
Student Learning Seminar on Galois Deformations.
Rafah Hajjar, November 12, 2023

These notes are based on Taylor-Wiles paper Ring-theoretic properties of certain Hecke Algebras
and Ray’s lecture Overview of the Taylor-Wiles method.

1 An overview of the Taylor-wiles Method

The goal of the lecture is to sketch the proof of the following theorem

Theorem 1.1 (Wiles). Every semistable elliptic curve over Q is modular

Let E/Q be a semistable elliptic curve and let ρE,p : GQ → GL2(Zp) be its associated p-adic
Galois representation. The strategy will be to find a global deformation problem satisfied by ρE,p

where we can lift modularity. To do that, we first need that ρE,p is modular. It is conjectured
by Serre that every Galois representation over a finite field is modular. For our purposes, it is
enough with the following result.

Lemma. At least one of the representations ρE,3 and ρE,5 is both modular and irreducible.

Sketch of the proof. We know that at least one of ρE,3 and ρE,5 is absolutely irrducible. If ρE,3

is absolutely irreducible, then it is modular by a result of Langlands and Tunnell. If ρE,5 is
absolutely irreducible, by a 3− 5 switch we get an elliptic curve E′ such that ρE′,3 is absolutely
irreducible (hence modular), and ρE,5

∼= ρE′,5. The result follows from the fact that modularity
of ρE,p for some p implies modularity for all p.

Fix p such that ρE,p is modular and irreducible.

Let N0 be the minimal level of a modular form f such that ρf,p
∼= ρE,p (it is the prime to p

part of the Artin conductor of ρ). Let

T(N0) = Z[Tℓ, ⟨d⟩] ⊆ End(S2(Γ1(N0)))

be the Hecke algebra of endomorphisms of weight 2 cusforms of level N0, and denote T0 = T(N0)m
its localization at an appropriate maximal ideal m.

We have a Galois representation associated to T0,

ρT0 : GQ → GL2(T0),

coming from the action of GQ on the Jacobian J1(N) of the modular curve X1(N), given the
relation Tam

(
J1(N0)(Q)

) ∼= T2
0 (which in turn comes from the iso J1(N0)(Q)[m] ∼= (T(N0)/m)2).

1.1 R = T theorems

We define a minimal deformation type D0 = (S, {Cℓ}ℓ∈S) via the deformation conditions

• ρ has determinant χp,

• ρ is unramified outside S ∪ {p},
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• ρ is semistable at S,

• ρ is flat at p (if ρ is flat at p).

Here, S is the set of primes dividing N0p. Let R0 be the universal deformation ring RD0 .

The representation ρT0 defined above satisfies all deformation conditions Cℓ prescribed by D0.
By the universal property, we obtain a map φ0 : R0 → T0.

The goal is to show that φ0 is an isomorphism. Such a result needs to be proven at non-minimal
levels as well, but this requires a slightly more involved argument.

A result establishing an isomorphism between a deformation ring R and a localized Hecke
algebra T is known as an ”R = T´´ theorem. Modularity follows from this isomorphism in the
following way:

The representation ρE,p : GQ → GL2(Zp) corresponds to a map R → Zp by the universal
property. Since R ∼= T, it follows that this map is the same as a map T→ Zp. Finally, it is not
hard to show that any homomorphism ϕ : T→ Zp corresponds to a normalized Hecke eigenform
f of weight 2 with Fourier coefficients an(f) = φ(Tn), and one can check ρf,p ≃ ρE,p. This is a
consequence of the perfect pairing T× S2(Γ1(N))(O)→ O given by ⟨T, f⟩ = a1(Tf).

1.2 Taylor-Wiles primes

Definition 1.1. We say that a primer q is a Taylor-Wiles prime if

• q /∈ S (i.e. ρ is unramified at q)

• q ∼= 1 (mod p)

• ρ(Frobq) is semisimple with distinct eigenvalues

Let Q = {q1, . . . , qr} be a finite set of Taylor-Wiles primes. Define a new deformation condition
DQ = (S ∪ Q, {Cℓ}ℓ∈S∪Q) by allowing ramification at the primes q ∈ Q. Denote by RQ the
associated deformation ring.

Since we have only loosened the conditions at the primes in Q, the universal deformation of
type D0 is also of type DQ, so there is a natural homomorphism

RQ → R0

Let ∆q be the p-primary part of (Z/qZ)×, and set ∆Q to be the product

∆Q =
∏
q∈Q

∆q

The deformation ring RQ is an O[∆Q]-algebra. Letting aQ be the augmentation ideal in O[∆Q],
there is an isomorphism

RQ/aQRQ
∼= R0.

Likewise, there is a localized Hecke algebra TQ of level NQ := N0 ·
∏

q∈Q q which is of type
DQ, and hence a map ϕQ : RQ → TQ which makes the square commute. TQ is also naturally an
O[∆Q]-algebra via the map O[∆Q]→ TQ which sends x ∈ ∆Q to the diamond operator ⟨d⟩ with
d ≡ x (mod p) and d ≡ 1 (mod N0). It can be shown that

TQ/aQTQ
∼= T0.

2



1.3 Patching

There exists r ≥ 1 such that for every n ≥ 1, there is a set Qn of r Taylor-Wiles primes such
that q ≡ 1 (mod pn). Set Rn := RQn and Tn := TQn.

Given Qn, the set of primes Qn+1 can be constructed in a way so that the following diagram
commutes

Rn+1 Tn+1

Rn Tn

φn+1

φn

Set ∆n := ∆Qn . Note that Rn and Tn are algebras over

O[∆n] ∼=
O[T1, . . . , Tr]

((1 + T1)p
n − 1) · · · ((1 + Tr)p

n − 1)

Taking the inverse limit O∞ := lim←−O[∆n]we get a formal power series ring over O in r-variables

O∞ ∼= O[[T1, . . . , Tr]]

Set R∞ := lim←−Rn and T∞ := lim←−Tn, and let φ∞ : R∞ → T∞ be the inverse limit of the maps
φn : Rn → Tn.

Note that R0 = R∞/(T1, . . . , Tr) and T0 = T∞/(T1, . . . , Tr), so if it is shown that φ∞ : R∞ →
T∞ is an isomorphism, then it shall follow that φ0 : R0 → T0 is an isomorphism as well.

Each Hecke-algebra Tn acts faithfully on a space of modular forms Mn which is finitely gen-
erated and free as an O[∆n]-module. Letting M∞ := lim←−Mn, we find that M∞ is a finitely
generated free O∞-module. It follows from this that T∞ is also a finitely generated and faithful
O∞-module.

On the other hand, it follows from Galois theoretic arguments that R∞ is a quotient of
O[[T1, . . . , Tr]]. By dimension considerations, R∞ = O[[T1, . . . , Tr]].

Since R∞ → T∞ is surjective and T∞ is faithful over O∞ this implies that φ∞ must be an
isomorphism.

3


