
Sets and functions

1 Sets

The language of sets and functions pervades mathematics, and most of the
important operations in mathematics turn out to be functions or to be ex-
pressible in terms of functions. We will not define what a set is, but take as
a basic (undefined) term the idea of a set X and of membership x ∈ X (x
is an element of X). The negation of x ∈ X is x /∈ X: x is not an element
of X. Typically, the elements of a set will themselves be sets, underscoring
the point that, in mathematics, everything is a set. A set can be described
(i) as a list {x1, . . . , xn} or (ii) by giving a description of its elements, e.g.
the set of positive real numbers is described via

{x ∈ R : x > 0},

where R denotes the set of all real numbers. A very important set is the
empty set ∅: for all x, x /∈ X. Thus ∅ has no elements. Two sets X and Y
are by definition equal if they have the same elements: X = Y if, for all x,
x ∈ X ⇐⇒ x ∈ Y . We can say this somewhat informally as follows: a set
is uniquely specified by its elements. This implies by logic that ∅ is
uniquely specified by the condition that, for all x, x /∈ X: there is exactly
one empty set. If, for every x ∈ X,x ∈ Y , then X is a subset of Y , written
X ⊆ Y . Note that we always have X ⊆ X and ∅ ⊆ X. A subset A of X
is called a proper subset if A 6= X. By the definition of equality of sets,
X = Y ⇐⇒ X ⊆ Y and Y ⊆ X. If X ⊆ Y and Y ⊆ Z, then X ⊆ Z; this
is called the transitivity property. The notation X ⊂ Y is sometimes used
to mean that X ⊆ Y but X 6= Y . A set of the form X = {x1, . . . , xn} is
a finite set. If for all i, j with 1 ≤ i, j ≤ n, we have xi 6= xj then we write
#(X) = n. By logic or convention, ∅ is finite and #(∅) = 0. Conversely, if
X is a (finite) set with #(X) = 0, then X = ∅. A set of the form {x} has
exactly one element. In particular, {∅} has a single element, namely ∅, and
thus {∅} 6= ∅.

Recall the standard operations on sets:
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Definition 1.1. If X1 and X2 are two sets, then:

1. The union of X1 and X2 is the set

X1 ∪X2 = {x : x ∈ X1 or x ∈ X2}.

Thus X1 ⊆ (X1∪X2) and X2 ⊆ (X1∪X2). The union of finitely many
sets is defined similarly: If X1, . . . , Xn are sets, then

n⋃
i=1

Xi = {x : for some i, x ∈ Xi}.

2. The intersection of X1 and X2 is:

X1 ∩X2 = {x : x ∈ X1 and x ∈ X2}.

Thus (X1 ∩X2) ⊆ X1 and (X1 ∩X2) ⊆ X2. Likewise

n⋂
i=1

Xi = {x : for all i, x ∈ Xi}.

3. Given two sets X1 and X2, the complement of X2 in X1, written
X1 −X2, is the set

{x ∈ X1 : x /∈ X2}.

Thus X2 ∩ (X1 −X2) = ∅. If X2 ⊆ X1, then X2 ∪ (X1 −X2) = X1.
For example, X −X = ∅ and X − ∅ = X.

By logic (deMorgan’s laws), Y − (X1 ∩X2) = (Y −X1) ∪ (Y −X2) and
Y − (X1 ∪X2) = (Y −X1)∩ (Y −X2). (For example, if x ∈ Y, x /∈ X1 ∩X2,
then either x /∈ X1 or x /∈ X2 and conversely.)

Definition 1.2. Given X and Y , we define X×Y , the Cartesian product of
X and Y , to be the set of ordered pairs (x, y) with x ∈ X and y ∈ Y . Here
x is the first component or first coordinate of the ordered pair (x, y) and y
is the second component (or coordinate). Clearly, if A ⊆ X and B ⊆ Y ,
then A×B ⊆ X × Y .

If X = Y , we abbreviate X × X by X2. Likewise, if we have n sets
X1, . . . , Xn, then X1 × · · · × Xn is the set of ordered n-tuples (x1, . . . , xn)
with xi ∈ Xi for every i, the ith component (or coordinate) of (x1, . . . , xn)
is xi, and we again abbreviate X × · · · ×X (n times) by Xn.
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Remark 1.3. The operative properties of an ordered pair (x, y) are: 1) For
all x ∈ X and y ∈ Y , there exists an ordered pair (x, y) ∈ X × Y , and 2)
two ordered pairs (x1, y2) and (x2, y2) are equal ⇐⇒ they have the same
first components and the same second components, i.e. ⇐⇒ x1 = x2 and
y1 = y2; it is not enough to require that the sets {x1, y1} and {x2, y2} be
equal. It is possible to give a formal definition of an ordered pair just using
set theory. In fact, one can define (x, y) = {{x}, {x, y}}. (In other words,
ordered pair does not have to be an undefined term.) However, we shall not
really care what the precise definition is, but only that an ordered pair has
the operative properties 1) and 2) above. Using functions, though, we can
give a careful definition of an ordered n-tuple; we shall describe this later.

If X and Y are finite sets, then X × Y is also finite, and

#(X × Y ) = #(X)#(Y ),

and similarly for the product of n finite sets X1 × · · · ×Xn. In particular,
this formula says that #(∅ × X) = #(X × ∅) = 0 for every (finite) set X
and hence that, if X is finite, then ∅×X = X ×∅ = ∅. Of course, it is easy
to check by logic that ∅ ×X = X × ∅ = ∅ for every set X (not necessarily
finite).

The set of all subsets of X is also a set, and is called the power set of
X, often denoted P(X):

P(X) = {A : A ⊆ X}.

By the transitivity property, if Y ⊆ X, then P(Y ) is a subset of P(X). Note
that X ∈ P(X) and that ∅ ∈ P(X). If X 6= ∅ and x ∈ X, then {x} ∈ P(X).
Examples: P(∅) = {∅}. In particular, P(∅) 6= ∅; in fact, P(∅) contains the
unique element ∅, and thus #(P(∅)) = 1. Likewise, P(P(∅)) = P({∅}) =
{∅, {∅}}. In particular, #(P(P(∅))) = 2. Likewise,

P({∅, {∅}}) = {∅, {∅}, {{∅}}, {∅, {∅}}},

and hence #(P({∅, {∅}})) = 4. More generally, we shall see that, if X is a
finite set and #(X) = n, then #(P(X)) = 2n.

2 Functions

Next we define a function f : X → Y . Although we can think of a function
as a “rule” which assigns to every x ∈ X a unique y ∈ Y , it is easier to make
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this concept precise by identifying the function f with its graph in X × Y
(as we were taught not to do in calculus). Thus a function f is the same
thing as a subset Gf of X × Y with the following property: for all x ∈ X,
there is a unique y ∈ Y such that (x, y) ∈ Gf and we set y = f(x). To say
that there is a unique y ∈ Y says that f(x) is uniquely determined by x,
and to say that for every x ∈ X there exists an (x, y) ∈ Gf says that in fact
f(x) is defined for all x ∈ X. This is the so-called vertical line test: for each
x ∈ X, we have the subset {x} × Y of X × Y . (In case X = Y = R, such
subsets are exactly the vertical lines.) Then G is the graph of a function f
if and only if, for every x ∈ X, ({x} × Y ) ∩G consists of exactly one point,
necessarily of the form (x, y) for some y ∈ Y . The unique such y is then
f(x).

In the above notation, we call X the domain of f and Y the range. Thus
the domain and range are a part of the information of a function. Note that
a function must be defined at all elements of its domain; thus for example
the function f(x) = 1/x cannot have domain R without assigning some
value to f(0). (This is in contrast to the practice in some calculus courses
where f is allowed to be not everywhere defined.) Two functions f1 and f2
are equal if and only if their graphs are equal, if and only if, for all x ∈ X,
f1(x) = f2(x). Thus, just as a set is specified by its elements, a function
is uniquely specified by its values. We emphasize, though, that for
two functions f1 and f2 to be equal, they must have the same domain and
range. We shall use the word map or mapping as a synonym for function;
typically maps are functions in some kind of geometric setting.

Definition 2.1. Let f : X → Y be a function. The set

{y ∈ Y : there exists x ∈ X such that f(x) = y}

is called the image of f and is sometimes written f(X). (Sometimes people
call the range the codomain and define the range to be the image.) More
generally, if A is a subset of X, then we set

f(A) = {y ∈ Y : there exists an x ∈ A such that f(x) = y}.

We say that f is surjective or onto if f(X) = Y , in other words if the image
of f is Y . In general the image of a function f(x) will be a subset of the
range, but need not equal the range.

We also define, for B a subset of Y , the subset

f−1(B) = {x ∈ X : f(x) ∈ B}
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of X, called the preimage of B. If B = {y} has just one element we write
f−1(y) instead of f−1({y}). For example, f−1(Y ) = X and f−1(y) 6= ∅ if
and only if y ∈ f(X).

Note: if Y is a subset of another set Y ′, then a function f : X → Y
defines (in an obvious way) a function from X to Y ′. Technically these are
two different functions, although we will occasionally (and incorrectly) blur
the distinction. Also, given a function f : X → Y , we can always replace
it by a function from X to f(X) ⊆ Y , and this new function is always
surjective.

Often we need to restrict the values of given function, leading to the
following:

Definition 2.2. If f : X → Y is a function and A ⊆ X, then we define
the restriction (f |A) of f to A to be the function (f |A) : A→ Y defined by
(A× Y ) ∩Gf , where Gf is the graph of f . In other words, (f |A)(a) = f(a)
for all a ∈ A, and the domain of (f |A) is exactly A. If moreover f(A) ⊆ B,
there is the induced function g : A→ B, which technically is different from
(f |A). However we shall sometimes be a little careless.

Definition 2.3. A function f : X → Y is injective or one-to-one if, for all
x1, x2 ∈ X, f(x1) = f(x2) if and only if x1 = x2. Equivalently, for all
y ∈ Y , the set f−1(y) has at most one element. Thus f is injective if, for all
y ∈ Y , the equation f(x) = y has at most one solution, or in other words if a
solution exists, then it is unique. By contrast, f is surjective if the equation
f(x) = y has a solution (not necessarily unique) for every y ∈ Y . A function
f : X → Y which is one-to-one and onto is called a bijection or a one-to-one
correspondence.

For example, taking X = R, the function f(x) = x2 is neither injective
nor surjective. (When is x21 = x22? What is the image of f?) The function
f(x) = ex is injective but not surjective. (What is the image of f?) The
function f(x) = x3 + 1 is a bijection. The identity function IdX : X → X is
always a bijection.

The property of being injective or surjective can also be described via
“horizontal lines,” in other words by subsets of X × Y of the form X × {y}
(which are exactly the horizontal lines in case X = Y = R). A function
f : X → Y is injective ⇐⇒ for every y ∈ Y , the intersection of the graph
Gf with X × {y}, i.e. Gf ∩ (X × {y}), has at most one point. The function
f is surjective ⇐⇒ for every y ∈ Y , the intersection of the graph Gf with
X × {y}, i.e. Gf ∩ (X × {y}), has at least one point. Thus, f is a bijection
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⇐⇒ for every y ∈ Y , the intersection of the graph Gf with X × {y}, i.e.
Gf ∩ (X × {y}), has exactly one point. This can be interpreted as follows:
for every subset A of X × Y , we get a new subset tA of Y ×X by:

tA = {(y, x) : (x, y) ∈ A}.

This is the abstract analogue of “reflection about the diagonal.” Then:

Proposition 2.4. The function f : X → Y is a bijection ⇐⇒ the subset
tGg ⊆ Y × X is the graph of a function from Y to X. This function is
denoted f−1.

Here are some basic examples of functions:

1. For any set X, the identity function IdX : X → X satisfies: IdX(x) = x
for every x ∈ X. Thus its graph in X2 is the set ∆X = {(x, x) : x ∈
X}, which we can think of as the “diagonal” viewed as a subset of X2.
(Does the diagonal satisfy the test of being the graph of a function?)
The preimage of A ⊆ X is just A. When X is clear from the context,
we will often abbreviate IdX to Id.

2. A related example is inclusion: if X ⊆ Y , then {(x, x) : x ∈ X} is a
subset of X × Y which is the graph of the inclusion function from X
to Y , which we shall often denote by iX . Note that iX = IdY |X. The
image iX(A) of a subset A of X is then A, viewed as a subset of Y ,
and the preimage i−1X (B) of B ⊆ Y is B ∩X.

3. Another example, if Y 6= ∅, is a constant function: choose c ∈ Y and
define f(x) = c for all x ∈ X. (What is the graph of this function and
why is it a function?) In this case, the preimage of a subset B of Y is
∅ if c /∈ B and is X if c ∈ B. The image f(A) of a

4. Of course, all of the standard functions of calculus give examples of
functions from R to R. (If f : R→ R is the function f(x) = x2, what
is the image of f? What is f−1(a)?)

5. Another example is the Cartesian product X ×X, which we can iden-
tify with the set of functions f : {1, 2} → X. In fact, in the notation
for an ordered pair (x1, x2), we can think of xi as a function which
assigns the value x1 to 1 and x2 to 2. If we wanted to define the
Cartesian product of two possibly different sets in this way, we could
define X × Y to be the set of all functions f : {1, 2} → X ∪ Y such
that f(1) ∈ X and f(2) ∈ Y . Likewise Xn is identified with the set of
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functions f : {1, 2, . . . , n} → X. A sequence x1, x2, . . . of real numbers
is then the same as a function N → R, where N is the set of natural
numbers {1, 2, . . . }. Here, given a function f : N → R, we define a
sequence x1, x2, . . . via xi = f(i), and conversely. More generally, if
X is any set, possibly finite, then a sequence x1, x2, . . . with values in
X is the same thing as a function f : N→ X.

6. A function of two variables is the same thing as a function f : X×Y →
Z of a single “variable,” in other words we evaluate f on elements of
X×Y , which are ordered pairs. Traditionally, we write f(x, y) instead
of f((x, y)) for the value of f on (x, y). Similarly for functions of n
variables.

7. If X and Y are two sets, then the set of all functions from X to Y is
a new set, sometimes denoted by Y X :

Y X = {f : f is a function from X to Y }.

If X and Y are finite, say #(X) = n and #(Y ) = m, then Y X is also
finite and #(Y X) = mn.

Given x ∈ X, we get a function evx from Y X to Y by evaluating at x:

evx(f) = f(x).

Thus, when we write f(x) above, the symbol f has become the “vari-
able.” There is a similar function of two variables, e : X × Y X → Y ,
defined by

e(x, f) = f(x).

Remark 2.5. If X and Y are finite sets, and f : X → Y is a bijection, then
#(X) = #(Y ). In fact, we can define a finite set X in the following way: X
is finite ⇐⇒ for some natural number n, there exists a bijection from the
set {1, . . . , n} to X, and in this case #(X) = n. (By definition, therefore,
an infinite set X is one for which, for every natural number n, there is no
bijection from {1, . . . , n} to X.)

More generally, if X and Y are finite sets, then

1. If there exists a bijection f : X → Y , then #(X) = #(Y ).

2. If there exists an injection f : X → Y , then #(X) ≤ #(Y ).

3. If there exists a surjection g : X → Y , then #(X) ≥ #(Y ).
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4. If #(X) = #(Y ) and h : X → Y is a function, then h is an injection⇐⇒
h is a surjection ⇐⇒ h is a bijection.

Any one of the last three facts is referred to as the pigeonhole principle.
It follows easily that, if X is finite and A is a proper subset of X, then

#(A) < #(X) and there is no bijection from A to X. It turns out that
infinite sets can be characterized by the opposite property: X is infinite
⇐⇒ a proper subset A of X and a bijection from A to X.

Given functions f : X → Y and g : Y → Z, we have the composition
g ◦ f : X → Z defined by

g ◦ f(x) = g(f(x))

for all x ∈ X. For example, given f : X → Y , IdY ◦f = f ◦ IdX = f .
Thus, the identity function behaves very much like an identity element under
composition, as long as we are careful about the domains of the relevant
identity functions.

The operation of function composition is somewhat like an algebraic
operation, in that we can sometimes “combine” two functions and get a
third. But we can’t always do so: we can only define g ◦ f when the range
of f is equal to the domain of g.

Function composition has the important property that it is associative
where defined:

Proposition 2.6. Suppose given functions f : X → Y , g : Y → Z, and
h : Z →W . Then

h ◦ (g ◦ f) = (h ◦ g) ◦ f.

Proof. For all x ∈ X, (h ◦ (g ◦ f))(x) = h((g ◦ f)(x)) = h(g(f(x))), and
likewise ((h◦ g)◦f)(x) = (h◦ g)(f(x)) = h(g(f(x))). Thus (h◦ (g ◦f))(x) =
((h ◦ g) ◦ f)(x) for all x ∈ X and so h ◦ (g ◦ f) = (h ◦ g) ◦ f .

In general function composition is not commutative. For example, given
f : X → Y , we can only compose it with g : Y → Z in both orders when
X = Z. In this case g ◦ f : X → X and f ◦ g : Y → Y , and we can only
compare these when X = Y . Finally, very simple examples show that even
when Y = X, if we pick two random functions f : X → X and g : X → X,
then g ◦f 6= f ◦g (as long as X has more than one element). In other words,
the composition of two random functions, whose domain and range are both
equal to a fixed set X, will depend on the order (for example, take X = R,
f(x) = ex, g(x) = x2 + 1, and check that g ◦ f 6= f ◦ g).
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We have seen that identity functions work much like identity elements
for addition or multiplication of real numbers. We can also ask about inverse
functions. It turns out that inverse functions are related to bijections. Let
f : X → Y be a function. An inverse function g : Y → X is a function g such
that g◦f = IdX and f ◦g = IdY . As we will show soon, if an inverse function
exists it is unique and is denoted f−1. This should not be confused with
the preimage which can be defined for any function, and it should never be
confused with 1/f , which can be defined for a real-valued function which is
never zero. For example, if f : X → Y is a bijection with inverse f−1, then
f−1(y) could potentially mean the value of f−1 on y or the preimage of y,
which is the subset f−1({(y)}) ⊆ X.

In a similar vein, a left inverse for f is a function g such that g◦f = IdX ,
and a right inverse for f is a function g such that f ◦ g = IdY . It is possible
for a function to have a right inverse but not a left inverse, and vice-versa.
However, if a function has both a right and a left inverse they are equal:

Proposition 2.7. Suppose that f : X → Y is a function, and that g : Y →
X and h : Y → X are functions such that g ◦ f = IdX and f ◦ h = IdY .
Then g = h and so g is an inverse function for f .

Proof. Consider g ◦ f ◦ h. Since function composition is associative, this is

(g ◦ f) ◦ h = IdX ◦h = h

but associating the other way says that it is also equal to

g ◦ (f ◦ h) = g ◦ IdY = g.

Hence g = h.

Corollary 2.8. If g1 and g2 are two inverse functions for f , then g1 = g2.
In other words, an inverse function, if it exists, is unique.

Proof. Since an inverse function is both a left and a right inverse, we can
apply the previous proposition, viewing, say, g1 as a right inverse and g2 as
a left inverse, to conclude that g1 = g2.

Note that g is a left inverse for f ⇐⇒ f is a right inverse for g, and
similarly for right inverses. In particular, if f has an inverse f−1, then f is
a right and a left inverse for f−1, hence an inverse to f−1. We can express
this by:
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Proposition 2.9. Suppose that f : X → Y has an inverse function f−1 : Y →
X. Then f−1 also has an inverse function, and in fact it is necessarily equal
to f . In other words,

(f−1)−1 = f.

The relation between left and right inverses and injectivity and surjec-
tivity, is given by the following:

Proposition 2.10. Let f : X → Y be a function.

1. Suppose that X 6= ∅. Then f has a left inverse if and only if f is
injective.

2. f has a right inverse if and only if f is surjective.

3. f has an inverse if and only if f is a bijection.

Proof. (1), (2): left as homework.

(3) (Outline.) This follows from (1) and (2). However, in this important
case, we can give a more direct argument as follows. Use the fact that
f : X → Y is a bijection ⇐⇒ tGf ⊆ Y × X is the graph of a function
g : Y → X and check that, necessarily, g ◦ f = IdX and f ◦ g = IdY .
Conversely, if f−1 : Y → X is an inverse function, then it is easy to see that
Gf−1 = tGf , hence f is a bijection.

In particular, a very efficient way to show that a function is a
bijection is to exhibit an inverse function for it.

The composition of two injections is an injection and the composition
of two surjections is a surjection (homework). Thus the composition of
two bijections is a bijection. However, in light of the above remark, it is
better to show this last statement by describing the inverse function to the
composition, which has the advantage of also giving a formula for the inverse.
Note the reversal of order in the formula, which is a basic fact of life.

Proposition 2.11. Suppose that f : X → Y has an inverse function f−1 : Y →
X and that g : Y → Z has an inverse function g−1 : Z → Y . Then g ◦ f has
an inverse, and it is equal to f−1 ◦ g−1.

Proof. We must check both equalities

(g ◦ f) ◦ (f−1 ◦ g−1) = IdZ ;

(f−1 ◦ g−1) ◦ (g ◦ f) = IdX .

10



Since these are similar, we shall just check the first: by associativity,

(g ◦ f) ◦ (f−1 ◦ g−1) = g ◦ (f ◦ (f−1) ◦ g−1

= (g ◦ IdY ) ◦ g−1

= g ◦ g−1 = IdZ .

Bijections express the idea that two sets have the same number of el-
ements. We have already discussed this for finite sets. For infinite sets
this can be used to define what it means for two infinite sets to have the
same number of elements (Cantor). But such bijections might be very non-
obvious. For example, one can show that there is a one-to-one correspon-
dence from R to R2, or in fact to Rn for any n > 0, but such a bijection does
not have geometric properties and is hard to write down in any explicit way.
Its existence says that R and R2 have the same number of elements from a
purely quantitative point of view, but in no geometric sense do R and R2

resemble each other.
On the other hand, especially in algebra, we often look for “good” bijec-

tions, which might tell us that two sets might be essentially the same even
if technically different. For example, the sets X×Y and Y ×X are different
sets if X 6= Y , but there is a natural function F : X × Y → Y ×X defined
by F (x, y) = (y, x). This function is a bijection: if F (x1, y1) = F (x2, y2),
then by definition (y1, x1) = (y2, x2) as ordered pairs in Y ×X. Hence by
the operative property of equality of ordered pairs, y1 = y2 and x1 = x2,
and thus (x1, y1) = (x2, y2). Hence F is injective. To see that it is surjec-
tive, let (y, x) be an arbitrary element of Y × X. Then (y, x) = F (x, y).
Thus F is surjective and hence a bijection. Without verifying directly that
F is both injective and surjective, we could try to find an inverse function
G : Y × X → X × Y . What is the inverse function? Likewise, there is a
one-to-one correspondence from X1 × (X2 × X3) to (X1 × X2) × X3, and
from either of these sets to X1 × X2 × X3. In fact, these bijections are so
obvious that we don’t always write them down explicitly.

For another example, we can identify the power see P(X) with the set
of all functions from X to {0, 1}, i.e. with {0, 1}X . Given A ∈ P(X), define
the characteristic function χA : X → {0, 1} by:

χA(x) =

{
1, if x ∈ A;

0, if x /∈ A.
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Then χA ∈ X{0,1}. Conversely, if f ∈ {0, 1}X , i.e. f is a function from X to
{0, 1}, define Sf = f−1(1) = {x ∈ X : f(x) = 1}. More formally, we have

defined a bijection F : P(X)→ {0, 1}X by the formula

F (A) = χA.

The function G : {0, 1}X → P(X) defined by

G(f) = f−1(1)

is the inverse function to F , as one can check by verifying both statements

G ◦ F = IdP(X);

F ◦G = Id{0,1}X .

For example, the first statement is the statement that, for every subset A
of X,

(G ◦ F )(A) = χ−1A (1) = A,

where χ−1A (1) denotes the preimage of 1 under the function χA. The second
statement is the statement that, if f : X → {0, 1} is a function, then

(F ◦G)(f) = χf−1(1) = f.

These statements are checked by unwinding the definitions, and are part of
the homework.

Thus, by Remark 2.5, if X is a finite set and #(X) = n, then

#(P(X)) = #({0, 1}X) = 2n.

The above examples illustrate a general pattern in mathematics. Given
two sets X and Y , a bijection from X to Y is often found by giving (1),
for every element x ∈ X a “construction” of an element y ∈ Y , which we
interpret as a function F : X → Y ; (2) similarly, for every element y ∈ Y
a “construction” of an element x ∈ X, which we interpret as a function
G : Y → X; (3) a proof that these are “inverse constructions,” i.e. if we
construct y from x and then do the corresponding construction on y, we get
back the element x ∈ X that we started with, and similarly in the other
order. This last statement is equivalent to the assertions that G ◦ F = IdX

and F ◦ G = IdY . Of course, we hope that the “constructions,” in other
words the functions F and G, are natural ones to consider in some vague
sense.

Finally, we discuss the set of all bijections from a set to itself. This
object will recur throughout the semester.
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Definition 2.12. Let X be a set. We define SX , the set of permutations of
X, to be the set of all bijections f : X → X. Thus SX ⊆ XX , the set of all
functions from X to X.

Note that IdX ∈ SX . If f, g ∈ SX then g ◦ f ∈ SX , and if f ∈ SX ,
then f−1 ∈ SX . In other words, SX is closed under composition and every
element of SX has an inverse, which is also in SX . For a finite set X with
#(X) = n, we usually take for X the standard finite set with n elements,
namely {1, . . . , n}, and abbreviate S{1,...,n} by Sn. By counting, #(Sn) = n!,
since, to define a bijection f : {1, . . . , n} → {1, . . . , n} , there are n possible
choices for f(1), but only n − 1 choices for f(2) since the value f(1) is
excluded (as f is injective, we can’t have f(1) = f(2). Continuing, there are
only n − 2 choices for f(3), . . . , 2 choices for f(n − 1), and one choice for
f(n). This says that the total number of injections {1, . . . , n} → {1, . . . , n}
is

n(n− 1) · · · 2 · 1 = n!.

But by Remark 2.5, an injection {1, . . . , n} → {1, . . . , n} is the same thing as
a bijection {1, . . . , n} → {1, . . . , n}. Thus #(Sn) = n!. Of course, a similar
argument shows that #(SX) = n! for any finite set X with #(X) = n.

13


