Some distance, area and volume formulas

The distance from a point to a line. We begin with the case of a point \mathbf{v} and a line L through the origin. Then L is the set of all scalar multiples $t\mathbf{w}$ of a nonzero vector \mathbf{w} . In the special case where $\mathbf{w} = \mathbf{u}$ is a unit vector, we define the component of \mathbf{v} along \mathbf{u} or the scalar projection of \mathbf{v} to L to be $\mathbf{v} \cdot \mathbf{u}$. The vector projection or simply projection of \mathbf{v} to L is then

$$p_{\mathbf{u}}(\mathbf{v}) = (\mathbf{v} \cdot \mathbf{u})\mathbf{u}$$

Note that $p_{\mathbf{u}}(\mathbf{v})$ is a scalar multiple of \mathbf{u} , so that $p_{\mathbf{u}}(\mathbf{v}) \in L$. The vector $\mathbf{v} - p_{\mathbf{u}}(\mathbf{v})$ is then perpendicular to L, because

$$\begin{aligned} (\mathbf{v} - p_{\mathbf{u}}(\mathbf{v})) \cdot \mathbf{u} &= (\mathbf{v} \cdot \mathbf{u}) - ((\mathbf{v} \cdot \mathbf{u})\mathbf{u}) \cdot \mathbf{u} \\ &= (\mathbf{v} \cdot \mathbf{u}) - (\mathbf{v} \cdot \mathbf{u})(\mathbf{u} \cdot \mathbf{u}) = (\mathbf{v} \cdot \mathbf{u}) - (\mathbf{v} \cdot \mathbf{u}) \|\mathbf{u}\|^2 = 0, \end{aligned}$$

since $\|\mathbf{u}\|^2 = 1$ under the assumption that \mathbf{u} is a unit vector. The distance from \mathbf{v} to L is then

(1) distance
$$(\mathbf{v}, L) = \|\mathbf{v} - p_{\mathbf{u}}(\mathbf{v})\|$$

Next consider the case where L is still a line through the origin, hence is the set of all scalar multiples $t\mathbf{w}$ of a nonzero vector \mathbf{w} , but \mathbf{w} is not necessarily a unit vector. Then $\mathbf{u} = \mathbf{w}/||\mathbf{w}||$ is a unit vector and it defines the same line through the origin as \mathbf{w} . We then define the scalar projection of \mathbf{v} to L to be $(\mathbf{v} \cdot \mathbf{w})/||\mathbf{w}||$, and the vector projection or simply projection of \mathbf{v} to L to be

$$p_{\mathbf{w}}(\mathbf{v}) = \frac{(\mathbf{v} \cdot \mathbf{w})}{\|\mathbf{w}\|^2} \mathbf{w}.$$

(These are the formulas we would get by substituting in $\mathbf{u} = \mathbf{w}/||\mathbf{w}||$.) Then we have the same formula

(2) distance
$$(\mathbf{v}, L) = \|\mathbf{v} - p_{\mathbf{w}}(\mathbf{v})\|$$

(Compare the discussion in Stewart p. 811 as well as Figures 4 and 5 on that page.) Note that the scalar projection satisfies

$$\frac{(\mathbf{v} \cdot \mathbf{w})}{\|\mathbf{w}\|} = \pm \|p_{\mathbf{w}}(\mathbf{v})\| = \frac{\|\mathbf{v}\| \|\mathbf{w}\| \cos \theta}{\|\mathbf{w}\|} = \|\mathbf{v}\| \cos \theta,$$

and this is the length of the leg of the right triangle whose hypotenuse is **v** and which has one side parallel to **w**, at least if $\cos \theta$ is positive (or equivalently, θ is an acute angle). What happens if $\cos \theta$ is negative? Finally consider the case where L does not necessarily pass through the origin. Then L is the set of all vectors of the form $\mathbf{p}_0 + t\mathbf{w}$, for some fixed nonzero vector \mathbf{w} , as t runs through all real numbers. Let \mathbf{p} be a point. Subtracting \mathbf{p}_0 replaces L by the set of all scalar multiples $t\mathbf{w}$ of \mathbf{w} , and replaces \mathbf{p} by $\mathbf{p} - \mathbf{p}_0 = \mathbf{v}$, and doesn't change distances. Thus

(3) distance
$$(\mathbf{p}, L) = \|(\mathbf{p} - \mathbf{p}_0) - p_{\mathbf{w}}(\mathbf{p} - \mathbf{p}_0)\|$$

In practice, it is usually simpler to start off by subtracting \mathbf{p}_0 to be in the situation described by Equation (2).

Example: Find the distance from (i) the point (1, 2, 4) to the line L through (2, 3, 2) which is parallel to (-1, -1, 5); (ii) the point (1, 1, -2) to the line L through (3, -3, 2) which is parallel to (1, -2, 2).

Solution: (i) Here L is the set of all points of the form (2,3,2) + t(-1,-1,5). Subtracting (2,3,2), we see that we are in the situation of (2) with $\mathbf{v} = (1,2,4) - (2,3,2) = (-1,-1,2)$ and $\mathbf{w} = (-1,-1,5)$. Then

$$p_{\mathbf{w}}(\mathbf{v}) = \frac{12}{27}(-1, -1, 5) = \frac{4}{9}(-1, -1, 5),$$

and

$$\mathbf{v} - p_{\mathbf{w}}(\mathbf{v}) = (-1, -1, 2) - \frac{4}{9}(-1, -1, 5) = (-\frac{5}{9}, -\frac{5}{9}, -\frac{2}{9}) = \frac{1}{9}(-5, -5, -2).$$

So finally the distance is

$$\|\mathbf{v} - p_{\mathbf{w}}(\mathbf{v})\| = \frac{1}{9}\|(-5, -5, -2)\| = \frac{\sqrt{54}}{9} = \frac{3\sqrt{6}}{9} = \frac{\sqrt{6}}{3}.$$

(ii) Here *L* is the set of all points of the form (3, -3, 2) + t(1, -2, 2). Subtracting (3, -3, 2), we see that we are in the situation of (2) with $\mathbf{v} = (1, 1, -2) - (3, -3, 2) = (-2, 4, -4)$ and $\mathbf{w} = (1, -2, 2)$. Then

$$p_{\mathbf{w}}(\mathbf{v}) = \frac{-18}{9}(1, -2, 2) = (-2)(1, -2, 2) = (-2, 4, -4) = \mathbf{v},$$

and

$$\mathbf{v} - p_{\mathbf{w}}(\mathbf{v}) = (-2, 4, -4) - (-2, 4, -4) = \mathbf{0}.$$

The distance from (1, 1, -2) to L is then $\|\mathbf{0}\| = 0$. This just means that (1, 1, -2) lies on L; in fact, (1, 1, -2) = (3, -3, 2) + (-2)(1, -2, 2).

There is another formula that works for point and lines in \mathbb{R}^3 (and, by extension, for \mathbb{R}^2 , but not in higher dimensions). As before, let L be the set

of all vectors of the form $\mathbf{p}_0 + t\mathbf{w}$, for some fixed nonzero vector \mathbf{w} . For a point \mathbf{p} , we set $\mathbf{v} = \mathbf{p} - \mathbf{p}_0$. Then

(4)
$$distance (\mathbf{p}, L) = \frac{\|\mathbf{v} \times \mathbf{w}\|}{\|\mathbf{w}\|}$$

To see this, we can subtract off \mathbf{p}_0 as in the discussion before Equation (3), so we may as well assume that $\mathbf{p}_0 = \mathbf{0}$ and that $\mathbf{p} = \mathbf{v}$. Then $\|\mathbf{v} \times \mathbf{w}\| = \|\mathbf{v}\| \|\mathbf{w}\| \sin \theta$, where θ is the angle between \mathbf{v} and \mathbf{w} , and hence

$$\frac{\|\mathbf{v}\times\mathbf{w}\|}{\|\mathbf{w}\|} = \|\mathbf{v}\|\sin\theta.$$

In class, we have identified $\|\mathbf{v}\| \sin \theta$ with the distance from \mathbf{v} to L (see also Stewart, p. 817, Figure 2.)

Let's redo the example above using Formula (4):

(i) Here as noted $\mathbf{v} = (-1, -1, 2)$ and $\mathbf{w} = (-1, -1, 5)$. Also, a computation shows that $\mathbf{v} \times \mathbf{w} = (-1, -1, 2) \times (-1, -1, 5) = (-3, 3, 0)$. Thus $\|\mathbf{v} \times \mathbf{w}\| = \|(-3, 3, 0)\| = \sqrt{18}$ and $\|\mathbf{w}\| = \sqrt{27}$, so that the distance is

$$\frac{\sqrt{18}}{\sqrt{27}} = \frac{\sqrt{2}}{\sqrt{3}} = \frac{\sqrt{6}}{3},$$

agreeing with our previous computation.

(ii) Here as noted $\mathbf{v} = (-2, 4, -4)$ and $\mathbf{w} = (1, -2, 2)$. Also, a computation shows that $\mathbf{v} \times \mathbf{w} = (-2, 4, -4) \times (1, -2, 2) = (0, 0, 0)$, so the distance is 0. This again agrees with the previous computation.

The distance from a point to a plane in \mathbb{R}^3 . As before, we begin with a plane *P* through the origin, given by the equation Ax + By + Cz = 0. Here $\mathbf{n} = (A, B, C)$ is the normal vector. Let \mathbf{v} be a point. Then the distance from \mathbf{v} to *P* is given by the length of the vector projection of \mathbf{v} onto \mathbf{n} (see for example Stewart p. 829 Figure 12). This length is

$$\frac{|\mathbf{v}\cdot\mathbf{n}|}{\|\mathbf{n}\|^2}\|\mathbf{n}\| = \frac{|\mathbf{n}\cdot\mathbf{v}|}{\|\mathbf{n}\|}.$$

Explicitly, if $\mathbf{v} = (x_1, y_1, z_1)$, then the distance is given by

(5) distance
$$(\mathbf{v}, P) = \frac{|\mathbf{n} \cdot \mathbf{v}|}{\|\mathbf{n}\|} = \frac{|Ax_1 + By_1 + Cz_1|}{\sqrt{A^2 + B^2 + C^2}}$$

Now assume that the plane P does not necessarily pass through the origin, and fix a point $\mathbf{p}_0 = (x_0, y_0, z_0)$ on P. We have seen that the plane P is given by the equation Ax + By + Cz = D, where $\mathbf{n} = (A, B, C)$ is the normal vector and $D = \mathbf{n} \cdot \mathbf{p}_0 = Ax_0 + By_0 + Cz_0$. Let $\mathbf{p}_1 = (x_1, y_1, z_1)$ be a point in \mathbb{R}^3 . We wish to find the distance from \mathbf{p}_1 to P. Subtracting \mathbf{p}_0 replaces P by the plane through the origin defined by Ax + By + Cz = 0, replaces \mathbf{p} by $\mathbf{p}_1 - \mathbf{p}_0 = \mathbf{v}$, and doesn't change distances. So by applying Equation (5), we see that

(6) distance
$$(\mathbf{p}_1, P) = \frac{|\mathbf{n} \cdot (\mathbf{p}_1 - \mathbf{p}_0)|}{\|\mathbf{n}\|} = \frac{|Ax_1 + By_1 + Cz_1 - D|}{\sqrt{A^2 + B^2 + C^2}}$$

Example: the distance from (0, 0, 1) to the plane defined by 2x - 3y + z = 5: here (A, B, C) = (2, -3, 1), D = 5, and $(x_1, y_1, z_1) = (0, 0, 1)$. The distance is then $|1 - 5|/\sqrt{14} = 4/\sqrt{14}$.

The distance between two parallel planes in \mathbb{R}^3 . Suppose that P_1 and P_2 are two parallel planes in \mathbb{R}^3 . Then they have the same normal vectors (up to a nonzero scalar multiple) and so we can assume that P_1 is given by the equation $Ax + By + Cz = D_1$ and that P_2 is given by the equation $Ax + By + Cz = D_1$. The distance from P_2 to P_1 is the same as the distance from any point of P_2 to P_1 . Applying Equation (6), we see:

(7) distance
$$(P_1, P_2) = \frac{|Ax_2 + By_2 + Cz_2 - D_1|}{\sqrt{A^2 + B^2 + C^2}} = \frac{|D_2 - D_1|}{\sqrt{A^2 + B^2 + C^2}}$$

The distance between two skew lines in \mathbb{R}^3 . Let L_1 and L_2 be two skew lines in \mathbb{R}^3 . Then L_1 is the set of all vectors of the form $\mathbf{p}_1 + t\mathbf{w}_1$, $t \in \mathbb{R}$, and likewise L_2 is the set of all vectors of the form $\mathbf{p}_2 + t\mathbf{w}_2$, $t \in \mathbb{R}$. The condition that L_1 and L_2 are skew is that \mathbf{w}_1 and \mathbf{w}_2 are not parallel. There is a unique vector perpendicular to both \mathbf{w}_1 and \mathbf{w}_2 up to multiplying by a nonzero scalar, namely $\mathbf{n} = \mathbf{w}_1 \times \mathbf{w}_2 = (A, B, C)$, say. Let $D_1 = \mathbf{n} \cdot \mathbf{p}_1$ and let $D_2 = \mathbf{n} \cdot \mathbf{p}_2$. Then L_1 is contained in the plane P_1 with equation $Ax + By + Cz = D_1$, and Then L_2 is contained in the parallel plane P_2 with equation $Ax + By + Cz = D_2$. A basic fact (which we shall not prove) is that the distance between L_1 and L_2 is the same as the distance between P_1 and P_2 ; equivalently, there is a line segment (in fact a unique one) joining L_1 and L_2 which is perpendicular to L_1 and L_2 . Assuming this, we can use Equation (7) to find the distance from L_1 to L_2 :

(8) distance
$$(L_1, L_2) = \frac{|D_2 - D_1|}{\sqrt{A^2 + B^2 + C^2}}$$

Alternatively, we can write this as

(9) distance
$$(L_1, L_2) = \frac{|(\mathbf{w}_1 \times \mathbf{w}_2) \cdot \mathbf{v}|}{\|\mathbf{w}_1 \times \mathbf{w}_2\|}$$

where as usual $\mathbf{v} = \mathbf{p}_2 - \mathbf{p}_1$. (We can recognize this quantity as the length of the projection of \mathbf{v} to the line perpendicular to L_1 and L_2 .)

Example: let L_1 be the line whose points are of the form (-1, 2, -1) + t(2, 0, 3) and let L_2 be the line whose points are of the form (0, 2, 0)+t(1, 1, 2). First, the normal to L_1 and L_2 is given by $(2, 0, 3) \times (1, 1, 2) = (-3, -1, 2)$. Then $D_1 = (-3, -1, 2) \cdot (-1, 2, -1) = -1$ and $D_2 = (-3, -1, 2) \cdot (0, 2, 0) = -2$. Thus, the distance between L_1 and L_2 is

$$\frac{|-2-(-1)|}{\sqrt{9+1+4}} = \frac{1}{\sqrt{14}}.$$

Determinants, area, and volume. A *matrix* is a rectangular array of numbers. We shall only be concerned with 2×2 matrices

$$M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

and 3×3 matrices

$$M = \begin{pmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{pmatrix}.$$

We define the determinant det M of a 2×2 matrix M by the formula

$$\det M = \det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bd.$$

Note that, in spite of the vertical lines in the notation above, det M can be negative. For example,

$$\det \begin{pmatrix} 1 & 3 \\ 5 & 2 \end{pmatrix} = \begin{vmatrix} 1 & 3 \\ 5 & 2 \end{vmatrix} = 2 - 15 = -13.$$

The determinant det M of a 3×3 matrix M can be defined in various different ways: either inductively by the formula

$$\det M = \begin{pmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{pmatrix} = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$
$$= a_1 \begin{vmatrix} b_2 & b_3 \\ c_2 & c_3 \end{vmatrix} - a_2 \begin{vmatrix} b_1 & b_3 \\ c_1 & c_3 \end{vmatrix} + a_3 \begin{vmatrix} b_1 & b_2 \\ c_1 & c_2 \end{vmatrix}$$

or directly by the formula

$$\det M = \begin{pmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{pmatrix} = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$
$$= a_1 b_2 c_3 + a_2 b_3 c_1 + a_3 b_1 c_2 - a_3 b_2 c_1 - a_2 b_1 c_3 - a_1 b_3 c_2.$$

Finally, if the rows of M are the vectors $\mathbf{v} = (a_1, a_2, a_3), \mathbf{w} = (b_1, b_2, b_3)$, and $\mathbf{u} = (c_1, c_2, c_3)$, then direct computation shows that

$$\det M = \mathbf{v} \cdot (\mathbf{w} \times \mathbf{u}) = \mathbf{w} \cdot (\mathbf{u} \times \mathbf{v}) = \mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}).$$

Example: det $\begin{pmatrix} 1 & 3 & 2 \\ 4 & 1 & 0 \\ -1 & 1 & 1 \end{pmatrix} = 1(1) - 3(4) + 2(5) = -1$. If we wanted to

compute via cross products instead, we have $(4, 1, 0) \times (-1, 1, 1) = (1, -4, 5)$, and thus

 $\det M = (1,3,2) \cdot (1,-4,5) = 1 - 12 + 10 = -1.$

Determinants are use to compute are and volume as follows: First, if $\mathbf{v}_1 = (a, c)$ and $\mathbf{v}_2 = (b, d)$ are the two rows of the matrix $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, let P be the parallelogram in \mathbb{R}^2 with vertices $\mathbf{0}, \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_1 + \mathbf{v}_2$. Then

(10)
$$area (P) = |\det M| = |ad - bd|$$

Note that we have to take the **absolute value** of the determinant. For example, the parallelogram in \mathbb{R}^2 with vertices **0**, (1,3), (5,2), and (6,5) is |2-15| = |-13| = 13.

A similar result holds for the parallelepiped P defined by by $\mathbf{0}$, $\mathbf{v}_1 = (a_1, a_2, a_3)$, $\mathbf{v}_2 = (b_1, b_2, b_3)$, and $\mathbf{v}_3 = (c_1, c_2, c_3)$ (so that its vertices are $\mathbf{0}$,

 $v_1, v_2, v_3, v_1 + v_2, v_1 + v_3, v_2 + v_3$, and $v_1 + v_2 + v_3$). The volume of P is given by:

(11) volume
$$(P) = |\det M|$$

 $a_1 \ a_2 \ a_3$ $b_1 \ b_2 \ b_3$

As for the area of a parallelogram in the plane, the quantity c_1 c_2 c_3 can be **negative**, so the volume is always given by the **absolute value** of the determinant.

For example, let P be the parallelepiped defined by $\mathbf{0}$, $\mathbf{v}_1 = (1, 3, 2)$, $\mathbf{v}_2 = (4, 1, 0)$, and $\mathbf{v}_3 = (-1, 1, 1)$ (so that its vertices are $\mathbf{0}, \mathbf{v}_1 = (1, 3, 2)$, $\mathbf{v}_2 = (4,1,0), \ \mathbf{v}_3 = (-1,1,1), \ \mathbf{v}_1 + \mathbf{v}_2 = (5,4,2), \ \mathbf{v}_1 + \mathbf{v}_3 = (0,4,3),$ $\mathbf{v}_2 + \mathbf{v}_3 = (3, 2, 1)$, and $\mathbf{v}_1 + \mathbf{v}_2 + \mathbf{v}_3 = (4, 5, 3)$, then the volume of P is $|\det M| = |-1| = 1$, where M is the 3×3 matrix whose determinant we computed on the last page.

Exercises

Exercise 1: Let $\mathbf{v} = (1, 0, -2)$ and let $\mathbf{w} = (-2, -2, 1)$.

- (i) Find a unit vector **u** which points in the same direction as **w**.
- (ii) Find the component of **v** along **u** and the (vector) projection $p_{\mathbf{u}}(\mathbf{v})$.
- (iii) Find $\mathbf{v} p_{\mathbf{u}}(\mathbf{v})$ and verify that it is perpendicular to \mathbf{u} .
- (iv) Compute the distance from \mathbf{v} to the line through the origin in \mathbb{R}^3 and w.

Exercise 2: Find the following determinants:

(a) det
$$\begin{pmatrix} 2 & -4 \\ 3 & 7 \end{pmatrix}$$
; (b) det $\begin{pmatrix} 3 & 5 \\ 3 & 2 \end{pmatrix}$;

(c) det
$$\begin{pmatrix} 1 & 1 & -1 \\ 2 & 3 & 2 \\ 1 & 2 & 1 \end{pmatrix}$$
; (d) det $\begin{pmatrix} 1 & 1 & -1 \\ 2 & 3 & 2 \\ 0 & -1 & -4 \end{pmatrix}$; (e) det $\begin{pmatrix} 1 & 1 & -1 \\ 2 & 3 & 2 \\ 0 & -1 & 1 \end{pmatrix}$

For (a), (b), what is the area of the parallelogram with vertices $\mathbf{0}$, \mathbf{v}_1 , \mathbf{v}_2 , $\mathbf{v}_1 + \mathbf{v}_2$, where \mathbf{v}_1 and \mathbf{v}_2 are the two rows of the given matrix?

For (c), (d), (e), what is the volume of the parallelepiped defined by the vectors $\mathbf{0} = (0, 0, 0)$ and the three rows \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 of the given matrix? (The 8 vertices of the parallelepiped are $\mathbf{0}$, \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 , $\mathbf{v}_1 + \mathbf{v}_2$, $\mathbf{v}_1 + \mathbf{v}_3$, $\mathbf{v}_2 + \mathbf{v}_3$, and $\mathbf{v}_1 + \mathbf{v}_2 + \mathbf{v}_3$. Compare Figure 3 on Stewart p. 819.) What is the meaning of your answer for (d)?

Exercise 3: Find the distance from the point **p** to the line *L* given as the set of all vectors of the form $\mathbf{p}_0 + t\mathbf{w}$, where

- (i) $\mathbf{p} = (-1, 1, 0), \mathbf{p}_0 = (2, -1, 4), \text{ and } \mathbf{w} = (1, -1, 1).$
- (ii) $\mathbf{p} = (4, -1, 3), \mathbf{p}_0 = (1, 2, 3), \text{ and } \mathbf{w} = (1, -1, 0).$

Exercise 4: Find the distance from the point $\mathbf{p} = (-1, -1, 5)$ to the plane defined by the equation 3x + 2y - 5z = 10.

Exercise 5: Find the distance from the point (2, 1, 4) to the plane containing the three points (1, 0, 0), (0, 2, 0), and (0, 0, 3).

Exercise 6: Let L_1 be the line given as the set of all vectors of the form (1,2,0)+t(-1,-1,4) and and let L_2 be the line given as the set of all vectors of the form (0,2,1)+t(2,-3,2). Find the distance from L_1 to L_2 .