Some distance, area and volume formulas

The distance from a point to a line. We begin with the case of a point
v and a line L through the origin. Then L is the set of all scalar multiples
tw of a nonzero vector w. In the special case where w = u is a unit vector,
we define the component of v along u or the scalar projection of v to L to
be v - u. The vector projection or simply projection of v to L is then

pa(v) = (v - wu.

Note that py(v) is a scalar multiple of u, so that py(v) € L. The vector
v — pu(Vv) is then perpendicular to L, because

(v =pa(¥)) - u= (v u) — (v w)u) - u

=(v-u)—(v-uw(u-u)=(v-u)— (v-u)ul?=0,

since [Jul|?> = 1 under the assumption that u is a unit vector. The distance
from v to L is then

(1) ’ distance (v, L) = ||v — pu(V)]| ‘

Next consider the case where L is still a line through the origin, hence
is the set of all scalar multiples tw of a nonzero vector w, but w is not
necessarily a unit vector. Then u = w/||w|| is a unit vector and it defines
the same line through the origin as w. We then define the scalar projection
of v to L to be (v-w)/||w||, and the vector projection or simply projection

of v to L to be ( )
V-w
pw(v) = F—5
v [w?
(These are the formulas we would get by substituting in u = w/||w||.) Then
we have the same formula

(2) | distance (v, L) = v — pw(V)]||

(Compare the discussion in Stewart p. 811 as well as Figures 4 and 5 on

that page.) Note that the scalar projection satisfies
(v-w) v||||w] cos 6
= tpu(w)] = VIO _ o) oo,
[l [[wl]

and this is the length of the leg of the right triangle whose hypotenuse
is v and which has one side parallel to w, at least if cos@ is positive (or
equivalently, # is an acute angle). What happens if cosf is negative?




Finally consider the case where L does not necessarily pass through the
origin. Then L is the set of all vectors of the form py + tw, for some fixed
nonzero vector w, as t runs through all real numbers. Let p be a point.
Subtracting pg replaces L by the set of all scalar multiples tw of w, and
replaces p by p — po = v, and doesn’t change distances. Thus

(3) | distance (p, L) = [|(p — Po) — pw(P — Po)l|

In practice, it is usually simpler to start off by subtracting pg to be in
the situation described by Equation (2).

Example: Find the distance from (i) the point (1,2,4) to the line L
through (2,3,2) which is parallel to (—1,—1,5); (ii) the point (1,1, —2) to
the line L through (3, —3,2) which is parallel to (1,—2,2).

Solution: (i) Here L is the set of all points of the form (2,3,2) +
t(—1,—1,5). Subtracting (2,3,2), we see that we are in the situation of
(2) with v =(1,2,4) — (2,3,2) = (—1,—-1,2) and w = (—1,—1,5). Then

12 4
= —(-1,-1,5) = =(—-1,-1,5
pW(V) 27( ) ) ) 9( ) ) )7
and
4 5 5 2 1
- =(-1,-1,2) — =(—-1,-1 =(—=,——,—=) = —(=5,—5,-2).
v pw(v) ( Y Y ) 9( ) 75) ( 97 97 9) 9( 57 57 )
So finally the distance is
1 V4 3v6 V6
Iv = sl = gll(=5,-5,-2)| = Y= = T2 = 22

(ii) Here L is the set of all points of the form (3,-3,2) + (1, -2, 2).
Subtracting (3, —3,2), we see that we are in the situation of (2) with v =
(1,1,-2) — (3,-3,2) = (—2,4,—4) and w = (1,—2,2). Then

pw(") = ;(17 _272) = (_2)(17 _2>2> = (_2>4> _4) =V,

and
v _pW(V) = (_2>47 _4) - (_2747 _4) =0.

The distance from (1,1,—2) to L is then ||0]] = 0. This just means that
(1,1, —2) lies on L; in fact, (1,1, —-2) = (3,-3,2) + (—2)(1,-2,2).

There is another formula that works for point and lines in R?® (and, by
extension, for R%, but not in higher dimensions). As before, let L be the set



of all vectors of the form pg + tw, for some fixed nonzero vector w. For a
point p, we set v =p — pg. Then

(4) distance (p,L) = —————

To see this, we can subtract off py as in the discussion before Equation (3),
so we may as well assume that pp = 0 and that p = v. Then ||v x w|| =
|v]|||w|| sin @, where 6 is the angle between v and w, and hence

In class, we have identified ||v|| sin @ with the distance from v to L (see also
Stewart, p. 817, Figure 2.)

Let’s redo the example above using Formula (4):

(i) Here as noted v = (—1,—1,2) and w = (—1,—1,5). Also, a com-
putation shows that v x w = (—1,-1,2) x (-1,—-1,5) = (—3,3,0). Thus
v x w|| = [|(=3,3,0)|| = V18 and ||w]| = v/27, so that the distance is

VIS _v2_ V6
V2T VBT

agreeing with our previous computation.

(ii) Here as noted v = (—2,4,—4) and w = (1, —2,2). Also, a computa-
tion shows that v x w = (—2,4,—4) x (1,-2,2) = (0,0,0), so the distance
is 0. This again agrees with the previous computation.

The distance from a point to a plane in R3. As before, we begin with
a plane P through the origin, given by the equation Ax+ By+Cz = 0. Here
n = (A, B,C) is the normal vector. Let v be a point. Then the distance
from v to P is given by the length of the vector projection of v onto n (see
for example Stewart p. 829 Figure 12). This length is

|v - n| In - v|
T Il = :
[n|

[m][?
Explicitly, if v = (21,91, 21), then the distance is given by

(5) distance (v, P) = o - v _ |Az1 + By1 + Cz|
Inl — VAZ+BZ+C?




Now assume that the plane P does not necessarily pass through the
origin, and fix a point pg = (x0, Yo, 20) on P. We have seen that the plane
P is given by the equation Az + By + Cz = D, where n = (4, B, C) is the
normal vector and D = n - pg = Azxg + Byo + Cz. Let p1 = (x1,y1,21) be
a point in R3. We wish to find the distance from p; to P. Subtracting po
replaces P by the plane through the origin defined by Az + By + Cz = 0,
replaces p by p1 — po = v, and doesn’t change distances. So by applying
Equation (5), we see that

. — A B - D
(6) distance (p1, P) = [n- (P1 — Po)| _ |Az1 + By + C= |
[l VA? 4+ B2+ C?

Example: the distance from (0, 0, 1) to the plane defined by 2x —3y+z =
5: here (A,B,C) = (2,-3,1), D = 5, and (z1,91,21) = (0,0,1). The
distance is then |1 — 5|/v/14 = 4/V/14.

The distance between two parallel planes in R3. Suppose that P; and
P, are two parallel planes in R3. Then they have the same normal vectors
(up to a nonzero scalar multiple) and so we can assume that P; is given
by the equation Ax + By + Cz = D; and that P» is given by the equation
Ax+ By+ Cz = Dy. The distance from P» to P; is the same as the distance
from any point of P» to P;. Applying Equation (6), we see:

A B - D Dy — D
(7) distance (P, P) = [Azs + Bys + Oz 1| = | D2 1|
1/142_|_‘BQ_|_C'2 ’/AQ—FBQ—FCQ

The distance between two skew lines in R3. Let L; and Ly be two
skew lines in R®. Then L; is the set of all vectors of the form p; + twi,
t € R, and likewise Lo is the set of all vectors of the form po + two, t € R.
The condition that L and Lo are skew is that w; and wy are not parallel.
There is a unique vector perpendicular to both w; and wo up to multiplying
by a nonzero scalar, namely n = wy x wo = (A, B, (), say. Let D; =n-p;
and let Do = n - ps. Then L; is contained in the plane P; with equation
Ax+ By+ Cz = Dy, and Then Lo is contained in the parallel plane P» with
equation Az + By + Cz = Dy. A basic fact (which we shall not prove) is
that the distance between L and Lo is the same as the distance between P;
and P»; equivalently, there is a line segment (in fact a unique one) joining
L, and Lo which is perpendicular to L and Ls. Assuming this, we can use



Equation (7) to find the distance from L; to Lo:

|Da — Dy |
VA2 T+ B+ (2

(8) distance (L1, Lo) =

Alternatively, we can write this as

9) distance (L1, Lo) = [(w1 x wa) - v|

[[wy x wa|

where as usual v = pa — p1. (We can recognize this quantity as the length
of the projection of v to the line perpendicular to L; and Ls.)

Example: let L; be the line whose points are of the form (—1,2,—-1) +
(2,0, 3) and let L be the line whose points are of the form (0, 2,0)+¢(1,1,2).
First, the normal to Ly and L is given by (2,0,3) x (1,1,2) = (=3, -1, 2).
Then Dy = (-3,—-1,2) - (—1,2,—1) = —1 and Dy = (-3,—1,2) - (0,2,0) =
—2. Thus, the distance between L; and Lo is

|—2-(-1| _ 1
VI+1+4 14

Determinants, area, and volume. A matrix is a rectangular array of
numbers. We shall only be concerned with 2 x 2 matrices

v=(c )

and 3 x 3 matrices

ay az as
M=1|b1 by b3
C1 C2 C3

We define the determinant det M of a 2 x 2 matrix M by the formula

a b

a b
detM-det(C d>_c d

‘:ad—bd.

Note that, in spite of the vertical lines in the notation above, det M can be
negative. For example,

1 3 1 3
N E—



The determinant det M of a 3 x 3 matrix M can be defined in various
different ways: either inductively by the formula

ap az as ap a2 ag
detM =1by by by | =|b1 by b3
1 C2 C3 1 C2 C3
by b3 by b3 b1 b
= aj —az + as )
C2 C3 C1 C3 1 C2

or directly by the formula

ay ag as ay ag as
det M = bl bg b3 = bl bg bg
C1 C2 C3 1 C2 C3

= arbacz + agbzcr + agbica — azbacy — azbics — arbzcs.

Finally, if the rows of M are the vectors v = (a1, az, a3),w = (b1, b2, b3), and
u = (c1, c2,c3), then direct computation shows that

det M =v-(wxu)=w-(uxv)=u-(vxw).

1 3 2
Example: det | 4 1 0] =1(1) — 3(4) +2(5) = —1. If we wanted to
-1 1 1
compute via cross products instead, we have (4,1,0)x (—1,1,1) = (1, —4,5),
and thus
det M = (1,3,2) - (1,—4,5) =1 — 12+ 10 = —1.

Determinants are use to compute are and volume as follows: First, if

d
P be the parallelogram in R? with vertices 0, vi, Vo, vi + vo. Then

vi1 = (a,c) and vg = (b,d) are the two rows of the matrix M = (Ccl b), let

(10) ’ area (P) = |det M| = |ad — bd|‘

Note that we have to take the absolute value of the determinant. For
example, the parallelogram in R? with vertices 0, (1,3), (5,2), and (6,5) is
12— 15| = | — 13| = 13.

A similar result holds for the parallelepiped P defined by by 0, vi =
(a1,a2,a3), va = (b1,b2,b3), and vz = (¢1,c2,c3) (so that its vertices are 0,



V1, Vo, V3, V1 + Vo, V1 + V3, vo + vs3, and v + vy + v3). The volume of P
is given by:

(11) ’VOlume (P) = |det M| ‘
ay ag as
As for the area of a parallelogram in the plane, the quantity [by by b3
Ccl1 C2 C3

can be negative, so the volume is always given by the absolute value of
the determinant.

For example, let P be the parallelepiped defined by 0, vi = (1,3,2
vy = (4,1,0), and v3 = (—1,1,1) (so that its vertices are 0, vi = (1,3,2),
vy = (4,1,0), v3 = (—=1,1,1), vi + vo = (5,4,2), vi + v3 = (0,4,3),
vo + vy = (3,2,1), and vi + vy + v3 = (4,5,3)), then the volume of P
is |det M| = | — 1| = 1, where M is the 3 x 3 matrix whose determinant we
computed on the last page.

);
)

Exercises

Exercise 1: Let v =(1,0,—2) and let w = (-2, —-2,1).

(i) Find a unit vector u which points in the same direction as w.

(ii) Find the component of v along u and the (vector) projection py(v).
(iii) Find v — py(v) and verify that it is perpendicular to u.
)

(iv) Compute the distance from v to the line through the origin in R? and
w.

Exercise 2: Find the following determinants:

(a) det <§ _74> : (b) det <§ ;) :

1 1 -1 1 1 -1 1 1 -1
(c)det |2 3 2 |; (d)det (2 3 2 |; (e)det [2 3 2
1 2 1 0 -1 —4 0 -1 1



For (a), (b), what is the area of the parallelogram with vertices 0, vy,
Vo, V1 + va, where vy and vy are the two rows of the given matrix?

For (c), (d), (e), what is the volume of the parallelepiped defined by
the vectors 0 = (0,0,0) and the three rows v, vo, v of the given matrix?
(The 8 vertices of the parallelepiped are 0, vi, va, V3, Vi + va, Vi + V3,
vy + v3, and vi + vy + v3. Compare Figure 3 on Stewart p. 819.) What is
the meaning of your answer for (d)?

Exercise 3: Find the distance from the point p to the line L given as the
set of all vectors of the form pg + tw, where

(i) p=(-1,1,0), po = (2,—-1,4), and w = (1,—1,1).
(i) p=(4,—-1,3), po = (1,2,3), and w = (1, —1,0).
Exercise 4: Find the distance from the point p = (=1, —1,5) to the plane

defined by the equation 3z + 2y — 5z = 10.

Exercise 5: Find the distance from the point (2,1,4) to the plane contain-
ing the three points (1,0,0), (0,2,0), and (0,0, 3).

Exercise 6: Let L; be the line given as the set of all vectors of the form
(1,2,0)+t(—1,—1,4) and and let Lo be the line given as the set of all vectors
of the form (0,2,1) 4+ ¢(2,—3,2). Find the distance from L; to Ls.



