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Random matrices and interacting particle systems
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Discrete-space interacting particle
systems (TASEP, ASEP, ...)

Many limit objects (e.g. Tracy-Widom) appear in both.

There is also discrete random matrix theory over Z,Z/nZ, etc.

Today: Random matrix products over Z  discrete
interacting particle system (‘reflecting Poisson sea’)
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Products of random matrices over Z/pZ



Let A1, A2, . . . be iid uniform in MatN (Z/pZ). What does the
distribution of rank(Aτ · · ·A2A1) look like for large N and τ?

τ

corank(Aτ · · ·A1)

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5
· · ·

Fact: corank(Aτ · · ·A1) ≈ logp τ , finite limit fluctuations.

Question 1: What is the limit of

corank(Aτ · · ·A1)− logp τ

as N, τ →∞?.
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Definition

For any χ ∈ R>0, p ∈ R>1, L(1)p−1,χ
is the Z-valued random variable

given by

Pr(L(1)
p−1,χ

= x) =
1∏

i≥1(1− p−i)
∑
j≥0

e−χp
j−x (−1)jp−(

j
2)∏j

i=1(1− p−i)

for any x ∈ Z.

Want limit of corank(Aτ · · ·A1)− logp τ , but this isn’t an integer.

Theorem (VP ‘23, special case)

For each N ≥ 1 take A(N)
1 , A

(N)
2 , . . . iid uniform in MatN (Z/pZ),

and (τN )N≥1 such that 1� τN � pN and the fractional part
{− logp τN} converges to some ζ ∈ [0, 1].
Then as N →∞,

corank(A(N)
τN
· · ·A(N)

1 )− Int(logp τN + ζ)→ L(1)
p−1,p−ζ/(p−1).
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Continuous-time model process
Let p > 1 and X(τ), τ ∈ R≥0 be the Z≥0-valued process which
jumps by 1, and waits at x ∈ Z≥0 for an Exp(p−x)-distributed
time.

τ
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Theorem (VP ‘23, special case)

X(τ)− (logp τ + ζ)→ L(1)
p−1,p−ζ/(p−1)

in distribution as τ →∞ along the sequence τ ∈ pN−ζ .
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A single random matrix over Z



Why study random matrices over Z?

In many contexts, want asymptotic distribution of (pseudo-)random
finite abelian groups G:

Arithmetic statistics—distributions of class groups of number
fields, Tate-Shafarevich groups—(Bhargava, Cohen, Ellenberg,
Kane, Lenstra Jr., Nguyen, Poonen, Rains, Sawin, Venkatesh,
Westerland, Wood... ‘83-present),
Sandpile groups of random graphs—(Clancy, Fulman, Kaplan,
Koplewitz, Leake, Nguyen, Payne, Wood... ‘14-present),
(co)homology groups of random chain complexes—(Kahle,
Lutz, Meszaros, Newman, Parsons,...)

A ∈ MatN (Z) gives linear map A : ZN → ZN , has cokernel

cok(A) := ZN/AZN ,

an abelian group.
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Singular numbers and random groups

For A ∈ MatN (Z),

A = U diag(a1, . . . , aN )V

for some U, V ∈ GLN (Z) and ‘discrete singular values’
a1 ≥ . . . ≥ aN ∈ Z≥0.

cok(A) := ZN/AZN ∼=
N⊕
i=1

Z/aiZ,

parametrized by the same a1, . . . , aN .
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Universality and decoupling of primes
Easier to look at p-Sylow subgroups:

cok(A) ∼=
⊕
p prime

cok(A)p.

Theorem (Wood 2015)

Fix p and integer random variable ξ with ξ (mod p) nonconstant.
For each N ≥ 1 let A(N) ∈ MatN (Z) have iid ξ entries. Then as
N →∞, cok(A(N))p converges in law to the Cohen-Lenstra
distribution on abelian p-groups,

Pr(G) =

∏∞
i=1(1− p−i)
#Aut(G)

.

Furthermore, cok(A(N))p, p = 2, 3, 5, . . . are asymptotically
independent (as N →∞) for different p.

Note: cok(A)p ∼=
⊕

i Z/pλ
(p)
i Z for some p-singular numbers

(λ
(p)
1 , . . . , λ

(p)
N ) (random partition); also ai = 2λ

(2)
i · 3λ

(3)
i · · ·
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Backstory
1983: Cohen and Lenstra observe in statistics of class groups
1987: Friedman and Washington prove in exactly solvable
p-adic random matrix model
2015: Wood’s universality result

Other matrices’ cokernels (e.g. symmetric, alternating, rectangular)
give different universal limit laws governing sandpile groups of
random graphs, Tate-Shafarevich groups,...

Question
How do p-singular numbers/cokernels of integer matrix products
behave?

Remark
For singular values of AτAτ−1 · · ·A1 for Ai N ×N random
complex matrices, local limits are deformations of sine/Airy kernel
([Akemann-Burda-Kieburg 2018], [Liu-Wang-Wang 2018], ...).



Backstory
1983: Cohen and Lenstra observe in statistics of class groups
1987: Friedman and Washington prove in exactly solvable
p-adic random matrix model
2015: Wood’s universality result

Other matrices’ cokernels (e.g. symmetric, alternating, rectangular)
give different universal limit laws governing sandpile groups of
random graphs, Tate-Shafarevich groups,...

Question
How do p-singular numbers/cokernels of integer matrix products
behave?

Remark
For singular values of AτAτ−1 · · ·A1 for Ai N ×N random
complex matrices, local limits are deformations of sine/Airy kernel
([Akemann-Burda-Kieburg 2018], [Liu-Wang-Wang 2018], ...).



Backstory
1983: Cohen and Lenstra observe in statistics of class groups
1987: Friedman and Washington prove in exactly solvable
p-adic random matrix model
2015: Wood’s universality result

Other matrices’ cokernels (e.g. symmetric, alternating, rectangular)
give different universal limit laws governing sandpile groups of
random graphs, Tate-Shafarevich groups,...

Question
How do p-singular numbers/cokernels of integer matrix products
behave?

Remark
For singular values of AτAτ−1 · · ·A1 for Ai N ×N random
complex matrices, local limits are deformations of sine/Airy kernel
([Akemann-Burda-Kieburg 2018], [Liu-Wang-Wang 2018], ...).



Take (λ
(p)
1 (τ), . . . , λ

(p)
N (τ)) p-singular numbers of Aτ · · ·A2 ·A1.

ith column = λ
(p)
i (τ).

ith row = #{j : λ(p)j (τ) ≥ i} = p-rank(pi−1 cok(Aτ · · ·A1)).
(Recall p-rank(G) := dimFp(G/pG), an Fp-vector space).

First row = corank(Aτ · · ·A1 (mod p)).
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Matrix products over Z and an interacting
particle system



Theorem (Nguyen-VP ‘24)

Fix p prime, let ξ be a Z-valued random variable such that ξ
(mod p) is nonconstant. For each N ≥ 1 let A(N)

1 , A
(N)
2 , . . . be iid

N ×N matrices over Z with iid ξ entries. Let

GN := cok(A
(N)
τ(N) · · ·A

(N)
1 )p,

where the number of matrices τ(N) satisfies
τ(N)→∞ as N →∞,
τ(N) = O(e(logN)1−ε) for some 0 < ε < 1, and
the fractional part {− logp τ(N)} converges to some ζ ∈ [0, 1].

Then

p- rank(pi−1GN )︸ ︷︷ ︸
(ith row of blue wave)

− Int(logp(τ(N)) + ζ)→ L(i)
p−1,p−ζ/(p−1)

in joint distribution for i = 1, 2, . . ., where the L(i)
p−1,p−ζ/(p−1) are

explicit (correlated) integer random variables.



Particle positions S(∞)(τ) = (S(∞)(τ)1,S(∞)(τ)2, . . .), τ ∈ R≥0.

Starts at S(∞)(0) = (0, 0, . . .).

Indep. exp. clocks at 1, 2, . . . of rates p−1, p−2, . . . control jumps.
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First row is X( 1
1−p−1 τ) (jump rate p−x + p−x−1 + . . . = p−x

1−p−1 ).
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Theorem (VP ‘23)

Let τN = pN−ζ . Then we have (joint) convergence in distribution

S(∞)(τN )
′
i︸ ︷︷ ︸

ith row

− logp(τN )− ζ
N→∞−−−−→ L(i)

p−1,p−ζ/(p−1).

L(1)
p−1,p−ζ/(p−1),L

(2)

p−1,p−ζ/(p−1), . . . also give fixed-time row

marginals of reflecting Poisson sea, bulk limit of S(∞).
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The reflecting Poisson sea

. . .

. . .

µ0µ
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(. . . , µ

−2, µ−1, µ0, µ1, µ2, . . .)
= (. . . , 3, 1, 1, 1, 0, . . .)

44

Definition (VP 2023)

The reflecting Poisson sea µ(T ) = (. . . , µ−1(T ), µ0(T ), µ1(T ), . . .),
T ≥ 0 is the continuous-time stochastic process with each µi(T )
increasing by 1 according to rate-p−i exponential clock
(independent of each other), donating move if blocked.
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Moral
[Nguyen-VP ‘24]: Universal convergence of discrete ‘time’
stochastic process cok(A(N)

τ · · ·A1)p, τ = 0, 1, 2, . . . to µ(T ) in
1-pt (single-time) distribution.

Multi-time convergence? ([VP ‘23a] does for ‘uniform’ matrices via
Macdonald techniques)
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The rescaled moment method



‘Traditional’ moment method [Wood 2014]: show GN → G in law
by showing E[# Sur(GN , H)]→ E[# Sur(G,H)] for all abelian
p-groups H.

Issue: cok(A(N)
τ · · ·A1)p gets bigger as N, τ →∞. No

convergence of groups!

‘Rescaled moment method’ [Nguyen-VP ‘24]: If rescaled moments
have nice limits

E[# Sur(GN , H)]

CN
→ CH

for all H, then p-rank fluctuations (rows) converge to discrete
random variables. No integrable input.
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Outlook
p-singular numbers of products
 reflecting Poisson sea,
universally (single-time)

Single-time Multi-time
Matrices w/ iid entries [Nguyen-VP ‘24], [VP ‘23a] ?
GLN -invariant matrices ? [VP ‘23b]

Thanks!



Outlook
p-singular numbers of products
 reflecting Poisson sea,
universally (single-time)

Single-time Multi-time
Matrices w/ iid entries [Nguyen-VP ‘24], [VP ‘23a] ?
GLN -invariant matrices ? [VP ‘23b]

Thanks!


	Products of random matrices over Z/pZ
	A single random matrix over Z
	Matrix products over Z and an interacting particle system
	The rescaled moment method

