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Abstract. In the 1990s, a remarkable correspondence was discovered between
the geometry of algebraic curves and infinite-dimensional systems of differential
equations. The correspondence has its origin in the study of two-dimensional
quantum field theories and is related to many different areas of mathematics.
After introducing the relevant objects, I will then state the first result in this story,
which was conjectured by Witten and proved by Kontsevich.

1. Algebraic curves and their moduli

For the purposes of this lecture, we will only define smooth curves. Also, space
will really mean algebraic variety/scheme/stack, whichever is needed to make
the statements of the results true.

Definition 1.1. A smooth curve is a compact 1-dimensional complex manifold; i.e.
a Riemann surface.

Note that curves will be 1-dimensional over C and 2-dimensional over R. We will
also need our curves to develop singularities, but fortunately we only need one
kind of singularity:

Definition 1.2. A nodal singularity is one that locally looks like {xy = 0} ⊆ C2.

1.1. Moduli spaces. As the simplest algebraic varieties, much has been written
on the geometry of curves. For this lecture, we will focus on the study of familes
of curves – a very productive technique in algebraic geometry is to study how
properties vary in families. We will begin with a very natural question.

Question 1.3. Can we classify all algebraic curves?

If we first restrict to smooth curves, we know that these are topologically surfaces,
and the topological classification of surfaces is very simple: they are controlled by
a discrete parameter, the genus. However, for a surface of genus g ⩾ 1, there will
be many ways to give it the structure of a complex manifold or algebraic variety.

Example 1.4. For any λ ̸= 0, 1, there is a genus 1 smooth curve given by the
equation

y2 = x(x− 1)(x− λ),
and different λ give non-isomorphic curves.
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It is natural to wonder if for a given genus g, there is a space Mg paramterizing
curves of genus g, known as a moduli space. More precisely, for any space X,
we want the set Maps(X,Mg) of maps from X to Mg to correspond to familes of
smooth curves of genus g over X. In fact, such a space exists, and the following is
true:

Proposition 1.5 (Riemann, Deligne–Mumford). For any g,n such that 2g− 2+n > 0,
there is a space Mg,n of dimension 3g− 3 +n parameterizing smooth curves of genus g
with n distinct marked points.

Unfortunately, Mg,n is not compact, which geometrically means that there are
families of smooth curves over C \ 0 which cannot be filled in (meaning adding a
fiber over 0) with a smooth curve. In order to compactify Mg,n, we will add nodal
curves.

Proposition 1.6 (Deligne–Mumford). For any g,n such that 2g− 2 + n > 0, there
exists a compact space Mg,n of dimension 3g− 3 +n parameterizing families of possibly
nodal curves C of genus g with n distinct marked points satisfying the following conditions:

(1) The marked points are away from the nodes; i.e. they lie on smooth points of C.

(2) For any irreducible component C ′ of C with genus g ′, if n ′ denotes the number
of nodes and marked points on C ′, then 2g ′ − 2 +n ′ > 0.

Now, the identity map Mg,n → Mg,n corresponds to some family of curves over
Mg,n, and this is the universal family, which we will denote Cg,n. This means that
for any map f : X→ Mg,n, the corresponding family is given by f∗Cg,n.

1.2. Integrals on the moduli space of curves. We will define line bundles Li for
i = 1, . . . ,n on Mg,n as follows. For a point [C, x1, . . . , xn] ∈ Mg,n, we will define

(Li)[C,x1,...,xn] = Txi
C.

More precisely, if xi : Mg,n → Cg,n is the map corresponding to the i-th marked
point, then Li = x∗iΩ

1
Cg,n/Mg,n

, where Ω1
Cg,n/Mg,n

is the relative cotangent bundle.

Now, we will define ψi = c1(Li) ∈ H2(Mg,n) to be the first Chern class of Li.
These ψ classes are known as gravitational descendents in the physics literature,
where the integrals below are related to 2D topological gravity.

Definition 1.7. For any integers a1, . . . ,an ⩾ 0, define〈
ψ
a1
1 · · ·ψan

n

〉
g,n :=

∫
Mg,n

ψ
a1
1 ψ

a2
2 · · ·ψan

n .

2. The KdV hierarchy

The behavior of waves in shallow water is described by the Korteweg-de Vries
equation:

∂u

∂t1
= u

∂u

∂t0
+

1
12
∂3u

∂t30
.
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The coefficients can be scaled to any nonzero real numbers by scaling the variables.
The KdV equation has a solution given by

u1(t0, t1) =
c

2
sech2

(√
c

2
(t0 − ct1 + δ)

)
,

where c and δ are constants and we impose u(x, t) = f(t0 − ct1) to be a travelling
wave. In fact, there are infinitely many exact solutions un(t0, t1) to the KdV
equation, which behave like independent waves for large time (for both t1 ≪ 0
and t1 ≫ 0) but can collide in small time. Waves which exhibit this type of
behavior are called solitons. The infinitely many exact solutions make the KdV
equation an integrable system with infinitely many degrees of freedom.

The KdV equation generates an infinite-dimensional system of differential equa-
tions using the following procedure. Define the Schrodinger operator by

L := (∂2
0 + u).

Its square root can be written as

(∂2
0 + u)

1
2 = ∂0 +

1
2
u∂−1

0 −
1
4
u0∂

−2
0 +

(
u00

8
−
u2

8

)
∂−3

0 + · · ·

Now for an expression of the form M =
∑∞

ℓ=0 gℓ∂
n−ℓ, define

M+ :=

n∑
ℓ=0

gℓ∂
n−ℓ, M− :=M−M+.

We can now define the operators

Ka(u) := −[L,L
2a+1

2
+ ]

for nonnegative integers a and obtain the KdV hierarchy

∂u

∂ta
= Ka(u).

The first two equations are in fact

∂u

∂t0
=
∂u

∂t0
,

∂u

∂t1
=

3
2
u
∂u

∂t0
+

1
4
∂3u

∂t30
,

and we see the first is a tautology and the second is the KdV equation up to scaling.
What justifies calling this an integrable hierarchy is the commutation relation

∂

∂xb
Ka(u) =

∂

∂xa
Kb(u)

for all a,b. This states that the evolution of the system in the tb direction and the
evolution of the system in the ta direction commute.
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3. The Kontsevich-Witten theorem

Define the partition function (precisely, this is the all-genus Gromov-Witten poten-
tial of a point)

Z = exp


∞∑

g=0
n=1

2g−2+n>1

 h2g−2+n

n!

∑
a1,...,an

〈
ψ
a1
1 · · ·ψan

n

〉
g,n ta1 · · · tan

.

Theorem 3.1 (Kontsevich 1992). The function

u(t0, t1, . . .) =
∂2

∂t20
logZ

is the unique solution to the KdV hierarchy with initial condition u(t0, 0, 0, . . .) = t0.

This was proven by Kontsevich using a combinatorial description of Mg,n in terms
of thickened graphs and computing various matrix integrals. This theorem has
several other proofs using various techniques. We will briefly outline three of
them.

• Okounkov and Pandharipande (2001) gave a proof which proceeds first
by relating the integrals of ψ-classes on Mg,n to counts of permutations
known as Hurwitz numbers, continues by constructing a different matrix
model than the one considered by Kontsevich, and concludes by relating
their matrix model to that of Kontsevich using techniques from probability
theory.

• Mirzakhani (2007) gave a proof which proceeds first by defining a metric
(the so-called Weil-Petersson metric) on Mg,n and computing a recursive
formula for the volume of Mg,n and concludes by relating the volumes to
the integrals we defined in the first section.

• Kazarian and Lando (2007) gave a proof which relates the Hurwitz num-
bers considered by Okounkov and Pandharipande to a different integrable
hierarchy known as the KP hierarchy, and then concludes by reducing the
KP hierarchy to the KdV hierarchy.
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