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Outline and history

Harmonic analysis of ‘big’ groups: began with [Thoma 1964] and
[Voiculescu 1976] classifying characters of S, and U(o0).
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Outline and history

Harmonic analysis of ‘big’ groups: began with [Thoma 1964] and
[Voiculescu 1976] classifying characters of S, and U(o0).

Newer results: [Olshanski-Vershik 1996] classified infinite Hermitian
random matrices invariant under conjugation by U(c0), [Bufetov-Qiu
2016] infinite p-adic random matrices invariant under GLo(Z,,).

Vershik-Kerov (1980 onward): new proofs by recasting in terms of
branching graphs defined from symmetric functions. Work of Borodin,
Gorin, Okounkov, Olshanski, many others...

Today: new branching graph result of this type, related to
Hall-Littlewood polynomials. Recovers results of [Bufetov-Qiu 2016,
Assiotis 2020] on infinite p-adic random matrices.
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Hall-Littlewood polynomials and branching graphs
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Hall-Littlewood polynomials
Hall-Littlewood (Laurent) polynomials

1 T —tx;
Py(z1,...,2p05t) := Za Pt H =1

vA(t) o€S, 1<i<j<n 1T Y
are symmetric (Laurent) polynomials in z1,...,x, depending on another
parameter ¢, indexed by integer signatures
Here vy (t) is the constant normalizing so that
1) — A A2 An
Py(z1,...,2n;t) = x7txy? - - x," + other terms.
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Hall-Littlewood polynomials

Hall-Littlewood (Laurent) polynomials

1 T —tx;
Py(z1,...,2p05t) := Za Pt H =1

ua(t) ol L<icjcn Ti T T
are symmetric (Laurent) polynomials in z1,...,x, depending on another
parameter ¢, indexed by integer signatures

Sig,, = {(A1,.- ;) €Z" : A1 > ... > M\ )
Here vy (t) is the constant normalizing so that
Py(x1,...,xnt) = xi‘leQ e xfl” + other terms.
Note
~det(@ " )1 j<n

Py(z1,...,xn;t =0) = sx(x1,...,2pn) :

B H1§i<j§n(xi —xj)
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Alternative inductive definition (branching rule)

Write p < A if A1 > g > Mg > po > ... > A, (‘interlacing’).

mi(p) = [{i s i = k.
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Alternative inductive definition (branching rule)

Write < A if Ay > gy > Ao > pp > ... > A, (‘interlacing’).

mi(p) = [{i s i = k.

Py(21,...,25;t)

=y | T =) [ Paan, )

HESig, 1 JEZ:
p=<A mj(p)=mj(X)+1

_ 3 I7 | - 11 (1= gm0y

AW @ () =y i=1 jez:
/\(k)ESig,C ‘nLj()\(Z)):7,),j()\(171))+1

5/23



Skew polynomials

In general, skew Hall-Littlewood polynomials Py, (w1, ..., 2, 1;t) for
A € Sig,,, u € Sig,, defined by

Py(21,...,2n;t) = Z Pyjp(@pgts o wns )Py, oo s t).
nESig,,
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Skew polynomials

In general, skew Hall-Littlewood polynomials Py, (w1, ..., 2, 1;t) for
A € Sig,,, u € Sig,, defined by

P/\(l‘l,...,xn;t): Z P,\/H(LU];+],.-.,1771:t)PN(x17.-.,$k;t)-
HESigy,

Hence, plugging in z; = a; € Rsp and t € (0,1) gives

Z Pyjulan;t)Pular, ... an—1;t) .

el Py(a1,...,an;t)

and
Pyju(an;t)Pu(as, ... an_1;t) -0

Py(a1,...,an;t) -

so for each A\ have a probability measure on possible ;1 < \.
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Branching graph setup

Definition

G, is the N-graded, weighted graph with
> vertex set | |, .\ Sig,
> edges between any p € Sig,,_;, A € Sig,, with © < A
» edge weights given by cotransition probabilities

Py ("1 t)Pu(1, .. 125 t)
P\(1,...,tr" L)

Lz-l(Aa :U‘) =
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Branching graph setup

Definition

G, is the N-graded, weighted graph with
> vertex set | |,y Sig,
» edges between any p € Sig,,_q, A € Sig,, with © < A
» edge weights given by cotransition probabilities

Py ("1 t)Pu(1, .. 125 t)
P\(1,...,tr" L)

LZ—l(Aa :U‘) =

Remark
Why make variables 1,t,...,t" 17
» Simple formulas for L7 _, since

n=1.p) _ 43 (i—Dx iy (0=t
Py(1,...,t" L) =t g

» Whent=1/p, L7_, appears in p-adic random matrix theory!
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Finding coherent systems

Probability measures My, Ms, ... on levels 1,2, ... of G; are coherent if

My_a() = Z M () Ly, (1, )

KESig,,

for each n. Convex combinations of coherent systems are coherent.
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Finding coherent systems

Probability measures My, Ms, ... on levels 1,2, ... of G; are coherent if

Moa()= Y Ma()L2 ()
HESig,

for each n. Convex combinations of coherent systems are coherent.

Question

What are the (indecomposable) coherent systems of probability measures
(Mn)nEN on gt7
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Main result

Let Sigoo = {(p1, fi2,...) €Z% g > pa > ...}
Theorem (VP 2021)

For any t € (0,1), the set of indecomposable coherent systems on G; is
naturally in bijection with Sig__. Under this bijection \ € Sig__
corresponds to the coherent system (M,)),,>1 defined explicitly by

\ n N N;—szrl 1— tA;_#’w_H
My (p) = <ZH1 (11—t >Ht( e i) T —

reZ i=1

for X € Sig,,, where p!, = #{i : p; > x} and same for \.,.
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Proof idea

Question

What are the (indecomposable) coherent systems of probability measures
(M.,)1<n<n on the first N levels of G, ?
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Proof idea

Question

What are the (indecomposable) coherent systems of probability measures
(M.,)1<n<n on the first N levels of G, ?

1. Any A(Y) € Sig\ gives indecomposable coherent system

Lf?¢-~LJ]¥,_1(A, N L3 LN (), .., LN (A, ) on first n levels
or Yy
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Proof idea

Question

What are the (indecomposable) coherent systems of probability measures
(M.,)1<n<n on the first N levels of G, ?

1. Any A(Y) € Sig\ gives indecomposable coherent system
L2 LN (), L3 LY (N ), ..., LY (), ) on first n levels
of G;

2. To get coherent system on all levels, take limits of these. They

converge iff parts )\EN) do for each .
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Proof idea

Question

What are the (indecomposable) coherent systems of probability measures
(M.,)1<n<n on the first N levels of G, ?

1. Any A(Y) € Sig\ gives indecomposable coherent system
L2 LN (), L3 LY (N ), ..., LY (), ) on first n levels
of G;

2. To get coherent system on all levels, take limits of these. They

converge iff parts )\EN) do for each .

3. Need control over
Py, (™t T P (L, )

L:‘::Jrl e L;ifl()V :U’> = Pl tn13t) as
n — oo. Use explicit formulas for Py, (¢, ¢+, ... ¢" =1 ¢) from

recent work [Borodin 2014] on fused higher spin stochastic
six-vertex model.

Hn+J Hn+J—1 Ha M3 M2 = M1

SIS

0 A1 =Ny A4
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Context: other branching graphs

For different choices of edge weights L”'_,, we know the boundary:

L1 (\ ) Solved by Relevant to

sa/u)su(lys1)

sx(L,.1) [Vershik-Kerov '82] Rep thy Of U(n), U(OO)
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Context: other branching graphs

For different choices of edge weights L, we know the boundary:

n—1

(A ) Solved by Relevant to
sx/pn(1)su(1,...,1)
% [Vershik-Kerov '82] Rep thy of U(n), U(OO)
Ix/u(1:0)J,(1,...,1;0

e L(]A(]?p-“',(l;‘g) ) [Okounkov- Classical Gelfand pairs (U(n),0(n)),

Olshanski '98]

(U(n)xU(n),U(n)), and (U(2n),Sp(n))
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Context: other branching graphs

For different choices of edge weights L

n
n—1

we know the boundary:

(A ) Solved by Relevant to
s 4,(1)5 (13"'71)
% [Vershik-Kerov '82] Rep thy of U(n), U(OO)
Ix/u(1:0)J,(1,...,1;0

e L(]A(]?p-“',(l;‘g) ) [Okounkov- Classical Gelfand pairs (U(n),0(n)),

Olshanski '98]

(U(n)xU(n),U(n)), and (U(2n),Sp(n))

sa/u(@" s, 0" "?)

sa(l,...qm 1)

[Gorin '10]

Quantum groups? [Sato '19]
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Context: other branching graphs

For different choices of edge weights L”'_,, we know the boundary:

(A ) Solved by Relevant to
SX/ 4,(1)5 (13"'71) ) ,
W [Vershik-Kerov '82] Rep thy of U(n), U(OO)
Ix/u(1:0)J,(1,...,1;0
e L(]A(]?p-“',(l;‘g) ) [Okounkov- Classical Gelfand pairs (U(n),0(n)),
Olshanski '98] (U(n)xU(n),U(n)), and (U(2n),Sp(n))

sa/u(@” " su(l,0q"?)
sx(1,..,9" 1)

[Gorin '10] Quantum groups? [Sato '19]

PA/u(tn71;qvt)Plt(lv-~v7tn72§q7t)
Py(1,..,t" " Tiq,t)

[Cuenca '18] if ¢t € g™V 77

11/23



Context: other branching graphs

n
n—11

For different choices of edge weights L we know the boundary:

(A ) Solved by Relevant to

n—1

M [Vershik-Kerov '82] Rep thy of U(n), U(OO)

sx(1,...,1)
Ix/u(1:0)J,(1,...,1;0
e L(]A(]?p-“',(l;‘g) ) [Okounkov- Classical Gelfand pairs (U(n),0(n)),
Olshanski '98] (U(n)xU(n),U(n)), and (U(2n),Sp(n))
—1 n—2
Sx/ (qn )s“(l,...,q ) ., !
o =1 [Gorin '10] Quantum groups? [Sato '19]

PA/u(tn71;qvt)Plt(lv-~v7tn72;qvt)

Pr(l,... i 1;q,0) [Cuenca '18] if ¢t € g™V 77

PA/;L(tnil:,t)Ph,(11~~-~,tn72;t)
Pl 15

[VP '21] p-adic random matrices
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p-adic random matrix theory
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p-adic matrices
Fix p prime.

Recall p-adic integers Z,, = I'&nZ/p”Z and p-adic numbers Q,,

completion of Q w.r.t. |4p"|, :=p~F.
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p-adic matrices
Fix p prime.

Recall p-adic integers Z,, = T&lZ/p”Z and p-adic numbers Q,,

completion of Q w.r.t. |4p"|, :=p~F.

Proposition (Smith normal form)

For any A € Mat,,  (n+1)(Qp) nonsingular, there exist
U € GL,(Z,),V € GL,4+1(Z,) and unique X € Sig,, so

UAV = diag, (4P, p*")

We call the \; singular numbers in the above case, write A = SN(A).
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p-adic matrices
Fix p prime.

Recall p-adic integers Z,, = 1'&12/]9”2 and p-adic numbers Q,,
k

completion of Q w.r.t. |4p"|, :=p~F.
Proposition (Smith normal form)

For any A € Mat,,  (n+1)(Qp) nonsingular, there exist
U € GL,(Z,),V € GL,4+1(Z,) and unique X € Sig,, so
UAV = diagnx(nJrk) (p7A17 cee )pi)\n)

We call the \; singular numbers in the above case, write A\ = SN(A).
For A singular, allow \; = —oo and take p*> = 0.
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p-adic matrices
Fix p prime.

Recall p-adic integers Z,, = 1'&12/]9”2 and p-adic numbers Q,,
k

completion of Q w.r.t. |4p"|, :=p~F.
Proposition (Smith normal form)

For any A € Mat,,  (n+1)(Qp) nonsingular, there exist
U € GL,(Z,),V € GL,4+1(Z,) and unique X € Sig,, so

UAV = diag, y (nr) (P, -, p7")

We call the \; singular numbers in the above case, write A\ = SN(A).
For A singular, allow \; = —oo and take p*> = 0.

(Z,,+) and GLN(Z,) are compact, hence have Haar probability
measures.

Question
What is the distribution of SN(A) for natural random A?
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Motivation
If A,, € Maty,xn(Z,), then

coker(A,) 1= Z7 /Im(A @Z/p%z

is an abelian p-group with A = SN(4,,).
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Motivation
If A,, € Maty,xn(Z,), then

coker(A,) 1= Z7 /Im(A @Z/p%z

is an abelian p-group with A = SN(4,,).

For A,, with i.i.d. additive Haar entries, [Friedman-Washington '87]
showed

const

i Pr <C°ker @Z/ P LZ) At (@, Z/p " 2)]

matching numerically observed distribution of p-torsion part of class
groups of quadratic imaginary number fields.

14 /23



Motivation
If A,, € Maty,xn(Z,), then

coker(A,) 1= Z7 /Im(A @Z/p%z

is an abelian p-group with A = SN(4,,).

For A,, with i.i.d. additive Haar entries, [Friedman-Washington '87]
showed

const

i Pr <C°ker @Z/ P LZ) At (@, Z/p " 2)]

matching numerically observed distribution of p-torsion part of class
groups of quadratic imaginary number fields.

Limits for different A,, model other random (abelian p-)groups in NT
([Bhargava et al. '15], many works by Wood "10-'20...) and Jacobians of
random graphs ([Clancy-Kaplan-Leake-Payne-Wood '15], [Fulman '16],
[Nguyen-Wood 18], ...).
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Two worlds: RMT over C and Q,

RMT over C RMT over Q,

Group G GL,(C) GL,(Qp)
Maximal
compact U(n) GL,(Z,)
subgroup K
Structure SVD: UAV = Smith normal form: UAV =
theorem diag(ry,...,mn) diag(p=™t,...,p~n)

for U,V € U(n) for U,V € GL,(Z,)
We study Singular values 7; Singular numbers \;
Extreme Udiag(ri,...,m)V Udiag(p=,...,p ")V

bi- K-invariant
measures on (G

for U,V € U(n)
Haar-distributed

for U,V E GL (Z,)
Haar-distributed
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From random matrices to Hall-Littlewood polynomials
Theorem (VP 2020)

Let 1 <n < m be integers, A € Mat,,«.m(Qp) random, bi-invariant with
fixed singular numbers X € Sig,,. If A’ is the top (n — 1) x m submatrix
of A, then for u € Sig,,_;

_ Py TR, %)
- P)\(l,-..,fn‘*l;t)
= LZ—l(Aa /l,)

Pr(SN(A') = p)

with t = 1/p.
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More analogies with RMT over C

Macdonald analogue:
_ P)\/u(tn_l; q, t)PM(lv s 7t”_2; q, t)

Lty (A, 1)

n—1

P(1,....t" Lq. 1)

B e {1,2,4}

Singular numbers of
corners of GL,(Z,)-invariant
matrices [VP ’20]

qg—1
A, p rescaled

Singular values of
corners of real, complex,
and quaternion random

matrices [Borodin-Gorin ’17]
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Infinite p-adic matrices

We define
GLw(Zy) :=
A’ 0
1
A € Matooxoo(Zy) : A= 1 for some n > 1, A" € GL,,(Z,)
0

equivalently direct limit of GL1(Z,) — GL2(Z,) — .. ..
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Infinite p-adic matrices

We define
GLw(Zy) :=
A’ 0
1
A € Matooxoo(Zy) : A= 1 for some n > 1, A" € GL,,(Z,)
0

equivalently direct limit of GL1(Z,) — GL2(Z,) — .. ..

Question

What are the (indecomposable) probability measures on Mat oo oo (Qp)
which are invariant under left- and right-multiplication by any
A€ GLw(Z,)?
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Classifying indecomposable measures

Question

What are the (indecomposable) probability measures on Mat o x o (Qp)
which are invariant under left- and right-multiplication by any
A€ GL(Z,)?
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Classifying indecomposable measures

Question

What are the (indecomposable) probability measures on Mat o x o (Qp)

which are invariant under left- and right-multiplication by any
A€ GL(Z,)?

Let Sig,, = {(u1, p2, ) € {ZU{—00}}® 1y > o > ...}

Theorem (Bufetov-Qiu 2016)

The indecomposable, GLo(Z,,)-invariant probability measures Ey on
Matoox oo (Qp) are naturally in bijection with Sig..
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Recovering [Bufetov-Qiu 2016]

Theorem (Bufetov-Qiu 2016)

The indecomposable, GLo(Z,,)-invariant probability measures E on
Mat o xoo(Qp) are naturally in bijection with Sig, .

Idea of new proof:

» Measures on Matooxoo(Qp) Yield coherent systems of measures on
submatrices in Maty, xm (Qp)-
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Recovering [Bufetov-Qiu 2016]

Theorem (Bufetov-Qiu 2016)

The indecomposable, GLo(Z,,)-invariant probability measures E on
Matooxoo(Qp) are naturally in bijection with Sig. .

Idea of new proof:
» Measures on Matooxoo(Qp) Yield coherent systems of measures on
submatrices in Maty, xm (Qp)-
» Measures on (nonsingular) Mat,,  (,+#)(Qp) correspond to measures
on Sig,,.
» Passing to submatrices <+ cotransition probabilities L'_; [VP '20].
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p-adic Hua measures

There is a unique measure on Gr2"(Q,) invariant under
GL2n(Z,) C Q3", yielding measure on GL,,(Q,) by

U1 [ Un,

— A € GL,(Qp)

Avy oo Av,
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There is a unique measure on Gr2"(Q,) invariant under
GL2n(Z,) C Q3", yielding measure on GL,,(Q,) by

U1 [ Un,

— A € GL,(Qp)

Avy oo Av,

The p-adic Hua measures ;7' on Mat,, «,,(Q,) are natural 1-parameter
interpolations between this and additive Haar measure ([Neretin 2012]).
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p-adic Hua measures

There is a unique measure on Gr2"(Q,) invariant under
GL2n(Z,) C Q3", yielding measure on GL,,(Q,) by

U1 [ Un,

— A € GL,(Qp)

Avy oo Av,

The p-adic Hua measures ;7' on Mat,, «,,(Q,) are natural 1-parameter
interpolations between this and additive Haar measure ([Neretin 2012]).

Consistent under taking (n — 1) x (n — 1) corners = obtain uS° on
Matoo x o0 (Qp)-
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Decomposing 145°

Question

u° is a convex combination of extreme bi-invariant measures on
Matooxoo (Qp). Which ones?
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Decomposing p2°

Question

u° is a convex combination of extreme bi-invariant measures on
Mat oo x 0o . Which ones?
xco\p

[Assiotis 2020]: Found decomposition using mysterious Markov chain;
post facto it's

P)\(lat7 - ';t)QA(t1+Svt2+Sv . at)
> = Ey.
a 2 ( Z(s.1) ’

partitions AESig?oO
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Decomposing p2°

Question

u° is a convex combination of extreme bi-invariant measures on
Mat oo x 0o . Which ones?
xco\p

[Assiotis 2020]: Found decomposition using mysterious Markov chain;
post facto it's

P)\(lat7 - ';t)QA(t1+Svt2+Sv . at)
> = Ey.
a 2 ( Z(s.1) ’

partitions AESig?oO

[VP 2021]: Recover above, explain why HL polynomials suddenly appear.
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Outlook

Symmetric function combinatorics

“Harmonic analysis”

RMT over R, C

Random graph:

p-adic RMT

Mathematical physics

Yandom groups

Arithmetic statistics Statistics (random covariance matrices)
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Outlook

Symmetric function combinatorics

“Harmonic analysis”

Random graphy

RMT over R, C

Mathematical physics

p-adic RMT

Arithmetic statistics Statistics (random covariance matrices)

Thanks for your attention!
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