Some distance, area and volume formulas

The distance from a point to a line. We begin with the case of a point \mathbf{v} and a line L through the origin. Then L is the set of all scalar multiples $t \mathbf{w}$ of a nonzero vector \mathbf{w}. In the special case where $\mathbf{w}=\mathbf{u}$ is a unit vector, we define the component of \mathbf{v} along \mathbf{u} or the scalar projection of \mathbf{v} to L to be $\mathbf{v} \cdot \mathbf{u}$. The vector projection or simply projection of \mathbf{v} to L is then

$$
p_{\mathbf{u}}(\mathbf{v})=(\mathbf{v} \cdot \mathbf{u}) \mathbf{u}
$$

Note that $p_{\mathbf{u}}(\mathbf{v})$ is a scalar multiple of \mathbf{u}, so that $p_{\mathbf{u}}(\mathbf{v}) \in L$. The vector $\mathbf{v}-p_{\mathbf{u}}(\mathbf{v})$ is then perpendicular to L, because

$$
\begin{aligned}
\left(\mathbf{v}-p_{\mathbf{u}}(\mathbf{v})\right) \cdot \mathbf{u} & =(\mathbf{v} \cdot \mathbf{u})-((\mathbf{v} \cdot \mathbf{u}) \mathbf{u}) \cdot \mathbf{u} \\
& =(\mathbf{v} \cdot \mathbf{u})-(\mathbf{v} \cdot \mathbf{u})(\mathbf{u} \cdot \mathbf{u})=(\mathbf{v} \cdot \mathbf{u})-(\mathbf{v} \cdot \mathbf{u})\|\mathbf{u}\|^{2}=0
\end{aligned}
$$

since $\|\mathbf{u}\|^{2}=1$ under the assumption that \mathbf{u} is a unit vector. The distance from \mathbf{v} to L is then

$$
\begin{equation*}
\text { distance }(\mathbf{v}, L)=\left\|\mathbf{v}-p_{\mathbf{u}}(\mathbf{v})\right\| \tag{1}
\end{equation*}
$$

Next consider the case where L is still a line through the origin, hence is the set of all scalar multiples $t \mathbf{w}$ of a nonzero vector \mathbf{w}, but \mathbf{w} is not necessarily a unit vector. Then $\mathbf{u}=\mathbf{w} /\|\mathbf{w}\|$ is a unit vector and it defines the same line through the origin as \mathbf{w}. We then define the scalar projection of \mathbf{v} to L to be $(\mathbf{v} \cdot \mathbf{w}) /\|\mathbf{w}\|$, and the vector projection or simply projection of \mathbf{v} to L to be

$$
p_{\mathbf{w}}(\mathbf{v})=\frac{(\mathbf{v} \cdot \mathbf{w})}{\|\mathbf{w}\|^{2}} \mathbf{w}
$$

(These are the formulas we would get by substituting in $\mathbf{u}=\mathbf{w} /\|\mathbf{w}\|$.) Then we have the same formula

$$
\begin{equation*}
\text { distance }(\mathbf{v}, L)=\left\|\mathbf{v}-p_{\mathbf{w}}(\mathbf{v})\right\| \tag{2}
\end{equation*}
$$

(Compare the discussion in Stewart p. 811 as well as Figures 4 and 5 on that page.) Note that the scalar projection satisfies

$$
\frac{(\mathbf{v} \cdot \mathbf{w})}{\|\mathbf{w}\|}= \pm\left\|p_{\mathbf{w}}(\mathbf{v})\right\|=\frac{\|\mathbf{v}\|\|\mathbf{w}\| \cos \theta}{\|\mathbf{w}\|}=\|\mathbf{v}\| \cos \theta
$$

and this is the length of the leg of the right triangle whose hypotenuse is \mathbf{v} and which has one side parallel to \mathbf{w}, at least if $\cos \theta$ is positive (or equivalently, θ is an acute angle). What happens if $\cos \theta$ is negative?

Finally consider the case where L does not necessarily pass through the origin. Then L is the set of all vectors of the form $\mathbf{p}_{0}+t \mathbf{w}$, for some fixed nonzero vector \mathbf{w}, as t runs through all real numbers. Let \mathbf{p} be a point. Subtracting \mathbf{p}_{0} replaces L by the set of all scalar multiples $t \mathbf{w}$ of \mathbf{w}, and replaces \mathbf{p} by $\mathbf{p}-\mathbf{p}_{0}=\mathbf{v}$, and doesn't change distances. Thus

$$
\begin{equation*}
\operatorname{distance}(\mathbf{p}, L)=\left\|\left(\mathbf{p}-\mathbf{p}_{0}\right)-p_{\mathbf{w}}\left(\mathbf{p}-\mathbf{p}_{0}\right)\right\| \tag{3}
\end{equation*}
$$

In practice, it is usually simpler to start off by subtracting \mathbf{p}_{0} to be in the situation described by Equation (2).

Example: Find the distance from (i) the point $(1,2,4)$ to the line L through $(2,3,2)$ which is parallel to $(-1,-1,5)$; (ii) the point $(1,1,-2)$ to the line L through $(3,-3,2)$ which is parallel to $(1,-2,2)$.

Solution: (i) Here L is the set of all points of the form $(2,3,2)+$ $t(-1,-1,5)$. Subtracting $(2,3,2)$, we see that we are in the situation of (2) with $\mathbf{v}=(1,2,4)-(2,3,2)=(-1,-1,2)$ and $\mathbf{w}=(-1,-1,5)$. Then

$$
p_{\mathbf{w}}(\mathbf{v})=\frac{12}{27}(-1,-1,5)=\frac{4}{9}(-1,-1,5)
$$

and

$$
\mathbf{v}-p_{\mathbf{w}}(\mathbf{v})=(-1,-1,2)-\frac{4}{9}(-1,-1,5)=\left(-\frac{5}{9},-\frac{5}{9},-\frac{2}{9}\right)=\frac{1}{9}(-5,-5,-2)
$$

So finally the distance is

$$
\left\|\mathbf{v}-p_{\mathbf{w}}(\mathbf{v})\right\|=\frac{1}{9}\|(-5,-5,-2)\|=\frac{\sqrt{54}}{9}=\frac{3 \sqrt{6}}{9}=\frac{\sqrt{6}}{3}
$$

(ii) Here L is the set of all points of the form $(3,-3,2)+t(1,-2,2)$. Subtracting $(3,-3,2)$, we see that we are in the situation of (2) with $\mathbf{v}=$ $(1,1,-2)-(3,-3,2)=(-2,4,-4)$ and $\mathbf{w}=(1,-2,2)$. Then

$$
p_{\mathbf{w}}(\mathbf{v})=\frac{-18}{9}(1,-2,2)=(-2)(1,-2,2)=(-2,4,-4)=\mathbf{v}
$$

and

$$
\mathbf{v}-p_{\mathbf{w}}(\mathbf{v})=(-2,4,-4)-(-2,4,-4)=\mathbf{0}
$$

The distance from $(1,1,-2)$ to L is then $\|\mathbf{0}\|=0$. This just means that $(1,1,-2)$ lies on L; in fact, $(1,1,-2)=(3,-3,2)+(-2)(1,-2,2)$.

There is another formula that works for point and lines in \mathbb{R}^{3} (and, by extension, for \mathbb{R}^{2}, but not in higher dimensions). As before, let L be the set
of all vectors of the form $\mathbf{p}_{0}+t \mathbf{w}$, for some fixed nonzero vector \mathbf{w}. For a point \mathbf{p}, we set $\mathbf{v}=\mathbf{p}-\mathbf{p}_{0}$. Then

$$
\begin{equation*}
\operatorname{distance}(\mathbf{p}, L)=\frac{\|\mathbf{v} \times \mathbf{w}\|}{\|\mathbf{w}\|} \tag{4}
\end{equation*}
$$

To see this, we can subtract off \mathbf{p}_{0} as in the discussion before Equation (3), so we may as well assume that $\mathbf{p}_{0}=\mathbf{0}$ and that $\mathbf{p}=\mathbf{v}$. Then $\|\mathbf{v} \times \mathbf{w}\|=$ $\|\mathbf{v}\|\|\mathbf{w}\| \sin \theta$, where θ is the angle between \mathbf{v} and \mathbf{w}, and hence

$$
\frac{\|\mathbf{v} \times \mathbf{w}\|}{\|\mathbf{w}\|}=\|\mathbf{v}\| \sin \theta
$$

In class, we have identified $\|\mathbf{v}\| \sin \theta$ with the distance from \mathbf{v} to L (see also Stewart, p. 817, Figure 2.)

Let's redo the example above using Formula (4):
(i) Here as noted $\mathbf{v}=(-1,-1,2)$ and $\mathbf{w}=(-1,-1,5)$. Also, a computation shows that $\mathbf{v} \times \mathbf{w}=(-1,-1,2) \times(-1,-1,5)=(-3,3,0)$. Thus $\|\mathbf{v} \times \mathbf{w}\|=\|(-3,3,0)\|=\sqrt{18}$ and $\|\mathbf{w}\|=\sqrt{27}$, so that the distance is

$$
\frac{\sqrt{18}}{\sqrt{27}}=\frac{\sqrt{2}}{\sqrt{3}}=\frac{\sqrt{6}}{3},
$$

agreeing with our previous computation.
(ii) Here as noted $\mathbf{v}=(-2,4,-4)$ and $\mathbf{w}=(1,-2,2)$. Also, a computation shows that $\mathbf{v} \times \mathbf{w}=(-2,4,-4) \times(1,-2,2)=(0,0,0)$, so the distance is 0 . This again agrees with the previous computation.

The distance from a point to a plane in \mathbb{R}^{3}. As before, we begin with a plane P through the origin, given by the equation $A x+B y+C z=0$. Here $\mathbf{n}=(A, B, C)$ is the normal vector. Let \mathbf{v} be a point. Then the distance from \mathbf{v} to P is given by the length of the vector projection of \mathbf{v} onto \mathbf{n} (see for example Stewart p. 829 Figure 12). This length is

$$
\frac{|\mathbf{v} \cdot \mathbf{n}|}{\|\mathbf{n}\|^{2}}\|\mathbf{n}\|=\frac{|\mathbf{n} \cdot \mathbf{v}|}{\|\mathbf{n}\|} .
$$

Explicitly, if $\mathbf{v}=\left(x_{1}, y_{1}, z_{1}\right)$, then the distance is given by

$$
\begin{equation*}
\operatorname{distance}(\mathbf{v}, P)=\frac{|\mathbf{n} \cdot \mathbf{v}|}{\|\mathbf{n}\|}=\frac{\left|A x_{1}+B y_{1}+C z_{1}\right|}{\sqrt{A^{2}+B^{2}+C^{2}}} \tag{5}
\end{equation*}
$$

Now assume that the plane P does not necessarily pass through the origin, and fix a point $\mathbf{p}_{0}=\left(x_{0}, y_{0}, z_{0}\right)$ on P. We have seen that the plane P is given by the equation $A x+B y+C z=D$, where $\mathbf{n}=(A, B, C)$ is the normal vector and $D=\mathbf{n} \cdot \mathbf{p}_{0}=A x_{0}+B y_{0}+C z_{0}$. Let $\mathbf{p}_{1}=\left(x_{1}, y_{1}, z_{1}\right)$ be a point in \mathbb{R}^{3}. We wish to find the distance from \mathbf{p}_{1} to P. Subtracting \mathbf{p}_{0} replaces P by the plane through the origin defined by $A x+B y+C z=0$, replaces \mathbf{p} by $\mathbf{p}_{1}-\mathbf{p}_{0}=\mathbf{v}$, and doesn't change distances. So by applying Equation (5), we see that

$$
\begin{equation*}
\text { distance }\left(\mathbf{p}_{1}, P\right)=\frac{\left|\mathbf{n} \cdot\left(\mathbf{p}_{1}-\mathbf{p}_{0}\right)\right|}{\|\mathbf{n}\|}=\frac{\left|A x_{1}+B y_{1}+C z_{1}-D\right|}{\sqrt{A^{2}+B^{2}+C^{2}}} \tag{6}
\end{equation*}
$$

Example: the distance from $(0,0,1)$ to the plane defined by $2 x-3 y+z=$ 5: here $(A, B, C)=(2,-3,1), D=5$, and $\left(x_{1}, y_{1}, z_{1}\right)=(0,0,1)$. The distance is then $|1-5| / \sqrt{14}=4 / \sqrt{14}$.

The distance between two parallel planes in \mathbb{R}^{3}. Suppose that P_{1} and P_{2} are two parallel planes in \mathbb{R}^{3}. Then they have the same normal vectors (up to a nonzero scalar multiple) and so we can assume that P_{1} is given by the equation $A x+B y+C z=D_{1}$ and that P_{2} is given by the equation $A x+B y+C z=D_{2}$. The distance from P_{2} to P_{1} is the same as the distance from any point of P_{2} to P_{1}. Applying Equation (6), we see:

$$
\begin{equation*}
\operatorname{distance}\left(P_{1}, P_{2}\right)=\frac{\left|A x_{2}+B y_{2}+C z_{2}-D_{1}\right|}{\sqrt{A^{2}+B^{2}+C^{2}}}=\frac{\left|D_{2}-D_{1}\right|}{\sqrt{A^{2}+B^{2}+C^{2}}} \tag{7}
\end{equation*}
$$

The distance between two skew lines in \mathbb{R}^{3}. Let L_{1} and L_{2} be two skew lines in \mathbb{R}^{3}. Then L_{1} is the set of all vectors of the form $\mathbf{p}_{1}+t \mathbf{w}_{1}$, $t \in \mathbb{R}$, and likewise L_{2} is the set of all vectors of the form $\mathbf{p}_{2}+t \mathbf{w}_{2}, t \in \mathbb{R}$. The condition that L_{1} and L_{2} are skew is that \mathbf{w}_{1} and \mathbf{w}_{2} are not parallel. There is a unique vector perpendicular to both \mathbf{w}_{1} and \mathbf{w}_{2} up to multiplying by a nonzero scalar, namely $\mathbf{n}=\mathbf{w}_{1} \times \mathbf{w}_{2}=(A, B, C)$, say. Let $D_{1}=\mathbf{n} \cdot \mathbf{p}_{1}$ and let $D_{2}=\mathbf{n} \cdot \mathbf{p}_{2}$. Then L_{1} is contained in the plane P_{1} with equation $A x+B y+C z=D_{1}$, and Then L_{2} is contained in the parallel plane P_{2} with equation $A x+B y+C z=D_{2}$. A basic fact (which we shall not prove) is that the distance between L_{1} and L_{2} is the same as the distance between P_{1} and P_{2}; equivalently, there is a line segment (in fact a unique one) joining L_{1} and L_{2} which is perpendicular to L_{1} and L_{2}. Assuming this, we can use

Equation (7) to find the distance from L_{1} to L_{2} :

$$
\begin{equation*}
\text { distance }\left(L_{1}, L_{2}\right)=\frac{\left|D_{2}-D_{1}\right|}{\sqrt{A^{2}+B^{2}+C^{2}}} \tag{8}
\end{equation*}
$$

Alternatively, we can write this as

$$
\begin{equation*}
\operatorname{distance}\left(L_{1}, L_{2}\right)=\frac{\left|\left(\mathbf{w}_{1} \times \mathbf{w}_{2}\right) \cdot \mathbf{v}\right|}{\left\|\mathbf{w}_{1} \times \mathbf{w}_{2}\right\|} \tag{9}
\end{equation*}
$$

where as usual $\mathbf{v}=\mathbf{p}_{2}-\mathbf{p}_{1}$. (We can recognize this quantity as the length of the projection of \mathbf{v} to the line perpendicular to L_{1} and L_{2}.)

Example: let L_{1} be the line whose points are of the form $(-1,2,-1)+$ $t(2,0,3)$ and let L_{2} be the line whose points are of the form $(0,2,0)+t(1,1,2)$. First, the normal to L_{1} and L_{2} is given by $(2,0,3) \times(1,1,2)=(-3,-1,2)$. Then $D_{1}=(-3,-1,2) \cdot(-1,2,-1)=-1$ and $D_{2}=(-3,-1,2) \cdot(0,2,0)=$ -2 . Thus, the distance between L_{1} and L_{2} is

$$
\frac{|-2-(-1)|}{\sqrt{9+1+4}}=\frac{1}{\sqrt{14}}
$$

Determinants, area, and volume. A matrix is a rectangular array of numbers. We shall only be concerned with 2×2 matrices

$$
M=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

and 3×3 matrices

$$
M=\left(\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right)
$$

We define the determinant $\operatorname{det} M$ of a 2×2 matrix M by the formula

$$
\operatorname{det} M=\operatorname{det}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|=a d-b d
$$

Note that, in spite of the vertical lines in the notation above, $\operatorname{det} M$ can be negative. For example,

$$
\operatorname{det}\left(\begin{array}{ll}
1 & 3 \\
5 & 2
\end{array}\right)=\left|\begin{array}{ll}
1 & 3 \\
5 & 2
\end{array}\right|=2-15=-13
$$

The determinant det M of a 3×3 matrix M can be defined in various different ways: either inductively by the formula

$$
\begin{aligned}
\operatorname{det} M & =\left(\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right)=\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right| \\
& =a_{1}\left|\begin{array}{ll}
b_{2} & b_{3} \\
c_{2} & c_{3}
\end{array}\right|-a_{2}\left|\begin{array}{ll}
b_{1} & b_{3} \\
c_{1} & c_{3}
\end{array}\right|+a_{3}\left|\begin{array}{ll}
b_{1} & b_{2} \\
c_{1} & c_{2}
\end{array}\right|
\end{aligned}
$$

or directly by the formula

$$
\begin{aligned}
\operatorname{det} M & =\left(\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right)=\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right| \\
& =a_{1} b_{2} c_{3}+a_{2} b_{3} c_{1}+a_{3} b_{1} c_{2}-a_{3} b_{2} c_{1}-a_{2} b_{1} c_{3}-a_{1} b_{3} c_{2}
\end{aligned}
$$

Finally, if the rows of M are the vectors $\mathbf{v}=\left(a_{1}, a_{2}, a_{3}\right), \mathbf{w}=\left(b_{1}, b_{2}, b_{3}\right)$, and $\mathbf{u}=\left(c_{1}, c_{2}, c_{3}\right)$, then direct computation shows that

$$
\operatorname{det} M=\mathbf{v} \cdot(\mathbf{w} \times \mathbf{u})=\mathbf{w} \cdot(\mathbf{u} \times \mathbf{v})=\mathbf{u} \cdot(\mathbf{v} \times \mathbf{w})
$$

Example: $\operatorname{det}\left(\begin{array}{ccc}1 & 3 & 2 \\ 4 & 1 & 0 \\ -1 & 1 & 1\end{array}\right)=1(1)-3(4)+2(5)=-1$. If we wanted to compute via cross products instead, we have $(4,1,0) \times(-1,1,1)=(1,-4,5)$, and thus

$$
\operatorname{det} M=(1,3,2) \cdot(1,-4,5)=1-12+10=-1
$$

Determinants are use to compute are and volume as follows: First, if $\mathbf{v}_{1}=(a, c)$ and $\mathbf{v}_{2}=(b, d)$ are the two rows of the matrix $M=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, let P be the parallelogram in \mathbb{R}^{2} with vertices $\mathbf{0}, \mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{1}+\mathbf{v}_{2}$. Then

$$
\begin{equation*}
\text { area }(P)=|\operatorname{det} M|=|a d-b d| \tag{10}
\end{equation*}
$$

Note that we have to take the absolute value of the determinant. For example, the parallelogram in \mathbb{R}^{2} with vertices $\mathbf{0},(1,3),(5,2)$, and $(6,5)$ is $|2-15|=|-13|=13$.

A similar result holds for the parallelepiped P defined by by $\mathbf{0}, \mathbf{v}_{1}=$ $\left(a_{1}, a_{2}, a_{3}\right), \mathbf{v}_{2}=\left(b_{1}, b_{2}, b_{3}\right)$, and $\mathbf{v}_{3}=\left(c_{1}, c_{2}, c_{3}\right)$ (so that its vertices are $\mathbf{0}$,
$\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{1}+\mathbf{v}_{2}, \mathbf{v}_{1}+\mathbf{v}_{3}, \mathbf{v}_{2}+\mathbf{v}_{3}$, and $\left.\mathbf{v}_{1}+\mathbf{v}_{2}+\mathbf{v}_{3}\right)$. The volume of P is given by:

$$
\begin{equation*}
\text { volume }(P)=|\operatorname{det} M| \tag{11}
\end{equation*}
$$

As for the area of a parallelogram in the plane, the quantity $\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|$ can be negative, so the volume is always given by the absolute value of the determinant.

For example, let P be the parallelepiped defined by $\mathbf{0}, \mathbf{v}_{1}=(1,3,2)$, $\mathbf{v}_{2}=(4,1,0)$, and $\mathbf{v}_{3}=(-1,1,1)$ (so that its vertices are $\mathbf{0}, \mathbf{v}_{1}=(1,3,2)$, $\mathbf{v}_{2}=(4,1,0), \mathbf{v}_{3}=(-1,1,1), \mathbf{v}_{1}+\mathbf{v}_{2}=(5,4,2), \mathbf{v}_{1}+\mathbf{v}_{3}=(0,4,3)$, $\mathbf{v}_{2}+\mathbf{v}_{3}=(3,2,1)$, and $\mathbf{v}_{1}+\mathbf{v}_{2}+\mathbf{v}_{3}=(4,5,3)$), then the volume of P is $|\operatorname{det} M|=|-1|=1$, where M is the 3×3 matrix whose determinant we computed on the last page.

Exercises

Exercise 1: Let $\mathbf{v}=(1,0,-2)$ and let $\mathbf{w}=(-2,-2,1)$.
(i) Find a unit vector \mathbf{u} which points in the same direction as \mathbf{w}.
(ii) Find the component of \mathbf{v} along \mathbf{u} and the (vector) projection $p_{\mathbf{u}}(\mathbf{v})$.
(iii) Find $\mathbf{v}-p_{\mathbf{u}}(\mathbf{v})$ and verify that it is perpendicular to \mathbf{u}.
(iv) Compute the distance from \mathbf{v} to the line through the origin in \mathbb{R}^{3} and w.

Exercise 2: Find the following determinants:
(a) $\operatorname{det}\left(\begin{array}{cc}2 & -4 \\ 3 & 7\end{array}\right)$;
(b) $\operatorname{det}\left(\begin{array}{ll}3 & 5 \\ 3 & 2\end{array}\right)$;
(c) $\operatorname{det}\left(\begin{array}{ccc}1 & 1 & -1 \\ 2 & 3 & 2 \\ 1 & 2 & 1\end{array}\right) ; \quad$ (d) $\operatorname{det}\left(\begin{array}{ccc}1 & 1 & -1 \\ 2 & 3 & 2 \\ 0 & -1 & -4\end{array}\right) ; \quad$ (e) $\operatorname{det}\left(\begin{array}{ccc}1 & 1 & -1 \\ 2 & 3 & 2 \\ 0 & -1 & 1\end{array}\right)$.

For (a), (b), what is the area of the parallelogram with vertices $\mathbf{0}, \mathbf{v}_{1}$, $\mathbf{v}_{2}, \mathbf{v}_{1}+\mathbf{v}_{2}$, where \mathbf{v}_{1} and \mathbf{v}_{2} are the two rows of the given matrix?

For $(\mathrm{c}),(\mathrm{d}),(\mathrm{e})$, what is the volume of the parallelepiped defined by the vectors $\mathbf{0}=(0,0,0)$ and the three rows $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ of the given matrix? (The 8 vertices of the parallelepiped are $\mathbf{0}, \mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{1}+\mathbf{v}_{2}, \mathbf{v}_{1}+\mathbf{v}_{3}$, $\mathbf{v}_{2}+\mathbf{v}_{3}$, and $\mathbf{v}_{1}+\mathbf{v}_{2}+\mathbf{v}_{3}$. Compare Figure 3 on Stewart p. 819.) What is the meaning of your answer for (d)?

Exercise 3: Find the distance from the point p to the line L given as the set of all vectors of the form $\mathbf{p}_{0}+t \mathbf{w}$, where
(i) $\mathbf{p}=(-1,1,0), \mathbf{p}_{0}=(2,-1,4)$, and $\mathbf{w}=(1,-1,1)$.
(ii) $\mathbf{p}=(4,-1,3), \mathbf{p}_{0}=(1,2,3)$, and $\mathbf{w}=(1,-1,0)$.

Exercise 4: Find the distance from the point $\mathbf{p}=(-1,-1,5)$ to the plane defined by the equation $3 x+2 y-5 z=10$.

Exercise 5: Find the distance from the point $(2,1,4)$ to the plane containing the three points $(1,0,0),(0,2,0)$, and $(0,0,3)$.

Exercise 6: Let L_{1} be the line given as the set of all vectors of the form $(1,2,0)+t(-1,-1,4)$ and and let L_{2} be the line given as the set of all vectors of the form $(0,2,1)+t(2,-3,2)$. Find the distance from L_{1} to L_{2}.

