
THE COMPLEX COBORDISM RING

PATRICK LEI

Being the universal complex oriented cohomology theory, complex cobordism is a
very powerful generalized cohomology theory. In this paper, we define complex
cobordism and compute the complex cobordism ring of a point. We assume that
the reader has knowledge of basic algebraic topology, including Steenrod squares;
see my notes12 for some of the relevant background.

1. (B, f)-structures

Before we define what complex bordism even means, we first need to define what
it means for a manifold to have a certain structure. Let k be a natural number and
denote by CW∗ the category of based CW-complexes.

Definition 1.1. A Sk-(B, f)-structure is a triple B = (B, f, λ) consisting of a func-
tor B : kN → CW∗ with Serre fibrations fkn : Bkn → BO(kn) and based maps
λ : Bkn → Bk(n+1) such that the diagram

Bkn Bk(n+1)

BO(kn) BO(k(n+ 1))

λ

f f

commutes. A multiplicative (B, f)-structure in addition has maps µ : Bkn ×Bkn ′ →
Bk(n+n ′) satisfying:

• (Compatibility). The diagram

Bkn ×Bkn ′ Bk(n+n ′)

BO(kn)×BO(kn ′) BO(k(n+n ′))

µ

f×f f

commutes.

• (Associativity). The diagram

Bkn ×Bkn ′ ×Bkn ′′ Bk(n+n ′) ×Bkn ′′

Bkn ×Bk(n ′+n ′′) Bk(n+n ′+n ′′)

µ×1

1×µ µ

µ

commutes.

1https://math.columbia.edu/∼plei/docs/AT1.pdf
2https://math.columbia.edu/∼plei/docs/AT2.pdf
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• (Unit). The diagram

Bkn Bkn ×Bkn ′ Bn ′

Bk(n+n ′)

λ
µ

λ

commutes.

• (More compatibility). The diagram

Bkn ×Bkn ′ Bkn ×Bk(n ′+n ′′)

Bk(n+n ′) Bk(n+n ′+n ′′)

Bkn ×Bkn ′ Bk(n+n ′′) ×Bkn ′

(1,λ)

µ µ

λ

(λ,1)

µ µ

commutes.

Some examples are BO = n 7→ BO(n) (orthogonal group), BSO = n 7→ BSO(n)
(special orthogonal group), EO = n 7→ EO(n), BU = 2n 7→ BU(n) (unitary group),
and BSp = 4n 7→ BSp(n) (symplectic group). It is easy to see that any family of
Lie subgroups of O(n) defines a (B, f)-structure. In this article, we will focus on
the structure BU.

Definition 1.2. Let B = (B, f, λ) be a (B, f)-structure. A manifold with B-structure is
a triple (Mn, e,g) of a closed smooth manifold Mn with an embedding e : Mn →
Rk and g : M→ Bk−n lifting (up to homotopy) the classifying map M→ BO(k−
n) of the normal bundle νM. If B is multiplicative, then M1 ×M2 has a product
B-structure in the obvious way.

Example 1.3. An EO-structure is the same as a framing of the normal bundle, and
a BSO-structure is the same thing as an orientation.

Theorem 1.4. All complex manifolds have a BU-structure.

Definition 1.5. We will declare two B-structures (M, e1,g1), (M, e2,g2) on a man-
ifold Mn to be equivalent if e2 : M

e1−→ Rk1 ↪→ Rk2 and g2 : M
g1−→ Bk−n → Bk−n

up to homotopy.

2. Bordism

In this section, we will define bordism for any (B, f)-structure B, construct a spec-
trum MB representing bordism with B-structure, and finally state the Pontryagin-
Thom theorem, which will allow us to reduce the computation of cobordism rings
to stable homotopy theory.
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Consider the maps

eI : I→ R2 t 7→ (cosπt, sinπt)

gI : I→ R2 t 7→ (cosπt, sinπt).

Note gI is a framing of νI. Set −(Mn, e,g) = (Mn × I, e× eI,g× gI)
∣∣
Mn×I. Now

we may define bordism.

Definition 2.1. Two manifolds with B-structure (Mn, e,g), (Nn, e ′,g ′) are bordant
if there exists a manifold (Wn+1,E,G) such that ∂Wn+1 =Mt−N.

This is an equivalence relation, so we may consider the set ΩB
∗ of bordism classes

of manifolds with B-structure.

Proposition 2.2.

(a) The set ΩB
∗ is a graded abelian group under the operation of disjoint union. Here,

we set [Mn, e,g] + [Nn, f,h] = [Mn tNn, et f,gt h].

(b) If B is multiplicative, then ΩB
∗ is a graded ring with product the Cartesian

product. Here, [M, e,g] · [N, f,h] = [M×N, e× f,µ ◦ (g× h)].

Now recall that if π : E→ B is a vector bundle with disk bundle D(π) and sphere
bundle S(π), then the Thom space of π is M(π). If ν is the normal bundle of
some embedding M→ Rk, we have a homeomorphism Nε(M)/∂Nε(M) ∼=M(ν),
where Nε(M) is the ε-neighborhood of M ⊂ Rk. Also, if πBk−n = f∗(γk−n →
BO(k− n)), then we have a map g : ν → πBk−n because g : M → Bk−n lifts the
classifying map of ν.

Now we will construct a spectrum MB for any (B, f)-structure B. Note that for
k < k ′, we have

λ∗(πBk ′) = λ
∗f∗(γk ′) = f

∗j∗γk ′ ,
where j : BO(k) → BO(k ′) is the natural inclusion given by the map R∞ → R∞
induced by Rk ⊂ Rk

′
. Now we see that j∗γk ′ = γk ⊕Rk

′−k, and therefore we
obtain a map

Rk
′−k ⊕ πBk → πBk ′ .

Taking the Thom spaces and recalling that M(E⊕R) = ΣM(E), we obtain maps

Σk
′−kM(πBk )→M(πBk ′).

This defines the Thom spectrum MB.

Example 2.3. If B = BU, then note that if j : BU(k) → BU(k+ 1) is the natural
inclusion, then j∗γk+1 = C⊕ γk, and thus we obtain maps Σ2M(γ→ BU(n))→
M(γ→ BU(n+ 1)). This defines the Thom spectrum MU.

For a manifold (Mn, e,g) with B-structure, we want to construct an element of
π∗MB. Consider the morphism

ξ(k, k−n) : Sk → Ne(M)/∂Ne(M) ∼=M(ν)→M(πBk−n),
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where Sk → Ne(M)/∂Ne(M) collapses everything outside of Ne(M) to the base-
point. One can check that up to equivalence of B-structures, this gives a well-
defined element of the stable homotopy group πn(MB). One can also check that
this assignment is well-defined on bordism classes, which suggests the following
result:

Lemma 2.4. The map ξn : ΩB
n → πn(MB) is a group homomorphism. If B is multi-

plicative, then ξ∗ is a morphism of graded rings.

It will turn out that ξ∗ is an isomorphism, but first we will define a candidate
inverse ζ∗ : π∗(MB)→ ΩB

∗ . Let x ∈ πn(MB) be represented by F : Sk+n →MBk.
Then define F ′ :=Mf ◦ F : Sk+n →M(γ→ BO(k)). By compactness, we obtain a
map F ′′ : Sk+1 →M(γ→ Gr(k,N)) for some N. Consider the (open) disk bundle
Dr(γ→ Gr(k,N)), where r is the radius, and define

VFr = (F ′′)
−1

(Dr(γ→ Gr(k,N))).

Now modify F ′′ by a homotopy such that Dr,VFr are smooth manifolds for 3
4 <

r < 1 and if V = ∂VF13/16, then

VF15/16 − V
F
13/16 = V × [13/16, 15/16).

Finally, we require that F ′′ corresponds to the map

V × [13/16, 15/16) 3 (x, t) 7→
(
t+

3
16

)
f(x).

Now we can represent x by g : Sk+n →M(γ→ Gr(k,N)) that is smooth on Vg15/16.
Finally, we can modify g so it is transverse to Gr(k,N), and now we define

Mn = g−1(Gr(k,N)) e : Mn ↪→ V
g
15/16 ↪→ Rn+k.

Finally, T(g) maps the normal bundle νM isomorphically to the normal bundle
γ → Gr(k,N) of Gr(k,N) ⊂ D(γ → Gr(k,N)), so νM = γ

∣∣
M

. Now T(g) : Mn →
BO(k) is homotopic to the classifying map of νM by [Koc96, Proposition 1.3.2],
and so by homotopy lifting we obtain a map G : M→ Bk. Now we may set

ζn(x) = [Mn, e,G].

Theorem 2.5 (Pontryagin-Thom). The map ζ∗ is a well-defined homomorphism of
graded abelian groups, and if B is multiplicative, then ζ∗ is a well-defined morphism of
graded rings. Furthermore, ξ∗, ζ∗ are inverse isomorphisms.

Now we have translated the problem of computing the bordism ring ΩB
∗ into the

problem of computing the stable homotopy groups π∗(MB). Later, we will see
that there is a spectral sequence computing the homotopy groups of sufficiently
nice spectra.

3. Homology

In this section, we first define a Steenrod algebra for any prime p. The cohomology
of any space or spectrum will be a module over this algebra. Next, we will build
up the homology of some simpler spaces as a comodule over the dual coalgebra,
and finally we will give an expression for the homology of MU.



THE COMPLEX COBORDISM RING 5

3.1. Steenrod algebra. For any prime p, there is an algebra Ap of stable cohomol-
ogy operations on Z/p-cohomology. We will call this algebra the mod p Steenrod
algebra. We assume that the reader is already familiar with the algebra A2. For
example, see [Hat02, §4.L] for a discussion.

Let p be an odd prime. Let β be the Bockstein homomorphism associated to the
short exact sequence

0→ Z/p→ Z/p2 → Z/p→ 0.

Now there exist stable cohomology operations

Pn : Hk(X, Z/p)→ Hk+2n(p−1)(X, Z/p)

for any space X satisfying the following properties for x ∈ H∗(X, Z/p):

(1) If 2n > |x|, then Pn(x) = 0.

(2) If |x| = 2n, then Pn(x) = xp.

(3) (Cartan formula). For x,y ∈ H∗(X, Z/p), we have

Pn(xy) =

n∑
k=0

Pk(x)Pn−k(y).

(4) (Adem relations). We have the two relations

PaPb =
∑
j

(−1)a+j
(
(p− 1)(b− j)

a− pj

)
Pa+b−jPj

and

PaβPb =
∑
j

(−1)a+j
(
(p− 1)(b− j)

a− pj

)
βPa+b−jPj

+
∑
j

(−1)a+j−1
(
(p− 1)(b− j) − 1

a− pj− 1

)
Pa+b−jβPj.

Now we may define the algebra Ap = Z/p 〈β,Pn | n > 1〉 /Adem relations. This
is a Hopf algebra, where the coproduct is

∆(Sqn) =
∑

Sqk⊗ Sqn−k

for p = 2, and

∆(Pn) =
∑

Pk ⊗ Pn−k ∆(β) = β⊗ 1 + 1⊗β

for odd primes p. Note that if X is a space, H∗(X, Z/p) is a module over Ap, and
H∗(X, Z/p) is a comodule over the dual Steenrod algebra A∗p. Later, we will need
a more refined description of A∗p, due to Milnor.

Theorem 3.1 (Milnor). Write

ξn = (Sq2n−1
· · · Sq2 Sq1)

∗

for p = 2 and

ξn = (Pp
n−1
· · ·PpP1)

∗
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for p an odd prime. When p is an odd prime, additionally write

τn = (Pp
n−1
· · ·PpP1β)

∗
.

Now we have
A∗2 = Z/2[ξ1, . . . , ξn, . . .]

and
A∗p = Z/p[ξ1, . . . , ξn, . . .]⊗

∧
Z/p

[τ0, . . . , τm, . . .]

with coproduct

∆(ξn) =
∑

ξ
pk

n−k ⊗ ξk
for all p and

∆(τn) = τn ⊗ 1 +
∑

ξ
pk

n−k ⊗ τk
for p odd.

3.2. Homology of MU. For a spectrum E, define Hk(E;G) = lim−→Hk+n(En;G)
over the system of morphisms

Hk+n(En;G) ∼−→ Hk+n+r(Σ
rEn;G)→ Hk+n+r(En+r;G).

We will now give expressions for the homology of simpler spaces before giving
an expression for the homology of MU. Recall that BU(n) = Gr(n,∞) and
H∗(BU(n)) = Z[c1, . . . , cn], where |ci| = 2i. Therefore, if BU is the classifying
space of the infinite unitary group U, then H∗(BU) = Z[c1, . . . , cn, . . .]. From the
multiplication on U, we obtain a coproduct structure

∆(cn) =

n∑
k=0

ck ⊗ cn−k

turning H∗(BU) into a Hopf algebra. By the universal coefficient theorem,

H∗(BU) = Z[a1, . . . ,an, . . .]

is the dual Hopf algebra.

Because the formulas for the action of Ap on cohomology are very complicated,
we will consider the action of the dual Steenrod operations Sqn∗ ∈ A2,Pn∗ ∈ A∗p on
homology.

Lemma 3.2. In H∗(BU; Z/2), we have Sq2k−1
∗ = 0 and Sq2k

∗ (an) =
(
n−k
k

)
an−k. For

p an odd prime, Pk∗ (an) =
(n−k(p−1)

k

)
an−k(p−1).

Proof. We have ak = (ck1 )
∗, so

Sq2k(cn−k1 ) =

(
n− k

k

)
cn1

and

Pk(c
n−k(p−1)
1 ) =

(
n− k(p− 1)

k

)
cn1

on CP∞. �
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First note that MU(1) ' CP∞, with homotopy equivalence given by the zero
section CP∞ = BU(1) → M(γ → BU(1)), where γ is the tautological bundle.
Here, note that S(γ) = S∞ which is contractible, so D(γ)→M(γ) is a homotopy
equivalence, and thus the zero section of M(γ) is a homotopy equivalence.

Before giving an expression for H∗(MU), we need a notion from the theory of
Hopf algebras.

Definition 3.3. LetH be a Hopf algebra and C be a comodule overHwith structure
morphism ψ : C→ H⊗C. Then x ∈ C is primitive if ψ(x) = 1⊗ x. We will denote
the vector space of primitive elements in C by PC.

Theorem 3.4. As Z/p-algebras and A∗p-comodules, we have

H∗(MU, Z/2) ∼= Z/2[ξ2
1, . . . , ξ2

n, . . .]⊗ PH∗(MU, Z/2)

and

H∗(MU, Z/p) ∼= Z/p[ξ1, . . . , ξn, . . .]⊗ PH∗(MU, Z/p)

for odd primes p, where

PH∗(MU; Z/p) = Z/p[yk | k > 1,k 6= pt − 1]

for all primes p and |yk| = 2k.

In the proof of this result, we use the following result for CP∞.

Proposition 3.5. Recall that H∗(CP∞; Z/p) = Z/p{1,a1, . . . ,ak, . . .}. The coaction
ψ : H∗(CP∞; Z/p)→ A∗p ⊗H∗(CP∞; Z/p) satisfies

ψ(H∗(CP∞; Z/2)) ⊂ Z/2[ξ2
1, . . . , ξ2

n, . . .]⊗H∗(CP∞; Z/2)

and

ψ(H∗(CP∞; Z/p)) ⊂ Z/2[ξ1, . . . , ξn, . . .]⊗H∗(CP∞; Z/p)

for p odd. Furthermore, the component of ψ(ak) in (A∗p)k−2 ⊗H2(CP∞; Z/p) is
ξ2
n ⊗ a1 p = 2,k = 2n

ξn ⊗ a1 2 - p,k = pn

0 otherwise.

4. The complex cobordism ring

We begin this section by stating the Adams spectral sequence, which computes the
homotopy groups of sufficiently nice spectra. After this, we will state some results
about comodules over coalgebras, and finally we will use the Adams spectral
sequence to compute π∗(MU).
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4.1. Adams spectral sequence.

Definition 4.1. A spectrum E is connective if π−n(E) = 0 for all n > 0.

Definition 4.2. A spectrum E is finite type if πn(E) is a finitely generated abelian
group for all n.

Now let X, Y be connective spectra of finite type.

Theorem 4.3 (Adams spectral sequence). Let p be a prime. Then there exists a spectral
sequence

Es,t
2 = ExtsAp(H

∗(X, Z/p),H∗(Y, Z/p))
t
⇒ [Y,X]t ⊗Zp,

where dr has degree (r,−1). Furthermore, if X is a ring spectrum and Y = S is the sphere
spectrum, we have

Es,t
2 = ExtsAp(H

∗(X, Z/p), Z/p)
t
⇒ πt(X)⊗Zp

and the following multiplicative structure:

(1) If µ is the multiplication on X, then E2 has algebra structure induced from
µ∗ : H∗(X, Z/p)→ H∗(X, Z/p)⊗H∗(X, Z/p). If µ is homotopy commutative,
then the product on E2 is commutative.

(2) For all r, dr is a derivation.

(3) The algebra structure on Er+1 is induced from that on Er.

(4) The algebra structure on E∞ agrees with the algebra structure on π∗(X).

4.2. Comodules over coalgebras. Let k be a field, A be a k-coalgebra, M be
a right comodule, and N be a left comodule. Consider structure morphisms
ϕ : M→M⊗A,ψ : N→ A⊗N.

Definition 4.4. The cotensor product M�AN is defined to be

M�AN = ker(ϕ⊗ 1 − 1⊗ψ : M⊗N→M⊗A⊗N).

We have an isomorphism M�AN ∼= (M∗ ⊗A∗ N∗)∗.

Similar to the identities for the tensor product, we have M = M�AA and N =
A�AN.

Definition 4.5. If M is a right A-comodule, a free coresolution F• of M is a long
exact sequence

0→M→ F0 → · · · → Fn → · · ·
where each Fi is a direct sum of copies of A.

Definition 4.6. Let M be a right A-comodule and N be a left A-comodule. Then
define

CotorA(M,N) = H∗(F•�AN),
where F• is a free coresolution of M.
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Lemma 4.7. We have the identity CotorA(M,k) = ExtA∗(M∗,k).

Now in the Adams spectral sequence, because X is a connective spectrum of finite
type, we may dualize H∗(X, Z/p) = H∗(X, Z/p)∗. Now using the lemma, if Y = S,
then we have

Es,t
2 = ExtsAp(H

∗(X, Z/p), Z/p) = CotorsA∗p(H∗(X, Z/p), Z/p).

We want to be able to compute these Cotors, so we further state some results in
this direction. Let A be a Hopf algebra, B be a sub-Hopf algebra of A, and B+ be
the set of positive degrees of A. If AB+ = B+A, then we call B a normal subalgebra
of A. Then the Hopf algebra structure on A induces a Hopf algebra structure on

A�B = A/(AB+) = k⊗B A.

If π : A→ A�B is the projection map, then

A
∆−→ A⊗A π⊗1−−−→ A�B⊗A

makes A a A�B-comodule. Also we have k�A�BA = B.

Proposition 4.8. Let A be a Hopf algebra over k and B is a normal sub-Hopf algebra,
then

CotorA(B,k) = CotorA�B(k,k).

Proposition 4.9. Let I be a sequence of integers and E =
∧
k[xi | i ∈ I]. Suppose that if

i < j, then |xi| 6
∣∣xj∣∣ and that there are only finitely many xi of every degree. Then

CotorE(k,k) = k[yi | i ∈ I],

where |yi| = (1, |xi|).

We will use this result when we compute the homotopy groups π∗(MU).

5. Homotopy of MU

We are now ready to compute the homotopy groups π∗(MU). Write ΩU∗ for ΩBU∗ ,
the bordism ring for the (B, f)-structure BU.

Theorem 5.1 (Milnor). There exist yn ∈ ΩU2n such that ΩU∗ = Z[y1, . . . ,yn, . . .].

Proof. By the Pontryagin-Thom theorem, this is equivalent to computing π∗(MU).
Now we will consider the Adams spectral sequence. To simplify our notation, we
will write

A ′p =

{
Z/2[ξ2

1, . . . , ξ2
n, . . .] p = 2

Z/p[ξ1, . . . , ξn, . . .] 2 - p

and
Sp = Z/p[Yn | n > 1,n 6= pt − 1|Yn| = 2n]



10 PATRICK LEI

for the set of primitive elements. Recall that H∗(MU, Z/p) = A ′p ⊗ Sp by Theo-
rem 3.4, so now we may compute

CotorA∗p(H∗(MU, Z/p), Z/p) = CotorA∗p(A
′
p ⊗ Sp, Z/p)

= CotorA∗p(A
′
p, Z/p)⊗ Sp

= CotorA∗p�A ′p
(Z/p, Z/p)⊗ Sp

because Sp is a trivial comodule. Next, we observe that

A∗p �A ′p =

{∧
[ξ1, . . . , ξn, . . .] p = 2∧
[τ0, . . . , τn, . . .] 2 - p.

Now we apply Proposition 4.9 and obtain

E2 = CotorA∗p(H∗(MU, Z/p), Z/p)

= CotorA∗p�A ′p
(Z/p, Z/p)⊗ Sp

= Z/p[Q0, . . . ,Qn, . . .]⊗Z/p[Yn | n > 1,n 6= pt − 1, |Yn| = 2n],

where |Qn| = (1, 2pn − 2). By degree reasons, E2 = E∞, so ΩU∗ ⊗Zp is a free
abelian group. Because MU is of finite type, ΩU∗ is also a free abelian group. For
example, when p = 2, the Adams spectral sequence for π∗(MU) looks like

t

s

0 1 2 3 4 5 6

0

1

2

3

4

5

Q0 Q1

Q2

Y2

Q2
1

Q1Y2

Q3
1

Now write (ΩU∗ )
+ for the elements of positive degree and note that by the Adams

spectral sequence, the set of indecomposable elements

I∗ := (ΩU∗ )
+
/((ΩU∗ )

+
)
×2

is a free abelian group with a single generator in each degree. Choose yn ∈ ΩU2n
representing I2n and write

α : R := Z[x1, . . . , xn, . . .]→ ΩU∗ xn 7→ yn.
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Now define R0,R1 by xn ∈ R0 if n 6= pt − 1 for all t and xn ∈ R1 if n = pt − 1
for some t. Then the induced map grα : grR → E∞ is an isomorphism, so α is
injective. It remains to prove surjectivity.

First, note that ΩU0 = Z. Now suppose ΩUt ∈ Imα for all t < 2n. For all y ∈ ΩU2n,

if y = kyn in I2n, then we know x− kyn ∈ ((ΩU∗ )
+
)
×2

is a proeuct of things of
lower degree, and therefore x ∈ Imα by induction. �
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