.

This problem led to the development of many active areas of modern research
coming from theoretical physics. These include mirror symmetry, Gromov-Witten
theory, Donaldson-Thomas theory, and many other theories which all appear to
be related to each other somehow. This is all beyond the scope of this talk, which
will focus on the following problem which inhabits a middle ground of difficulty:

Theorem 1.3 (Cayley-Salmon). Let X ⊂ P3 be a smooth cubic surface. Then X contains
exactly 27 lines.

We will now begin by introducing the basic notions of our story.

Definition 1.4. Projective space Pn is defined by Pn := (Cn+1 \ 0)/C∗, where
C∗ acts by scaling. Note that projective space has homogeneous coordinates
[x0 : · · · : xn], where [x0 : · · · : xn] = [λx0 : · · · : λxn] for all λ ∈ C∗.

Closed (algebraic) subvarieties X ⊆ Pn are defined by the common vanishing loci
of finitely many homogeneous polynomials f1, . . . , fn ∈ C[x0, . . . , xn]. Note that
if f is homogeneous of degree d, then f(λx) = λdf(x), so there is a well-defined
vanishing locus of f. If X is cut out by f1, . . . , fn, we can check smoothness of
X by checking that there is no x ∈ X where all partial derivatives ∂fi

∂xj
vanish

simultaneously.
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Definition 1.5. A cubic surface X ⊂ P3 is a subvariety cut out by a single homoge-
neous polynomial f3(x0, x1, x2, x3) of degree 3.

Using the above Jacobian criterion, we can check whether or not X is smooth. A
generic cubic surface is smooth, for example by Bertini’s theorem.

2. Grassmannians

The Grassmannian G(k,n) is a space that parameterizes k-dimensional subspaces
of Cn. Near a point [V] corresponding to a subspace V ⊂ Cn, there is a chart
of G(k,n) isomorphic to Hom(V ,V⊥) consisting of subspaces V ′ intersecting
V⊥ transversely. This is given by taking a morphism φ : V → V⊥ to its graph
Γφ ⊂ V ⊕ V⊥ = Cn. This shows that dimG(k,n) = k(n− k). More intrinsically,
we have G(k,n) = U(n)/(U(k)×U(n − k)). There is a natural way to realize
G(k,n) as a projective variety using Plücker coordinates, but we will not discuss
that here.

We will now define some vector bundles living on G(k,n) which will be useful to
us later. First, based on the discussion above, we note that for any [V] ∈ G(k,n),
T[V]G(k,n) = Hom(V , Cn/V) (because there is no preferred inner product on
Cn, this is preferred to what I wrote above). Next, there is a tautological bundle
S ⊂ G(k,n)×Cn on G(k,n) whose fiber at a point [V] ∈ G(k,n) is simply V ⊂ Cn.
More precisely, we have

S = {([V], v) ∈ G(k,n)× Cn | v ∈ V}.

We will now discuss some important subvarieties of G(k,n) which will give a
stratification of G(k,n) into affine spaces. Let e1, . . . , en be the standard basis
of Cn and let Li = ⟨e1, . . . , ei⟩. Then for a sequence of nonnegative integers
n− k ⩾ a1 ⩾ · · · ⩾ ak ⩾ 0, consider the set

Σa :=
{
[V] ∈ G(k,n) | dim(V ∩ Ln−k+i−ai

) ⩾ i, i = 1, . . . ,k
}

,

called a Schubert cycle. If we consider the subspaces

0 ⊂ (V ∩ L1) ⊂ · · · ⊂ (V ∩ Ln−1) ⊂ V ,

then Σa corresponds to the locus where the i-th jump in dimension occurs at
least ai steps before expected (where expectation means as late as possible). The
Schubert cycle Σa has codimension

∑
ai. If we replace all the inequalities in the

definition of a Schubert cycle by equalities, then we obtain Schubert cells, which
give a cell decomposition of G(k,n).

Recall that we are interested in lines in P3, which are the same as 2-planes in C4.
To this end, we need to describe the cohomology of G(2, 4). There are six Schubert
cycles, which are

Σ0,0 = G(2, 4) Σ1,0 = {dim(V ∩ L2) > 0} Σ2,0 = {V | L1 ⊂ V}

Σ1,1 = {V | V ⊂ L3} Σ2,1 = {V | L1 ⊂ V ⊂ L3} Σ2,2 = {L2}.

By Poincaré duality, to each Schubert cycle Σa1,a2 , there is a cohomology class
σa1,a2 ∈ H2(a1+a2)(G(2, 4), Z). Note that G(k,n) has only even-dimensional cells
and that the Schubert cells form a complete CW decomposition of G(k,n), so we
have found an additive basis of G(k,n). The ring structure is given by
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Theorem 2.1. H∗(G(2, 4), Z) is generated as an abelian group by the Schubert classes
σa1,a2 with multiplicative relations being given by

σ2
1 = σ1,1 + σ2 σ1σ1,1 = σ1σ2 = σ2,1

σ1σ2,1 = σ2,2 σ2
1,1 = σ2

2 = σ2,2 σ1,1σ2 = 0.

3. Chern classes

We now define Chern classes of vector bundles, which are important invariants. If
X is a space and E is a (complex) vector bundle on X of rank r, then there are classes
ci(E) ∈ H2i(X, Z), called Chern classes. If we define c(E) = 1 + c1(E) + · · ·+ cr(E),
then the Chern classes are completely characterized by the following axioms:

(1) If L is a line bundle on X, then c1(L) is the Poincaré dual of the divisor
class (s0) = (s∞), where s is any rational (or meromorphic) section of L.

(2) If s0, . . . , sr−i are global sections of E and the zero locus D of s1 ∧ · · ·∧ sr−i

has codimension i, then ci(E) is the Poincaré dual of D.

(3) If 0 → E → F → G → 0 is exact, then c(F) = c(E)c(G).

(4) If φ : Y → X is any map of spaces, then φ∗(c(E)) = c(φ∗(E)).

Chern classes can be constructed from the spaces BU(n) = G(n,∞) classifying
rank n vector bundles. It is a fact that H∗(BU(n), Z) = Z[c1, . . . , cn], where
deg ci = 2i. Also, these classes ci are compatible with pullback under maps
BU(n− 1) → BU(n) induced by U(n− 1) ⊂ U(n). For a concrete example, we have
BU(1) = CP∞ as a classifying space for line bundles and H∗(CP∞, Z) = Z[c1].

A useful result that allows us to do computations with Chern classes is the splitting
principle, which allows us to pretend that all vector bundles are direct sums of line
bundles (this can be realized by pulling back to a flag bundle over X). In particular,
we can pretend that c(E) = (1 +α1)(1 +α2) · · · (1 +αr). We call the αi the Chern
roots of E.

For later, we will compute the Chern classes of the tautological bundle S on G(2, 4).
Recall that for any G(k,n) we have a short exact sequence

0 → S → Cn → Q → 0.

Because of the surjection Cn → Q, we can compute its Chern classes using global
sections. If e1, . . . , em ∈ Cn are basis vectors, then the corresponding sections of Q
will fail to be linearly independent at a point [V] ∈ G(k,n) when the vi ∈ Cn/V
are linearly dependent. This is the same as V ∩ ⟨e1, . . . , em⟩ = V ∩ Lm ̸= ∅, and so
the degeneracy locus is Σn−k−m+1. Therefore, we have

c(Q) = 1 + σ1 + · · ·+ σn−k.

Now we can restrict to the case of G(2, 4) and use the exact sequence axiom. Note
that G(2, 4)× C is a trivial line bundle and has an everywhere nonzero section
G(2, 4)× {1}, so c(C) = c(Cn) = 1. By the axioms, we have c(S) = 1+ c1(S)+ c2(S),
and so by the exact sequence axiom we have

(1 + c1(S) + c2(S))(1 + σ1 + σ2) = 1.
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This gives us the equations

c1 + σ1 = 0 c1σ2 + c2σ1 = 0 c2σ2 = 0 c1σ1 + c2 + σ2 = 0.

But now we see that c1(S) = −σ1 and c2(S) = σ1,1.

4. Lines on a cubic surface

We are now ready to count lines on a smooth cubic surface X. First, we will
construct a closed subscheme F1(X), called the Fano scheme of lines, of G(2, 4)
parameterizing lines on S. Then, we will show that F1(X) has dimension 0 and
that F1(X) is the zero section of some rank 4 vector bundle E on G(2, 4). Finally,
we will compute c4(E).

Recall the inclusion S ⊂ C4. This induces a surjection (C4)∗ → S∗. Taking
symmetric powers, we obtain a map

Symd (C4)
∗ → Symd S∗

restricting symmetric d-linear forms on C4 to symmetric d-linear forms on S. Recall
that X ⊂ P4 is cut out by a single homogeneous cubic polynomial f(x0, x1, x2, x3),
so in particular f gives a global section of Sym3 (C4)

∗. But now if σf is the image of
f in Sym3 S, note that σf vanishes at V ∈ G(2, 4) if and only if f|V ≡ 0. In particular,
this is the same the line L ⊂ P4 corresponding to V ∈ C4 being contained in X.
Thus we can define F1(X) to be the vanishing locus of σf.

By a technical argument (that is beyond the scope of this lecture), F1(X) is a finite
set of points whenever X is smooth. Therefore we may compute its number of
points as the degree of c4(Sym4 S∗). First, note that c(S∗) = 1 + σ1 + σ1,1 (taking
the dual of a line bundle takes c1 to −c1, and then use the splitting principle). Let
α,β be the Chern roots of S∗. These satisfy α+β = σ1,αβ = σ1,1. Noting that if
L1,L2 are line bundles, then

Symd(L1 ⊕L2) =

d⊕
i=0

L⊗i
1 ⊗Ld−i

2 ,

we can compute

c(Sym3 S∗) = (1 + 3α)(1 + 2α+β)(1 +α+ 2β)(1 + 3β).

This implies that

c4(Sym3 S∗) = 3α(2α+β)(α+ 2β)3β

= 9αβ(2α2 + 5αβ+ 2β2)

= 9αβ(2(α+β)2 +αβ)

= 9σ1,1(2σ2
1 + σ1,1)

= 9σ1,1(3σ1,1 + 2σ2)

= 27σ2,2.

This has degree 27, so there must be 27 lines on X.
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