
Some distance, area and volume formulas

The distance from a point to a line. We begin with the case of a point
v and a line L through the origin. Then L is the set of all scalar multiples
tw of a nonzero vector w. In the special case where w = u is a unit vector,
we define the component of v along u or the scalar projection of v to L to
be v · u. The vector projection or simply projection of v to L is then

pu(v) = (v · u)u.

Note that pu(v) is a scalar multiple of u, so that pu(v) ∈ L. The vector
v − pu(v) is then perpendicular to L, because

(v − pu(v)) · u = (v · u)− ((v · u)u) · u
= (v · u)− (v · u)(u · u) = (v · u)− (v · u)‖u‖2 = 0,

since ‖u‖2 = 1 under the assumption that u is a unit vector. The distance
from v to L is then

(1) distance (v, L) = ‖v − pu(v)‖

Next consider the case where L is still a line through the origin, hence
is the set of all scalar multiples tw of a nonzero vector w, but w is not
necessarily a unit vector. Then u = w/‖w‖ is a unit vector and it defines
the same line through the origin as w. We then define the scalar projection
of v to L to be (v ·w)/‖w‖, and the vector projection or simply projection
of v to L to be

pw(v) =
(v ·w)

‖w‖2
w.

(These are the formulas we would get by substituting in u = w/‖w‖.) Then
we have the same formula

(2) distance (v, L) = ‖v − pw(v)‖

(Compare the discussion in Stewart p. 811 as well as Figures 4 and 5 on
that page.) Note that the scalar projection satisfies

(v ·w)

‖w‖
= ±‖pw(v)‖ =

‖v‖‖w‖ cos θ

‖w‖
= ‖v‖ cos θ,

and this is the length of the leg of the right triangle whose hypotenuse
is v and which has one side parallel to w, at least if cos θ is positive (or
equivalently, θ is an acute angle). What happens if cos θ is negative?
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Finally consider the case where L does not necessarily pass through the
origin. Then L is the set of all vectors of the form p0 + tw, for some fixed
nonzero vector w, as t runs through all real numbers. Let p be a point.
Subtracting p0 replaces L by the set of all scalar multiples tw of w, and
replaces p by p− p0 = v, and doesn’t change distances. Thus

(3) distance (p, L) = ‖(p− p0)− pw(p− p0)‖

In practice, it is usually simpler to start off by subtracting p0 to be in
the situation described by Equation (2).

Example: Find the distance from (i) the point (1, 2, 4) to the line L
through (2, 3, 2) which is parallel to (−1,−1, 5); (ii) the point (1, 1,−2) to
the line L through (3,−3, 2) which is parallel to (1,−2, 2).

Solution: (i) Here L is the set of all points of the form (2, 3, 2) +
t(−1,−1, 5). Subtracting (2, 3, 2), we see that we are in the situation of
(2) with v = (1, 2, 4)− (2, 3, 2) = (−1,−1, 2) and w = (−1,−1, 5). Then

pw(v) =
12

27
(−1,−1, 5) =

4

9
(−1,−1, 5),

and

v − pw(v) = (−1,−1, 2)− 4

9
(−1,−1, 5) = (−5

9
,−5

9
,−2

9
) =

1

9
(−5,−5,−2).

So finally the distance is

‖v − pw(v)‖ =
1

9
‖(−5,−5,−2)‖ =

√
54

9
=

3
√

6

9
=

√
6

3
.

(ii) Here L is the set of all points of the form (3,−3, 2) + t(1,−2, 2).
Subtracting (3,−3, 2), we see that we are in the situation of (2) with v =
(1, 1,−2)− (3,−3, 2) = (−2, 4,−4) and w = (1,−2, 2). Then

pw(v) =
−18

9
(1,−2, 2) = (−2)(1,−2, 2) = (−2, 4,−4) = v,

and
v − pw(v) = (−2, 4,−4)− (−2, 4,−4) = 0.

The distance from (1, 1,−2) to L is then ‖0‖ = 0. This just means that
(1, 1,−2) lies on L; in fact, (1, 1,−2) = (3,−3, 2) + (−2)(1,−2, 2).

There is another formula that works for point and lines in R3 (and, by
extension, for R2, but not in higher dimensions). As before, let L be the set
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of all vectors of the form p0 + tw, for some fixed nonzero vector w. For a
point p, we set v = p− p0. Then

(4) distance (p, L) =
‖v ×w‖
‖w‖

To see this, we can subtract off p0 as in the discussion before Equation (3),
so we may as well assume that p0 = 0 and that p = v. Then ‖v × w‖ =
‖v‖‖w‖ sin θ, where θ is the angle between v and w, and hence

‖v ×w‖
‖w‖

= ‖v‖ sin θ.

In class, we have identified ‖v‖ sin θ with the distance from v to L (see also
Stewart, p. 817, Figure 2.)

Let’s redo the example above using Formula (4):
(i) Here as noted v = (−1,−1, 2) and w = (−1,−1, 5). Also, a com-

putation shows that v × w = (−1,−1, 2) × (−1,−1, 5) = (−3, 3, 0). Thus
‖v ×w‖ = ‖(−3, 3, 0)‖ =

√
18 and ‖w‖ =

√
27, so that the distance is

√
18√
27

=

√
2√
3

=

√
6

3
,

agreeing with our previous computation.
(ii) Here as noted v = (−2, 4,−4) and w = (1,−2, 2). Also, a computa-

tion shows that v ×w = (−2, 4,−4)× (1,−2, 2) = (0, 0, 0), so the distance
is 0. This again agrees with the previous computation.

The distance from a point to a plane in R3. As before, we begin with
a plane P through the origin, given by the equation Ax+By+Cz = 0. Here
n = (A,B,C) is the normal vector. Let v be a point. Then the distance
from v to P is given by the length of the vector projection of v onto n (see
for example Stewart p. 829 Figure 12). This length is

|v · n|
‖n‖2

‖n‖ =
|n · v|
‖n‖

.

Explicitly, if v = (x1, y1, z1), then the distance is given by

(5) distance (v, P ) =
|n · v|
‖n‖

=
|Ax1 +By1 + Cz1|√

A2 +B2 + C2
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Now assume that the plane P does not necessarily pass through the
origin, and fix a point p0 = (x0, y0, z0) on P . We have seen that the plane
P is given by the equation Ax+By + Cz = D, where n = (A,B,C) is the
normal vector and D = n · p0 = Ax0 + By0 + Cz0. Let p1 = (x1, y1, z1) be
a point in R3. We wish to find the distance from p1 to P . Subtracting p0

replaces P by the plane through the origin defined by Ax + By + Cz = 0,
replaces p by p1 − p0 = v, and doesn’t change distances. So by applying
Equation (5), we see that

(6) distance (p1, P ) =
|n · (p1 − p0)|

‖n‖
=
|Ax1 +By1 + Cz1 −D|√

A2 +B2 + C2

Example: the distance from (0, 0, 1) to the plane defined by 2x−3y+z =
5: here (A,B,C) = (2,−3, 1), D = 5, and (x1, y1, z1) = (0, 0, 1). The
distance is then |1− 5|/

√
14 = 4/

√
14.

The distance between two parallel planes in R3. Suppose that P1 and
P2 are two parallel planes in R3. Then they have the same normal vectors
(up to a nonzero scalar multiple) and so we can assume that P1 is given
by the equation Ax + By + Cz = D1 and that P2 is given by the equation
Ax+By+Cz = D2. The distance from P2 to P1 is the same as the distance
from any point of P2 to P1. Applying Equation (6), we see:

(7) distance (P1, P2) =
|Ax2 +By2 + Cz2 −D1|√

A2 +B2 + C2
=

|D2 −D1|√
A2 +B2 + C2

The distance between two skew lines in R3. Let L1 and L2 be two
skew lines in R3. Then L1 is the set of all vectors of the form p1 + tw1,
t ∈ R, and likewise L2 is the set of all vectors of the form p2 + tw2, t ∈ R.
The condition that L1 and L2 are skew is that w1 and w2 are not parallel.
There is a unique vector perpendicular to both w1 and w2 up to multiplying
by a nonzero scalar, namely n = w1 ×w2 = (A,B,C), say. Let D1 = n · p1

and let D2 = n · p2. Then L1 is contained in the plane P1 with equation
Ax+By+Cz = D1, and Then L2 is contained in the parallel plane P2 with
equation Ax + By + Cz = D2. A basic fact (which we shall not prove) is
that the distance between L1 and L2 is the same as the distance between P1

and P2; equivalently, there is a line segment (in fact a unique one) joining
L1 and L2 which is perpendicular to L1 and L2. Assuming this, we can use

4



Equation (7) to find the distance from L1 to L2:

(8) distance (L1, L2) =
|D2 −D1|√
A2 +B2 + C2

Alternatively, we can write this as

(9) distance (L1, L2) =
|(w1 ×w2) · v|
‖w1 ×w2‖

where as usual v = p2 − p1. (We can recognize this quantity as the length
of the projection of v to the line perpendicular to L1 and L2.)

Example: let L1 be the line whose points are of the form (−1, 2,−1) +
t(2, 0, 3) and let L2 be the line whose points are of the form (0, 2, 0)+t(1, 1, 2).
First, the normal to L1 and L2 is given by (2, 0, 3)× (1, 1, 2) = (−3,−1, 2).
Then D1 = (−3,−1, 2) · (−1, 2,−1) = −1 and D2 = (−3,−1, 2) · (0, 2, 0) =
−2. Thus, the distance between L1 and L2 is

| − 2− (−1)|√
9 + 1 + 4

=
1√
14
.

Determinants, area, and volume. A matrix is a rectangular array of
numbers. We shall only be concerned with 2× 2 matrices

M =

(
a b
c d

)
and 3× 3 matrices

M =

a1 a2 a3
b1 b2 b3
c1 c2 c3

 .

We define the determinant detM of a 2× 2 matrix M by the formula

detM = det

(
a b
c d

)
=

∣∣∣∣a b
c d

∣∣∣∣ = ad− bd.

Note that, in spite of the vertical lines in the notation above, detM can be
negative. For example,

det

(
1 3
5 2

)
=

∣∣∣∣1 3
5 2

∣∣∣∣ = 2− 15 = −13.
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The determinant detM of a 3 × 3 matrix M can be defined in various
different ways: either inductively by the formula

detM =

a1 a2 a3
b1 b2 b3
c1 c2 c3

 =

∣∣∣∣∣∣
a1 a2 a3
b1 b2 b3
c1 c2 c3

∣∣∣∣∣∣
= a1

∣∣∣∣b2 b3
c2 c3

∣∣∣∣− a2 ∣∣∣∣b1 b3
c1 c3

∣∣∣∣+ a3

∣∣∣∣b1 b2
c1 c2

∣∣∣∣ ,
or directly by the formula

detM =

a1 a2 a3
b1 b2 b3
c1 c2 c3

 =

∣∣∣∣∣∣
a1 a2 a3
b1 b2 b3
c1 c2 c3

∣∣∣∣∣∣
= a1b2c3 + a2b3c1 + a3b1c2 − a3b2c1 − a2b1c3 − a1b3c2.

Finally, if the rows of M are the vectors v = (a1, a2, a3),w = (b1, b2, b3), and
u = (c1, c2, c3), then direct computation shows that

detM = v · (w × u) = w · (u× v) = u · (v ×w).

Example: det

 1 3 2
4 1 0
−1 1 1

 = 1(1)− 3(4) + 2(5) = −1. If we wanted to

compute via cross products instead, we have (4, 1, 0)×(−1, 1, 1) = (1,−4, 5),
and thus

detM = (1, 3, 2) · (1,−4, 5) = 1− 12 + 10 = −1.

Determinants are use to compute are and volume as follows: First, if

v1 = (a, c) and v2 = (b, d) are the two rows of the matrix M =

(
a b
c d

)
, let

P be the parallelogram in R2 with vertices 0, v1, v2, v1 + v2. Then

(10) area (P ) = |detM | = |ad− bd|

Note that we have to take the absolute value of the determinant. For
example, the parallelogram in R2 with vertices 0, (1, 3), (5, 2), and (6, 5) is
|2− 15| = | − 13| = 13.

A similar result holds for the parallelepiped P defined by by 0, v1 =
(a1, a2, a3), v2 = (b1, b2, b3), and v3 = (c1, c2, c3) (so that its vertices are 0,
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v1, v2, v3, v1 + v2, v1 + v3, v2 + v3, and v1 + v2 + v3). The volume of P
is given by:

(11) volume (P ) = |detM |

As for the area of a parallelogram in the plane, the quantity

∣∣∣∣∣∣
a1 a2 a3
b1 b2 b3
c1 c2 c3

∣∣∣∣∣∣
can be negative, so the volume is always given by the absolute value of
the determinant.

For example, let P be the parallelepiped defined by 0, v1 = (1, 3, 2),
v2 = (4, 1, 0), and v3 = (−1, 1, 1) (so that its vertices are 0, v1 = (1, 3, 2),
v2 = (4, 1, 0), v3 = (−1, 1, 1), v1 + v2 = (5, 4, 2), v1 + v3 = (0, 4, 3),
v2 + v3 = (3, 2, 1), and v1 + v2 + v3 = (4, 5, 3)), then the volume of P
is | detM | = | − 1| = 1, where M is the 3× 3 matrix whose determinant we
computed on the last page.

Exercises

Exercise 1: Let v = (1, 0,−2) and let w = (−2,−2, 1).

(i) Find a unit vector u which points in the same direction as w.

(ii) Find the component of v along u and the (vector) projection pu(v).

(iii) Find v − pu(v) and verify that it is perpendicular to u.

(iv) Compute the distance from v to the line through the origin in R3 and
w.

Exercise 2: Find the following determinants:

(a) det

(
2 −4
3 7

)
; (b) det

(
3 5
3 2

)
;

(c) det

1 1 −1
2 3 2
1 2 1

 ; (d) det

1 1 −1
2 3 2
0 −1 −4

 ; (e) det

1 1 −1
2 3 2
0 −1 1

 .
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For (a), (b), what is the area of the parallelogram with vertices 0, v1,
v2, v1 + v2, where v1 and v2 are the two rows of the given matrix?

For (c), (d), (e), what is the volume of the parallelepiped defined by
the vectors 0 = (0, 0, 0) and the three rows v1, v2, v3 of the given matrix?
(The 8 vertices of the parallelepiped are 0, v1, v2, v3, v1 + v2, v1 + v3,
v2 + v3, and v1 + v2 + v3. Compare Figure 3 on Stewart p. 819.) What is
the meaning of your answer for (d)?

Exercise 3: Find the distance from the point p to the line L given as the
set of all vectors of the form p0 + tw, where

(i) p = (−1, 1, 0), p0 = (2,−1, 4), and w = (1,−1, 1).

(ii) p = (4,−1, 3), p0 = (1, 2, 3), and w = (1,−1, 0).

Exercise 4: Find the distance from the point p = (−1,−1, 5) to the plane
defined by the equation 3x+ 2y − 5z = 10.

Exercise 5: Find the distance from the point (2, 1, 4) to the plane contain-
ing the three points (1, 0, 0), (0, 2, 0), and (0, 0, 3).

Exercise 6: Let L1 be the line given as the set of all vectors of the form
(1, 2, 0)+t(−1,−1, 4) and and let L2 be the line given as the set of all vectors
of the form (0, 2, 1) + t(2,−3, 2). Find the distance from L1 to L2.
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