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0.1. Intro. 1

Classical random matrix theory over C, while now a full-fledged field of its own,
arguably grew out of physicist Eugene Wigner’s attempts in the 1950s to model the
energy levels of heavy nuclei using eigenvalues of random matrices. In this setting, existing
atomic physics predicted that the energy levels of such nuclei were given by eigenvalues of
a corresponding infinite-dimensional Hermitian Hamiltonian operator, but this proved too
difficult to analyze. Wigner’s approach was to model this operator by a random matrix
with independent Gaussian entries subject to a symmetry restriction so that the matrix
would be symmetric/Hermitian, and study the eigenvalue distribution of such random
matrices as a model. There are also many connections to the zeros of L-functions, for
which a very readable source is [1].

Definition 1. A random matrix is a matrix-valued random variable.

Here we should review a bit of terminology. You know what a random variable is, and a
reasonable random variableX has a density function f such that E[g(X)] =

∫
R g(x)f(x)dx

for reasonable g. Using f , we define a measure µ on R by saying µ(S) =
∫
S
f(x)dx for

reasonable subsets S ⊂ R. I will use random variables, their densities, and the induced
measure pretty interchangeably.

Wigner studied the following ensemble.

Definition 2. The N × N Gaussian orthogonal ensemble (GOE) is the random matrix
ensemble given by

(1) M =


X0,0 X0,1 · · · X0,N−1

X1,0 X1,1 · · · X1,N−1
...

...
. . .

...
XN−1,0 XN−1,1 · · · XN−1,N−1

 ,

with the X`,j are random variables defined as follows. For ` < j X`,j are iid Gaussians
with mean 0 and variance 1, and Xj,` = X`,j (i.e. the ensemble is symmetric). Further-
more, Xj,j are iid Gaussians with mean 0 and variance 2.

M has the important property that for any orthogonal matrix P ∈ O(N), PMP−1

has the same distribution.

Example 0.1. Another ensemble one might study is

(2) M =


X0,0 X0,1 · · · X0,N−1

X1,0 X1,1 · · · X1,N−1
...

...
. . .

...
XN−1,0 XN−1,1 · · · XN−1,N−1

 ,

Date: December 13, 2021.
1Small parts of these notes are shamelessly copied from my senior thesis, and the treatment of the main
result draws from Ioanna Dimitriu’s ”Moment Method I” course at the 2018 Michigan Random Matrix
Summer School.
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where Xi,j = Xj,i are iid and Xi,j = ±1 with probability 1/2 each way.

We care about the eigenvalues of these ensembles. The largest eigenvalue is a real
random variable, and the vector of all eigenvalues ordered by size is an RN -valued random
variable. In some ways, the theory of eigenvalues of random matrices mimics that of real
random variables, and the following distribution plays the role of the Gaussian.

Definition 3. The semicircle law is the probability measure2 on R with density given by

(3) ν(x) =

{
2
π

√
1− (x/2)2 −2 ≤ x ≤ 2

0 else
.

Strictly speaking this is a semi-ellipse, not a semicircle.

Wigner showed that as N →∞, the eigenvalue distribution of the GOE converges to
the semicircle law. I’m not making this precise yet, but the idea is that if you sample
a random matrix from the GOE and then pick one of its eigenvalues at random, the
resulting distribution will depend on N and converge to the semicircle as N → ∞.
It was quickly recognized that random matrices exhibit universality, i.e. ensembles with
differently distributed entries have same limiting eigenvalue distribution. The main result
of this series is in this direction.

Definition 4. The empirical spectral measure of a fixed N×N Hermitian matrix A with
eigenvalues λ1, . . . , λN is the measure with density

µA(x) =
1

N

N∑
i=1

δ(x− λi√
N

),

i.e. the uniform discrete probability measure on {λ1, . . . , λN}.

Want to show convergence of ESD to ν. Do this by means of moments.

0.2. Moment Preliminaries.

Definition 5. The mth moment of a measure µ on R is

µ(m) :=

∫
R
xmdµ.

These are kind of like Taylor coefficients, and characterize the measure in some situ-
ations.

Proposition 0.1 (Carleman’s condition). Let µ be a measure on R with all moments
finite and

∞∑
m=1

(µ(2m))−
1
2n

diverges. Then µ is the only measure with this sequence of moments.

Note that this means the moments do not grow too fast, because the exponent is
negative and we ask for divergence. We can show convergence of measures by convergence
of their moments.

2What is a probability measure? Just think of it as assigning numbers between 0 and 1 to every reasonable
subset of R which satisfy obvious properties, e.g. µ(A tB) = µ(A) + µ(B).

2



Proposition 0.2 (Moment convergence theorem). Let X1, X2, . . . and X be random

variables with moments µ
(m)
n := E[Xm

n ] and µ(m) := E[Xm]. Then if µ
(m)
n → µ(m) as

n → ∞ and the moments of X uniquely characterize it (by, e.g. Carleman’s condition),
we have that Xn → X in distribution.

Exercise 1. Prove that the moments of µ uniquely characterize it under the stronger
assumption that µ has compact support. Hint: Stone-Weierstrass theorem.

Example 0.2. The moments of the Gaussian are

1√
2π

∫ ∞
−∞

e−x
2/2xmdx =

{
0 m odd

(m− 1)!! m even
.

You can compute this by knowing that the zeroth moment is 1 (this is kind of tricky)
and integrating by parts to reduce other moments to this case (exercise, not too hard).

Exercise 2 (More integration tricks). Prove that the moments of the semicircle are∫ 2

−2

2

π

√
1− (x/2)2 =

{
0 m odd

Cm/2 m even

where Cm/2 = 1
m/2+1

(
m
m/2

)
is the (m/2)th Catalan number.

Hint: trig sub and the Catalan recurrence.

Remark 0.1 ((Warning: contains material I don’t know well)). (2m−1)!! is the number
of ways to partition a set of 2m elements into pairs. Cm is the number of ‘noncrossing
partitions’ of a 2m-element set. This suggests a notion of a q-weighted set partition, i.e.

F2m(q) =
∑

Π∈P (2m)

qn(Π)

where P (2m) is the set of all partitions of {1, . . . , 2m} into pairs and for any such partition
Π, n(Π) is the number of crossings. Then F2m(1) = (2m−1)!! and F2m(0) = Cm by above.
It is also true that F2m(−1) = 1, so F2m(−1) is the 2mth moment of the random variable
X which takes values ±1 with probability 1/2 each. There is real structure here which I
will now handwave: these three cases of q = 1, 0,−1 correspond to classical probability,
‘free probability’ and ‘boolean probability’. Free probability is a theory of noncommuting
random variables with applications to random matrices, and together these three have
been shown to correspond to the only notions of independence of ‘algebraic probability
spaces’.

0.3. Main result. Back to random matrix theory.

Definition 6. Let (Xn)n≥1 and X be random variables. Then Xn → X in probability

(Xn
p−→ X) if for all ε > 0, limn→∞ Pr(|X −Xn| > ε) = 0.

We can now state the main result.

Theorem 0.1. Let M1,M2, . . . be a sequence of random matrices

(4) MN =


X0,0 X0,1 · · · X0,N−1

X1,0 X1,1 · · · X1,N−1
...

...
. . .

...
XN−1,0 XN−1,1 · · · XN−1,N−1

 ,

where Xi,j = Xj,i, the Xi,j’s are any iid random variables with mean 0 and finite higher
moments, and for i 6= j the Xi,j’s have variance 1. Then the moments of the empirical
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spectral measures converge in probability to that of the semicircle, µ
(m)
MN

p−→ ν(m) as N →
∞.

Proof. The idea is to show that E[µ
(m)
MN

]→ ν(m) (this is just convergence of real numbers

in the usual sense) and then show E[(µ
(m)
MN
− E[µ

(m)
MN

])2]→ 0, which ensures the moments
stay close to their expectations. Both parts have a similar proof.

Recall Tr(Ak) =
∑

i λ
k
i for any matrix A. Since trace is sum of diagonal elements, we

further have

Tr(Ak) =
∑

1≤i1,...,ik≤N

ai1,i2ai2,i3 · · · aik,i1 .

Now, we have that

µ
(m)
MN

=

∫
R
xmdµMN

=
1

N

N∑
i=1

(
λi√
N

)m
=

1

N1+m/2
Tr(Mm

N ) =
1

N1+m/2

∑
1≤i1,...,im≤N

Xi1,i2Xi2,i3 · · ·Xim,i1 .

Let I = (i1, . . . , im) and consider the graph GI with vertices VI = {i1, . . . , im} (note some
of the ij may be repeated) and edges EI = {(i1, i2), (i2, i3), . . . , (im, i1)}. I defines a walk
on GI which starts at i1 and returns to i1. If any of the Xij ,ij+1

in Xi1,i2Xi2,i3 · · ·Xik,i1

appears only once, then E[Xi1,i2Xi2,i3 · · ·Xik,i1 ] = 0 because Xij ,ij+1
is mean zero; hence

the walk I must traverse each edge at least twice. Now express

1

N1+m/2

∑
1≤i1,...,im≤N

E[Xi1,i2Xi2,i3 · · ·Xim,i1 ]

as
1

N1+m/2

∑
I,GI

∑
indexings of GI

E[Xi1,i2Xi2,i3 · · ·Xim,i1 ].

where the first sum is over graphs G on ≤ m vertices (allowing self-loops) with a base
point and a walk of length m starting and ending at the base point and traversing all
edges at least twice, and the second sum is over all ways to assign indices in {1, . . . , N}
to the vertices. The first sum is finite, and the terms E[Xi1,i2Xi2,i3 · · ·Xim,i1 ] are finite
and bounded by a constant dependent on m. Hence this sum is

1

N1+m/2

∑
I,GI

O(N |VI |),

so only the graphs with most vertices contribute in the N → ∞ limit. We note that
|EI | ≤ m/2 since each edge is traversed twice, and thus |VI | ≤ m/2+1 with the maximum
achieved iff GI is a tree. If m is odd, then |VI | ≤ m/2 + 1 is an integer and hence

1
N1+m/2O(N |VI |) = O(1/N1/2) goes to zero, so all odd moments are zero. Now compute
even moments.

Since trees maximize number of vertices, the only contribution is from terms where
GI is a tree and I traverses each edge exactly twice. These are counted by the Catalan
number Cm/2, and the term E[Xi1,i2Xi2,i3 · · ·Xim,i1 ] corresponding to such a (I,GI) pair
is 1 because all Xi,j have variance 1. Hence

lim
N→∞

1

N1+m/2

∑
I,GI

∑
indexings of GI

E[Xi1,i2Xi2,i3 · · ·Xim,i1 ] = Cm/2.
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We have

E[(µ
(m)
MN
− E[µ

(m)
MN

])2](5)

= E[(µ
(m)
MN

)2]− E[µ
(m)
MN

]2(6)

=
1

N2+m

∑
I,J,GI∪J

∑
indexings of GI∪J

Cov(Xi1,i2 · · ·Xim,i1 , Xj1j2 · · ·Xjmj1)(7)

where

Cov(Xi1,i2 · · ·Xim,i1 , Xj1j2 · · ·Xjmj1)(8)

:= (E[(Xi1,i2 · · ·Xim,i1)(Xj1j2 · · ·Xjmj1)]− E[Xi1,i2 · · ·Xim,i1 ]E[Xj1j2 · · ·Xjmj1 ])(9)

Similarly to before, we need to find which I, J,GI , GJ have

E[(Xi1,i2 · · ·Xim,i1)(Xj1j2 · · ·Xjmj1)]− E[Xi1,i2 · · ·Xim,i1 ]E[Xj1j2 · · ·Xjmj1 ]

nonzero. The only way this term can be nonzero is if there is at least one pair Xik,ik+1

and Xjl,jl+1
which are equal, for if they are all independent then it makes no difference

whether or not they are inside the same expectation. Each edge of GI∪J (note that when
I take this union I am identifying along edges) must be covered at least twice, hence
|EI∪J | ≤ m. Thus

|VI∪J | ≤ |EI∪J |+ 1 ≤ m+ 1.

Now, Cov(Xi1,i2 · · ·Xim,i1 , Xj1j2 · · ·Xjmj1) is bounded by a constant dependent only on
m, and by the above we have∑

indexings of GI∪J

Cov(Xi1,i2 · · ·Xim,i1 , Xj1j2 · · ·Xjmj1) = O(Nm+1).

Since
∑

I,J,GI∪J
is finite, this shows

1

N2+m

∑
I,J,GI∪J

∑
indexings of GI∪J

Cov(Xi1,i2 · · ·Xim,i1 , Xj1j2 · · ·Xjmj1)→ 0

as N →∞, proving that Var(µ
(m)
MN

)→ 0 as N →∞.

Lemma 0.1 (Chebyshev’s inequality). For a random variable X with mean µ and vari-

ance σ, and any ε > 0, we have Pr(|X − µ| ≥ ε) ≤ σ2

ε2
.

Proof.

E[1|X−µ|2≥ε2 ] ≤ E[
|X − µ|2

ε2
1|X−µ|2≥ε2 ](10)

≤ E[
|X − µ|2

ε2
](11)

=
σ2

ε2
.(12)

�

Thus

Pr(|µ(m)
MN
− ν(m)| ≤ ε) ≤

E[(µ
(m)
MN
− E[µ

(m)
MN

])2]

ε2

goes to 0 as N →∞, so µ
(m)
MN

p−→ ν(m), completing the proof. �
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