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Many limit objects (e.g. Tracy-Widom) appear in both.

There is also discrete random matrix theory over Z,Z/nZ, etc.

Today: Random matrix products over Z ~ discrete
interacting particle system (‘reflecting Poisson sea’)
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Let A1, Ay, ... be iid uniform in Maty (Z/pZ). What does the
distribution of rank( A --- A3 A1) look like for large N and 77
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Fact: corank(A---Ay) =~ log, 7, finite limit fluctuations.
Question 1: What is the limit of
corank(A; - -+ Ay) —log, 7

as N, 7 — oo?.



Definition

Want limit of corank(A; --- A1) —log, 7, but this isn't an integer.



For any x € R-g,p € Ryq, E;l_)l X is the Z-valued random variable
given by
1 e (=17~ ®)
Pr([,(l,) =g@l=———>-» @ ¥ —————
PThx [[i:(1=p7) jzz; = (1=p79)
for any x € Z.

Want limit of corank(A; --- A1) —log, 7, but this isn't an integer.

Theorem (VP ‘23, special case)

For each N > 1 take A(N),A(N), ... iid uniform in Maty (Z/pZ),
1 2

and (Ty)N>1 such that 1 < Ty < p™V and the fractional part
{—log, 7N} converges to some ( € [0, 1].
Then as N — oo,

N
corank(AS.J;,f) ... A§ )) — Int(logp T™w +¢) — El(,l,)17p,</(p_1).




Continuous-time model process
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Let p > 1 and X(7),7 € R>( be the Z>(-valued process which

jumps by 1, and waits at = € Z>( for an Exp(p~*)-distributed
time.
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Theorem (VP ‘23, special case)

X(r) = (log, 7 +¢) ~ LY,

p~¢/(p—1)

in distribution as T — oo along the sequence T € pN=¢.




A single random matrix over 7Z
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Why study random matrices over Z7

In many contexts, want asymptotic distribution of (pseudo-)random
finite abelian groups G:

m Arithmetic statistics—distributions of class groups of number
fields, Tate-Shafarevich groups—(Bhargava, Cohen, Ellenberg,
Kane, Lenstra Jr., Nguyen, Poonen, Rains, Sawin, Venkatesh,
Westerland, Wood... ‘83-present),

m Sandpile groups of random graphs—(Clancy, Fulman, Kaplan,
Koplewitz, Leake, Nguyen, Payne, Wood... ‘14-present),

m (co)homology groups of random chain complexes—(Kabhle,
Lutz, Meszaros, Newman, Parsons,...)
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In many contexts, want asymptotic distribution of (pseudo-)random
finite abelian groups G:

m Arithmetic statistics—distributions of class groups of number
fields, Tate-Shafarevich groups—(Bhargava, Cohen, Ellenberg,
Kane, Lenstra Jr., Nguyen, Poonen, Rains, Sawin, Venkatesh,
Westerland, Wood... ‘83-present),

m Sandpile groups of random graphs—(Clancy, Fulman, Kaplan,
Koplewitz, Leake, Nguyen, Payne, Wood... ‘14-present),

m (co)homology groups of random chain complexes—(Kabhle,
Lutz, Meszaros, Newman, Parsons,...)

A € Maty(Z) gives linear map A : ZV — Z", has cokernel

cok(A) := ZN JAZN

an abelian group.
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for some U,V € GLy(Z) and 'discrete singular values’
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Singular numbers and random groups

For A € Maty(Z),
A ="Udiag(ay,...,an)V

for some U,V € GLy(Z) and 'discrete singular values’
ay > ..ZCLNGZZO.

N
cok(A) = ZN JAZN = (H7Z/0;Z,
=1

parametrized by the same aq,...,ay.



Universality and decoupling of primes
Easier to look at p-Sylow subgroups:

cok(A) = @ cok(A)p.
p prime
Theorem (Wood 2015)

Fix p and integer random variable £ with §& (mod p) nonconstant.
For each N > 1 let AN) € Maty(Z) have iid € entries. Then as
N — oo, cok(AN)),, converges in law to the Cohen-Lenstra
distribution on abelian p-groups,

12,0 )
Pr(G) = #1Tt(G)
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Universality and decoupling of primes
Easier to look at p-Sylow subgroups:

cok(A) = @ cok(A)p.
p prime
Theorem (Wood 2015)

Fix p and integer random variable £ with §& (mod p) nonconstant.
For each N > 1 let AN) € Maty(Z) have iid € entries. Then as
N — oo, cok(AN)),, converges in law to the Cohen-Lenstra
distribution on abelian p-groups,

12,0 )
Pr(G) = #1Tt(G)

Furthermore, cok(AN)),,.p = 2,3,5,... are asymptotically
independent (as N — oc) for different p.

Note: cok(A4), = P, Z/p’\z(mZ for some p-singular numbers

AP AP (random partition); also a; = 247 - 3N .
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m 1987: Friedman and Washington prove in exactly solvable
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Backstory
m 1983: Cohen and Lenstra observe in statistics of class groups

m 1987: Friedman and Washington prove in exactly solvable
p-adic random matrix model

m 2015: Wood's universality result

Other matrices’ cokernels (e.g. symmetric, alternating, rectangular)
give different universal limit laws governing sandpile groups of
random graphs, Tate-Shafarevich groups,...

How do p-singular numbers/cokernels of integer matrix products
behave?

For singular values of A;Ar_1---A; for A; N x N random
complex matrices, local limits are deformations of sine/Airy kernel
([Akemann-Burda-Kieburg 2018], [Liu-Wang-Wang 2018], ...).
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lambda_i(35)

ith column = AP (7).

ith row—#{] AP (1) > i} = prank(p'~" cok(A, - Ar)).
(Recall p-rank(G) := dimp, (G/pG), an Fp-vector space).



Take ()\gp)(T), cee )\5\1;)(7')) p-singular numbers of A, --- Ay - Aj.

lambda_i(35)

ith column = AP (7).

ith row—#{] AP (1) > i} = prank(p'~" cok(A, - Ar)).
(Recall p-rank(G) := dimp, (G/pG), an Fp-vector space).

First row = corank(A; --- A; (mod p)).



Matrix products over Z and an interacting
particle system



Theorem (Nguyen-VP ‘24)

Fix p prime, let & be a Z-valued random variable such that £
(mod p) is nonconstant. For each N > 1 let AgN), AgN), ... beiid
N x N matrices over 7 with iid & entries. Let

N N
G = cok(AlR - AP,

where the number of matrices T(N') satisfies
m7(N)—o00asN— oo,
m 7(N) = 0(e®eM'™) for some 0 < € < 1, and
m the fractional part {—log, 7(N)} converges to some ¢ € [0, 1].
Then

p- rank(p"'Gy) — Int(log,(T(N)) +¢) — ES)

~~ —17p—C/(p_1)
(i*" row of blue wave)
in joint distribution fori = 1,2, ..., where the £" are

- ; i ptp=¢/(p=1)
explicit (correlated) integer random variables.
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Particle positions S (1) = (S (7)1, 8()(7)q,...), T € Rxy.

Starts at S(>)(0) = (0,0,...).

Indep. exp. clocks at 1,2,... of rates p~ !, p~

S (7 —¢) =(4,4,3,1,1,1,0,...)

O =N W

-

S =N W e

When particle is blocked, donates jump:

S (1 —€) = (4,4,3,1,1,1,0,...)

2 ... control jumps.

S (1) = (4,4,3,2,1,1,0,...)

S (1) = (4,4,3,2,1,1,0,...)

A -e—Te ) Er—
3 . 3 .

2 - .

1 o« o ‘ ’“!‘ 1 o o

0 ~—o 0 *~—o
First row is X(lﬂlrﬂ') (jumpratep® +p ol 4 ... = ﬁ;l).



Theorem (VP 23)

Let Ty = pN=C. Then we have (joint) convergence in distribution

(c0) r_ _, Nooo ()
S (rn); —logy(Tn) — ¢ —— ‘Cp—l’p—C/(p—l)'

ith row




Theorem (VP 23)

Let Ty = p™N=¢. Then we have (joint) convergence in distribution

(c0) r_ - N—ooo 4(3)
S (TN)z logp(TN) C —_— ‘Cp—l,p—C/(p—l)'

ith row
,Cl()l,)l,p,c/(pfl), ﬁ;(i)l,p*@‘/(pfl)? ... also give fixed-time row

marginals of reflecting Poisson sea, bulk limit of $(°).



The reflecting Poisson sea
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Definition (VP 2023)

The reflecting Poisson sea p(T') = (..., u—1(T), po(T), 1 (T), .. .),
T > 0 is the continuous-time stochastic process with each p;(T)
increasing by 1 according to rate-p~" exponential clock
(independent of each other), donating move if blocked.
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The reflecting Poisson sea p(T') = (..., u—1(T), po(T), 1 (T), .. .),
T > 0 is the continuous-time stochastic process with each p;(T)
increasing by 1 according to rate-p~" exponential clock
(independent of each other), donating move if blocked.
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Moral

[Nguyen-VP ‘24]: Universal convergence of discrete ‘time’
stochastic process cok(A(TN) < Ay)p, 7=0,1,2,... to u(T) in
1-pt (single-time) distribution.

(o frm2y fhs p0s s H2s - - )
=(...,3,1,1,1,0,...)

< Me—2fi-1fo p1 p2 [3 fa .-

Multi-time convergence? ([VP ‘23a] does for ‘uniform’ matrices via
Macdonald techniques)
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‘Traditional” moment method [Wood 2014]: show Gy — G in law
by showing E[# Sur(Gx, H)] — E[# Sur(G, H)] for all abelian
p-groups H.

Issue: cok(AgN) -+ A1)p gets bigger as N, 7 — oco. No
convergence of groups!

‘Rescaled moment method’ [Nguyen-VP ‘24]: If rescaled moments

have nice limits
E[# Sur(Gn, H)]

Cn
for all H, then p-rank fluctuations (rows) converge to discrete
random variables. No integrable input.

—>CH
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Outlook

p-singular numbers of products

~ reflecting Poisson sea,
universally (single-time)

Single-time

Multi-time

Matrices w/ iid entries

?

GL y-invariant matrices

[Nguyen-VP ‘24], [VP ‘23a]
?

VP 23]

Moment Methoy
ndom groups 8

hanks!
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