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Abstract

This thesis is a compilation of exact results regarding 𝑝-adic random matrices and Hall-
Littlewood polynomials, and asymptotic results proven using these tools. Many of the
results of both types are motivated and guided by analogies to existing results in classical
random matrix theory over R,C or H, but often exhibit probabilistic behaviors which
differ markedly from these known cases. Specifically, we prove the following:

(1) We show exact relations between products and corners of random matrices over
Q𝑝 and Hall-Littlewood processes, which are direct analogues of the classical relations be-
tween singular values of real or complex random matrices and type 𝐴 Heckman-Opdam
hypergeometric functions. (2) We prove that the boundary of the Hall-Littlewood 𝑡-
deformation of the Gelfand-Tsetlin graph is parametrized by infinite integer signatures,
extending results of Gorin and Cuenca on boundaries of related deformed Gelfand-Tsetlin
graphs. (3) In the special case when 1/𝑡 is a prime 𝑝 we combine this with the afore-
mentioned relations between matrix corners and Hall-Littlewood polynomials to recover
results of Bufetov-Qiu [BQ17] and Assiotis [Ass22] on infinite 𝑝-adic random matrices.
(4) Using the above relation between matrix products and Hall-Littlewood polynomi-
als, together with explicit formulas for the latter, we obtain exact product formulas for
the joint distribution of the cokernels of products 𝐴1, 𝐴2𝐴1, 𝐴3𝐴2𝐴1, . . . of independent
additive-Haar-distributed matrices 𝐴𝑖 over the 𝑝-adic integers Z𝑝. This generalizes the
explicit formula for the classical Cohen-Lenstra measure on abelian 𝑝-groups. (5) We give
an exact sampling algorithm for products of corners of Haar GL𝑁(Z𝑝)-distributed matri-
ces, and show by analyzing it that the singular numbers of such products obey a law of
large numbers and their fluctuations converge dynamically to independent Brownian mo-
tions. (6) We consider the singular numbers of a certain explicit continuous-time Markov
jump process on GL𝑁(Q𝑝), which we argue gives the closest 𝑝-adic analogue of multiplica-
tive Dyson Brownian motion. We do so by explicitly classifying the possible dynamics
of singular numbers of processes on GL𝑁(Q𝑝) satisfying natural properties possessed by
Brownian motion on GL𝑁(C). Computing the evolution of singular numbers explicitly,
we find that the 𝑁 -tuple of singular numbers in decreasing order evolves as a Poisson
jump process on Z𝑁 , with ordering enforced by reflection off the walls of the positive type
𝐴 Weyl chamber. (7) As 𝑁 and time go to ∞, we show that this process converges to a
stationary limit, with density explicitly expressed in terms of certain intricate exponential
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sums. The proof uses new Macdonald process computations, which feature a symmetric
function incarnation of the explicit solution to the inverse moment problem for abelian
𝑝-groups shown recently by Sawin and Wood [SW22b]. (8) We prove that this reflected
Poisson walk is universal, governing dynamical local limits for the singular numbers of
𝑝-adic random matrix products at both the bulk and edge, and may thus be viewed as a
𝑝-adic analogue of the extended sine and Airy processes. (9) Extrapolating this process
to general real 𝑝 > 1, we analyze the limit as 𝑝→ 1. We prove a law of large numbers, a
central limit theorem relating it to stationary solutions of certain SDEs, and a bulk limit
to a certain explicit stationary Gaussian process on R. Unlike most previously studied
limits of Macdonald processes, the latter exhibits scaling exponents characteristic of the
Edwards-Wilkinson universality class in (1 + 1) dimensions, which may be seen as a re-
flection of locality of interactions between singular numbers which differs markedly from
classical random matrix theory.

Thesis Supervisor: Alexei Borodin
Title: Professor
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Chapter 1

Introduction

1.1 Preface

In the 1950s, Eugene Wigner [Wig51, Wig55, Wig57] proposed eigenvalues of large ran-

dom matrices as a tractable model for the energy levels observed in experiments with

heavy nuclei such as uranium. Quantum theory predicted that the behavior of such nu-

clei was governed by an infinite-dimensional Hermitian operator, its Hamiltonian, the

eigenvalues of which corresponded to these energy levels. Such operators were far too

complicated to study in practice, and Wigner instead made the bold guess that the

eigenvalues of a large 𝑁 ×𝑁 real symmetric or complex Hermitian matrix, with a naive

Gaussian distribution that allowed the eigenvalue distribution to be exactly computed,

should behave similarly enough to the Hamiltonian’s spectrum to make physical predic-

tions. This helped birth the field of random matrix theory1, which has continued along

these lines far past the original application of nuclear physics.

Essentially the same origin story played out independently in the field of arith-

metic statistics. Better computers allowed number theorists to compile tables of class

groups of quadratic imaginary number fields, allowing Henri Cohen and Hendrik Lenstra

Jr. [CL84] to make detailed conjectures regarding the frequency with which certain

groups appeared2. While these conjectures were made from empirical data, soon af-

1An independent origin was the earlier work of Wishart [Wis28] on singular values of random matrices,
motivated by statistics.

2More precisely, their conjectures concerned the limiting proportion of quadratic imaginary number
fields Q(

√
−𝑑), 1 ≤ 𝑑 ≤ 𝐷 squarefree, for which a given finite abelian 𝑝-group occurred as the 𝑝-Sylow

subgroup of the class group Cl(Q(
√
−𝑑)) (which is a finite abelian group). The actual computations were
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terwards Friedman and Washington [FW87] considered function field analogues and re-

alized that the Cohen-Lenstra distribution on abelian 𝑝-groups, which was the subject

of these conjectures, also appeared in random matrix theory over non-archimedean lo-

cal fields such as Q𝑝. Ellenberg and Venkatesh [EV10, Section 4.1] (see also [Woo19])

subsequently gave a random matrix heuristic for the original Cohen-Lenstra conjec-

tures which was remarkably similar to Wigner’s. Namely, Cl(Q(
√
−𝑑)) is the quotient

of an infinite-rank Z-module, the group of fractional ideals, by the full-rank submod-

ule of principal fractional ideals. A natural model is to take 𝑁 large and consider

coker(𝐴) := Z𝑁/𝐴Z𝑁 where 𝐴 ∈ Mat𝑁(Z) is a random matrix, producing a random sub-

module 𝐴Z𝑁 ⊂ Z𝑁 . Passing to the 𝑝-Sylow subgroup of the class group3, the heuristic

predicted that it should be modeled by the 𝑁 → ∞ limit of coker(𝐴′) = Z𝑁
𝑝 /𝐴

′Z𝑁
𝑝 for ran-

dom 𝐴′ ∈ Mat𝑁(Z𝑝), which had been proven in [FW87] to reproduce the Cohen-Lenstra

distribution for certain specific choices of distribution on 𝐴′. Such results have now been

shown to be universal for any generic choices of distribution of matrix entries by Wood

and coauthors [Woo19, Woo16, Woo18, NW22b]. Other classes of matrices—symmetric

[Woo17, NW22a], alternating [BKL+15], rectangular [Woo18], Hermitian [Lee22]—yield

different limiting distributions on the cokernel, many of which appear elsewhere in arith-

metic statistics and combinatorics.

The two bodies of work above have not interacted too much. While both feature ran-

dom matrices, eigenvalues and singular values of random real or complex matrices seem

far removed from random groups. Nonetheless, there were some hints at connections

between the two. The theory of spherical functions on Lie groups had already proven

a useful tool in complex random matrix theory—see e.g. [For10, BG15, GM20] and the

references therein—and structural parallels between special functions on real/complex

Lie groups and 𝑝-adic groups are well-studied (see e.g. [Mac98a, Chapters V and VII]),

so from this perspective it was natural to look for a corresponding story for 𝑝-adic ran-

dom matrices. Additionally, Fulman [Ful14] and Fulman-Kaplan [FK19] had previously

noted that the Cohen-Lenstra measure on abelian 𝑝-groups and certain related measures

could be written elegantly in terms of Hall-Littlewood polynomials, which are spherical

functions on 𝑝-adic groups. This thesis began as an attempt to understand this story,

done by D. Buell, C. P. Schnorr, D. Shanks and H. Williams, according to [CL84].
3See [Woo19] for more details on this heuristic.
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and once the structural analogies between the complex and 𝑝-adic settings were clarified,

it became apparent that many interesting probabilistic questions which had been stud-

ied extensively on the complex side had never been considered on the 𝑝-adic side. At

the same time, the aforementioned structural parallels allowed us to bring results and

intuition from symmetric function theory, in particular the methods of Macdonald pro-

cesses introduced by Borodin and Corwin [BC14], to bear on these problems. Let us now

describe in more detail these results and their context.

1.2 Exact results and Hall-Littlewood polynomials

For any nonsingular complex matrix 𝐴 ∈ 𝑀𝑛×𝑚(C), by singular value decomposition

there exist 𝑈 ∈ U(𝑛), 𝑉 ∈ U(𝑚) with 𝑈𝐴𝑉 = diag(𝑒−𝑟1 , 𝑒−𝑟2 , . . . , 𝑒−𝑟min(𝑚,𝑛)) for some

∞ > 𝑟1 ≥ · · · ≥ 𝑟min(𝑚,𝑛). Studying the distributions of the singular values of various

random matrices 𝐴, and their asymptotics, is a classical but still very active line of

research.

For any nonsingular 𝑝-adic matrix4 𝐴 ∈𝑀𝑛×𝑚(Q𝑝), there similarly exist 𝑈 ∈ GL𝑛(Z𝑝), 𝑉 ∈

GL𝑚(Z𝑝) such that 𝑈𝐴𝑉 = diag(𝑝𝜆1 , 𝑝𝜆2 , . . . , 𝑝𝜆min(𝑚,𝑛)) for some integers ∞ > 𝜆1 ≥

. . . ≥ 𝜆min(𝑚,𝑛). We refer to the integers 𝜆𝑖 as the singular numbers of 𝐴 and write

SN(𝐴) = (𝜆1, . . . , 𝜆min(𝑚,𝑛)) = 𝜆 in the above case. In the case where 𝐴 ∈ 𝑀𝑛×𝑚(Z𝑝) so

𝐴 : Z𝑚
𝑝 → Z𝑛

𝑝 is a linear map, we have

coker(𝐴) := Z𝑛
𝑝/𝐴Z𝑚

𝑝
∼=

𝑛⨁︁
𝑖=1

Z/𝑝𝜆𝑖Z (1.2.1)

where 𝜆𝑖 are the singular numbers5. One can study the distribution of SN(𝐴) for random

𝐴 ∈𝑀𝑛×𝑚(Q𝑝) just as with singular values, and if 𝐴 ∈𝑀𝑛×𝑚(Z𝑝) then this is equivalent

to the cokernel studied in the works above. Specifically, one may ask the following.

(Q1) For ‘natural’ choices of the distribution of 𝐴, what is the distribution of SN(𝐴)?

(Q2) Let 𝐴𝑐𝑜𝑙 be the matrix given by removing the last column from 𝐴. What is the

conditional distribution of SN(𝐴𝑐𝑜𝑙) given SN(𝐴)?

4For background on the 𝑝-adic numbers and matrix groups over them, see Chapter 2.
5Assume 𝑚 ≥ 𝑛 so the cokernel has no free part.
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(Q3) Let 𝐵 ∈𝑀𝑚×𝑘(Q𝑝) be another independent random matrix. Given the distributions

of SN(𝐴), SN(𝐵), what is the distribution of SN(𝐴𝐵)?

As an example of (Q1), the original work of Friedman-Washington [FW87] explic-

itly computed the distribution of coker(𝐴(𝑛)) for 𝐴(𝑛) ∈ Mat𝑛×𝑛(Z𝑝) with iid entries dis-

tributed according to the Haar measure on the additive group Z𝑝. They found the attrac-

tive limiting formula that for any integer partition (an infinite sequence 𝜆1 ≥ 𝜆2 ≥ . . . ≥ 0

which is eventually 0),

lim
𝑛→∞

Pr(SN(𝐴(𝑛)) = (𝜆1, . . . , 𝜆𝑛)) =

∏︀
𝑗≥1(1− 𝑝−𝑗)

|Aut(
⨁︀

𝑖 Z/𝑝𝜆𝑖Z)|
. (1.2.2)

The right hand side defines a probability measure on integer partitions, equivalently on

abelian 𝑝-groups, which appeared in the original conjecture of [CL84] and is hence known

as the Cohen-Lenstra measure.

We give complete answers to (Q2), (Q3) and a family of cases of (Q1) including the

above case in Theorem 1.2.1 below, when the distribution of 𝐴 is invariant under left-

and right-multiplication by GL𝑛(Z𝑝) and GL𝑚(Z𝑝) respectively. These results use rela-

tions between 𝑝-adic matrices and the classical Hall-Littlewood symmetric polynomials

𝑃𝜆(𝑥1, . . . , 𝑥𝑛; 𝑡), symmetric polynomials which reduce to Schur polynomials at 𝑡 = 0 and

monomial symmetric polynomials at 𝑡 = 1, and play key roles in geometry, representation

theory, and algebraic combinatorics. Explicitly they are defined by

𝑃𝜆(𝑥1, . . . , 𝑥𝑛; 𝑡) :=
1

𝑣𝜆(𝑡)

∑︁
𝜎∈𝑆𝑛

𝜎

(︃
𝑥𝜆1
1 · · ·𝑥𝜆𝑛

𝑛

∏︁
1≤𝑖<𝑗≤𝑛

𝑥𝑖 − 𝑡𝑥𝑗
𝑥𝑖 − 𝑥𝑗

)︃
, (1.2.3)

where 𝜎 acts by permuting the variables and 𝑣𝜆(𝑡) is the normalizing constant such

that the 𝑥𝜆1
1 · · ·𝑥𝜆𝑛

𝑛 term has coefficient 1. They form a distinguished basis for the ring

Λ𝑛 := C[𝑥1, . . . , 𝑥𝑛]𝑆𝑛 of symmetric polynomials in 𝑛 variables 𝑥1, . . . , 𝑥𝑛, indexed by the

set Sig+𝑛 := {(𝜆1, . . . , 𝜆𝑛) ∈ Z𝑛 : 𝜆1 ≥ · · · ≥ 𝜆𝑛 ≥ 0} of nonnegative integer signatures,

and feature an additional parameter 𝑡 which we take to be real. Using only the prop-

erty that they form a basis and some positivity properties below, one can use them to

define probability measures, Markov dynamics, and randomized convolution operations

on signatures6.
6These operations also make sense when the indices lie in the set Sig𝑛 := {(𝜆1, . . . , 𝜆𝑛) ∈ Z𝑛 : 𝜆1 ≥
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1. (Probability measures) For real 𝑎1, . . . , 𝑎𝑛 ≥ 0, and 𝑡 ∈ [0, 1) one has 𝑃𝜆(𝑎1, . . . , 𝑎𝑛; 𝑡) ≥

0. Hence for any sets {𝑎𝑖}, {𝑏𝑖} of nonnegative reals with all 𝑎𝑖𝑏𝑗 < 1 one may define

the Hall-Littlewood measure on Sig+𝑛 via

Pr(𝜆) =
1

Π(0,𝑡)(𝑎1, . . . , 𝑎𝑛; 𝑏1, . . . , 𝑏𝑛)
𝑃𝜆(𝑎1, . . . , 𝑎𝑛; 𝑡)𝑄𝜆(𝑏1, . . . , 𝑏𝑛; 𝑡) (1.2.4)

where Π(0,𝑡)(𝑎1, . . . , 𝑎𝑛; 𝑏1, . . . , 𝑏𝑛) is a normalizing constant and 𝑄𝜆 is a certain

constant multiple of 𝑃𝜆, see Chapter 2.

2. (Markov dynamics) Because the 𝑃𝜆 form a basis for the vector space of symmetric

polynomials in 𝑛 variables,

𝑃𝜆(𝑥1, . . . , 𝑥𝑛; 𝑡) =
∑︁
𝜇

𝑃𝜆/𝜇(𝑥𝑘+1, . . . , 𝑥𝑛; 𝑡)𝑃𝜇(𝑥1, . . . , 𝑥𝑘; 𝑡) (1.2.5)

for some symmetric polynomials 𝑃𝜆/𝜇 ∈ Λ𝑛−𝑘, called skew Hall-Littlewood polynomi-

als. Substituting positive real numbers 𝑎𝑖 for the variables naturally yields Markov

dynamics Sig+𝑛 → Sig+𝑘 given by

Pr(𝜆→ 𝜇) =
𝑃𝜆/𝜇(𝑎𝑘+1, . . . , 𝑎𝑛; 𝑡)𝑃𝜇(𝑎1, . . . , 𝑎𝑘; 𝑡)

𝑃𝜆(𝑎1, . . . , 𝑎𝑛; 𝑡)
.

3. (Product convolution) Again using that the 𝑃𝜆 form a basis,

𝑃𝜆(𝑥1, . . . , 𝑥𝑛; 𝑡) · 𝑃𝜇(𝑥1, . . . , 𝑥𝑛; 𝑡) =
∑︁
𝜈

𝑐𝜈𝜆,𝜇(0, 𝑡)𝑃𝜈(𝑥1, . . . , 𝑥𝑛; 𝑡)

for some structure coefficients 𝑐𝜈𝜆,𝜇(0, 𝑡)–these are often called Littlewood-Richardson

coefficients, particularly in the case 𝑡 = 0 corresponding to the classical Schur poly-

nomials. One may then, given two fixed signatures 𝜆, 𝜇, define their ‘convolution’

𝜆�a 𝜇 (a random signature) by

Pr(𝜆�a 𝜇 = 𝜈) =
𝑃𝜈(𝑎1, . . . , 𝑎𝑛; 𝑡)

𝑃𝜆(𝑎1, . . . , 𝑎𝑛; 𝑡)𝑃𝜇(𝑎1, . . . , 𝑎𝑛; 𝑡)
𝑐𝜈𝜆,𝜇(0, 𝑡)

for each 𝜈 ∈ Sig𝑛. Convolutions of signatures which are themselves random may be

· · · ≥ 𝜆𝑛} of integer signatures (possibly with some negative parts), but we refer to Chapter 2 for
conventions on these.
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obtained from this by mixtures.

We may now state the main structural result, which shows that the matrix operations

of products and corners mirror the above operations on the level of symmetric functions.

Theorem 1.2.1. Fix a prime 𝑝 and let 𝑡 = 1/𝑝.

1. (Truncated Haar ensemble) Let 1 ≤ 𝑛 ≤ 𝑚 ≤ 𝑁 be integers, and 𝐴 be the top-

left 𝑛×𝑚 submatrix of a Haar-distributed element of GL𝑁(Z𝑝). Then SN(𝐴) is a

random nonnegative signature with distribution given by the Hall-Littlewood measure

Pr(SN(𝐴) = 𝜆) =
𝑃𝜆(1, 𝑡, . . . , 𝑡

𝑛−1; 𝑡)𝑄𝜆(𝑡
𝑚−𝑛+1, . . . , 𝑡𝑁−𝑛; 𝑡)

Π(0,𝑡)(1, 𝑡, . . . , 𝑡𝑛−1; 𝑡𝑚−𝑛+1, . . . , 𝑡𝑁−𝑛)
. (1.2.6)

2. (Corners process) Let 𝑛, 𝑘,𝑁 be integers with 1 ≤ 𝑛 ≤ 𝑁 and 1 ≤ 𝑘 ≤ 𝑁 − 𝑛,

𝜆 ∈ Sig𝑛, and 𝐴 ∈𝑀𝑛×𝑁(Q𝑝) be random with SN(𝐴) = 𝜆 and distribution invariant

under GL𝑛(Z𝑝) × GL𝑁(Z𝑝) acting on the right and left. Let 𝐴𝑐𝑜𝑙 ∈ 𝑀𝑛×(𝑁−𝑘)(Q𝑝)

be the first 𝑁 − 𝑘 columns of 𝐴. Then SN(𝐴𝑐𝑜𝑙) is a random element of Sig𝑛 with

distribution given by

Pr(SN(𝐴𝑐𝑜𝑙) = 𝜈) =
𝑄𝜈/𝜆(1, . . . , 𝑡

−(𝑘−1); 𝑡)𝑃𝜈(𝑡
𝑁−𝑛, . . . , 𝑡𝑁−1; 𝑡)

𝑃𝜆(𝑡𝑁−𝑛, . . . , 𝑡𝑁−1; 𝑡)Π(0,𝑡)(1, . . . , 𝑡−(𝑘−1); 𝑡𝑁−𝑛, . . . , 𝑡𝑁−1)
.

(1.2.7)

Now let 1 ≤ 𝑑 ≤ 𝑛 and 𝐴𝑟𝑜𝑤 ∈ 𝑀(𝑛−𝑑)×𝑁 be the first 𝑛 − 𝑑 rows of 𝐴. Then

SN(𝐴𝑟𝑜𝑤) is a random element of Sig𝑛−𝑑 with distribution

Pr(SN(𝐴𝑟𝑜𝑤) = 𝜇) = 𝑃𝜆/𝜇(1, . . . , 𝑡
𝑑−1; 𝑡)

𝑃𝜇(𝑡
𝑑, . . . , 𝑡𝑛−1; 𝑡)

𝑃𝜆(1, . . . , 𝑡𝑛−1; 𝑡)
. (1.2.8)

3. (Product process) Let 𝐴,𝐵 be random elements of 𝑀𝑛(Q𝑝) with fixed singular

numbers SN(𝐴) = 𝜆, SN(𝐵) = 𝜇, invariant under left- and right-multiplication

by GL𝑛(Z𝑝). Then for any 𝜈 ∈ Sig𝑛, SN(𝐴𝐵) has distribution 𝜆�(1,...,𝑡𝑛−1) 𝜇, i.e.

Pr(SN(𝐴𝐵) = 𝜈) = 𝑐𝜈𝜆,𝜇(0, 𝑡)
𝑃𝜈(1, . . . , 𝑡

𝑛−1; 𝑡)

𝑃𝜆(1, . . . , 𝑡𝑛−1; 𝑡)𝑃𝜇(1, . . . , 𝑡𝑛−1; 𝑡)
. (1.2.9)

In the limit 𝑁 → ∞, Theorem 1.2.1 Part 1 recovers the distribution of singular

numbers of matrices with iid additive Haar entries.
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Corollary 1.2.2. Fix a prime 𝑝 and let 𝑡 = 1/𝑝. Let 1 ≤ 𝑛 ≤ 𝑚, and 𝐴 ∈𝑀𝑛×𝑚(Z𝑝) be

random with iid entries distributed according to the additive Haar measure on Z𝑝. Then

for any 𝜆 ∈ Sig+𝑛 ,

Pr(SN(𝐴) = 𝜆) =
𝑃𝜆(1, . . . , 𝑡

𝑛−1; 𝑡)𝑄𝜆(𝑡
𝑚−𝑛+1, 𝑡𝑚−𝑛+2, . . . ; 𝑡)

Π(0,𝑡)(1, . . . , 𝑡𝑛−1; 𝑡𝑚−𝑛+1, 𝑡𝑚−𝑛+2, . . .)

The 𝑚 = 𝑛 case of Corollary 1.2.2 was the original ensemble studied by Friedman-

Washington [FW87], and appeared also in the work of Evans [Eva02]. The rectangular

case was considered in work of Wood [Woo19, Thm. 1.3], which studies the 𝑛 → ∞

asymptotics of 𝑛× (𝑛+𝑢) matrices for fixed 𝑢; this work shows that the limit is universal

for many choices of the distribution of matrix entries, but does not consider the exact

result of Corollary 1.2.2 for finite 𝑛. Subcases of the Hall-Littlewood measures we consider

also appear in the work of Fulman [Ful02, Ful14] on Jordan blocks of uniformly random

elements of GL𝑛(F𝑞), though the language of Hall-Littlewood measures was not used.

Explicit formulas for the probabilities in Corollary 1.2.2 and Theorem 1.2.1 may be

obtained using the explicit formulas for Hall-Littlewood polynomials, Proposition 2.2.15

and Theorem 2.2.16, recovering those given in [FW87] and yielding several new ones. One

such consequence is a generalization of the results of [FW87] to cokernels of products of

additive Haar matrices. Here 𝜆′𝑥 := #{𝑖 : 𝜆𝑖 ≥ 𝑥}, (𝑎; 𝑡)𝑛 :=
∏︀𝑛−1

𝑖=0 (1 − 𝑎 · 𝑡𝑖) is the

𝑡-Pochhammer symbol, ⎡⎣𝑎
𝑏

⎤⎦
𝑡

:=
(𝑡; 𝑡)𝑎

(𝑡; 𝑡)𝑏(𝑡; 𝑡)𝑎−𝑏

(1.2.10)

is the 𝑡-binomial coefficient, and

𝑛(𝜆) :=
∑︁
𝑖

(𝑖− 1)𝜆𝑖. (1.2.11)

Theorem 1.2.3. Let 𝑡 = 1/𝑝, fix 𝑛 ≥ 1, and let 𝐴𝑖 be iid 𝑛 × 𝑛 matrices with iid

entries distributed by the additive Haar measure on Z𝑝. Then the joint distribution of
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SN(𝐴1), SN(𝐴2𝐴1), . . . is given by

Pr(SN(𝐴𝑖 · · ·𝐴1) = 𝜆(𝑖) for all 𝑖 = 1, . . . , 𝑘)

= (𝑡; 𝑡)𝑘𝑛𝑡
𝑛(𝜆(𝑘))

∏︁
1≤𝑖≤𝑘

∏︁
𝑥∈Z

𝑡(
𝜆(𝑖)′𝑥−𝜆(𝑖−1)′𝑥+1

2 )

⎡⎣𝜆(𝑖)′𝑥 − 𝜆(𝑖− 1)′𝑥+1

𝜆(𝑖)′𝑥 − 𝜆(𝑖)′𝑥+1

⎤⎦
𝑡

(1.2.12)

for any 𝑘 and 𝜆(1), . . . , 𝜆(𝑘) ∈ Sig≥0
𝑛 , where we take 𝜆(0) = (0, . . . , 0) in (1.2.12).

Note that the product over 𝑥 ∈ Z, which may appear uninviting, in fact has only

finitely many nontrivial terms. We mention also that in work of Nguyen and the author

[NVP22] which does not appear in this thesis, the 𝑛 → ∞ limit of this distribution was

shown to be universal for products of random matrices with iid entries from a generic

distribution, and interpreted in terms of automorphisms of nested sequences of abelian 𝑝-

groups. Currently we are not aware of this distribution appearing elsewhere, but given the

various matrix models mentioned in the Preface which have found application elsewhere,

it seems any natural enough distribution on 𝑝-adic random matrices may model some

class of random abelian 𝑝-groups appearing in nature.

Remark 1. Though we have chosen to state them in the case of Q𝑝 because it is most

commonly considered in the literature, all of our results and proofs for 𝑝-adic matrices

are actually valid for matrices over any non-Archimedean local field 𝐾 with finite residue

field, i.e. any algebraic extensions of Q𝑝 or F𝑞((𝑡)). Any such field has a ring of integers

𝑅 which plays the role of Z𝑝, and a unique maximal ideal (𝜔) ⊂ 𝑅 generated by a

uniformizer 𝜔 which plays the role of 𝑝. The residue field 𝑅/(𝜔) is a finite field F𝑞 for

some 𝑞. Replacing Q𝑝 by 𝐾, Z𝑝 by 𝑅, 𝑝 by 𝜔 (in the context of matrix entries), and

setting 𝑡 = 1/𝑞 in Hall-Littlewood specializations, our results translate mutatis mutandis.

This is essentially a consequence of the fact that Part 3 of Theorem 1.2.1 holds in this

generality, see [Mac98a, Ch. V] and the discussion in Chapter 3.

1.2.1 Macdonald polynomials and connections to the complex

case

Let us say a few words about the proof of Theorem 1.2.1. Part 3 of the theorem is essen-

tially a probabilistic reframing of results on the Hecke ring of the pair (GL𝑛(Q𝑝),GL𝑛(Z𝑝))
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in [Mac98a, Ch. V]. To prove Part 1 and Part 2, we use limiting cases of Part 3 cor-

responding to projection matrices. For example, if 𝑈 ∈ GL𝑁(Z𝑝) is random with Haar

distribution, then the corners described in Part 1 are given by the convolution 𝑃𝑛𝑈𝑃𝑚

of projection matrices of rank 𝑛 and 𝑚, which may be treated by a limiting case of the

product operation in Part 3. This link also explains the appearance of similar geomet-

ric progressions in 𝑡 in the formulas in Parts 1, 2, 3: those in Parts 1, 2 come from

those in Part 3 via this degeneration. We remark that in the complex case, the relation

between products of randomly-rotated projection matrices and the so-called truncated

unitary/Jacobi ensembles was observed and exploited by Collins [Col05].

To implement this strategy in the 𝑝-adic setting, in view of (1.2.9) it is necessary to

establish some combinatorial results on asymptotics of the structure coefficients 𝑐𝜈𝜆,𝜇(0, 𝑡).

We prove some quite general results in this direction in Chapter 3, which are valid for

the more general class of Macdonald polynomials 𝑃𝜆(𝑥1, . . . , 𝑥𝑛; 𝑞, 𝑡), another family of

symmetric polynomials indexed by signatures. These polynomials have two parameters

𝑞, 𝑡 and specialize to Hall-Littlewood polynomials when 𝑞 = 0, but the measures, Markov

dynamics and convolution operations on signatures defined for Hall-Littlewood polynomi-

als work exactly the same way. We chose to work at the level of Macdonald polynomials

partially to highlight the similarities between our results and existing results for complex

random matrices. One may define measures, Markov kernels and randomized convolu-

tion operations on integer signatures by the formulas (1.2.6), (1.2.8), (1.2.7) and (1.2.9)

in Theorem 1.2.1 but with Macdonald polynomials 𝑃𝜆(𝑥1, . . . , 𝑥𝑛; 𝑞, 𝑡) substituted in for

Hall-Littlewood polynomials 𝑃𝜆(𝑥1, . . . , 𝑥𝑛; 0, 𝑡), and all probabilities will still be nonneg-

ative provided 𝑞 ∈ [0, 1). Sending 𝑞 → 0 recovers the probabilities in Theorem 1.2.1.

There is another limit where 𝑡 = 𝑞𝛽/2 and 𝑞, 𝑡 → 1 while the signatures are also scaled

at some rate dependent on 𝑞, which yields probability measures, Markov kernels and

convolutions on real signatures. In these limits, the formulas in Theorem 1.2.1 (with

Macdonald polynomials in place of Hall-Littlewood, but no other changes) degenerate

when 𝛽 = 1, 2, 4 to formulas for singular values under the corresponding corners and

product matrix operations on real, complex and quaternion random matrices. We dis-

cuss this limit in more detail in Section 3.3.
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1.3 Law of large numbers and central limit theorem

The asymptotic distributions obtained in the previous 𝑝-adic random matrix literature

look quite different from their counterparts in the world of singular values. For instance,

(1.2.2) yields that with probability 1 only an asymptotically finite number of the 𝜆𝑖 are

nonzero. The motivating questions in number theory concern group-theoretic properties

such as the probability of cyclicity (i.e. probability that SN(𝐴) = (𝑘, 0, . . . , 0) for some

𝑘) or the distribution of ranks (the number of nonzero parts of 𝜆 = SN(𝐴)).

By contrast, the singular values of an 𝑛×𝑛 matrix with iid standard Gaussian entries,

usually referred to as the Ginibre ensemble, converge with rescaling to the celebrated

Marchenko-Pastur law [MP67] (a compactly supported probability distribution on R).

As far as we are aware, no continuous probability distributions on R appeared previously

governing limits of singular numbers of random 𝑝-adic matrices. Indeed, such limits are

in a sense orthogonal to the viewpoint of random abelian 𝑝-groups taken in most of the

previous literature.

Remark 2. In a probabilistic context it is often helpful to view the additive Haar measure

on Z𝑝 as an analogue of the Gaussian on R or C. One shared feature is that additive

convolution preserves both classes of measures: if 𝑋, 𝑌 are distributed according to the

additive Haar measure on Z𝑝, 𝑋 + 𝑌 is as well. In fact, random vectors 𝑣 ∈ Z𝑛
𝑝 with

iid Haar-distributed entries are invariant under GL𝑛(Z𝑝) just as Gaussian vectors are

invariant under U(𝑛), and both are characterized up to scaling by this invariance together

with independence of entries. Another shared feature is that both the Gaussian and the

additive Haar measure are their own Fourier transform. See Tao [Tao08] and Evans

[Eva01] for more discussion.

In the next result, we find Gaussian limits in the setting of products of a large number

of 𝑝-adic matrices of finite size. Given random matrices 𝐴1, 𝐴2, . . . ∈ 𝑀𝑛(Q𝑝), one may

view the SN(𝐴1), SN(𝐴2𝐴1), . . . as defining a discrete-time Markov chain on the set of

weakly decreasing 𝑛-tuples of integers. Equivalently, for each 𝑖 the 𝑖𝑡ℎ largest singular

number evolves as some random walk on Z, with the 𝑛 such random walks sometimes

colliding but never crossing. See Figure 1-1 below.

In the case when 𝐴𝑖 are 𝑛 × 𝑛 corners of independent Haar-distributed elements of

GL𝑁(Z𝑝) with 𝑁 > 𝑛, we show that the singular numbers of their products satisfy an
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explicit law of large numbers as 𝑘 → ∞, and furthermore the fluctuations converge to

𝑛 independent Brownian motions. In the limit as 𝑁 → ∞, the entries of such corners

become independent and distributed according to the additive Haar measure on Z𝑝, re-

covering the matrices studied in the previous literature, so we allow the case ‘𝑁 = ∞’

below.

Theorem 1.3.1. Fix 𝑛 ≥ 1, and let 𝑁1, 𝑁2, . . . ∈ Z ∪ {∞} with 𝑁𝑗 > 𝑛 for all 𝑗. For

each 𝑗, if 𝑁𝑗 < ∞ let 𝐴𝑗 be the top left 𝑛 × 𝑛 corner of a Haar distributed element of

GL𝑁𝑗
(Z𝑝), and if 𝑁𝑗 = ∞ let 𝐴𝑗 have iid entries distributed by the additive Haar measure

on Z𝑝. For 𝑘 ∈ N let

(𝜆1(𝑘), . . . , 𝜆𝑛(𝑘)) := SN(𝐴𝑘 · · ·𝐴1).

Then we have a strong law of large numbers

𝜆𝑖(𝑘)∑︀𝑘
𝑗=1

∑︀𝑁𝑗−𝑛−1
ℓ=0

𝑝−𝑖−ℓ(1−𝑝−1)
(1−𝑝−𝑖−ℓ−1)(1−𝑝−𝑖−ℓ)

→ 1 a.s. as 𝑘 → ∞.

Let

𝜆̄𝑖(𝑘) := 𝜆𝑖(𝑘)−
𝑘∑︁

𝑗=1

𝑁𝑗−𝑛−1∑︁
ℓ=0

𝑝−𝑖−ℓ(1− 𝑝−1)

(1− 𝑝−𝑖−ℓ−1)(1− 𝑝−𝑖−ℓ)

and define the random function of 𝑓𝜆̄𝑖,𝑘 ∈ 𝐶[0, 1] as follows: set 𝑓𝜆̄𝑖,𝑘(0) = 0 and

(𝑓𝜆̄𝑖,𝑘(1/𝑘), 𝑓𝜆̄𝑖,𝑘(2/𝑘), . . . , 𝑓𝜆̄𝑖,𝑘(1)) =
1√︁∑︀𝑘

𝑗=1

∑︀𝑁𝑗−𝑛−1
ℓ=0

𝑝−𝑖−ℓ(1−𝑝−1)(1−𝑝−2𝑖−2ℓ−1)
(1−𝑝−𝑖−ℓ)2(1−𝑝−𝑖−ℓ−1)2

(𝜆̄𝑖(1), . . . , 𝜆̄𝑖(𝑘)),

then linearly interpolate from these values on each interval [ℓ/𝑘, (ℓ + 1)/𝑘]. Then as

𝑘 → ∞, the 𝑛-tuple of random functions (𝑓𝜆̄1,𝑘, . . . , 𝑓𝜆̄𝑛,𝑘) converges in law in the sup

norm topology on 𝐶[0, 1] to 𝑛 independent standard Brownian motions.

In particular, we have the central limit theorem that

𝜆̄𝑖(𝑘)√︁∑︀𝑘
𝑗=1

∑︀𝑁𝑗−𝑛−1
ℓ=0

𝑝−𝑖−ℓ(1−𝑝−1)(1−𝑝−2𝑖−2ℓ−1)
(1−𝑝−𝑖−ℓ)2(1−𝑝−𝑖−ℓ−1)2

→ 𝒩 (0, 1)

in law for each 𝑖.

Remark 3. If all 𝑁𝑗 are equal to some 𝑁 , then the law of large numbers takes the more
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Figure 1-1: A plot of (𝜆1(𝑘), 𝜆2(𝑘), 𝜆3(𝑘), 𝜆4(𝑘)) = SN(𝐴𝑘 · · ·𝐴1) where 𝐴1, . . . , 𝐴100 ∈
𝑀4(Z2) are random matrices with iid entries drawn from the additive Haar measure on
Z2.
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standard form
𝜆𝑖(𝑘)

𝑘
→

𝑁−𝑛−1∑︁
ℓ=0

𝑝−𝑖−ℓ(1− 𝑝−1)

(1− 𝑝−𝑖−ℓ−1)(1− 𝑝−𝑖−ℓ)
.

When 𝑁 = ∞, evaluating the sum via the 𝑞-Gauss identity [Koe98, (3.5)] yields an even

more explicit limit:
𝜆𝑖(𝑘)

𝑘
→ 1

𝑝𝑖 − 1
.

The matrices 𝐴𝑖 above lie in GL𝑛(Q𝑝) with probability 1, so Theorem 1.3.1 may be

viewed as a statement about certain random walks on the group GL𝑛(Q𝑝). Previous

work by Brofferio-Schapira [BS11] takes this perspective of random walks on groups

and studies similar random walks from an ergodic theory perspective. They prove a

law of large numbers for products of iid random matrices from a quite general class

of probability distributions on GL𝑛(Q𝑝) via a generalization of Oseledets’ multiplicative

ergodic theorem [Ose68] to matrices over Q𝑝, due to Raghunathan [Rag79]. The family of

probability distributions considered in [BS11] is more general than that of Theorem 1.2.1,

but the latter covers cases when the matrices 𝐴𝑖 are not identically distributed and shows

Gaussian fluctuations, which are not shown in [BS11]. A different family of random

walks on GL𝑛(Q𝑝) were studied by Chhaibi [Chh17]; the perspective in this work is more

similar to ours in that it is heavily based on special functions on 𝑝-adic groups, though

the presentation and problems considered are quite different. Finally, there is a body of

work on random walks on Bruhat-Tits buildings which translates to results on random

walks on 𝑝-adic groups, see for instance Cartwright-Woess [CW04, Section 8], Schapira

[Sch09], and especially the survey of Parkinson [Par17]. These works contain central limit

theorems, but for quite different quantities and settings than ours.

In the setting of real and complex matrices, the study of asymptotics of singular values

of products 𝐴𝑘𝐴𝑘−1 · · ·𝐴1 of random matrices as 𝑘 → ∞ dates back at least as far as

the 1960 work of Furstenberg and Kesten [FK60], who showed Gaussian fluctuations for

the logarithm of the largest singular value under some assumptions on the 𝐴𝑖. In the

case where the 𝐴𝑖 are iid square with complex Gaussian entries, Gaussian fluctuations for

logarithms of all singular values (not just the largest as in [FK60]) were obtained in the

physics literature by Akemann-Burda-Kieburg [ABK14] and in the mathematics literature

by Liu-Wang-Wang [LWW23, Thm. 1.1]. The case of products of 𝑛×𝑛 corners of unitary

matrices, often referred to as the truncated unitary ensemble, has also been considered;
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the term Jacobi ensemble is also sometimes used for such corners due to the relation

with the classical Jacobi orthogonal polynomial ensemble. Dynamical convergence of the

logarithm of the largest singular value of 𝐴𝑘 · · ·𝐴1 to Brownian motion for products of

such unitary corners was suggested, though not directly implied, by the work of Ahn (one

should send 𝑇 → ∞ in [Ahn22b, Thm. 1.7]). Together these results strongly suggest that

as the number of products goes to infinity, the fluctuations of the 𝑛 logarithms of singular

values should converge to 𝑛 independent Brownian motions, as holds in the 𝑝-adic case

by Theorem 1.3.1, and indeed a result of this form was shown by Ahn [Ahn22a] after our

result originally appeared.

There is now a large body of both mathematics and physics literature on asymptotics of

matrix products in various regimes, often from the perspective of ergodic theory and often

motivated by connections to chaotic dynamical systems and disordered systems in sta-

tistical physics, neural networks, and other areas. See for example Ahn [Ahn22b, AS22],

Akemann-Burda-Kieburg [ABK14, ABK19, ABK20], Akemann-Ipsen [AI15], Akemann-

Ipsen-Kieburg [AIK13], Akemann-Kieburg-Wei [AKW13], Crisanti-Paladin-Vulpiani [CPV12],

Forrester [For15] and Forrester-Liu [FL16], Gol’dsheid-Margulis [GM89], Gorin-Sun [GS22],

Kieburg-Kösters [KK+19], and Liu-Wang-Wang [LWW23]. Such considerations motivate

the study of the Lyapunov exponents, so named because of the connection with dynam-

ical systems: given random complex matrices 𝐴1, 𝐴2, . . ., the 𝑖𝑡ℎ Lyapunov exponent is

defined as

lim
𝑘→∞

1

𝑘
log(𝑖𝑡ℎ largest singular value of 𝐴𝑘 · · ·𝐴1).

In the limit as the sizes of the 𝐴𝑖 grows, the largest Lyapunov exponents converge (with

appropriate scaling) to an evenly spaced sequence 0,−1,−2, . . . in several known cases.

Note that this statement has no content if one may scale each Lyapunov exponent indi-

vidually, but it is quite surprising that applying the same additive shift and multiplicative

scaling to all of the Lyapunov exponents together produces this evenly spaced sequence.

For complex Ginibre matrices this convergence statement is an easy corollary of results of

Liu-Wang-Wang7 [LWW23]. For products of corners of Haar-distributed unitary matrices

and Ginibre matrices, the same result holds by work of Ahn and the author [AVP23].

These examples seem to support the notion that such evenly spaced Lyapunov exponents

7To obtain 0,−1,−2, . . ., take 𝑁 → ∞ in (1.7) of [LWW23] with scaling and use that the digamma
function 𝜓(𝑧) is asymptotic to log(𝑧).
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are universal, though we are not aware of a precise conjecture in the literature regarding

the scope of this class.

In the 𝑝-adic case, we are able to prove that at least within the class of trun-

cated GL𝑁(Z𝑝) matrices–and iid additive Haar matrices, by the 𝑁 → ∞ limit)–the

appropriate analogues of Lyapunov exponents have universal limits. Consider random

𝐴1, 𝐴2, . . . ∈ 𝑀𝑛(Q𝑝). For appropriate 𝑈, 𝑉 ∈ GL𝑛(Z𝑝) such that 𝑈(𝐴𝑘 · · ·𝐴1)𝑉 =

diag(𝑝𝜆1(𝑘), . . . , 𝑝𝜆𝑛(𝑘)) with 𝜆1(𝑘) ≥ . . . ≥ 𝜆𝑛(𝑘), we have that the 𝑖𝑡ℎ smallest part

𝜆𝑛−𝑖+1(𝑘) of SN(𝐴𝑘 · · ·𝐴1) is the analogue of − log(𝑖𝑡ℎ largest singular value) in the com-

plex setting, because 𝑝𝐷 is small in the 𝑝-adic norm for large 𝐷. Hence

lim
𝑘→∞

𝜆𝑛−𝑖+1(𝑘)

𝑘

should be regarded as the appropriate analogue of the 𝑖𝑡ℎ Lyapunov exponent in the

𝑝-adic setting. Our next result shows that within the class of products of arbitrary

Haar corners, these analogues of Lyapunov exponents converge to values 1, 𝑝, 𝑝2, . . . in

geometric progression, much like the arithmetic progression 0,−1,−2, . . . in the complex

case mentioned previously.

Theorem 1.3.2 (Large-𝑛 universality of Lyapunov exponents). For each 𝑛 ∈ N, let

𝑁
(𝑛)
1 , 𝑁

(𝑛)
2 , . . . ∈ Z≥0 ∪ {∞} be such that 𝑁 (𝑛)

𝑗 > 𝑛 and the limiting frequencies

𝜌𝑛(𝑁) := lim
𝑘→∞

|{1 ≤ 𝑗 ≤ 𝑘 : 𝑁
(𝑛)
𝑗 = 𝑁}|

𝑘

exist for all 𝑁 > 𝑛. Let 𝐴(𝑛)
𝑗 be 𝑛 × 𝑛 corners of independent Haar distributed matrices

in GL
𝑁

(𝑛)
𝑗

(Z𝑝) (with the case 𝑁 (𝑛)
𝑗 = ∞ treated as in Theorem 1.3.1). Then for each 𝑛,

the Lyapunov exponents

𝐿
(𝑛)
𝑖 := lim

𝑘→∞

𝜆𝑛−𝑖+1(𝑘)

𝑘

exist almost surely, where 𝜆𝑛−𝑖+1(𝑘) is as in Theorem 1.3.1. Furthermore, the Lyapunov

exponents have limits

lim
𝑛→∞

𝐿
(𝑛)
𝑖

𝑝−𝑛(1− 𝑐(𝑛))
= 𝑝𝑖−1

for every 𝑖, where 𝑐(𝑛) :=
∑︀

𝑁>𝑛 𝜌𝑛(𝑁)𝑝−(𝑁−𝑛).

We note that Theorem 1.3.2 does not require any relation between the𝑁 (𝑛)
𝑗 for different
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𝑛; one can for example alternate 𝑁 (𝑛)
𝑗 = 𝑛 + 1 for 𝑛 even and 𝑁

(𝑛)
𝑗 = ∞ for 𝑛 odd, and

the result still holds. In the next section we see that this geometric progression was in

fact a hint of a new universal object.

1.4 𝑝-adic analogues of Dyson Brownian motion, Pois-

son walks, and local limits

Theorem 1.3.2 shows that in that setting, at least near the ‘edge’ 𝑗 ≈ 𝑁 for 𝑁 large,

the 𝑗𝑡ℎ singular number SN(𝐴(𝑁)
𝜏 · · ·𝐴(𝑁)

1 )𝑗 evolves in discrete time 𝜏 about 𝑝 times faster

than the (𝑗+1)𝑡ℎ does. It is natural to ask the finer-grained question of what this discrete-

time dynamics actually looks like near the edge, and whether there is any hope that an

𝑁 → ∞ limit exists which might be universal. A related question is the bulk local limit

of this evolution far away from either edge, e.g. for 𝑗 ≈ 𝑁/2. Both of these questions

differ from the previous section in that the matrix size 𝑁 is sent to ∞ along with the

number of products, rather than fixed as the number of products goes to ∞.

In the bulk, we find the exact distribution of singular numbers at a fixed time, which

we now define, though we suggest to skip over the details of the formulas at a first

reading. These formulas feature the 𝑞-Pochhammer symbols and 𝑞-binomial coefficients

defined earlier in (1.2.10), and for signatures 𝜇 ∈ Sig𝑘−1, 𝜆 ∈ Sig𝑘 we write

𝜇 ≺ 𝜆⇐⇒ 𝜆1 ≥ 𝜇1 ≥ 𝜆2 ≥ . . . ≥ 𝜇𝑘−1 ≥ 𝜆𝑘

|𝜇| =
∑︀

𝑖 𝜇𝑖, and 𝜇− (𝑑[𝑘 − 1]) = (𝜇1 − 𝑑, . . . , 𝜇𝑘−1 − 𝑑). They also feature 𝑞-Whittaker

polynomials 𝑃𝜆(· · · ; 𝑞, 0) and Plancherel specializations of Hall-Littlewood polynomials,

for which we refer to Chapter 2 for definitions.

Theorem 1.4.1. For any 𝑘 ∈ Z≥1 and 𝜒 ∈ R>0, there is a Sig𝑘-valued random variable
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ℒ𝑘,𝜒 with law defined by

Pr(ℒ𝑘,𝜒 = 𝐿)

=
(𝑡; 𝑡)𝑘−1

∞
𝑘!(2𝜋i)𝑘

𝑘−1∏︁
𝑖=1

𝑡(
𝐿𝑖−𝐿𝑘

2 )

(𝑡; 𝑡)𝐿𝑖−𝐿𝑖+1

∫︁
Γ̃
𝑘
𝑒𝜒𝑡

𝐿𝑘 (𝑤1+...+𝑤𝑘)

∏︀
1≤𝑖 ̸=𝑗≤𝑘(𝑤𝑖/𝑤𝑗; 𝑡)∞∏︀𝑘

𝑖=1(−𝑤
−1
𝑖 ; 𝑡)∞(−𝑡𝑤𝑖; 𝑡)∞

×
𝐿𝑘−1−𝐿𝑘∑︁

𝑗=0

𝑡(
𝑗+1
2 )

⎡⎣𝐿𝑘−1 − 𝐿𝑘

𝑗

⎤⎦
𝑡

𝑃(𝐿1−𝐿𝑘,...,𝐿𝑘−1−𝐿𝑘,𝑗)(𝑤
−1
1 , . . . , 𝑤−1

𝑘 ; 𝑡, 0)
𝑘∏︁

𝑖=1

𝑑𝑤𝑖

𝑤𝑖

(1.4.1)

for any 𝐿 = (𝐿1, . . . , 𝐿𝑘) ∈ Sig𝑘, with contour (see Figure 1-2)

Γ̃ := {𝑥+ i : 𝑥 ≤ 0} ∪ {𝑥− i : 𝑥 ≤ 0} ∪ {𝑥+ i𝑦 : 𝑥2 + 𝑦2 = 1, 𝑥 > 0} (1.4.2)

in usual counterclockwise orientation. Its density also has a series representation

Pr(ℒ𝑘,𝜒 = 𝐿) =
1

(𝑡; 𝑡)∞

∑︁
𝑑≤𝐿𝑘

𝑒−𝜒𝑡𝑑 𝑡
∑︀𝑘

𝑖=1 (
𝐿𝑖−𝑑

2 )

(𝑡; 𝑡)𝐿𝑘−𝑑

∏︀𝑘−1
𝑖=1 (𝑡; 𝑡)𝐿𝑖−𝐿𝑖+1

×
∑︁

𝜇∈Sig𝑘−1
𝜇≺𝐿

(−1)|𝐿|−|𝜇|−𝑑

𝑘−1∏︁
𝑖=1

⎡⎣𝐿𝑖 − 𝐿𝑖+1

𝐿𝑖 − 𝜇𝑖

⎤⎦
𝑡

𝑄(𝜇−(𝑑[𝑘−1]))′(𝛾((1− 𝑡)𝑡𝑑𝜒), 𝛼(1); 0, 𝑡). (1.4.3)

Im(𝑧)

Re(𝑧)

· · ·

· · ·

Figure 1-2: The contour Γ̃ in C.

When 𝑘 = 1 the above formulas require setting 𝐿𝑘−1 = ∞ above and suitably in-

terpreting the result, see the related Theorem 6.3.1 for the precise statement. The fact

that the above probabilities sum to 1 for a given pair 𝑘, 𝜒 is a nontrivial 𝑞-series identity
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for which we are not aware of a reference. Our proof of this fact requires probabilis-

tic arguments to show that certain prelimit random variables which limit to the above

form a tight sequence (Proposition 6.5.1), but it would certainly be interesting to give an

algebraic proof. It is however manifest from the formulas that

ℒ𝑘,𝜒 + (1, . . . , 1⏟  ⏞  
𝑘 times

) = ℒ𝑘,𝑡𝜒 (1.4.4)

in distribution. Informally, this tells us that the random variables ℒ𝑘,𝜒 for different 𝜒 do

not look so different from one another, and sending 𝜒 → 0 or 𝜒 → ∞ should not result

in any interesting limit behavior because it can be absorbed by translation.

We may now state the bulk limit result. We note that it allows substantial freedom

in how the number of matrix products 𝑠𝑁 varies with the matrix size 𝑁 .

Theorem 1.4.2. Fix 𝑝 prime and 𝑘 ∈ Z≥1, and for each 𝑁 ∈ Z≥1 let 𝐴(𝑁)
𝑖 , 𝑖 ≥ 1 be iid

matrices with iid entries distributed by the additive Haar measure on Z𝑝. Let (𝑠𝑁)𝑁≥1

be a sequence of natural numbers such that 𝑠𝑁 and 𝑁 − log𝑡−1 𝑠𝑁 both go to ∞ and as

𝑁 → ∞. Let (𝑠𝑁𝑗
)𝑗≥1 be any subsequence for which log𝑡 𝑠𝑁𝑗

converges in R/Z, and let 𝛼

be any preimage in R of this limit. Then

(SN(𝐴(𝑁𝑗)
𝑠𝑁𝑗

· · ·𝐴(𝑁𝑗)
1 )′𝑖 − [log𝑡−1(𝑠𝑁𝑗

) + 𝛼])1≤𝑖≤𝑘 → ℒ𝑘,𝑡𝛼+1/(1−𝑡) (1.4.5)

in distribution as 𝑗 → ∞, where [·] is the nearest integer function and as always 𝑡 = 1/𝑝.

Note that we did not specify which preimage 𝛼 to choose, but choosing a different one

simply translates the left hand side of (1.4.5) by an integer and multiplies the parameter

of ℒ𝑘,· by an integer power of 𝑡 on the right hand side, which in light of (1.4.4) leaves

(1.4.5) invariant. However, it was necessary to choose a subsequence of the 𝑠𝑁 such that

log𝑡 𝑠𝑁𝑗
converges in R/Z, because SN(𝐴

(𝑁𝑗)
𝑠𝑁𝑗

· · ·𝐴(𝑁𝑗)
1 )′𝑖 is an integer.

It is interesting to compare Theorem 1.4.2 to corresponding results in classical random

matrix theory. The local limits of eigenvalues or singular values of a single complex

matrix, or spacings between them, is a classical topic originally studied as a model for

the observed repulsion of energy levels in heavy nuclei. By these local limits we mean

the following: the singular values form a random finite (multi-)set of points on R, and

as the size 𝑁 of the matrix goes to infinity, this collection of points becomes larger and
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larger, and one may speak of a limit to an infinite random collection of points on R after

suitable rescaling. Dyson [Dys62b] computed the limiting spacings between eigenvalues of

Hermitian matrices in the bulk (i.e. far away from the largest and smallest eigenvalue) in

certain exactly solvable cases, finding them governed by the celebrated sine kernel. If one

zooms in near the expected location of the largest singular value, the so-called soft edge,

one obtains an infinite collection of points with a rightmost point (corresponding to the

largest singular value). This random point configuration is the Airy point process defined

by Prähofer and Spohn [PS02], the correlation functions of which were computed earlier

by Forrester [For93]. The distribution of this rightmost point, the limit of the largest

singular value, is the eponymous distribution studied by Tracy and Widom [TW94].

Many of the works on real/complex matrix products mentioned in the previous sec-

tion also consider logarithms of singular values of matrix products in joint limits where

both the matrix size and number of products go to ∞. In the opposite regime to the one

of the previous section, i.e. the case of the large 𝑁 limit of product of a fixed number

of matrices, Liu-Wang-Zhang [LWZ16] showed for Ginibre matrices that the local limits

are governed by the sine kernel in the bulk and Airy at the soft edge. In joint limits

as the matrix size and number of products grow together, one sees stochastic processes

which interpolate between the bulk-sine/edge-Airy statistics of a single matrix, and the

independent Gaussian ones of products of fixed-size matrices mentioned in the previ-

ous section, see e.g. Akemann-Burda-Kieburg [ABK19, ABK20] and Liu-Wang-Wang

[LWW23]. As mentioned, our result Theorem 1.4.2 yields essentially the same limit for

many different choices of how the number of products 𝑠𝑁 goes to ∞ with the matrix size

𝑁 , since the only difference is the constant in ℒ𝑘,·, and by the previous discussion this

does not meaningfully change the probabilistic behavior, in contrast to the complex case.

These limits of complex matrix products are also shared by a continuous-time prelimit

object, the (multiplicative) Dyson Brownian motion. Dyson [Dys62a] observed that for

an 𝑁×𝑁 Hermitian matrix with above-diagonal entries evolving as independent complex

Brownian motions (and real ones on the diagonal), the eigenvalues evolve as 𝑁 indepen-

dent Brownian motions conditioned to never intersect, often called Dyson Brownian mo-

tion. One may also define a canonical multiplicative Brownian motion 𝑌 (𝑁)(𝑇 ), 𝑇 ∈ R≥0

on GL𝑁(C), for which the logarithms of singular values evolve as 𝑁 independent Brown-

ian motions with drifts in arithmetic progression, again conditioned never to intersect, a
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process known as multiplicative Dyson Brownian motion8. That the eigenvalues/singular

values of the additive and multiplicative Brownian motion have such a simple description

is a beautiful fact and seems unexpected given the nontrivial way that eigenvalues and

singular values depend on matrix entries; it is related to the fact that these Brownian

motions on matrices are coordinate-invariant in a certain sense, so the number of free

parameters is much smaller than it appears. We mention also that one may view the

usual Hermitian Brownian motion as a tangent space version of the multiplicative one,

see Klyachko [Kly00] for a discussion in the case of discrete-time versions.

1.4.1 Invariant stochastic processes on matrices.

For multiplicative Brownian motion 𝒴(𝑁)(𝑇 ), it is natural to consider its multiplicative

increments 𝒴(𝑁)(𝑡𝑖)𝒴(𝑁)(𝑡𝑖−1)
−1 for a series of times 𝑡1 < 𝑡2 < . . . < 𝑡𝑘, as the value

of the multiplicative Brownian motion at a given 𝑡𝑖 is the product of the corresponding

increments. These increments 𝒴(𝑁)(𝑇 + 𝑠)𝒴(𝑁)(𝑇 )−1 satisfy

1. Independence: 𝒴(𝑁)(𝑇 + 𝑠)𝒴(𝑁)(𝑇 )−1 is independent of the trajectory 𝒴(𝑁)(𝜏), 0 ≤

𝜏 ≤ 𝑇 ,

2. Stationarity: 𝒴(𝑁)(𝑇 + 𝑠)𝒴(𝑁)(𝑇 )−1 = 𝒴(𝑁)(𝑠)𝒴(𝑁)(0)−1 in distribution for any

𝑇 ≥ 0, and

3. Isotropy with respect to U(𝑁): For any 𝑈 ∈ U(𝑁), 𝒴(𝑁)(𝑇 + 𝑠)𝒴(𝑁)(𝑇 )−1 =

𝑈𝒴(𝑁)(𝑇+𝑠)𝒴(𝑁)(𝑇 )−1𝑈−1 in distribution. Equivalently, Pr(𝒴(𝑁)(𝑇+𝑠) ∈ 𝑆|𝒴(𝑇 ) =

𝑥) = Pr(𝒴(𝑁)(𝑇 + 𝑠) ∈ 𝑈𝑆|𝒴(𝑇 ) = 𝑈𝑥) for any 𝑈 ∈ U(𝑁), 𝑥 ∈ GL𝑁(C) and mea-

surable 𝑆 ⊂ GL𝑁(C).

The first two are familiar from the theory of Brownian motion on R, while a version

of the latter with respect to the rotation group 𝑂(𝑁) may be seen as soon as one con-

siders Brownian motion on R𝑁 . The fixed-time marginals of any process satisfying the

above and starting at the Haar measure must be infinitely-divisible measures invariant

with respect to the action of U(𝑁) on the left and right, which were classified by the

generalized Lévy-Khintchine theorem of Gangolli [Gan64] (see also earlier work of Hunt

8See the introduction of [AVP23] for short discussion of multiplicative Brownian motion and its
relation to matrix products, with references to the literature.
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[Hun56]). Later, Gangolli [Gan65] explicitly constructed stochastic processes with these

fixed-time marginals, finding them to be mixtures of multiplicative Brownian motion

and Poisson jump processes, as with the classical Lévy-Khintchine theorem on R. Of

these, only the multiplicative Brownian motion9 has continuous sample paths. We note

that strictly speaking, the uniqueness statement applies only to the infinitely divisible

measures which are the single-time marginals of the process, and we are not aware of a

uniqueness statement at the process level analogous to the characterization of Brownian

motion on R.

One might optimistically hope for a similar classification in the 𝑝-adic case, and hope

that the ‘right’ analogue of multiplicative Brownian motion yields an elegant stochastic

process on singular numbers similar to the above multiplicative Dyson Brownian motion.

Both hopes will turn out to be well-founded.

1.4.2 Classifying invariant processes.

Now we turn to the question of Markov processes on GL𝑁(Q𝑝) with stationary, inde-

pendent, GL𝑁(Z𝑝)-isotropic increments. The following definition gives a wide class of

processes which are easily seen to have these properties.

Definition 1. Let 𝑁 ∈ Z≥1, let 𝑀 be any probability measure on Sig𝑁 , and let 𝑐 ∈ R≥0.

Then we define the process 𝑌 (𝑁,𝑀,𝑐)(𝜏), 𝜏 ∈ R≥0 on GL𝑁(Q𝑝) by

𝑌 (𝑁,𝑀,𝑐)(𝜏) := 𝑈𝑃 (𝜏) diag(𝑝
𝜈
(𝑃 (𝜏))
1 , . . . , 𝑝𝜈

(𝑃 (𝜏))
𝑁 )𝑉𝑃 (𝜏) · · ·𝑈1 diag(𝑝

𝜈
(1)
1 , . . . , 𝑝𝜈

(1)
𝑁 )𝑉1𝑈0

(1.4.6)

where 𝑃 (𝜏) is a Poisson process on Z≥0 with rate 𝑐, and 𝜈(𝑖) ∼𝑀 and 𝑈𝑖, 𝑉𝑖 ∼𝑀𝐻𝑎𝑎𝑟(GL𝑁(Z𝑝))

are iid.

Our first result, Theorem 1.4.3, says that at the level of singular numbers Definition 1

is the only example.

9This uniqueness actually applies after restricting to the subgroup SL𝑁 (C). In the case of GL𝑁 (C)
there is an additional multiplicative Brownian motion on R+ corresponding to the determinant, leading
to a two-parameter family of processes with continuous sample paths. See Jones-O’Connell [JO06, p108]
for discussion; this work also contains an excellent Lie-theoretic exposition of multiplicative Brownian
motions in the cases of common matrix groups and Brownian motions on Weyl chambers in general Lie
type.
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Theorem 1.4.3. Let 𝑁 ∈ Z≥1 and let 𝑋(𝜏), 𝜏 ∈ R≥0 be a Markov process on GL𝑁(Q𝑝)

started at the identity with stationary, independent, GL𝑁(Z𝑝)-isotropic increments. Then

there exists a constant 𝑐 ∈ R≥0 and a probability measure 𝑀𝑋 on Sig𝑁 such that

SN(𝑋(𝜏)) = SN(𝑌 (𝑁,𝑀𝑋 ,𝑐)(𝜏)) in multi-time distribution. (1.4.7)

We deduce Theorem 1.4.3 from a later result stated as Proposition 6.1.2, which

works at the level of the homogeneous space GL𝑁(Q𝑝)/GL𝑁(Z𝑝) analogously to [Gan64].

We note that because the dynamics of Definition 1 commutes with the right action of

GL𝑁(Z𝑝), it projects to Markov dynamics on GL𝑁(Q𝑝)/GL𝑁(Z𝑝). Even at this level,

unlike the homogeneous space GL𝑁(C)/U(𝑁), the space GL𝑁(Q𝑝)/GL𝑁(Z𝑝) is count-

able and naturally carries the discrete topology. Hence one cannot expect an analogue of

the continuous multiplicative Brownian motion, but it turns out that the same Poisson

jump/matrix product processes appear as in the complex case—the processes 𝑌 (𝑁,𝑀,𝑐)

provide examples of these.

Given that no process on GL𝑁(Q𝑝)/GL𝑁(Z𝑝) with continuous paths exists, one may at

least ask for a Poisson jump process with the smallest or simplest jumps. Such a process

should have𝑀𝑋 supported on 𝛿(0[𝑁 ]) and the smallest nontrivial signature 𝛿(1,0[𝑁−1]), where

here and below we use the notation 𝑎[𝑘] in signatures to denote 𝑎 repeated 𝑘 times. Note

that one might equally well replace 𝛿(1,0[𝑁−1]) by 𝛿(0[𝑁−1],−1), but this is related to the

previous case by taking inverse matrices and reversing the left and right actions, so there

is no loss in our choice. Because the singular numbers of 𝑌 (𝑁,𝑀𝑋 ,𝑐) do not change at

the jumps where 𝜈(𝑖) = (0[𝑁 ]), as far as the singular numbers are concerned one may

take 𝑀𝑋 = 𝛿(1,0[𝑁−1]), up to changing the Poisson rate constant 𝑐. We see next that the

singular numbers of this process have an elegant description.

1.4.3 𝑝-adic Dyson Brownian motion.

Definition 2. For 𝑛 ∈ N ∪ {∞} and 𝜇 ∈ Sig𝑛 and 𝑡 ∈ (0, 1), we define the stochastic

process 𝒮𝜇,𝑛(𝜏) = (𝒮𝜇,𝑛
1 (𝜏), . . . ,𝒮𝜇,𝑛

𝑛 (𝜏)) on Sig𝑛 as follows. For each 1 ≤ 𝑖 ≤ 𝑛, 𝒮𝜇,𝑛
𝑖 has

an exponential clock of rate 𝑡𝑖, and when the clock associated to 𝒮𝜇,𝑛
𝑖 rings, 𝒮𝜇,𝑛

𝑖 increases

by 1 if the resulting 𝑛-tuple is still weakly decreasing. If not, then 𝒮𝜇,𝑛
𝑖−𝑑 increases by 1

instead and 𝒮𝜇,𝑛
𝑖 remains the same, where 𝑑 ≥ 0 is the smallest index so that the resulting
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tuple is weakly decreasing. In the case of trivial initial condition we will often write 𝒮(𝑛)

for 𝒮(0[𝑛]),𝑛.

. . .0

1

2

3

4

ring!

. . .

1

2

3

4

S(∞)(τ − ǫ) = (4, 4, 3, 1, 1, 1, 0, . . .) S(∞)(τ) = (4, 4, 3, 2, 1, 1, 0, . . .)

0

Figure 1-3: An example of the dynamics described in Definition 2. If the clock associated
to 𝒮(∞)

4 = 1 rings at time 𝜏 and the process was previously in state (4, 4, 3, 1, 1, 1, 0, . . .)

(i.e. 𝒮(∞)(𝜏−𝜖) = (4, 4, 3, 1, 1, 1, 0, . . .) for all sufficiently small 𝜖 > 0), then 𝒮(∞)
4 increases

by 1 and so 𝒮(∞)(𝜏) = (4, 4, 3, 2, 1, 1, 0, . . .).

. . .0

1

2

3

4

ring!

. . .

1

2

3

4

S(∞)(τ − ǫ) = (4, 4, 3, 1, 1, 1, 0, . . .) S(∞)(τ) = (4, 4, 3, 2, 1, 1, 0, . . .)

0

Figure 1-4: An example of the dynamics of Definition 2 in the case where the part
associated to the clock that rings—in this case, 𝒮(∞)

6 —cannot increase without violating
the weakly decreasing condition, so 𝒮(∞)

4 is ‘pushed’ instead.

Theorem 1.4.4. Let 𝑁 ∈ Z≥1, 𝑐 ∈ R>0, and 𝑋(𝑁)(𝜏) := 𝑌 (𝑁,𝛿(1,0[𝑁−1]),𝑐)(𝜏) in the notation

of Definition 1. Then

SN
(︀
𝑋(𝑁)(𝜏)

)︀
= 𝒮(𝑁)

(︂(︂
𝑐
1

𝑡

1− 𝑡

1− 𝑡𝑁

)︂
𝜏

)︂
(1.4.8)

in multi-time distribution, where we take the parameter 𝑡 in 𝒮(𝑁) to be 1/𝑝.

We find later in Theorem 6.3.1 that this ‘𝑝-adic Dyson Brownian motion’ 𝒮(𝑛)(𝜏) has

the same bulk limit as the one for singular numbers additive Haar matrix products given

in Theorem 1.4.2. Both are Hall-Littlewood processes, which for 𝒮(𝑛)(𝜏) is the statement
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𝒮(2)
1

𝒮(2)
2

1 1 2

2

2 𝒮(2)(𝜏)

Figure 1-5: The reflection condition of Definition 2 in the case 𝑛 = 2: here
(𝒮(2)

1 (𝜏),𝒮(2)
2 (𝜏)) is portrayed as an up-right walk in the 𝑥 − 𝑦 plane lying below the

line 𝑦 = 𝑥, and each jump is labeled by which clock rings. In the final jump, the second
clock rings, but due to the reflection condition, 𝒮(2)

2 does not increase—the result of such
an increase is shown as an opaque arrow—but rather 𝒮(2)

1 increases instead.
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that it is a continuous-time Markov process on the set Y of partitions starting at the

empty partition, with transition probabilities defined by

Pr(𝒮(𝑛)(𝜏0 + 𝜏) = 𝜈|𝒮(𝑛)(𝜏0) = 𝜇)

∝

⎛⎝ lim
𝐷→∞

𝑄𝜈/𝜇

⎛⎝𝑡𝜏/𝐷, . . . , 𝑡𝜏/𝐷⏟  ⏞  
𝐷 times

; 𝑡

⎞⎠⎞⎠ 𝑃𝜈(1, 𝑡, 𝑡
2, . . . , 𝑡𝑛−1; 𝑡)

𝑃𝜇(1, 𝑡, 𝑡2, . . . , 𝑡𝑛−1; 𝑡)
; (1.4.9)

see Corollary 6.2.5 for the full statement for 𝒮(𝑛) and Corollary 3.1.3 for the statement

for the Haar matrix product process. This allows us to bring tools from symmetric

functions to bear, which are key for Theorem 1.4.2 and Theorem 6.3.1. However, it was

not clear how to use the usual tool for Macdonald process asymptotics, namely contour

integral formulas for ‘𝑡-moment’ observables coming from difference operators, because

such moments do not uniquely determine the distribution. Our proofs nonetheless use

results on Macdonald polynomials extensively, but in a nonstandard fashion which relies

on a Markovian projection property specific to the Hall-Littlewood case. An interesting

feature of the proof is that its starting point is a symmetric function incarnation of an

explicit moment inversion formula for abelian p-groups, recently worked out in greater

generality by Sawin-Wood [SW22b], which we discuss further in Section 6.3. We mention

also that the Hall-Littlewood process corresponding to 𝒮(𝑁)(𝜏) appears in earlier work of

Borodin [Bor99] and Bufetov-Petrov [BP15] on the related problem of Jordan blocks of

random upper-triangular matrices over F𝑞.

It is natural to ask about the multi-time bulk limits of these processes as well, which we

discuss in the next section. In particular, we find that the evolution of singular numbers

in the bulk for matrix products matches the Poisson jump rules of 𝒮(𝑛)(𝜏), so in some

sense 𝒮(𝑛)(𝜏) is the most natural prelimit incarnation of our bulk limit. This gives some

explanation as to why the limits in Theorem 1.4.2 and Theorem 6.3.1 are the same.

Remark 4. Random walks on Weyl chambers conditioned to never intersect are the sub-

ject of an extensive literature with connections to representation theory, total positivity,

and other parts of combinatorics, as well as random matrices. See Biane [Bia91, Bia92],

Grabiner [Gra99], Baryshnikov [Bar01], Bougerol-Jeulin [BJ02], O’Connell-Yor [OY02],

Biane-Bougerol-O’Connell [BBO05], and the references therein. However, we are not

aware of corresponding work for reflected (rather than conditioned) random walks on a
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positive Weyl chamber, and believe it is worth understanding whether the combinatorics

is similarly rich. To clarify a potential point of confusion, let us note that reflections

across the walls of the Weyl chamber appear across the works which treat conditioned

random walks, in analogues of the classical reflection principle for Brownian motion fol-

lowing Gessel-Zeilberger [GZ92]; however, the random walks themselves are not reflected

at the boundary, but conditioned to avoid it.

Remark 5. A related body of literature deals with random walks on Bruhat-Tits build-

ings, of which SL𝑁(Q𝑝)/ SL𝑁(Z𝑝) is the type 𝐴 case, see e.g. Parkinson [Par17] and the

references therein. These typically treat random walks satisfying a stronger notion of

isotropy than ours: theirs in our context would be the assumption that

Pr(𝑋(𝜏 + 𝑠) = 𝑦|𝑋(𝜏) = 𝑥) = Pr(𝑋(𝜏 + 𝑠) = 𝑈𝑦|𝑋(𝜏) = 𝑉 𝑥) (1.4.10)

for any fixed 𝑈, 𝑉 ∈ GL𝑁(Z𝑝), while ours only requires

Pr(𝑋(𝜏 + 𝑠) = 𝑦|𝑋(𝜏) = 𝑥) = Pr(𝑋(𝜏 + 𝑠) = 𝑈𝑦|𝑋(𝜏) = 𝑈𝑥). (1.4.11)

It is not hard to show by slight modifications of our arguments that the only processes

satisfying the strong isotropy condition (1.4.10) and stationary independent increments

are of the form 𝑌 (𝑁,𝑀,𝑐)(𝜏), and indeed this is remarked in the discrete-time setting in

Parkinson [Par07, p381].

However, multiplicative Brownian motion on GL𝑁(C)/U(𝑁) does not satisfy the

strong isotropy condition (1.4.10); indeed, this condition in continuous time precludes

continuous sample paths. This is our reason for taking the weaker condition (1.4.11),

which multiplicative Brownian motion does satisfy, even though the resulting constraints

on the processes in Proposition 6.1.2 are weaker than one obtains with (1.4.10).

Remark 6. We believe Theorem 1.4.3 and the discussion directly after it, together with

Theorem 1.4.4, give a satisfactory answer to the question of what a 𝑝-adic multiplicative

Dyson Brownian motion. However, let us be clear that we have not answered the stronger

question

What is the analogue for GL𝑁(Q𝑝) of multiplicative Brownian motion?
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We have only shown that the singular numbers of such a process should agree with those

of 𝑌 (𝑁,𝛿(1,0[𝑁−1]),𝑐), but we have made no uniqueness statement at the level of a process on

GL𝑁(Q𝑝). The process 𝑌 (𝑁,𝛿(1,0[𝑁−1]),𝑐) is quite natural, but there may certainly be a more

natural one. Returning to the previous remark, we expect that such a process may not

satisfy the strong isotropy condition (1.4.10), and it seems plausible that a good analogue

of multiplicative Brownian motion should not wait at any state for a nonzero amount of

time, which 𝑌 (𝑁,𝛿(1,0[𝑁−1]),𝑐) does.

In the simplest case 𝑁 = 1, the above discussion concerns processes in continuous (R-

valued) time on the group Q×
𝑝 , for which existing literature on 𝑝-adic Brownian motions

such as Albeverio-Karwowski [AK91, AK94] or Evans [Eva89] (which studies more general

totally disconnected abelian groups) likely provides a natural route to answering the

question above when 𝑁 = 1. However, we are not aware of works concerning stochastic

processes on nonabelian 𝑝-adic groups.

To prevent confusion for one who wishes to begin reading the primary sources on

𝑝-adic Brownian motions, it is worth mentioning that many previous works referring to

𝑝-adic Brownian motions such as Evans [Eva93, Eva98] and Bikulov-Volovich [BV97] are

instead studying a process where the time parameter lives in Q𝑝 rather than R, leading

to a different object which has no a priori relation to our setting.

1.5 Universal limits of the product process at the bulk

and edge

We wish to describe the evolution of the singular numbers SN
(︁
𝐴

(𝑁)
𝜏 · · ·𝐴(𝑁)

1

)︁
, 𝜏 ∈ Z≥0

in the bulk, i.e. evolution of SN
(︁
𝐴

(𝑁)
𝜏 · · ·𝐴(𝑁)

1

)︁
𝑖
for 𝑖 = 𝑟𝑁 + 𝑂(1) with 1 ≪ 𝑟𝑁 ≪ 𝑁 .

We also wish to describe the evolution at the right edge 𝑖 = 𝑁 − 𝑂(1). The reason we

do not consider the left edge 𝑖 = 1 + 𝑂(1) is that it is nonuniversal; this is not obvious

given the discussion so far, but one can see it for the examples of Theorem 1.3.1 later in

Section 8.1. Let us first consider what the type of a putative limit object for the bulk

and right edge must be. In the bulk, it should be a stochastic process with state space

Sig2∞ :=
{︀
(𝜇𝑛)𝑛∈Z ∈ ZZ : 𝜇𝑛+1 ≤ 𝜇𝑛 for all 𝑛 ∈ Z

}︀
(1.5.1)
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because there should be infinitely many smaller and infinitely many larger singular num-

bers in the limit. For the edge it should be a process on

Sigedge :=
{︁
(𝜇𝑛)𝑛∈Z≤0

∈ ZZ≤0 : 𝜇𝑛+1 ≤ 𝜇𝑛 for all 𝑛 ∈ Z<0

}︁
(1.5.2)

because there is a smallest singular number SN
(︁
𝐴

(𝑁)
𝜏 · · ·𝐴(𝑁)

1

)︁
𝑁

. Furthermore, in the

cases covered by Theorem 1.3.2, that result suggests that the (𝑗 + 1)𝑡ℎ singular number

of 𝐴(𝑁)
𝜏 · · ·𝐴(𝑁)

1 moves (in discrete time 𝜏 ) about 𝑡 times slower than the 𝑗𝑡ℎ does. This

suggests that a singular number SN
(︁
𝐴

(𝑁)
𝜏 · · ·𝐴(𝑁)

1

)︁
𝑗

in either the bulk or the right edge

must change very seldom, so we should expect a continuous-time Poisson-type limit. This

is what we will construct.

Theorem 1.5.1. For each 𝑡 ∈ (0, 1) there exists a continuous-time Markov process

𝒮(2∞)(𝑇 ) =
(︁
𝒮(2∞)
𝑖 (𝑇 )

)︁
𝑖∈Z

, 𝑇 ∈ R≥0 on Sig2∞, which we call the ‘reflecting Poisson

sea,’ enjoying the following properties:

1. For any 𝐷 ∈ N and sequence of ‘bulk observation points’ 𝑟𝑛, 𝑛 ≥ 1 with 𝑟𝑛 → ∞

and 𝑛− 𝑟𝑛 → ∞,

(︁
𝒮(𝑛)
𝑟𝑛−𝐷

(︀
𝑡−𝑟𝑛𝑇

)︀
, . . . ,𝒮(𝑛)

𝑟𝑛+𝐷

(︀
𝑡−𝑟𝑛𝑇

)︀)︁
→
(︁
𝒮(2∞)
−𝐷 (𝑇 ), . . . ,𝒮(2∞)

𝐷 (𝑇 )
)︁

(1.5.3)

in multi-time distribution.

2. (Shift-stationarity) The process
(︁
𝒮(2∞)
𝑖−1 (𝑡−1𝑇 )

)︁
𝑖∈Z

is equal to 𝒮(2∞)(𝑇 ) in multi-

time distribution.

3. (Markovian projections) For any 𝑑 ∈ Z, the truncated process
(︁
min

(︁
𝑑,𝒮(2∞)

𝑖 (𝑇 )
)︁)︁

𝑖∈Z
is also Markov.

In particular, the bulk limit property in Theorem 1.5.1 shows that 𝒮(2∞) appears as the

dynamical bulk limit of the process SN
(︀
𝑋(𝑁)(𝜏)

)︀
where 𝑋(𝑁)(𝜏) is as in Theorem 1.4.4,

and hence has single-time marginals given by Theorem 1.4.1. The shift-stationarity prop-

erty is visible at the level of these marginals in (1.4.4).

The process 𝒮(2∞)(𝑇 ) should be thought of as a two-sided version of 𝒮(∞) where each

part 𝒮(2∞)(𝑇 )𝑖 has an exponential clock of rate 𝑡𝑖 and attempts to jump when it rings,
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subject to the same pushing/reflection rules as in Definition 2. The reason this is a

difficult object to make sense of is that the sum of these jump rates is infinite, unlike

𝒮(∞) where the sum of the jump rates is finite. We give an explicit construction of the

reflecting Poisson sea in Section 7.1 by coupling a collection of processes 𝒮(∞) on the

same probability space.

In the bulk limit result we state, we actually require a version of 𝒮(2∞)(𝑇 ) with a

general initial condition 𝜇 ∈ Sig2∞, and which we denote by 𝒮𝜇,2∞(𝑇 ). The construction

is the same and given in the general case in Proposition 7.1.2. Our next result shows that

it is the universal object governing local bulk limits of 𝑝-adic matrix products, when the

singular numbers are started at certain nonzero initial conditions.

Theorem 1.5.2. Let 𝜇 ∈ Sig2∞ be any signature with all parts nonnegative and 𝜇−𝑛 → ∞

as 𝑛 → ∞. For each 𝑁 ∈ N, let 𝐴(𝑁)
𝑖 , 𝑖 ≥ 1 be iid left-GL𝑁 (Z𝑝)-invariant random

matrices in Mat𝑁 (Z𝑝), and let 𝑟𝑁 be a ‘bulk observation point,’ such that

(i) The matrix product process is nontrivial: Pr
(︁
𝐴

(𝑁)
𝑖 ∈ GL𝑁 (Z𝑝)

)︁
< 1 for every 𝑁 ,

(ii) 𝑟𝑁 is in the bulk: 𝑟𝑁 → ∞ and 𝑁 − 𝑟𝑁 → ∞ as 𝑁 → ∞, and

(iii) The coranks 𝑋𝑁 := corank
(︁
𝐴

(𝑁)
𝑖 (mod 𝑝)

)︁
are far away from 𝑟𝑁 with high proba-

bility: for every 𝑗 ∈ N,

Pr (𝑋𝑁 > 𝑟𝑁 − 𝑗 | 𝑋𝑁 > 0) → 0 as 𝑁 → ∞. (1.5.4)

Let 𝐵(𝑁) ∈ Mat𝑁 (Z𝑝) , 𝑁 ≥ 1 be left-GL𝑁 (Z𝑝)-invariant ‘initial condition’ matrices with

fixed singular numbers

SN
(︀
𝐵(𝑁)

)︀
𝑖
= 𝜇𝑖−𝑟𝑁 (1.5.5)

for all 1 ≤ 𝑖 ≤ 𝑁 . Finally, define the matrix product process

Π(𝑁)(𝜏) := SN
(︁
𝐴(𝑁)

𝜏 · · ·𝐴(𝑁)
1 𝐵(𝑁)

)︁
, 𝜏 ∈ Z≥0. (1.5.6)

Then for any 𝐷 ∈ N we have convergence

(︁
Π

(𝑁)
𝑟𝑁−𝐷 (⌊𝑐𝑁𝑇 ⌋) , . . . ,Π(𝑁)

𝑟𝑁+𝐷 (⌊𝑐𝑁𝑇 ⌋)
)︁

𝑁→∞−→
(︁
𝒮(2∞)
−𝐷 (𝑇 ), . . . ,𝒮(2∞)

𝐷 (𝑇 )
)︁

(1.5.7)
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in finite-dimensional distribution, where the constant 𝑐𝑁 determining the time scaling is

given explicitly by

𝑐𝑁 :=
𝑡−𝑟𝑁

E [1(𝑋𝑁 ≤ 𝑟𝑁) (𝑡−𝑋𝑁 − 1)]
(1.5.8)

The hypotheses are very general: (i) and (ii) are clearly required to speak of a bulk

limit, and as we discuss further in Chapter 7, having 𝑋𝑁 close to 𝑟𝑁 with nontrivial

probability presents a direct impediment to the existence of a continuous-time limit. We

in fact prove a stronger theorem, with a weaker (but more technical to state) version of

the hypothesis that 𝑋𝑁 is much smaller than 𝑟𝑁 with high probability, in Theorem 7.2.1,

and explain why this hypothesis is essentially optimal. We note also that the matrices

𝐴
(𝑁)
𝑖 are not required to be nonsingular. It is also quite surprising that the time scaling

𝑐𝑁 in (1.5.8) depends only on 𝐴(𝑁)
𝑖 (mod 𝑝).

The condition 𝜇−𝑛 → ∞ as 𝑛 → ∞ in Theorem 1.5.2 is convenient for the following

reason. For such 𝜇, for any 𝑑 there will be some 𝑖0 with 𝜇𝑖0 ≥ 𝑑, and so the Markovian

truncations (min (𝑑,𝒮𝜇,2∞(𝑇 )𝑖))𝑖∈Z will have all parts min (𝑑,𝒮𝜇,2∞(𝑇 )𝑖) , 𝑖 ≤ 𝑖0 equal to

𝑑 for all time, and these may be ignored in the dynamics. This removes the complicated

feature of the sum of jump rates diverging and makes (min (𝑑,𝒮𝜇,2∞(𝑇 )𝑖))𝑖∈Z a much

simpler object.

We next state the edge version, which is exactly the same except 𝑟𝑁 and Sig2∞ in

Theorem 1.5.2 are replaced by 𝑁 and Sigedge . The limit object, 𝒮𝜇,𝑒𝑑𝑔𝑒(𝑇 ), is constructed

the same way as 𝒮𝜇,2∞(𝑇 ), see Definition 53.

Theorem 1.5.3. Let 𝜇 ∈ Sigedge have 𝜇0 ≥ 0 and 𝜇−𝑛 → ∞ as 𝑛 → ∞. For each

𝑁 ∈ N, let 𝐴(𝑁)
𝑖 , 𝑖 ≥ 1 be iid left-GL𝑁 (Z𝑝)-invariant random matrices in Mat𝑁 (Z𝑝) such

that

(i) The matrix product process is nontrivial: Pr
(︁
𝐴

(𝑁)
𝑖 ∈ GL𝑁 (Z𝑝)

)︁
< 1 for every 𝑁 ,

and

(ii’) The coranks 𝑋𝑁 := corank
(︁
𝐴

(𝑁)
𝑖 (mod 𝑝)

)︁
are far away from 𝑁 with high proba-

bility: for every 𝑗 ∈ N,

Pr (𝑋𝑁 > 𝑁 − 𝑗 | 𝑋𝑁 > 0) → 0 as 𝑁 → ∞. (1.5.9)

Let 𝐵(𝑁) ∈ Mat𝑁 (Z𝑝) , 𝑁 ≥ 1 be left-GL𝑁 (Z𝑝)-invariant ‘initial condition’ matrices with
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fixed singular numbers

SN
(︀
𝐵(𝑁)

)︀
𝑖
= 𝜇𝑖−𝑁 (1.5.10)

for all 1 ≤ 𝑖 ≤ 𝑁 . Finally, define the matrix product process

Π(𝑁)(𝜏) := SN
(︁
𝐴(𝑁)

𝜏 · · ·𝐴(𝑁)
1 𝐵(𝑁)

)︁
, 𝜏 ∈ Z≥0. (1.5.11)

Then for any 𝐷 ∈ N we have convergence

(︁
Π

(𝑁)
𝑁−𝐷 (⌊𝑐𝑁𝑇 ⌋) , . . . ,Π(𝑁)

𝑁 (⌊𝑐𝑁𝑇 ⌋)
)︁

𝑁→∞−→
(︁
𝒮𝜇,𝑒𝑑𝑔𝑒
−𝐷 (𝑇 ), . . . ,𝒮𝜇,𝑒𝑑𝑔𝑒

0 (𝑇 )
)︁

(1.5.12)

in finite-dimensional distribution, where 𝑐𝑁 is as in (1.5.8) with 𝑟𝑁 = 𝑁 .

In the complex case, recent work of Ahn [Ahn22a] showed that a universality state-

ment for multi-time limits of singular values of complex matrix products from fairly

generic U(𝑁)-invariant distributions, finding that these limits match those of multiplica-

tive Dyson Brownian motion. At a structural level this is analogous to the results of this

section, but the discrete, Poisson-type limit objects we see in the 𝑝-adic setting are quite

different.

1.6 Extrapolating to the 𝑝→ 1 limit

Given that the bulk limit 𝒮(2∞) of 𝑝-adic matrix products depends on 𝑝 only as a real

parameter 𝑡 = 1/𝑝 ∈ (0, 1), it is natural to wonder if it has any interesting limit behavior

as 𝑡 approaches 0 or 1. For 𝛽-ensembles, which extrapolate the classical real, complex

and quaternion random matrix ensembles, many works have examined analogous limits

as 𝛽 → ∞, e.g. [DE05, EPS14, GM20, GK22]. From the explicit description of our limit,

we see that the 𝑡 → 0 regime is degenerate since the ratios between the jump rates of

parts 𝒮(𝑛)
𝑖 will diverge so the parts will spread apart and not interact. However, in the

limit 𝑡→ 1 the jump rates all converge to 1, which suggests the parts 𝒮(2∞)
𝑖 will interact

more and more with one another and interesting limit behavior may result. Rather than

studying the 𝑡 → 1 limit of 𝒮(2∞), which is itself a long-time bulk limit of 𝒮(𝑛) or 𝒮(∞)

by Theorem 1.5.1, we study 𝒮(∞) in a simultaneous limit as 𝑡→ 1 and time goes to ∞.

An alternative motivation to study this process comes from interacting particle sys-
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tems. Letting

𝑥𝑘(𝜏) = 𝒮(∞)
(︀(︀
𝑡−1 − 1

)︀
𝜏
)︀′
𝑘
− 𝑘, (1.6.1)

we have that 𝑥1(𝜏) > 𝑥2(𝜏) > . . . for all time 𝜏 , and we view the 𝑥𝑖(𝜏) as positions of

particles on Z. Each particle 𝑥𝑖(𝜏) jumps by 1 to the right according to a Poisson process

with rate 𝑡𝑥𝑖(𝜏)+𝑖 (1− 𝑡gap𝑖), where we use shorthand gap𝑖 = 𝑥𝑖−1−𝑥𝑖− 1 for the distance

between particles. Hence each particle has a base jump rate 𝑡𝑖 which is slower for particles

further behind the leading particle, but also has a position-dependent slowing 𝑡𝑥𝑖 which

causes it to slow down as it moves further to the right. We refer to this system as slowed

𝑡-TASEP, by analogy with the more commonly studied 𝑞-TASEP which we now recall.

Consider a configuration of particles on Z at some positions 𝑥1 > 𝑥2 > · · · , at most one

particle per site, evolving in continuous time. Each particle has an independent Poisson

clock and jumps 1 unit to the right whenever it rings. The clock of the 𝑖𝑡ℎ particle from

the right has rate 1− 𝑞𝑥𝑖−1−𝑥𝑖−1, often simply written 1− 𝑞gap, where 0 ≤ 𝑞 < 1 and we

take 𝑥0 := ∞. This is the well-known 𝑞-TASEP, introduced in [BC14], which reduces

to the usual totally asymmetric simple exclusion process (TASEP) when 𝑞 = 0. The

asymptotics of 𝑞-TASEP and its relatives in various regimes have been the subject of

much recent work, for example [Bar15, BCS14, BC15, FV15, OP17, IS19b, IS19a, Vet21].

These asymptotics crucially rely on the exact solvability of the model, which derives from

its connection to Macdonald processes [BC14].

An inhomogeneous version of 𝑞-TASEP, where the 𝑖𝑡ℎ particle has jump rate 𝑎𝑖(1 −

𝑞gap) for some fixed positive real parameters 𝑎1, 𝑎2, . . ., was introduced simultaneously in

[BC14]. Such inhomogeneities often yield different asymptotic behaviors: for instance,

[Bar15] showed that by tuning the 𝑎𝑖 correctly, one may see the Baik-Ben Arous-Peche

distributions in the limit, generalizing Tracy-Widom asymptotics established in [FV15].

The position-dependent damping means that slowed 𝑡-TASEP behaves quite differ-

ently, as is already apparent with the rightmost particle. In 𝑞-TASEP, this particle

jumps according to a Poisson process with rate 1, hence has asymptotically (time)1/2

order Gaussian fluctuations. By contrast, it is immediate from Theorem 6.3.1 later that

the particles of slowed 𝑡-TASEP have asymptotically finite fluctuations. However, in the

above-mentioned regime in which time → ∞ and 𝑡 → 1 simultaneously, which amelio-

rates but does not obliterate the position-dependent slowing, one may expect a continuous
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limit. Our first asymptotic result is that the position of each particle obeys an explicit

law of large numbers in this regime.

Theorem 1.6.1. Let (𝑥1(𝑠), 𝑥2(𝑠), . . .) , 𝑠 ∈ R≥0 be the particles of slowed 𝑡-TASEP with

𝑡 = 𝑒−𝜖. Then for any 𝜏 > 0 and 𝑘 ∈ Z>0,

𝜖 · 𝑥𝑘(𝜏/𝜖) → log

(︃
𝑘∑︁

𝑗=0

𝜏 𝑗

𝑗!

)︃
− log

(︃
𝑘−1∑︁
𝑗=0

𝜏 𝑗

𝑗!

)︃
in probability as 𝜖→ 0+.

In particular, particles become macroscopically far apart in the limit. In simulations

with fixed 𝑡 ≈ 1, one may observe the first particle ‘peeling off’ from the bulk while the

second particle barely moves at all due to the 1 − 𝑡gap component of its jump rate until

the gap becomes large. Then the second particle ‘peels off’, and once it is far away the

third begins to move nontrivially, etc.

However, since particles affect those behind them due to this 1 − 𝑡gap factor in the

jump rates, despite the macroscopic separation they continue to influence one another at

the level of fluctuations. In the scaling of time and 𝑡 of Theorem 1.6.1, we have that the

rescaled fluctuations

𝜖1/2 (𝑥𝑘(𝜏/𝜖)− E [𝑥𝑘(𝜏/𝜖)])

converge to Gaussians 𝑋(𝑘)
𝜏 with nontrivial covariances determined by an (𝑟 + 𝑠)-fold

contour integral formula for

Cov(𝑋(1)
𝜏 + . . .+𝑋(𝑟)

𝜏 , 𝑋(1)
𝜏 + . . .+𝑋(𝑠)

𝜏 ),

see Proposition 8.4.1. These limiting covariances still depend on 𝜏 , but converge without

rescaling as 𝜏 → ∞, a manifestation of the convergence to stationary distribution at fixed

𝑡 which follows from Theorem 6.3.1.

Theorem 1.6.2. As 𝜏 → ∞, the random variables 𝑋(𝑖)
𝜏 converge in distribution to the

fixed-time marginal of the unique stationary solution (𝑍
(1)
𝑇 , 𝑍

(2)
𝑇 , . . .) to the system

𝑑𝑍
(𝑘)
𝑇 =

(︁
(𝑘 − 1)𝑍

(𝑘−1)
𝑇 − 𝑘𝑍

(𝑘)
𝑇

)︁
𝑑𝑇 + 𝑑𝑊

(𝑘)
𝑇 𝑘 = 1, 2, . . . (1.6.2)

where 𝑊 (𝑘)
𝑇 are independent standard Brownian motions. Their covariances furthermore
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have the explicit form

Cov(𝑍
(𝑟)
𝑇 , 𝑍

(𝑠)
𝑇 ) =

1

4𝜋2

∮︁
Γ0

∮︁
Γ0,𝑤

𝑤

𝑧 − 𝑤

𝑟!𝑠!

𝑧𝑟𝑤𝑠
𝑒𝑧+𝑤(1− 𝑧/𝑟)(1− 𝑤/𝑠)

𝑑𝑧

𝑧

𝑑𝑤

𝑤

with the 𝑤-contour enclosing 0 and enclosed by the 𝑧-contour.

In addition to reflecting prelimit convergence to stationarity, Theorem 1.6.2 yields a

2-fold rather than (𝑟+ 𝑠)-fold contour integral formula, which allows analysis in the bulk

regime 𝑟, 𝑠 → ∞. The proof of this reduction of covariance formulas is by orthogonal

polynomial methods inspired by the similar arguments of [BCF18, §5.1], though the

interpretation as a stationary solution to a system of SDEs is not present there.

A natural way to study the bulk limit of slowed 𝑡-TASEP is to string the 𝑍(𝑘)
0 , which

represent asymptotic fluctuations of particle positions, together into a stochastic process

𝑌𝑇 , 𝑇 ∈ R>0 by linear interpolation. Explicitly, set 𝑌0 = 0, 𝑌𝑇 = 𝑍
(𝑇 )
0 when 𝑇 ∈ Z>0, and

linearly interpolate times between these, see Figure 1-6. The bulk limit is then encoded

by the scaling limit of 𝑌𝑇 for large 𝑇 , which we explicitly compute by taking asymptotics

of the covariance formula in Theorem 1.6.2 via steepest descent.

YT

(k + 1; Z
(k+1)
0 )

(k + 2; Z
(k+2)
0 )

T

(k − 3; Z
(k−3)
0 )

Figure 1-6: The graph of the process 𝑌𝑇 , which is just a piecewise linear interpolation
from the (random) points (𝑇, 𝑍

(𝑇 )
0 ), shown in a window around 𝑇 = 𝑘.

Theorem 1.6.3. The process

𝑅(𝑇 )
𝑠 := 𝑇 1/4𝑌𝑇+𝑠

√
𝑇

converges in finite-dimensional distributions as 𝑇 → ∞ to the unique stationary Gaussian
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process 𝑅𝑠, 𝑠 ∈ R with covariances

Cov(𝑅𝑎, 𝑅𝑏) =

∫︁ ∞

0

𝑦2𝑒−𝑦2−|𝑏−𝑎|𝑦𝑑𝑦.

The scaling exponents in Theorem 1.6.3 are characteristic of the Edwards-Wilkinson

universality class in (1 + 1) dimensions (1 spatial dimension plus time), see [Sep10] for

other examples of interacting particle systems in this class. The specific integral form of

the covariance is somewhat similar to, but not the same as, covariances for solutions to

the (1+1)-dimensional additive stochastic heat equation, see for example [Hai09, §2.3.2].

We suspect it may arise from some transform of solutions to this or a similar stochastic

PDE, but do not have any results in this direction. However, the fact that the limiting

fluctuations are described by a 1-dimensional Gaussian process of any kind is surprising

given the algebraic origins of slowed 𝑡-TASEP, which we discuss next.

1.6.1 Discussion: Macdonald processes, locality, and dynamics

in (1 + 1) and (2 + 1) dimensions

The dynamics on partitions described above appear naturally as marginals of dynamics

on triangular arrays of integers, or Gelfand-Tsetlin patterns, which are simply sequences

𝜆(𝑛) ∈ Y𝑛, 𝑛 ≥ 1 which interlace in the sense that

𝜆
(𝑛+1)
1 ≥ 𝜆

(𝑛)
1 ≥ 𝜆

(𝑛+1)
2 ≥ . . . ≥ 𝜆

(𝑛+1)
𝑛+1 .

These are often visualized as infinite configurations of particles in the plane by placing a

particle at each point (𝜆
(𝑛)
𝑖 , 𝑛) as in Figure 1-7 (middle).

.

.

.

a1

a2

a3

a4

.

.

.

0 3 6 8

1 5 7

3 7

4

.

.

.

Figure 1-7: The bottom four rows of an infinite Gelfand-Tsetlin pattern, visualized as
a sequence of partitions/array of integers (left) and as a particle configuration (middle),
with jump rates 𝑎𝑖 for the Poisson clocks of each row (right).
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Simple continuous-time dynamics on such arrays, such that the 𝑛𝑡ℎ row evolves by Hall-

Littlewood process dynamics for each 𝑛, were given in [BBW16, §6]. In such dynamics,

the 𝑛𝑡ℎ row has a Poisson clock of rate 𝑎𝑖 for every 𝑖, where in our setting 𝑎𝑖 = 𝑡𝑖−1. When

a row’s clock rings, one of the particles in that row jumps, specifically the leftmost one

whose jump would not violate interlacing with the row below. This jump in turn triggers

a particle in the row above to jump by 1 according to certain rules, which triggers one in

the row above that, etc., in such a way that interlacing is preserved and the triggering of

moves is local.

At least in special cases, such dynamics also exist for more general Macdonald pro-

cesses, given by replacing the Hall-Littlewood polynomials by Macdonald polynomials

𝑃𝜆(𝑥1, . . . , 𝑥𝑛; 𝑞, 𝑡). Such dynamics are still local in that particles’ jump rates are only

affected by the particles corresponding to adjacent entries of the original Gelfand-Tsetlin

pattern, and were studied in depth in [BP16]. For the Schur (𝑞 = 𝑡) and 𝑞-Whittaker

(𝑡 = 0) cases with Poisson rates 𝑎𝑖 ≡ 1, it was shown in [BF14] and [BCF18] that

global bulk asymptotics of such arrays are governed by the 2-dimensional Gaussian

free field, which exhibits logarithmic correlations. We mention also the related works

[BF09, BCT17] dealing with similar asymptotics of so-called (2 + 1)-dimensional growth

models (i.e. growth models in two spatial and one time dimension). This is in marked

contrast to the correlations Cov(𝑅𝑠, 𝑅𝑠+𝑑) in the bulk limit Theorem 1.6.3, which decay

like const · |𝑑|−3 for large 𝑑 and do not diverge for small 𝑑.

Why this difference? The surprising feature of the Hall-Littlewood case is that not

only are the dynamics on 2-dimensional Gelfand-Tsetlin patterns governed by local in-

teractions, but their projection to a given row of the Gelfand-Tsetlin pattern results in

(1 + 1)-dimensional dynamics with only local interactions. After the transform (1.6.1)

this becomes the statement, visible in the definition of slowed 𝑡-TASEP above, that a

particle’s jump rate is independent of the other particles except for the one in front of it.

Strictly speaking, projecting to a row of the Gelfand-Tsetlin pattern corresponds to the

finite 𝑛 version of (1.4.9), which does not yield the full slowed 𝑡-TASEP. However, the

𝑛 = ∞ case of (1.4.9), which corresponds to the full slowed 𝑡-TASEP, can interpreted

as the projection of Hall-Littlewood process dynamics to a row ‘at infinity’. A fuller

account is given in Section 4.5, but the basic idea is that with the initial condition where

every entry of the Gelfand-Tsetlin pattern is 0, at each time all sufficiently high rows
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of the Gelfand-Tsetlin pattern will yield the same partition, and the projection of the

dynamics to this partition is Markovian and yields the 𝑛 = ∞ case of (1.4.9). For a

precise formulation of this statement in terms of the boundary of a branching graph, see

Section 4.5.

The locality of these dynamics on rows of the Gelfand-Tsetlin pattern is quite special

to the Hall-Littlewood case, and does not hold for the general Macdonald dynamics

above. Even in the 𝑞 = 𝑡 Schur case, which usually is the simplest case of Macdonald

processes, a given row of the continuous-time dynamics evolves as 𝑛 independent Poisson

random walks conditioned in the sense of Doob ℎ-transform not to intersect for all time.

It therefore has highly nonlocal interactions, see [BG13]. In light of this, it makes sense

that the asymptotics of slowed 𝑡-TASEP are characteristic of (1+ 1)-dimensional growth

models, while the asymptotics observed in e.g. [BF14, BCF18] are characteristic of (2 +

1)-dimensional models. Thus the apparent dissonance between our results and those

discussed above is explained by the unusual locality of interactions of Hall-Littlewood

processes10 with one principal specialization 1, 𝑡, . . . , 𝑡𝑛−1. The nonlocality of interactions

in most Macdonald processes is also inherited by limits which pertain to classical random

matrix theory, see e.g. Section 3.3 and the references therein for more discussion of these.

We have already seen the probabilistic differences between classical and 𝑝-adic random

matrix theory above, and one may view the different 𝑡→ 1 asymptotics observed here as

a manifestation of these at the level of symmetric functions after extrapolating to generic

real 𝑝 = 𝑡−1 ∈ R>1.

10Let us clarify a point of potential confusion, which is that ordinary 𝑞-TASEP features only local
interactions but arises as the projection to the leftmost particles in the array (see Figure 1-7) of the
above-mentioned dynamics on 𝑞-Whittaker processes. The difference is that this projection to a (1+ 1)-
dimensional system with local interactions is special and occurs only at the edge of the array, while in our
Hall-Littlewood case projecting to any row yields only local interactions. It should in fact not be difficult
to obtain the same asymptotics as we do in the bulk for Hall-Littlewood dynamics on Gelfand-Tsetlin
patterns by considering the dynamics of 𝒮(𝑛) with finite 𝑛 taken to infinity sufficiently fast along with
time, which is very different from the Gaussian free field type asymptotics present in e.g. the 𝑞-Whittaker
case [BCF18].
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1.7 Infinite 𝑝-adic random matrices and boundaries of

branching graphs

In 1976, Voiculescu [Voi76] classified the characters of the infinite unitary group U(∞),

defined as the inductive limit of the chain U(1) ⊂ U(2) ⊂ . . .. This was later shown to be

equivalent to earlier results by Aissen, Edrei, Schoenberg and Whitney, stated without

reference to representation theory. A similar story unfolded for the infinite symmetric

group 𝑆∞ [KOO98, VK81], related to the classical Thoma theorem [Tho64]. See [BO12a,

§1.1] and the references therein for a more detailed exposition of both.

In later works such as [VK82, OO98] the result for U(∞) was recast in terms of classi-

fying the boundary of the so-called Gelfand-Tsetlin branching graph, defined combinatori-

ally in terms of Schur polynomials. This led to natural generalizations to other branching

graphs defined in terms of degenerations of Macdonald polynomials 𝑃𝜆(𝑥1, . . . , 𝑥𝑛; 𝑞, 𝑡),

which feature two parameters 𝑞, 𝑡 and specialize to Hall-Littlewood polynomials when

𝑞 = 0; see [BO12a, Cue18, Gor12, OO98, Ols21]. In special cases these combinatorial

results take on additional significance in representation theory and harmonic analysis;

the Schur case was already mentioned, and two other special cases of the result of [OO98]

for the Jack polynomial case specialize to statements about the infinite symmetric spaces

U(∞)/𝒪(∞) and U(2∞)/ Sp(∞). For the Young graph, the boundary of its natural

Hall-Littlewood deformation was conjectured in equivalent form in [Ker92], proved in

[Mat19], and used to deduce results on infinite matrices over finite fields in [CO22].

Surprisingly, however, the boundary of the Hall-Littlewood deformation of the Gelfand-

Tsetlin graph has not previously been carried out, despite the fact that the appearance

of Hall-Littlewood polynomials in harmonic analysis on 𝑝-adic groups suggests interpre-

tations beyond the purely combinatorial setting.

Let us describe the setup of the Hall-Littlewood branching graph; we refer to [BO17,

Chapter 7] for an expository account of the general formalism of graded graphs and their

boundaries. Let Sig𝑛 = {(𝜆1, . . . , 𝜆𝑛) ∈ Z𝑛 : 𝜆1 ≥ . . . ≥ 𝜆𝑛} be the set of integer signa-

tures of length 𝑛, not necessarily nonnegative. Allowing 𝜆 to be an arbitrary signature,

(1.2.3) yields a symmetric ‘Hall-Littlewood Laurent polynomial’ which we also denote 𝑃𝜆.
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Let G𝑡 be the weighted graph with vertices

⨆︁
𝑛≥1

Sig𝑛

and edges between 𝜆 ∈ Sig𝑛, 𝜇 ∈ Sig𝑛+1 with weights

𝐿𝑛+1
𝑛 (𝜇, 𝜆) := 𝑃𝜇/𝜆(𝑡

𝑛; 𝑡)
𝑃𝜆(1, . . . , 𝑡

𝑛−1; 𝑡)

𝑃𝜇(1, . . . , 𝑡𝑛; 𝑡)
, (1.7.1)

known as cotransition probabilities. These cotransition probabilities are stochastic by

(1.2.5), so any probability measure on Sig𝑛+1 induces another probability measure on

Sig𝑛. A sequence of probability measures (𝑀𝑛)𝑛≥1 which is consistent under these maps

is called a coherent system. As these form a simplex, understanding coherent systems

reduces to understanding the extreme points, called the boundary of the branching graph.

Our first main result is an explicit description of the boundary of G𝑡. Here we recall the

notation used in Theorem 1.2.3.

Theorem 1.7.1. For any 𝑡 ∈ (0, 1), the boundary of G𝑡 is naturally in bijection with

Sig∞. Under this bijection 𝜇 ∈ Sig∞ corresponds to the coherent system (𝑀𝜇
𝑛 )𝑛≥1 defined

explicitly by

𝑀𝜇
𝑛 (𝜆) := (𝑡; 𝑡)𝑛

∏︁
𝑥∈Z

𝑡(𝜇
′
𝑥−𝜆′

𝑥)(𝑛−𝜆′
𝑥)

⎡⎣𝜇′
𝑥 − 𝜆′𝑥+1

𝜆′𝑥 − 𝜆′𝑥+1

⎤⎦
𝑡

for 𝜆 ∈ Sig𝑛.

We note that the product over 𝑥 ∈ Z in fact has only finitely many nontrivial terms.

The fact that the extreme measures have simple explicit formulas is unusual for results of

this type–usually, the measures are characterized implicitly by certain generating func-

tions.

The proof in Section 4.2 follows the general outline of the so-called Vershik-Kerov

ergodic method, as do those of many related results mentioned above. One of the closest

works to our setting is [Gor12], which studies the Schur analogue with edge weights

𝑠𝜇/𝜆(𝑡
𝑛)
𝑠𝜆(1, . . . , 𝑡

𝑛−1)

𝑠𝜇(1, . . . , 𝑡𝑛)

for 𝑡 ∈ (0, 1), where 𝑠𝜆(𝑥) is the Schur polynomial. The boundary is shown to be naturally
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in bijection with Sig∞ as in our case11.

The boundary classification results of [Gor12] are generalized in [Cue18] to the Mac-

donald case with cotransition probabilities

𝑃𝜇/𝜆(𝑡
𝑛; 𝑞, 𝑡 = 𝑞𝑘)

𝑃𝜆(1, . . . , 𝑡
𝑛−1; 𝑞, 𝑡 = 𝑞𝑘)

𝑃𝜇(1, . . . , 𝑡𝑛; 𝑞, 𝑡 = 𝑞𝑘)
(1.7.2)

for any 𝑘 ∈ N, and the boundary is again identified with Sig∞; when 𝑘 = 1 this reduces to

the result of [Gor12]. We do not see how Theorem 1.7.1 could be accessed by the methods

of [Cue18] or the newer work [Ols21], which treats the related Extended Gelfand-Tsetlin

graph with weights coming from Macdonald polynomials with arbitrary 𝑞, 𝑡 ∈ (0, 1).

Instead, we rely on explicit expressions, Proposition 4.1.2 and Theorem 2.2.16, for the

skew Hall-Littlewood polynomials appearing in (1.7.1). This means that Theorem 1.7.1

gives explicit formulas for the extreme coherent measures, while in previous works they

were defined implicitly by certain generating functions.

1.7.1 Ergodic measures on infinite 𝑝-adic random matrices

In the special case 𝑡 = 1/𝑝, the purely combinatorial results on Hall-Littlewood polyno-

mials have consequences in 𝑝-adic random matrix theory, and we may deduce results of

[BQ17, Ass22] from Theorem 1.2.1 and Theorem 1.7.1 above.

We earlier defined singular numbers for nonsingular matrices, but the extension to

possibly-singular matrices is straightforward by allowing the singular numbers to be in-

finite and letting 𝑝∞ := 0. For technical reasons12 we will consider the negatives of the

singular numbers, which are parametrized by

Sig
𝑛
= {(𝜆1, . . . , 𝜆𝑛) ∈ (Z ∪ {−∞})𝑛 : 𝜆1 ≥ . . . ≥ 𝜆𝑛}. (1.7.3)

For fixed 𝑛 ≤ 𝑚, the GL𝑛(Z𝑝) × GL𝑚(Z𝑝) bi-invariant measures on Mat𝑛×𝑚(Q𝑝) are all

convex combinations of those parametrized by 𝜆 ∈ Sig
𝑛

via 𝑈 diag𝑛×𝑚(𝑝
−𝜆1 , . . . , 𝑝−𝜆𝑛)𝑉

with 𝑈, 𝑉 distributed by the Haar measures on GL𝑛(Z𝑝),GL𝑚(Z𝑝) respectively. One may

11Our 𝑡 corresponds to the 𝑞−1 in the notation [Gor12]. The setting of [Gor12] actually corresponds
to 𝑡 > 1, and the boundary corresponds to infinite increasing tuples of integers, but this statement is
equivalent to ours upon interchanging signatures with their negatives–see the comment after Theorem
1.1 in [Gor12].

12See Remark 8.
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define GL∞(Z𝑝) as a direct limit of the system

GL1(Z𝑝) ⊂ GL2(Z𝑝) ⊂ . . .

and it is natural to ask for the extension of Smith normal form to infinite matrices, i.e.

for the extreme points in the set of GL∞(Z𝑝) bi-invariant measures on Mat∞×∞(Q𝑝).

This problem was previously solved in [BQ17], which gave an explicit family of measures

in bijection with Sig∞. We give a new proof that the extreme measures are naturally

parametrized by Sig∞ in Theorem 1.7.2 below.

Theorem 1.7.2. The set of extreme GL∞(Z𝑝)×GL∞(Z𝑝)-invariant measures on Mat∞×∞(Q𝑝)

is naturally in bijection with Sig∞. Under this bijection, the measure 𝐸𝜇 corresponding

to 𝜇 ∈ Sig∞ is the unique measure such that its 𝑛×𝑚 truncations are distributed by the

unique GL𝑛(Z𝑝) × GL𝑚(Z𝑝)-invariant measure on Mat𝑛×𝑚(Q𝑝) with singular numbers

distributed according to a certain measure 𝑀𝜇
𝑚,𝑛, which is defined later in Theorem 4.3.3,

in the case 𝑡 = 1/𝑝.

Our proof goes by deducing this parametrization by Sig∞ from an augmented version

of the parametrization by Sig∞ appearing in Theorem 1.7.1. The key fact which relates

the random matrix setting to the purely combinatorial setting is Theorem 1.2.1, which

relates the distribution of singular numbers of a 𝑝-adic matrix after removing a row or

column to the cotransition probabilities (1.7.1).

We note that while Hall-Littlewood polynomials are not mentioned by name in [BQ17],

it should be possible to extrapolate many of their Fourier analytic methods to statements

about Hall-Littlewood polynomials at general 𝑡. Our methods, which are based on explicit

formulas for certain skew Hall-Littlewood polynomials, nonetheless differ substantially

from those of [BQ17] in a manner which is not merely linguistic. Let us also be clear that

while both Theorem 1.7.2 and [BQ17] show that the extreme measures are parametrized

by 𝜇 ∈ Sig∞, it is not obvious from the descriptions that the measures corresponding to

a given 𝜇 ∈ Sig∞ under [BQ17] and Theorem 1.7.2 are in fact the same. A separate argu-

ment, assuming the result of [BQ17], is required to prove that the two parametrizations

by Sig∞ match, see Proposition 4.3.4. This additionally provides a computation of the

distribution of singular numbers of finite corners of matrices drawn from the measures in

[BQ17], which is new. We refer to Remark 23 for more detail on the differences between
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Theorem 1.7.2 and [BQ17, Theorem 1.3], in particular an explanation of how our results

carry over to a general non-Archimedean local field as is done in [BQ17]. We mention

also that the other main result of [BQ17] is a classification of the extreme measures on

infinite symmetric matrices {𝐴 ∈ Mat∞×∞(Q𝑝) : 𝐴
𝑇 = 𝐴} invariant under GL∞(Z𝑝); it

would be interesting to have an analogous Hall-Littlewood proof of this result as well, see

Remark 24 for further discussion of possible strategy and difficulties.

Remark 7. In addition to [OO98], another work somewhat similar in spirit to The-

orem 1.7.1 and Theorem 1.7.2 is [AN21]. This work finds the boundary of a certain

branching graph defined via multivariate Bessel functions–another degeneration of Mac-

donald polynomials–and related to 𝛽-ensembles at general 𝛽. In the classical values

𝛽 = 1, 2, 4 this recovers results on branching graphs coming from random matrix the-

ory. Results such as ours in terms of Hall-Littlewood polynomials may be regarded as

extrapolations of 𝑝-adic random matrix theory to arbitrary real 𝑝 > 1 in the same way

𝛽-ensembles extrapolate classical random matrix theory to real 𝛽 > 0, see also Remark 1.

1.7.2 Ergodic decompositions of 𝑝-adic Hua measures

For finite random matrices over Q𝑝 or C, one wishes to compute the distribution of sin-

gular numbers, singular values or eigenvalues of certain distinguished ensembles such as

the classical GUE, Wishart and Jacobi ensembles (over C), or the additive Haar measure

over Z𝑝. The infinite-dimensional analogue of this problem is to compute how distin-

guished measures on infinite matrices decompose into extreme points, which correspond

to ergodic measures. Such a decomposition is given by a probability measure on the space

of ergodic measures, which in our case corresponds to a probability measure on Sig∞.

One such distinguished family of measures on 𝑝-adic matrices is given by the 𝑝-adic

Hua measures defined in [Ner13], which are analogues of the complex Hua-Pickrell mea-

sures13. There is a 𝑝-adic Hua measure M(𝑠)
𝑛 on Mat𝑛×𝑛(Q𝑝) for each 𝑛 ∈ Z≥1, 𝑠 ∈ R>−1,

which is defined by an explicit density with respect to the underlying additive Haar

measure on Mat𝑛×𝑛(Q𝑝), see Definition 33. A motivating property of these measures

is that they are consistent under taking corners, and hence define a measure M(𝑠)
∞ on

Mat∞×∞(Q𝑝). The decomposition of this measure into ergodic measures on Mat∞×∞(Q𝑝)

13See [BO01], which coined the term for these measures, for an historical discussion of these measures
and summary of the contents of the earlier works [Hua63, Pic87].
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was computed recently in [Ass22], and we reprove the result using the aforementioned re-

lation between 𝑝-adic matrix corners and the Hall-Littlewood branching graph G𝑡. Below

𝐸𝜇 is as in Theorem 1.7.2, Y is the set of integer partitions, 𝑄𝜆 is the dual normalization

of the Hall-Littlewood symmetric function, and the normalizing constant Π(1, . . . ;𝑢, . . .)

is the Cauchy kernel–see Chapter 2 for precise definitions.

Theorem 1.7.3. Fix a prime 𝑝 and real parameter 𝑠 > −1, and let 𝑡 = 1/𝑝 and 𝑢 =

𝑝−1−𝑠. Then the infinite 𝑝-adic Hua measure M(𝑠)
∞ decomposes into ergodic measures

according to

M(𝑠)
∞ =

∑︁
𝜇∈Y

𝑃𝜇(1, 𝑡, . . . ; 𝑡)𝑄𝜇(𝑢, 𝑢𝑡, . . . ; 𝑡)

Π(1, . . . ;𝑢, . . .)
𝐸𝜇 (1.7.4)

where 𝐸𝜇 is as defined in Theorem 1.7.2.

The key ingredient in the original proof of Theorem 1.7.3 given previously in [Ass22]

is a certain Markov chain which generates the finite Hua measures M(𝑠)
𝑛 , and which

was guessed from Markov chains appearing in similar settings [Ful02]. The arguments

there did not use Hall-Littlewood polynomials, but the limiting measure on Sig∞ which

describes the ergodic decomposition was observed in [Ass22] to be the Hall-Littlewood

measure in (1.7.4), by matching explicit formulas. From our perspective, by contrast, the

fact that this measure is a Hall-Littlewood measure is natural and is key to the proof.

1.8 What is in the next chapters, where else is this all

written down, and why read this thesis (or not)

In Chapter 2 we give preliminaries on 𝑝-adic random matrices and on symmetric func-

tions and Macdonald processes. We then prove Theorem 1.2.1 and discuss the structural

analogy with the complex case through Macdonald polynomials in Chapter 3. In Chap-

ter 4 we expand on Section 1.7 and prove the results there using the matrix corners part

of Theorem 1.2.1. We then turn attention to matrix products, and Chapters 5 to 7 ex-

pand upon and provide proofs for material discussed in Sections 1.3 to 1.5. Finally, in

Chapter 8 we consider the 𝑝→ 1 limit results summarized in Section 1.6.

Much of the material in this thesis has already appeared in a peer-reviewed journal at

the time of writing. Specifically, the main results of Chapter 3 and Chapter 5 appeared
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in [VP21]. The exception is Theorem 1.2.3, which appeared in [VP22a] together with the

contents of Chapter 4. The results of Chapter 8 appeared in [VP22b]. Those of Chapter 6

and Chapter 7 have not yet appeared, and at the time of this writing are intended to be

posted in separate papers after submission of this thesis; the posted versions will surely

have benefitted from additional comments and edits by the time they are finalized. In

all cases, the background material—much of which is shared between works—has been

combined into Chapter 2.

While the above introduction borrows heavily from those of the published versions,

we have also changed it substantially in order to present what we hope is a more unified

and panoramic treatment of these results and the links between them, and improve the

exposition in many places with the benefit of hindsight. This, in our view, is the main

potential value of the present document to a future reader.
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Chapter 2

Preliminaries

2.1 𝑝-adic random matrix background

The following is a condensed version of the exposition in [Eva02, Section 2], to which we

refer any reader desiring a more detailed introduction to 𝑝-adic numbers geared toward

a probabilistic viewpoint. Fix a prime 𝑝. Any nonzero rational number 𝑟 ∈ Q× may

be written as 𝑟 = 𝑝𝑘(𝑎/𝑏) with 𝑘 ∈ Z and 𝑎, 𝑏 coprime to 𝑝. Define | · | : Q → R

by setting |𝑟|𝑝 = 𝑝−𝑘 for 𝑟 as before, and |0|𝑝 = 0. Then | · |𝑝 defines a norm on Q

and 𝑑𝑝(𝑥, 𝑦) := |𝑥 − 𝑦|𝑝 defines a metric. We additionally define val𝑝(𝑟) = 𝑘 for 𝑟 as

above and val𝑝(0) = ∞, so |𝑟|𝑝 = 𝑝− val𝑝(𝑟). We define the field of 𝑝-adic numbers Q𝑝

to be the completion of Q with respect to this metric, and the 𝑝-adic integers Z𝑝 to

be the unit ball {𝑥 ∈ Q𝑝 : |𝑥|𝑝 ≤ 1}. It is not hard to check that Z𝑝 is a subring of

Q𝑝. We remark that Z𝑝 may be alternatively defined as the inverse limit of the system

. . .→ Z/𝑝𝑛+1Z → Z/𝑝𝑛Z → · · · → Z/𝑝Z → 0, and that Z naturally includes into Z𝑝.

Q𝑝 is noncompact but is equipped with a left- and right-invariant (additive) Haar

measure; this measure is unique if we normalize so that the compact subgroup Z𝑝 has

measure 1. The restriction of this measure to Z𝑝 is the unique Haar probability measure

on Z𝑝, and is explicitly characterized by the fact that its pushforward under any map

𝑟𝑛 : Z𝑝 → Z/𝑝𝑛Z is the uniform probability measure. For concreteness, it is often useful

to view elements of Z𝑝 as ‘power series in 𝑝’ 𝑎0+𝑎1𝑝+𝑎2𝑝2+ . . ., with 𝑎𝑖 ∈ {0, . . . , 𝑝−1};

clearly these specify a coherent sequence of elements of Z/𝑝𝑛Z for each 𝑛. The Haar

probability measure then has the alternate explicit description that each 𝑎𝑖 is iid uniformly
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random from {0, . . . , 𝑝− 1}. Additionally, Q𝑝 is isomorphic to the ring of Laurent series

in 𝑝, defined in exactly the same way.

Similarly, GL𝑁(Q𝑝) has a unique left- and right-invariant measure for which the total

mass of the compact subgroup GL𝑁(Z𝑝) is 1. We denote this measure by M. The restric-

tion of M to GL𝑁(Z𝑝) pushes forward to GL𝑁(Z/𝑝𝑛Z); these measures are the uniform

measures on the finite groups GL𝑁(Z/𝑝𝑛Z). This gives an alternative characterization of

the measure.

The following standard result is sometimes known as Smith normal form and holds

also for more general rings.

Proposition 2.1.1. Let 𝑛 ≤ 𝑚. For any 𝐴 ∈𝑀𝑛×𝑚(Q𝑝), there exist 𝑈 ∈ GL𝑛(Z𝑝), 𝑉 ∈

GL𝑚(Z𝑝) such that 𝑈𝐴𝑉 = diag𝑛×𝑚(𝑝
𝜆1 , . . . , 𝑝𝜆𝑛) where 𝜆 is a weakly decreasing 𝑛-tuple

of integers when 𝐴 is nonsingular, when 𝐴 is singular we formally allow parts of 𝜆 to

equal ∞ and define 𝑝∞ = 0. Furthermore, there is a unique such 𝑛-tuple 𝜆.

Definition 3. We denote by Sig𝑛 the set of extended signatures 𝜆 = (𝜆1, . . . , 𝜆𝑛) where

𝜆𝑖 ∈ Z ∪ {∞}, 𝜆𝑖 ≥ 𝜆𝑖+1 for all 𝑖, and we take ∞ > 𝑘 for all 𝑘 ∈ Z. We similarly let

Sig
𝑛

be the set of weakly decreasing 𝑛-tuples with entries in Z∪{−∞}, and we will often

abuse terminology and refer to these as extended signatures as well. For any 𝑛 ≤ 𝑚 and

𝐴 ∈𝑀𝑛×𝑚(Q𝑝), we let SN(𝐴) ∈ Sig𝑛 denote the extended signature of Proposition 2.1.1,

which we refer to as the singular numbers of 𝐴. Note the convention that the length of

𝜆 is the smaller dimension of 𝐴.

Remark 8. The reason for defining both Sig𝑛 and Sig
𝑛

is an unfortunate sign convention

mismatch (for which, let us not neglect to mention, we are wholly responsible) regarding

singular numbers. Two previous works on infinite 𝑝-adic random matrices [BQ17, Ass22]

used the opposite one, calling − SN(𝐴)𝑖 (in our notation) the singular numbers, and

indeed it is more natural for the problems they consider. However, the one given in

Definition 3 is more natural when one is considering matrices over Z𝑝 because then the

singular numbers will be nonnegative rather than nonpositive and the connection to

symmetric functions appears more cleanly. Since much of this thesis works over Z𝑝, we

have taken the above convention, so SN(𝐴) lies in Sig𝑛, but when working with infinite

matrices it will be useful to consider the negative singular numbers which lie in Sig
𝑛
.

Similarly to eigenvalues and singular values, singular numbers have a variational char-

60



acterization. We first recall the version for singular values, one version of which states

that for 𝐴 ∈ Mat𝑛×𝑚(C) (assume without loss of generality 𝑛 ≤ 𝑚) with singular values

𝑎1 ≥ . . . ≥ 𝑎𝑛,
𝑘∏︁

𝑖=1

𝑎𝑖 = sup
𝑉⊂C𝑚:dim(𝑉 )=𝑘
𝑊⊂C𝑛:dim(𝑊 )=𝑘

| det(Proj𝑊 ∘𝐴|𝑉 )| (2.1.1)

where Proj is the orthogonal projection and 𝐴|𝑉 is the restriction of the linear operator 𝐴

to the subspace 𝑉 . (2.1.1) holds because the right hand side is unchanged by multiplying

𝐴 by unitary matrices, hence 𝐴 may be taken to be diagonal with singular values on the

diagonal by singular value decomposition, at which point the result is easy to see. For

a slightly different version which picks out the 𝑘𝑡ℎ largest singular value rather than the

product of the 𝑘 largest, see [Ful00, Section 5].

For 𝑝-adic matrices, we state the result slightly differently to avoid referring to or-

thogonal projection, the reason being that unlike 𝑈(𝑛), GL𝑛(Z𝑝) does not preserve a

reasonable inner product, only the norm.

Proposition 2.1.2. Let 1 ≤ 𝑛 ≤ 𝑚 be integers and 𝐴 ∈ Mat𝑛×𝑚(Q𝑝) with SN(𝐴) =

(𝜆1, . . . , 𝜆𝑛). Then for any 1 ≤ 𝑘 ≤ 𝑛,

𝜆𝑛 + . . .+ 𝜆𝑛−𝑘+1 = inf
𝑃 :Q𝑛

𝑝→Q𝑛
𝑝 rank 𝑘 projection

𝑊⊂Q𝑚
𝑝 :dim𝑊=𝑘

val𝑝(det(𝑃𝐴|𝑊 )) (2.1.2)

Proof. If 𝑈1 ∈ GL𝑛(Z𝑝), 𝑈2 ∈ GL𝑚(Z𝑝), then for any a rank 𝑘 projection 𝑃 the matrix

𝑈1𝑃𝑈
−1
1 is also a rank 𝑘 projection, and similarly for any 𝑊 as above 𝑈2𝑊 is also a

dimension 𝑘 subspace. Hence

inf
𝑃 :Q𝑛

𝑝→Q𝑛
𝑝 rank 𝑘 projection

𝑊⊂Q𝑚
𝑝 :dim𝑊=𝑘

val𝑝(det(𝑃𝐴|𝑊 )) = inf
𝑃 :Q𝑛

𝑝→Q𝑛
𝑝 rank 𝑘 projection

𝑊⊂Q𝑚
𝑝 :dim𝑊=𝑘

val𝑝(det(𝑃 (𝑈1𝐴𝑈2)|𝑊 )).

(2.1.3)

By Smith normal form we may choose 𝑈1, 𝑈2 so that 𝑈1𝐴𝑈2 = diag(𝑝𝜆1 , . . . , 𝑝𝜆𝑛), hence

RHS(2.1.2) = inf
𝑃 :Q𝑛

𝑝→Q𝑛
𝑝 rank 𝑘 projection

𝑊⊂Q𝑚
𝑝 :dim𝑊=𝑘

val𝑝(det(𝑃 diag(𝑝𝜆1 , . . . , 𝑝𝜆𝑛)|𝑊 )). (2.1.4)

The infimum on the right hand side is clearly achieved by taking𝑊 = span(𝑒𝑛−𝑘+1, . . . , 𝑒𝑛)

(where 𝑒𝑖 are the standard basis vectors) and 𝑃 to be the projection onto span(𝑒𝑛−𝑘+1, . . . , 𝑒𝑛).
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This proves (2.1.2).

It turns out that one does not have to work with arbitrary projections and subspaces,

but may instead consider only minors of the matrix 𝐴. Here by 𝑘 × 𝑘 minor, we mean

any 𝑘 × 𝑘 matrix obtained by deleting rows and columns of the original matrix (and do

not, as is also standard, mean the determinant of such a matrix). Though this version is

slightly cumbersome to prove, it makes it much easier to relate matrix entries to singular

numbers, and we expect it to be useful in future work as well as in this one.

Proposition 2.1.3. With the same setup as Proposition 2.1.2,

𝜆𝑛 + . . .+ 𝜆𝑛−𝑘+1 = inf
𝐴′ 𝑘 × 𝑘 minor of 𝐴

val𝑝(det(𝐴
′)). (2.1.5)

Proof. Clearly

𝜆𝑛 + . . .+ 𝜆𝑛−𝑘+1 = inf
𝐴′ 𝑘 × 𝑘 minor of diag(𝑝𝜆1 , . . . , 𝑝𝜆𝑛 )

val𝑝(det(𝐴
′)). (2.1.6)

Since 𝑈1𝐴𝑈2 = diag(𝑝𝜆1 , . . . , 𝑝𝜆𝑛) for some 𝑈1 ∈ GL𝑚(Z𝑝), 𝑈2 ∈ GL𝑚(Z𝑝), to show

equality of the right hand side of (2.1.6) and (2.1.5) it therefore suffices to show that

inf
𝐴′ 𝑘 × 𝑘 minor of 𝐵

val𝑝(det(𝐴
′)) = inf

𝐴′ 𝑘 × 𝑘 minor of 𝑈𝐵𝑉
val𝑝(det(𝐴

′)) (2.1.7)

for any 𝐵 = (𝑏𝑖,𝑗) 1≤𝑖≤𝑛
1≤𝑗≤𝑚

∈ Mat𝑛×𝑚(Q𝑝) and 𝑈 ∈ GL𝑛(Z𝑝), 𝑉 ∈ GL𝑚(Z𝑝).

First note that since GL𝑛(Z𝑝) is generated by the three elementary row operations

(i) elementary transposition matrices,

(ii) unit multiple matrices diag(1[𝑖− 1], 𝑢, 1[𝑛− 𝑖]) for 𝑢 ∈ Z×
𝑝 , 1 ≤ 𝑖 ≤ 𝑛, and

(iii) matrices (1(𝑖 = 𝑗) + 1(𝑖 = 𝑥, 𝑗 = 𝑦))1≤𝑖,𝑗≤𝑛 for some 𝑥 ̸= 𝑦,

it suffices to prove (2.1.7) when 𝑈 and 𝑉 are each one of the above types. This is clear

for types (i) and (ii). Suppose that one of 𝑈, 𝑉 is of type (iii), without loss of generality

𝑈 is of type (iii) and 𝑉 is the identity. Then

𝑈𝐵𝑉 = (𝑏𝑖,𝑗 + 1(𝑖 = 𝑥)𝑏𝑦,𝑗) 1≤𝑖≤𝑛
1≤𝑗≤𝑚

(2.1.8)
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differs from 𝐵 only in the 𝑥𝑡ℎ row. For any two sets of indices 𝐼𝑥 = {𝑥, 𝑖1, . . . , 𝑖𝑘−1} and

𝐽 = {𝑗1, . . . , 𝑗𝑘} which include the row 𝑥, let 𝐵𝐼𝑥,𝐽 be the corresponding minor. Then

det(𝑈𝐵)𝐼𝑥,𝐽 = det𝐵𝐼𝑥,𝐽 + det𝐵𝐼𝑦 ,𝐽 (2.1.9)

so by the ultrametric inequality

val𝑝(det(𝑈𝐵)𝐼𝑥,𝐽) ≥ min(val𝑝(det𝐵𝐼𝑥,𝐽), val𝑝(det𝐵𝐼𝑦 ,𝐽)). (2.1.10)

The ≤ direction of (2.1.7) follows immediately. For the ≥ direction, suppose that the

strict equality case of (2.1.10) holds. It is a standard fact about Q𝑝 that if strict inequality

in (2.1.10) is achieved, then val𝑝(det𝐵𝐼𝑥,𝐽) = val𝑝(det𝐵𝐼𝑦 ,𝐽), so since (𝑈𝐵)𝐼𝑦 ,𝐽 = 𝐵𝐼𝑦 ,𝐽

we have

val𝑝(det(𝑈𝐵)𝐼𝑦 ,𝐽) = val𝑝(det𝐵𝐼𝑦 ,𝐽) = val𝑝(det𝐵𝐼𝑥,𝐽). (2.1.11)

It follows that any value achieved by the infimum on the left hand side of (2.1.7) must

also be achieved by the one on the right hand side, and this proves (2.1.7).

Remark 9. As mentioned, Proposition 2.1.2 is a straightforward 𝑝-adic analogue of

the corresponding statement (2.1.1) for complex matrices. However, the analogue of

Proposition 2.1.3 for complex matrices, namely that products of singular values are related

to an infimum over 𝑘×𝑘 minors, is manifestly false. As is apparent from the above proof,

specific properties of the 𝑝-adic numbers such as ultrametricity are required to make the

reduction from an infimum over all subspaces in Proposition 2.1.2 to an infimum only

over subspaces generated by subsets of the standard basis (and similarly for projections)

in Proposition 2.1.3.

We record a few other simple facts about singular numbers which will be useful.

Corollary 2.1.4. If 𝑑 ≤ 𝑚 and ℓ ≤ 𝑛 are nonnegative integers, 𝐴 ∈ Mat𝑚×𝑛(Q𝑝), and

𝐵 is any 𝑑× ℓ submatrix of 𝐴, then the 𝑗𝑡ℎ smallest singular numbers satisfy

𝑘∑︁
𝑗=1

SN(𝐵)min(𝑑,ℓ)−𝑗+1 ≥
𝑘∑︁

𝑗=1

SN(𝐴)min(𝑚,𝑛)−𝑗+1 (2.1.12)

for any 1 ≤ 𝑗 ≤ min(𝑘, ℓ).
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Proof. By Proposition 2.1.2 both sides of (2.1.12) may be expressed as an infimum, and

the left hand side is an infimum over a smaller set.

Proposition 2.1.5. Let 𝑛 ≤ 𝑚, 𝐴 ∈ Mat𝑛×𝑚(Q𝑝), and 𝜅 ∈ Sig𝑚. Then

| SN(diag(𝑝𝜅1 , . . . , 𝑝𝜅𝑛)𝐴)| = | SN(𝐴)|+ |𝜅|.

Proof. In the case 𝑚 = 𝑛 this follows immediately since det(𝑝𝜅𝐴) = det(𝑝𝜅) det(𝐴). In

general, 𝐴 is equivalent by column operations to a matrix 𝐴′ with nonzero entries only in

the left 𝑚×𝑚 submatrix 𝐴′′; clearly SN(𝐴) = SN(𝐴′′). Since column operations commute

with left-multiplication by 𝑝𝜅, we have SN(𝑝𝜅𝐴) = SN(𝑝𝜅𝐴′′), so we may appeal to the

square case.

Proposition 2.1.6. Let 𝑛 ≤ 𝑚, 𝐴 ∈ Mat𝑛×𝑚(Q𝑝), and suppose 𝐵 ∈ Mat𝑚(Q𝑝) has

all singular numbers nonnegative (resp. nonpositive). Then SN(𝐴𝐵)𝑖 ≥ SN(𝐴)𝑖 (resp.

SN(𝐴𝐵)𝑖 ≤ SN(𝐴)𝑖) for each singular number 1 ≤ 𝑖 ≤ 𝑛. If 𝐶 ∈ Mat𝑛(Q𝑝) has nonneg-

ative (resp. nonpositive) singular numbers, the same holds with 𝐶𝐴 replacing 𝐴𝐵.

Proof. Write𝐵 = 𝑈𝐷𝑉 where𝐷 = diag(𝑝SN(𝐵)). Then SN(𝐴) = SN(𝐴𝑈) and SN(𝐴𝐵) =

SN(𝐴𝑈𝐷). Each minor determinant of 𝐴𝑈𝐷 is a nonnegative (resp. nonpositive) power

of 𝑝 times the corresponding minor determinant of 𝐴𝑈 , so the desired inequality follows

from Proposition 2.1.3. The proof for 𝐶𝐴 is the same.

We will often write diag𝑛×𝑁(𝑝
𝜆) for diag𝑛×𝑁(𝑝

𝜆1 , . . . , 𝑝𝜆𝑛), and also omit the dimen-

sions 𝑛 ×𝑁 when they are clear from context. We note also that for any 𝜆 ∈ Sig𝑁 , the

double coset GL𝑁(Z𝑝) diag(𝑝
𝜆)GL𝑁(Z𝑝) is compact. The restriction of M to such a double

coset, normalized to be a probability measure, is the unique GL𝑁(Z𝑝)×GL𝑁(Z𝑝)-invariant

probability measure on GL𝑁(Q𝑝) with singular numbers 𝜆, and all GL𝑁(Z𝑝)×GL𝑁(Z𝑝)-

probability measures and convex combinations of these for different 𝜆. These measures

may be equivalently described as 𝑈 diag(𝑝𝜆1 , . . . , 𝑝𝜆𝑁 )𝑉 where 𝑈, 𝑉 are independently

distributed by the Haar probability measure on GL𝑁(Z𝑝). More generally, if 𝑛 ≤ 𝑚 and

𝑈 ∈ GL𝑛(Z𝑝), 𝑉 ∈ GL𝑚(Z𝑝) are Haar distributed and 𝜇 ∈ Sig𝑛, then 𝑈 diag𝑛×𝑚(𝑝
𝜇)𝑉 is

invariant under GL𝑛(Z𝑝)×GL𝑚(Z𝑝) acting on the left and right, and is the unique such

bi-invariant measure with singular numbers given by 𝜇.
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The Haar measure on GL𝑁(Z𝑝) also has an explicit characterization which will be

very useful in Chapter 7.

Proposition 2.1.7. Let

𝐴 ∈ Mat𝑁(Z𝑝) (2.1.13)

be a random matrix with distribution given as follows: sample its columns 𝑣𝑁 , 𝑣𝑁−1, . . . , 𝑣1

from right to left, where the conditional distribution of 𝑣𝑖 given 𝑣𝑖+1, . . . , 𝑣𝑁 is that of a

random column vector with additive Haar distribution conditioned on the event

𝑣𝑖 (mod 𝑝) ̸∈ span(𝑣𝑖+1 (mod 𝑝), . . . , 𝑣𝑁 (mod 𝑝)) ⊂ F𝑁
𝑝 , (2.1.14)

where in the case 𝑖 = 𝑁 we take the span in (2.1.14) to be the 0 subspace. Then 𝐴 is

distributed by the Haar measure on GL𝑁(Z𝑝).

Proof. Because GL𝑁(Z𝑝) is compact, it suffices to show the above is a left Haar mea-

sure, i.e. for any 𝐵 ∈ GL𝑁(Z𝑝) we must show 𝐵𝐴 = 𝐴 in distribution. We show

(𝑣𝑁−𝑗, . . . , 𝑣𝑁) = (𝐵𝑣𝑁−𝑗, . . . , 𝐵𝑣𝑁) in distribution for any 𝑗 by induction, which suf-

fices. For the base case, recall (see e.g. [Eva01]) that additive Haar measure on Z𝑁
𝑝 is

invariant under GL𝑁(Z𝑝), and 𝐵𝑣𝑁 ≡ 0 (mod 𝑝) if and only if 𝑣𝑁 ≡ 0 (mod 𝑝), hence

𝐵𝑣𝑁 = 𝑣𝑁 in distribution. For the inductive step, we have that 𝐵𝑣𝑁−𝑗+1, . . . , 𝐵𝑣𝑁 satisfy

(2.1.14) with 𝑖 = 𝑁 − 𝑗 + 1, . . . , 𝑁 if and only 𝑣𝑁−𝑗+1, . . . , 𝑣𝑁 do. Furthermore, for any

(𝑤𝑁−𝑗+1, . . . , 𝑤𝑁) in the support of Law(𝑣𝑁−𝑗+1, . . . , 𝑣𝑁), we have

Law(𝐵𝑣𝑁−𝑗|𝑣𝑁−𝑖 = 𝑤𝑁−𝑖 for all 0 ≤ 𝑖 < 𝑗) = Law(𝑣𝑁−𝑗|𝑣𝑁−𝑖 = 𝐵𝑤𝑁−𝑖 for all 0 ≤ 𝑖 < 𝑗).

(2.1.15)

It follows by the inductive hypothesis that

Law(𝑣𝑁−𝑗, . . . , 𝑣𝑁) = Law(𝐵𝑣𝑁−𝑗, . . . , 𝐵𝑣𝑁), (2.1.16)

completing the proof.
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2.2 Symmetric function background

In this section we give a review of general symmetric functions, Macdonald (Laurent)

polynomials, and measures and Markov dynamics on signatures/partitions arising from

these. For a more detailed introduction to symmetric functions see [Mac98a], and for

Macdonald measures see [BC14].

Definition 4. We denote by Y the set of all integer partitions (𝜆1, 𝜆2, . . .), i.e. sequences

of nonnegative integers 𝜆1 ≥ 𝜆2 ≥ · · · which are eventually 0. We call the integers 𝜆𝑖 the

parts of 𝜆, set 𝜆′𝑖 = #{𝑗 : 𝜆𝑗 ≥ 𝑖}, and write 𝑚𝑖(𝜆) = #{𝑗 : 𝜆𝑗 = 𝑖} = 𝜆′𝑖 − 𝜆′𝑖+1. We

write len(𝜆) for the number of nonzero parts, and denote the set of partitions of length

≤ 𝑛 by Y𝑛. We write 𝜇 ≺ 𝜆 or 𝜆 ≻ 𝜇 if 𝜆1 ≥ 𝜇1 ≥ 𝜆2 ≥ 𝜇2 ≥ · · · , and refer to this

condition as interlacing. Finally, we denote the partition with all parts 0 by ∅.

The above integer partition notation is standard in the symmetric functions literature,

e.g. in [Mac98a]. However, as we saw for Smith normal form and related results in the

previous section, it is natural to consider weakly decreasing 𝑛-tuples of integers for Smith

normal form and related results. We thus define notation analogous to Definition 4 for

signatures as well, with a few twists.

Definition 5. Sig𝑛 denotes the set of integer signatures of length 𝑛, which are weakly

decreasing 𝑛-tuples of integers. As in Definition 26, Sig𝑛 denotes the set of extended

signatures. Given 𝜆 = (𝜆1, . . . , 𝜆𝑛) ∈ Sig𝑛, we refer to the 𝜆𝑖 as the parts of 𝜆. When

the length of 𝜆 is not clear from context we will denote it by len(𝜆). Sig+𝑛 and Sig
+

𝑛 are

the sets of (extended) signatures with all parts nonnegative. We set |𝜆| :=
∑︀𝑛

𝑖=1 𝜆𝑖 and

𝑚𝑘(𝜆) = |{𝑖 : 𝜆𝑖 = 𝑘}|. For 𝜆 ∈ Sig𝑛 and 𝜇 ∈ Sig𝑛−1, write 𝜇 ≺𝑃 𝜆 if 𝜆𝑖 ≥ 𝜇𝑖 and

𝜇𝑖 ≥ 𝜆𝑖+1 for 1 ≤ 𝑖 ≤ 𝑛 − 1. For 𝜈 ∈ Sig𝑛 write 𝜈 ≺𝑄 𝜆 if 𝜆𝑖 ≥ 𝜈𝑖 for 1 ≤ 𝑖 ≤ 𝑛 and

𝜈𝑖 ≥ 𝜆𝑖+1 for 1 ≤ 𝑖 ≤ 𝑛 − 1. We write 𝑐[𝑘] for the signature (𝑐, . . . , 𝑐) of length 𝑘, and

occasionally abuse notation by writing (𝜆, 𝜇) to refer to the tuple (𝜆1, . . . , 𝜆𝑛, 𝜇1, . . . , 𝜇𝑚)

when 𝜆 ∈ Sig𝑛, 𝜇 ∈ Sig𝑚. We additionally write −𝜆 := (−𝜆𝑛, . . . ,−𝜆1) ∈ Sig𝑛 for any

𝜆 ∈ Sig𝑛. Finally, we denote the empty signature by ().

Remark 10. In later sections it will sometimes be cleanest to work with signatures of

infinite length as well, but we introduce that notation later on.
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We denote by Λ𝑛 the ring C[𝑥1, . . . , 𝑥𝑛]𝑆𝑛 of symmetric polynomials in 𝑛 variables

𝑥1, . . . , 𝑥𝑛. It is a very classical fact that the power sum symmetric polynomials 𝑝𝑘 =∑︀𝑛
𝑖=1 𝑥

𝑘
𝑖 , 𝑘 = 1, . . . , 𝑛, are algebraically independent and algebraically generate Λ𝑛. An

immediate consequence is that Λ𝑛 has a natural basis given by the polynomials

𝑝𝜆 :=
∏︁
𝑖≥1

𝑝𝜆𝑖

for 𝑛 ≥ 𝜆1 ≥ 𝜆2 ≥ . . . a weakly decreasing sequence of nonnegative integers which is

eventually 0 (i.e. an integer partition). Hence given generic real parameters 𝑞, 𝑡, one may

define an inner product on Λ𝑛 by setting

⟨𝑝𝜆, 𝑝𝜇⟩(𝑞,𝑡) = 𝛿𝜆𝜇
∏︁

𝑖≥1:𝜆𝑖>0

1− 𝑞𝜆𝑖

1− 𝑡𝜆𝑖

∏︁
𝑗≥1

𝑗𝑚𝑗(𝜆) ·𝑚𝑗(𝜆)!

The Macdonald symmetric polynomials {𝑃𝜆(𝑥1, . . . , 𝑥𝑛; 𝑞, 𝑡)}𝜆∈Sig+𝑛 are a distinguished

basis for Λ𝑛 characterized by the properties

• They are orthogonal with respect to the inner product ⟨·, ·⟩(𝑞,𝑡).

• They may be written as

𝑃𝜆(𝑥1, . . . , 𝑥𝑛; 𝑞, 𝑡) = 𝑥𝜆1
1 𝑥

𝜆2
2 · · ·𝑥𝜆𝑛

𝑛 +(lower-order monomials in the lexicographic order).

It is not a priori clear that such polynomials exist, see [Mac98b] for a proof of this, but

it is clear that they form a basis for Λ𝑛. The dual basis 𝑄𝜆(x; 𝑞, 𝑡) is defined by

𝑄𝜆(𝑥1, . . . , 𝑥𝑛; 𝑞, 𝑡) :=
𝑃𝜆(𝑥1, . . . , 𝑥𝑛; 𝑞, 𝑡)

⟨𝑃𝜆, 𝑃𝜆⟩(𝑞,𝑡)
, (2.2.1)

and we note that the normalizing constant ⟨𝑃𝜆, 𝑃𝜆⟩(𝑞,𝑡) is an explicit rational function of

𝑞 and 𝑡 which is computed below in Lemma 2.2.13.

Because the 𝑃𝜆 form a basis for the vector space of symmetric polynomials in 𝑛

variables, there exist symmetric polynomials 𝑃𝜆/𝜇(𝑥1, . . . , 𝑥𝑛−𝑘; 𝑞, 𝑡) ∈ Λ𝑛−𝑘 indexed by
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𝜆 ∈ Sig+𝑛 , 𝜇 ∈ Sig+𝑘 which are defined by

𝑃𝜆(𝑥1, . . . , 𝑥𝑛; 𝑞, 𝑡) =
∑︁

𝜇∈Sig+𝑘

𝑃𝜆/𝜇(𝑥𝑘+1, . . . , 𝑥𝑛; 𝑞, 𝑡)𝑃𝜇(𝑥1, . . . , 𝑥𝑘; 𝑞, 𝑡). (2.2.2)

Similarly to the usual Macdonald polynomials, we will sometimes write 𝑃𝜆/𝜇 for 𝜆 ∈

Y𝑛, 𝜇 ∈ Y𝑘 by identifying the partitions with nonnegative signatures.

We define two different versions of the skew 𝑄 polynomials. One is the standard one,

the other is a slightly nonstandard way where the lengths of both signatures are the

same, in contrast to the skew 𝑃 polynomials. This differs from the classical treatment

[Mac98a], and is inspired by the higher spin Hall-Littlewood polynomials introduced in

[Bor17]; we say more by way of motivation in Remark 11 below. The standard version is

given by (2.2.2) with 𝑃 replaced by 𝑄 everywhere, or equivalently

𝑄𝜆/𝜇(𝑥1, . . . , 𝑥𝑛−𝑘; 𝑞, 𝑡) =
⟨𝑃𝜇, 𝑃𝜇⟩(𝑞,𝑡)
⟨𝑃𝜆, 𝑃𝜆⟩(𝑞,𝑡)

𝑃𝜆/𝜇(𝑥1, . . . , 𝑥𝑛−𝑘; 𝑞, 𝑡). (2.2.3)

The nonstandard one, which we denote by 𝑄̃, is as follows. For 𝑘, 𝑛 ≥ 1 arbitrary and

𝜆, 𝜈 ∈ Sig+𝑘 , define 𝑄̃𝜆/𝜈(𝑥1, . . . , 𝑥𝑛; 𝑞, 𝑡) by

𝑄(𝜆,0[𝑛])(𝑥1, . . . , 𝑥𝑛+𝑘; 𝑞, 𝑡) =
∑︁

𝜈∈Sig+𝑘

𝑄̃𝜆/𝜈(𝑥𝑘+1, . . . , 𝑥𝑛+𝑘; 𝑞, 𝑡)𝑄𝜈(𝑥1, . . . , 𝑥𝑘; 𝑞, 𝑡). (2.2.4)

Note that the subscripts of 𝑄𝜆/𝜇 are signatures of different length, while for 𝑄̃𝜆/𝜈 they

have the same length.

By comparing the terms of (2.2.2) (with 𝑄 instead of 𝑃 and 𝑛 replaced by 𝑛+ 𝑘) and

(2.2.4) with 𝜇 = 𝜈 = (0[𝑘]), and using that 𝑄𝜈(𝑥1, . . . , 𝑥𝑘; 𝑞, 𝑡), 𝜈 ∈ Sig+𝑘 is a basis for Λ𝑘,

we see that

𝑄̃𝜆/(0[𝑘])(𝑦1, . . . , 𝑦𝑛; 𝑞, 𝑡) = 𝑄(𝜆,0[𝑛])/(0[𝑘])(𝑦1, . . . , 𝑦𝑛; 𝑞, 𝑡) = 𝑄𝜆(𝑦1, . . . , 𝑦𝑛; 𝑞, 𝑡) (2.2.5)

where the second equality holds since 𝑄𝜆(𝑦1, . . . , 𝑦𝑛, 0[𝑘]; 𝑞, 𝑡) = 𝑄𝜆(𝑦1, . . . , 𝑦𝑛; 𝑞, 𝑡) (see

Section 2.2.2). Recall the notation (𝑎; 𝑞)𝑛 := (1 − 𝑎)(1 − 𝑎𝑞) · · · (1 − 𝑎𝑞𝑛−1) for 𝑛 ≥ 0,

with (𝑎; 𝑞)0 = 1 and (𝑎; 𝑞)∞ defined in the obvious way.
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Definition 6. For 𝜆 ∈ Sig𝑛, 𝜇 ∈ Sig𝑛−1 with 𝜇 ≺𝑃 𝜆, let

𝜓𝜆/𝜇 :=
∏︁

1≤𝑖≤𝑗≤𝑛−1

𝑓(𝑡𝑗−𝑖𝑞𝜇𝑖−𝜇𝑗)𝑓(𝑡𝑗−𝑖𝑞𝜆𝑖−𝜆𝑗+1)

𝑓(𝑡𝑗−𝑖𝑞𝜆𝑖−𝜇𝑗)𝑓(𝑡𝑗−𝑖𝑞𝜇𝑖−𝜆𝑗+1)
(2.2.6)

where 𝑓(𝑢) := (𝑡𝑢; 𝑞)∞/(𝑞𝑢; 𝑞)∞. For 𝜈 ∈ Sig𝑛 with 𝜈 ≺𝑄 𝜆, let

𝜙𝜆/𝜈 :=
∏︁

1≤𝑖≤𝑗≤𝑛

𝑓(𝑡𝑗−𝑖𝑞𝜆𝑖−𝜆𝑗)

𝑓(𝑡𝑗−𝑖𝑞𝜆𝑖−𝜈𝑗)

∏︁
1≤𝑖≤𝑗≤𝑛−1

𝑓(𝑡𝑗−𝑖𝑞𝜈𝑖−𝜈𝑗+1)

𝑓(𝑡𝑗−𝑖𝑞𝜈𝑖−𝜆𝑗+1)
. (2.2.7)

The following lemma may be easily derived from the corresponding statement for

symmetric functions in infinitely many variables [Mac98a, VI.6 Ex. 2(a)].

Lemma 2.2.1. For 𝜆, 𝜈 ∈ Sig+𝑛 , 𝜇 ∈ Sig+𝑛−𝑘, we have

𝑃𝜆/𝜇(𝑥1, . . . , 𝑥𝑘; 𝑞, 𝑡) =
∑︁

𝜇=𝜆(0)≺𝑃𝜆(1)≺𝑃 ···≺𝑃𝜆(𝑘)=𝜆

𝑘−1∏︁
𝑖=0

𝑥
|𝜆(𝑖+1)|−|𝜆(𝑖)|
𝑖 𝜓𝜆(𝑖+1)/𝜆(𝑖) (2.2.8)

and

𝑄̃𝜆/𝜈(𝑥1, . . . , 𝑥𝑘; 𝑞, 𝑡) =
∑︁

𝜈=𝜆(0)≺𝑄𝜆(1)≺𝑄···≺𝑄𝜆(𝑘)=𝜆

𝑘−1∏︁
𝑖=0

𝑥
|𝜆(𝑖+1)|−|𝜆(𝑖)|
𝑖 𝜙𝜆(𝑖+1)/𝜆(𝑖) . (2.2.9)

This suggests using the above formulas to extend the definition of 𝑃 and 𝑄̃ to arbitrary

signatures, possibly with negative parts, which we do now.

Definition 7. For 𝜇 ∈ Sig𝑛, 𝜆 ∈ Sig𝑛+𝑘, we define GT𝑃 (𝜆/𝜇) to be the set of sequences of

interlacing signatures 𝜇 = 𝜆(0) ≺𝑃 𝜆(1) ≺𝑃 · · · ≺𝑃 𝜆(𝑘) = 𝜆. We will often write GT𝑃 (𝜆)

for GT𝑃 (𝜆/()).

For 𝜆, 𝜈 ∈ Sig𝑛, we define GT𝑄,𝑘(𝜆/𝜈) to be the set of sequences of 𝑘 + 1 length 𝑛

interlacing signatures 𝜈 = 𝜆(0) ≺𝑄 𝜆
(1) ≺𝑄 · · · ≺𝑄 𝜆

(𝑘) = 𝜆. We refer to elements of either

GT𝑃 or GT𝑄,𝑘 as Gelfand-Tsetlin patterns, see Section 2.2.

For 𝑇 ∈ GT𝑃 (𝜆/𝜇) with len(𝜆) = len(𝜇) + 𝑘, set 𝜓(𝑇 ) :=
∏︀𝑘−1

𝑖=0 𝜓𝜆(𝑖+1)/𝜆(𝑖) . For

𝑇 ∈ GT𝑄,𝑘(𝜆/𝜈), set 𝜙(𝑇 ) :=
∏︀𝑘−1

𝑖=0 𝜙𝜆(𝑖+1)/𝜆(𝑖) . In both cases, let 𝑤𝑡(𝑇 ) := (|𝜆(1)| −

|𝜆(0)|, . . . , |𝜆(𝑘)| − |𝜆(𝑘−1)|) ∈ Z𝑘.

In what follows, we often write x for the collection of variables 𝑥1, . . . , 𝑥𝑛 when 𝑛 is

clear from context, and a = (𝑎1, . . . , 𝑎𝑛) for a collection of 𝑛 real numbers. For d ∈ Z𝑛
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Figure 2-1: An element of GT𝑃 (𝜆
(𝑁)) (top) and an element of GT𝑄,𝑘(𝜈

(𝑘)/𝜈(0)) (bottom).
Note that GT𝑄,𝑘 depends on a parameter 𝑘 specifying the number of rows, while for GT𝑃

the data of the number of rows was already determined by the respective lengths of 𝜆
and 𝜇.
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we write xd := 𝑥𝑑11 · · ·𝑥𝑑𝑛𝑛 and similarly for ad.

Definition 8. For any 𝑛 ≥ 0, 𝑘 ≥ 1 and 𝜆 ∈ Sig𝑛+𝑘, 𝜇 ∈ Sig𝑛, we let

𝑃𝜆/𝜇(𝑥1, . . . , 𝑥𝑘; 𝑞, 𝑡) =
∑︁

𝑇∈GT𝑃 (𝜆/𝜇)

𝜓(𝑇 )x𝑤𝑡(𝑇 )

For any 𝜈, 𝜅 ∈ Sig𝑛 we let

𝑄̃𝜅/𝜈(𝑥1, . . . , 𝑥𝑘; 𝑞, 𝑡) =
∑︁

𝑇∈GT𝑄,𝑘(𝜅/𝜈)

𝜙(𝑇 )x𝑤𝑡(𝑇 ).

Note that these are just the formulas in Lemma 2.2.1, with the only change being that

we do not require the signatures to be nonnegative. These combinatorial formulas make

some symmetries readily apparent, as noted in [GM20].

Lemma 2.2.2. Let 𝑛, 𝑘 ∈ Z≥0, 𝜆, 𝜈 ∈ Sig𝑛+𝑘, 𝜇 ∈ Sig𝑛. Then

𝑃−𝜆/−𝜇(𝑥1, . . . , 𝑥𝑘; 𝑞, 𝑡) = 𝑃𝜆/𝜇(𝑥
−1
1 , . . . , 𝑥−1

𝑘 ; 𝑞, 𝑡) (2.2.10)

𝑄̃−𝜆/−𝜈(𝑥1, . . . , 𝑥𝑟; 𝑞, 𝑡) = 𝑄̃𝜆/𝜈(𝑥
−1
1 , . . . , 𝑥−1

𝑟 ; 𝑞, 𝑡) (2.2.11)

𝑃(𝜆+(𝑑[𝑛+𝑘]))/(𝜇+𝑑[𝑛])(𝑥1, . . . , 𝑥𝑘; 𝑞, 𝑡) = (𝑥1 · · · 𝑥𝑘)𝑑𝑃𝜆/𝜇(𝑥1, . . . , 𝑥𝑘; 𝑞, 𝑡) (2.2.12)

𝑄̃(𝜆+(𝑑[𝑛+𝑘]))/(𝜈+(𝑑[𝑛+𝑘]))(𝑥1, . . . , 𝑥𝑟; 𝑞, 𝑡) = 𝑄̃𝜆/𝜈(𝑥1, . . . , 𝑥𝑟; 𝑞, 𝑡). (2.2.13)

Proof. First interpret the 𝑃 and 𝑄̃ polynomials as sums over GT patterns by Definition 8.

For (2.2.10) and (2.2.11), note that we have bijections

GT𝑃 (𝜆/𝜇) ↔ GT𝑃 (−𝜆/− 𝜇)

GT𝑄,𝑟(𝜆/𝜈) ↔ GT𝑄,𝑟(−𝜆/− 𝜈)

which can be directly verified to preserve the branching coefficients 𝜓 defined in (2.2.6)

and 𝜙 defined in (2.2.7). For (2.2.12) and (2.2.13), one similarly has bijections

GT𝑃 (𝜆/𝜇) ↔ GT𝑃 ((𝜆+ (𝑑[𝑛+ 𝑘]))/(𝜈 + (𝑑[𝑛]))

GT𝑄,𝑟(𝜆/𝜈) ↔ GT𝑄,𝑟((𝜆+ (𝑑[𝑛+ 𝑘]))/(𝜈 + (𝑑[𝑛+ 𝑘]))

by adding 𝑑 to each entry of the GT patterns, and these preserve the branching coefficients
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but change 𝑤𝑡(𝑇 ) in the 𝑃 case.

Remark 11. Lemma 2.2.2 provides some motivation for our definition of the modified

skew 𝑄 functions 𝑄̃. The naive generalization of (2.2.12) to the unmodified 𝑄 functions,

even the 𝑛 = 0 special case

𝑄(𝜆+(𝑑[𝑘]))/()(𝑥1, . . . , 𝑥𝑘; 𝑞, 𝑡) ̸= (𝑥1 · · ·𝑥𝑘)𝑑𝑄𝜆/()(𝑥1, . . . , 𝑥𝑘; 𝑞, 𝑡), (2.2.14)

here taking 𝜆 ∈ Sig+𝑘 , 𝑑 ≥ 0 since we only defined skew 𝑄 functions in (2.2.3) for nonneg-

ative signatures. The reason is that

⟨𝑃𝜆, 𝑃𝜆⟩(𝑞,𝑡) ̸=
⟨︀
𝑃𝜆+(𝑑[𝑘]), 𝑃𝜆+(𝑑[𝑘])

⟩︀
(𝑞,𝑡)

, (2.2.15)

as is easy to check from Lemma 2.2.12. Our purpose in defining 𝑄̃ is to repair this

translation-invariance while still keeping a version of the Cauchy identity (see below)

intact. We note also that Definition 8 applies also to infinite signatures, in particular

to partitions, and for 𝜆, 𝜇 ∈ Y ⊂ Sig∞ the polynomial 𝑄̃𝜆/𝜇 is exactly the usual skew

Macdonald polynomial 𝑄𝜆/𝜇, and so we will usually write 𝑄 instead of 𝑄̃ when the indices

are partitions.

Lemma 2.2.3 (Modified skew Cauchy identity). Let 𝜈 ∈ Sig𝑁 , 𝜇 ∈ Sig𝑁+𝑘, and 𝑥1, . . . , 𝑥𝑘, 𝑦1, . . . , 𝑦𝑟

be indeterminates. Then

∑︁
𝜅∈Sig𝑁+𝑘

𝑄̃𝜅/𝜇(𝑦1, . . . , 𝑦𝑟; 𝑞, 𝑡)𝑃𝜅/𝜈(𝑥1, . . . , 𝑥𝑘; 𝑞, 𝑡)

= Π(𝑞,𝑡)(𝑥1, . . . , 𝑥𝑘; 𝑦1, . . . , 𝑦𝑟)
∑︁

𝜅∈Sig𝑁

𝑄̃𝜈/𝜆(𝑦1, . . . , 𝑦𝑟; 𝑞, 𝑡)𝑃𝜇/𝜆(𝑥1, . . . , 𝑥𝑘; 𝑞, 𝑡) (2.2.16)

where

Π(𝑞,𝑡)(𝑥1, . . . , 𝑥𝑘; 𝑦1, . . . , 𝑦𝑟) =
∏︁

1≤𝑖≤𝑘
1≤𝑗≤𝑟

(𝑡𝑥𝑖𝑦𝑗; 𝑞)∞
(𝑥𝑖𝑦𝑗; 𝑞)∞

(2.2.17)

and (2.2.16) is interpreted as an equality of formal power series in the variables.

Proof. When 𝜈 ∈ Sig+𝑁 , 𝜇 ∈ Sig+𝑁+𝑘, the result follows by specializing the usual Cauchy

identity [Mac98a, Ch. VI.7, Ex. 6(a)] to finitely many variables and replacing partitions

by nonnegative signatures. The result then follows for general signatures since replacing
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𝜈, 𝜇 by 𝜈 + (𝑑[𝑁 ]), 𝜇 + (𝑑[𝑁 + 𝑘]) in (2.2.16) multiplies both sides by (𝑥1 · · ·𝑥𝑘)𝑑 by

Lemma 2.2.2.

We note that the set {𝑃𝜆(x; 𝑞, 𝑡) : 𝜆 ∈ Sig𝑛} forms a basis for the ring of symmetric

Laurent polynomials Λ𝑛[(𝑥1 · · ·𝑥𝑛)−1]. Hence for any 𝜆, 𝜇 ∈ Sig𝑛 one has

𝑃𝜆(x; 𝑞, 𝑡) · 𝑃𝜇(x; 𝑞, 𝑡) =
∑︁

𝜈∈Sig𝑛

𝑐𝜈𝜆,𝜇(𝑞, 𝑡)𝑃𝜈(x; 𝑞, 𝑡) (2.2.18)

for some structure coefficients 𝑐𝜈𝜆,𝜇(𝑞, 𝑡). By matching degrees it is clear that these co-

efficients are nonzero only if |𝜆| + |𝜇| = |𝜈|. These multiplicative structure coefficients

for the 𝑃 polynomials are related to the ‘comultiplicative’ structure constants of the 𝑄

polynomials.

Proposition 2.2.4. Let 𝑚,𝑛 ∈ N and 𝜆, 𝜈 ∈ Sig𝑛. Then

𝑄̃𝜆/𝜈(𝑥1, . . . , 𝑥𝑚; 𝑞, 𝑡) =
∑︁

𝜇∈Sig𝑛

𝑐𝜆𝜈,𝜇𝑄𝜇(𝑥1, . . . , 𝑥𝑚; 𝑞, 𝑡).

When all signatures are nonnegative this follows by specializing the corresponding

statement for symmetric functions, see [Mac98a, Ch. VI.7] where Proposition 2.2.4 is

taken as the definition of the skew 𝑄 polynomials. The case of general signatures follows

by shifting arguments as before.

2.2.1 Another scalar product

There is another scalar product on Λ𝑛, given by an explicit integral formula, which is

related to the one ⟨·, ·⟩(𝑞,𝑡) above by a certain limit (see [Mac98a, Chapter VI, (9.9)]).

The explicit formula will be useful to us for asymptotics in Chapter 6.

Definition 9 ([Mac98a, Chapter VI, (9.10)]). For polynomials 𝑓, 𝑔 ∈ Λ𝑛, define

⟨𝑓, 𝑔⟩′𝑞,𝑡;𝑛 :=
1

𝑛!(2𝜋i)𝑛

∫︁
T𝑛

𝑓(𝑧1, . . . , 𝑧𝑛)𝑔(𝑧1, . . . , 𝑧𝑛)
∏︁

1≤𝑖 ̸=𝑗≤𝑛

(𝑧𝑖𝑧
−1
𝑗 ; 𝑞)∞

(𝑡𝑧𝑖𝑧
−1
𝑗 ; 𝑞)∞

𝑛∏︁
𝑖=1

𝑑𝑧𝑖
𝑧𝑖
, (2.2.19)

where T denotes the unit circle with usual counterclockwise orientation, and to avoid

confusion we clarify that the product is over {(𝑖, 𝑗) ∈ Z : 1 ≤ 𝑖, 𝑗 ≤ 𝑛, 𝑖 ̸= 𝑗}.
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Proposition 2.2.5. If 𝜆, 𝜇 ∈ Sig𝑛 and 𝜆 ̸= 𝜇, then

⟨𝑃𝜆(z; 𝑞, 𝑡), 𝑃𝜇(z; 𝑞, 𝑡)⟩′𝑞,𝑡;𝑛 = 0. (2.2.20)

Proof. Let 𝐷 ∈ Z be such that 𝜆+ (𝐷[𝑛]) and 𝜇+ (𝐷[𝑛]) both lie in Sig+𝑛 . Then

⟨︀
𝑃𝜆+(𝐷[𝑛])(z; 𝑞, 𝑡), 𝑃𝜇+(𝐷[𝑛])(z; 𝑞, 𝑡)

⟩︀′
𝑞,𝑡;𝑛

= 0 (2.2.21)

by [Mac98a, Chapter VI, (9.5)]. However,

𝑃𝜆+(𝐷[𝑛])(z; 𝑞, 𝑡)𝑃𝜇+(𝐷[𝑛])(z) = (𝑧1 · · · 𝑧𝑛)𝐷𝑃𝜆(z; 𝑞, 𝑡)(𝑧1 · · · 𝑧𝑛)𝐷𝑃𝜇(z; 𝑞, 𝑡)

= 𝑃𝜆(z; 𝑞, 𝑡)𝑃𝜇(z; 𝑞, 𝑡)
(2.2.22)

for any 𝑧1, . . . , 𝑧𝑛 ∈ T, so

⟨︀
𝑃𝜆+(𝐷[𝑛])(z; 𝑞, 𝑡), 𝑃𝜇+(𝐷[𝑛])(z; 𝑞, 𝑡)

⟩︀′
𝑞,𝑡;𝑛

= ⟨𝑃𝜆(z; 𝑞, 𝑡), 𝑃𝜇(z; 𝑞, 𝑡)⟩′𝑞,𝑡;𝑛 , (2.2.23)

which completes the proof.

2.2.2 Symmetric functions

It is often convenient to consider symmetric polynomials in an arbitrarily large or infinite

number of variables, which we formalize through the ring of symmetric functions. One

has a chain of maps

· · · → Λ𝑛+1 → Λ𝑛 → Λ𝑛−1 → · · · → 0

where the map Λ𝑛+1 → Λ𝑛 is given by setting 𝑥𝑛+1 to 0. In fact, writing Λ
(𝑑)
𝑛 for symmetric

polynomials in 𝑛 variables of total degree 𝑑, one has

· · · → Λ
(𝑑)
𝑛+1 → Λ(𝑑)

𝑛 → Λ
(𝑑)
𝑛−1 → · · · → 0

with the same maps. The inverse limit Λ(𝑑) of these systems may be viewed as symmetric

polynomials of degree 𝑑 in infinitely many variables. From the ring structure on each

Λ𝑛 one gets a natural ring structure on Λ :=
⨁︀

𝑑≥0 Λ
(𝑑), and we call this the ring of

symmetric functions. Because 𝑝𝑘(𝑥1, . . . , 𝑥𝑛+1) ↦→ 𝑝𝑘(𝑥1, . . . , 𝑥𝑛) and 𝑚𝜆(𝑥1, . . . , 𝑥𝑛+1) ↦→
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𝑚𝜆(𝑥1, . . . , 𝑥𝑛) (for 𝑛 ≥ len(𝜆)) under the natural map Λ𝑛+1 → Λ𝑛, these families of

symmetric polynomials define symmetric functions 𝑝𝑘,𝑚𝜆 ∈ Λ. An equivalent definition

of Λ is Λ := C[𝑝1, 𝑝2, . . .] where 𝑝𝑖 are indeterminates; under the natural map Λ → Λ𝑛

one has 𝑝𝑖 ↦→ 𝑝𝑖(𝑥1, . . . , 𝑥𝑛).

For any 𝜆, 𝜇 ∈ Y with len(𝜇), len(𝜆) ≤ 𝑛, the skew Macdonald polynomials satisfy a

consistency property

𝑃𝜆/𝜇(𝑥1, . . . , 𝑥𝑛, 0; 𝑞, 𝑡) = 𝑃𝜆/𝜇(𝑥1, . . . , 𝑥𝑛; 𝑞, 𝑡) (2.2.24)

where we identify the subscripts on both sides with signatures of length 𝑛 + 1 and 𝑛

respectively. For 𝜆, 𝜈 ∈ Sig𝑘,

𝑄̃𝜆/𝜈(𝑥1, . . . , 𝑥𝑛, 0; 𝑞, 𝑡) = 𝑄̃𝜆/𝜈(𝑥1, . . . , 𝑥𝑛; 𝑞, 𝑡) (2.2.25)

as well. Hence here exist (skew) Macdonald symmetric functions, denoted 𝑃𝜆/𝜇, 𝑄̃𝜆/𝜈 as

well, such that 𝑃𝜆/𝜇 ↦→ 𝑃𝜆/𝜇(x; 𝑞, 𝑡) under the natural map Λ → Λ𝑛 and similarly for 𝑄̃.

From Lemma 2.2.3, or from [Mac98a], we obtain the skew Cauchy identity

∑︁
𝜅∈Y

𝑃𝜅/𝜈(x; 𝑞, 𝑡)𝑄𝜅/𝜇(y; 𝑞, 𝑡)

= exp

(︃
∞∑︁
ℓ=1

1− 𝑡ℓ

1− 𝑞ℓ
1

ℓ
𝑝ℓ(x)𝑝ℓ(y)

)︃∑︁
𝜆∈Y

𝑄𝜈/𝜆(y; 𝑞, 𝑡)𝑃𝜇/𝜆(x; 𝑞, 𝑡). (2.2.26)

Here 𝑃𝜅/𝜈(x; 𝑞, 𝑡) is an element of Λ, a polynomial in 𝑝1(x), 𝑝2(x), . . . ∈ Λ, and summands

such as 𝑃𝜅/𝜈(x; 𝑞, 𝑡)𝑄𝜅/𝜇(y; 𝑞, 𝑡) are interpreted as elements of a ring Λ⊗Λ and both sides

interpreted as elements of a completion thereof.

To get a probability measure on Y from the skew Cauchy identity, we would like

homomorphisms 𝜑 : Λ → C which take 𝑃𝜆 and 𝑄𝜆 to R≥0—here we recall that we

take 𝑞, 𝑡 ∈ (−1, 1). Simply plugging in nonnegative real numbers for the variables in

Lemma 2.2.3 works, but does not yield all of them. However, a full classification of

such homomorphisms, called Macdonald nonnegative specializations of Λ, was conjectured

by Kerov [Ker92] and proven by Matveev [Mat19]. We describe them now: they are

associated to triples of {𝛼𝑛}𝑛≥1, {𝛽𝑛}𝑛≥1, 𝜏 (the Plancherel parameter) such that 𝜏 ≥ 0,

0 ≤ 𝛼𝑛, 𝛽𝑛 < 1 for all 𝑛 ≥ 1, and
∑︀

𝑛 𝛼𝑛,
∑︀

𝑛 𝛽𝑛 < ∞. These are typically called
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usual (or alpha) parameters, dual (or beta) parameters, and the Plancherel parameter1

respectively. Given such a triple, the corresponding specialization is defined by

𝑝1 ↦→
∑︁
𝑛≥1

𝛼𝑛 +
1− 𝑞

1− 𝑡

(︃
𝜏 +

∑︁
𝑛≥1

𝛽𝑛

)︃

𝑝𝑘 ↦→
∑︁
𝑛≥1

𝛼𝑘
𝑛 + (−1)𝑘−11− 𝑞𝑘

1− 𝑡𝑘

∑︁
𝑛≥1

𝛽𝑘
𝑛 for all 𝑘 ≥ 2.

(2.2.27)

Note that the above formula defines a specialization for arbitrary tuples of reals 𝛼𝑛, 𝛽𝑛

and 𝜏 satisfying convergence conditions, but it will not in general be nonnegative.

Definition 10. For the specialization 𝜃 defined by the triple {𝛼𝑛}𝑛≥1, {𝛽𝑛}𝑛≥1, 𝜏 , we

write

𝑃𝜆(𝛼(𝛼1, 𝛼2, . . .), 𝛽(𝛽1, 𝛽2, . . .), 𝛾(𝜏); 𝑞, 𝑡) := 𝑃𝜆(𝜃; 𝑞, 𝑡) := 𝜃(𝑃𝜆) (2.2.28)

and similarly for skew and dual Macdonald polynomials. For any other specialization

𝜑 defined by parameters {𝛼′
𝑛}𝑛≥1, {𝛽′

𝑛}𝑛≥1, 𝜏
′, we let 𝜃 ∪ 𝜑 be the specialization with

usual parameters {𝛼𝑛}𝑛≥1⊔{𝛼′
𝑛}𝑛≥1, dual parameters {𝛽𝑛}𝑛≥1⊔{𝛽′

𝑛}𝑛≥1, and Plancherel

parameter 𝜏 + 𝜏 ′. For 𝑘 ∈ N we write

𝜑[𝑘] = 𝜑 ∪ · · · ∪ 𝜑⏟  ⏞  
𝑘 times

, (2.2.29)

similarly to our notation for repeated variables. We will omit the 𝛼(· · · ) in notation if

all alpha parameters are zero for the given specialization, and similarly for 𝛽 and 𝛾. Ad-

ditionally, because the 𝛼 variables correspond to the variables in the original Macdonald

symmetric polynomial, for ‘pure alpha’ specializations with no 𝛽 or Plancherel variables

we often write 𝑃𝜆(𝑎1, 𝑎2, . . . ; 𝑞, 𝑡) in place of 𝑃𝜆(𝛼(𝑎1, 𝑎2, . . .); 𝑞, 𝑡).

1The terminology ‘Plancherel’ comes from the fact that in the case 𝑞 = 𝑡 where the Macdonald
polynomials reduce to Schur polynomials, it is related to (the poissonization of) the Plancherel measure
on irreducible representations of the symmetric group 𝑆𝑁 , see e.g. [BO17].
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Additionally, we define notation

Π𝑞,𝑡(𝛼(𝛼1, . . .), 𝛽(𝛽1, . . .), 𝛾(𝜏);𝛼(𝛼
′
1, . . .), 𝛽(𝛽

′
1, . . .), 𝛾(𝜏

′)) := Π𝑞,𝑡(𝜃;𝜑)

:= exp

(︃
∞∑︁
ℓ=1

1− 𝑡ℓ

1− 𝑞ℓ
1

ℓ
𝜃(𝑝ℓ)𝜑(𝑝ℓ)

)︃
.

(2.2.30)

We refer to a specialization as

• pure alpha if 𝜏 and all 𝛽𝑛, 𝑛 ≥ 1 are 0.

• pure beta if 𝜏 and all 𝛼𝑛, 𝑛 ≥ 1 are 0.

• Plancherel if all 𝛼𝑛, 𝛽𝑛, 𝑛 ≥ 1 are 0.

On Macdonald polynomials these act as follows.

Proposition 2.2.6. Let 𝜆, 𝜇 ∈ 𝑌 and 𝑐1, . . . , 𝑐𝑛 ∈ R≥0. Then

𝑃𝜆(𝛼(𝑐1, . . . , 𝑐𝑛); 𝑞, 𝑡) = 𝑃𝜆(𝑐1, . . . , 𝑐𝑛; 𝑞, 𝑡)

𝑄𝜆(𝛼(𝑐1, . . . , 𝑐𝑛); 𝑞, 𝑡) = 𝑄𝜆(𝑐1, . . . , 𝑐𝑛; 𝑞, 𝑡)

𝑃𝜆(𝛽(𝑐1, . . . , 𝑐𝑛); 𝑞, 𝑡) = 𝑄𝜆′(𝑐1, . . . , 𝑐𝑛; 𝑡, 𝑞)

𝑄𝜆(𝛽(𝑐1, . . . , 𝑐𝑛); 𝑞, 𝑡) = 𝑃𝜆′(𝑐1, . . . , 𝑐𝑛; 𝑡, 𝑞),

(2.2.31)

where in each case the left hand side is a specialized Macdonald symmetric function while

the right hand side is a Macdonald polynomial with real numbers plugged in for the vari-

ables. Furthermore,

𝑃𝜆(𝛾(𝜏); 𝑞, 𝑡) = lim
𝐷→∞

𝑃𝜆

(︂
𝜏 · 1− 𝑞

1− 𝑡

1

𝐷
[𝐷]; 𝑞, 𝑡

)︂
(2.2.32)

and similarly for 𝑄.

The alpha case of (2.2.31), and (2.2.32), are straightforward from (2.2.27). The 𝛽

case follows from properties of a certain involution on Λ, see [Mac98a, Chapter VI],

and explains the terminology ‘dual parameter’. The Plancherel parameter is related to

the others through limit transitions, of which the 𝛼 version is below. The convergence
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statement is standard, but the fact that it is monotonic is useful for later convergence

statements and we are not aware of a reference.

Lemma 2.2.7. For any 𝜏 ≥ 0, 𝑞, 𝑡 ∈ (−1, 1) and 𝜆, 𝜇 ∈ Y, the sequence

𝑃𝜆/𝜇

(︀
1−𝑞
1−𝑡

𝜏
𝐷
[𝐷]; 𝑞, 𝑡

)︀
, 𝐷 = 1, 2, . . . (2.2.33)

is nondecreasing and converges to 𝑃𝜆/𝜇(𝛾(𝜏); 𝑞, 𝑡), and similarly for 𝑄.

Proof. The fact that lim𝐷→∞ 𝑃𝜆/𝜇

(︀
1−𝑞
1−𝑡

𝜏
𝐷
[𝐷]; 𝑞, 𝑡

)︀
= 𝑃𝜆/𝜇(𝛾(𝜏); 𝑞, 𝑡) is standard, and fol-

lows because (a) clearly 𝑝𝑘(1−𝑞
1−𝑡

𝜏
𝐷
[𝐷]) → 𝑝𝑘(𝛾(𝜏)) for each 𝑘, and (b) 𝑃𝜆/𝜇 is a polynomial

in the 𝑝𝑘.

Let us now prove the sequence (2.2.33) is nondecreasing. Specializing Lemma 2.2.1 to

our case,

𝑃𝜆/𝜇(
1−𝑞
1−𝑡

𝜏
𝐷
[𝐷]) =

∑︁
𝜇=𝜆(0)≺...≺𝜆(𝐷)=𝜆

(︂
𝜏(1− 𝑞)

𝐷(1− 𝑡)

)︂|𝜆|−|𝜇| 𝐷−1∏︁
𝑖=0

𝜓𝜆(𝑖+1)/𝜆(𝑖) .

There are many distinct sequences 𝜇 = 𝜆(0) ≺ . . . ≺ 𝜆(𝐷) = 𝜆 for which the sets {𝜆(𝑖) :

0 ≤ 𝑖 ≤ 𝐷} are the same but the multiplicities of the partitions in the sequence are

different, and we wish to group these together. Hence we collect terms according to the

set of distinct partitions appearing:

𝑃𝜆/𝜇(
1−𝑞
1−𝑡

𝜏
𝐷
[𝐷]) =

∑︁
𝑆⊂Y

∑︁
𝜇=𝜆(0)≺...≺𝜆(𝐷)=𝜆
{𝜆(0),...,𝜆(𝐷)}=𝑆

(︂
𝜏(1− 𝑞)

(1− 𝑡)𝐷

)︂|𝜆|−|𝜇| 𝐷−1∏︁
𝑖=0

𝜓𝜆(𝑖+1)/𝜆(𝑖) . (2.2.34)

where clearly only sets 𝑆 of the form {𝜇(1), . . . , 𝜇(𝑘)} with 𝜇 = 𝜇(1) ≺ . . . ≺ 𝜇(𝑘) = 𝜆

contribute. We now fix such an 𝑆, and claim that the term

∑︁
𝜇=𝜆(0)≺...≺𝜆(𝐷)=𝜆
{𝜆(0),...,𝜆(𝐷)}=𝑆

(︂
𝜏(1− 𝑞)

(1− 𝑡)𝐷

)︂|𝜆|−|𝜇| 𝐷−1∏︁
𝑖=0

𝜓𝜆(𝑖+1)/𝜆(𝑖) (2.2.35)

in (2.2.34) is nondecreasing in 𝐷. Note first that

𝐷−1∏︁
𝑖=0

𝜓𝜆(𝑖+1)/𝜆(𝑖)
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is the same for all terms in (2.2.35), independent of 𝐷 (provided 𝐷+1 ≥ |𝑆| so the sum is

non-empty), and that it is nonnegative because 𝑞, 𝑡 ∈ (−1, 1). The number of summands

in (2.2.35) is
(︀
𝐷−1
|𝑆|−1

)︀
. Hence

(2.2.35) = 1(𝐷 ≥ |𝑆|)
|𝑆|∏︁
𝑖=1

𝜓𝜇(𝑖+1)/𝜇(𝑖)

(︂
𝜏(1− 𝑞)

(1− 𝑡)𝐷

)︂|𝜆|−|𝜇|(︂
𝐷 − 1

|𝑆| − 1

)︂
. (2.2.36)

Since the RHS of (2.2.36) is nonnegative, we need only show it is nondecreasing in 𝐷

when 𝐷 ≥ |𝑆|, as otherwise it is 0. The ratio of successive (nonzero) terms is

(︀
𝜏

𝐷+1

)︀|𝜆|−|𝜇| (︀ 𝐷
|𝑆|−1

)︀
(︀
𝜏
𝐷

)︀|𝜆|−|𝜇| (︀𝐷−1
|𝑆|−1

)︀ =

(︂
𝐷

𝐷 + 1

)︂|𝜆|−|𝜇|
𝐷

𝐷 − |𝑆|+ 1

≥
(︂
1− 1

𝐷 + 1

)︂|𝜆|−|𝜇|
𝐷

𝐷 − (|𝜆| − |𝜇|+ 1) + 1

≥
(︂
1− |𝜆| − |𝜇|

𝐷 + 1

)︂
𝐷

𝐷 − (|𝜆| − |𝜇|)

≥ 1.

In the first inequality we used that |𝑆| ≤ |𝜆|+ 1, as the sizes of the partitions in 𝑆 must

each differ by at least one. In the second we used the elementary inequality (1 − 𝑥)𝑛 ≥

1− 𝑛𝑥 for 𝑥 ∈ [0, 1], 𝑛 ≥ 1, which follows by noting equality holds at 𝑥 = 0 and the LHS

has larger derivative on the interval. This completes the proof.

We record one more useful fact about specializations which will be needed in Chapter 6.

Proposition 2.2.8. Let 𝑢 ∈ R and let 𝜃, 𝜑 be the specializations 𝜃 = 𝛼(𝑢, 𝑢𝑡, . . .) and

𝜑 = 𝛽(−𝑢,−𝑢𝑞, . . .) (note these are not in general nonnegative specializations). Then

𝜃 ∪ 𝜑 = 0 (2.2.37)

(i.e. (𝜃 ∪ 𝜑)(𝑝𝑖) = 0 for all 𝑖 ≥ 1 and (𝜃 ∪ 𝜑)(1) = 1), and consequently

𝑃𝜆/𝜇(𝜃; 𝑞, 𝑡) = 1(𝜆 = 𝜇). (2.2.38)

Proof. By the explicit formula (2.2.27), (𝜃 ∪ 𝜑)(𝑝𝑖) = 0 for all 𝑖 ≥ 1, and 𝑃𝜆/𝜇 is a

polynomial in the 𝑝𝑖 with no constant term unless 𝜆 = 𝜇.
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2.2.3 Probabilistic constructions from symmetric functions

For the remainder of this section assume 𝑞, 𝑡 ∈ [0, 1). We note that for any nonnegative

specializations 𝜃, 𝜑 with ∑︁
𝜆∈Y

𝑃𝜆(𝜃; 𝑞, 𝑡)𝑄𝜆(𝜑; 𝑞, 𝑡) <∞, (2.2.39)

the specialized Cauchy identity

∑︁
𝜅∈Y

𝑃𝜅/𝜈(𝜃; 𝑞, 𝑡)𝑄𝜅/𝜇(𝜑; 𝑞, 𝑡) = Π𝑞,𝑡(𝜃;𝜓)
∑︁
𝜆∈Y

𝑄𝜈/𝜆(𝜑; 𝑞, 𝑡)𝑃𝜇/𝜆(𝜃; 𝑞, 𝑡). (2.2.40)

holds by applying 𝜃 ⊗ 𝜑 to (2.2.26).

Definition 11. The Macdonald measure with specializations 𝜃, 𝜑 satusfying (2.2.39) is

the measure on Y given by

Pr(𝜆) =
𝑃𝜆(𝜃; 𝑞, 𝑡)𝑄𝜆(𝜑; 𝑞, 𝑡)

Π(𝑞,𝑡)(𝜃;𝜑)
.

Slightly more generally, the skew Cauchy identity may be used to define Markov

transition dynamics. Note that now the signatures do not have to be nonnegative.

Proposition 2.2.9. For specializations 𝜃 = 𝛼(𝑎1, . . . , 𝑎𝑛), 𝜑 satisfying (2.2.39), the for-

mulas

Pr(𝜈 → 𝜆) =
𝑃𝜆(𝑎1, . . . , 𝑎𝑛; 𝑞, 𝑡)𝑄̃𝜆/𝜈(𝜑; 𝑞, 𝑡)

𝑃𝜈(𝑎1, . . . , 𝑎𝑛; 𝑞, 𝑡)Π(𝑞,𝑡)(𝑎1, . . . , 𝑎𝑛;𝜑)

and

Pr(𝜆→ 𝜇) =
𝑃𝜆/𝜇(𝑎𝑘+1, . . . , 𝑎𝑛; 𝑞, 𝑡)𝑃𝜇(𝑎1, . . . , 𝑎𝑘; 𝑞, 𝑡)

𝑃𝜆(𝑎1, . . . , 𝑎𝑛; 𝑞, 𝑡)
.

define Markov transition dynamics Sig𝑛 → Sig𝑛 and Sig𝑛 → Sig𝑘 respectively. Here we

allow 𝑛 = ∞.

The following product convolution is related to the above operations but more general

in a certain sense, as we explain in Chapter 3. For simplicity we give only the definition

for pure 𝛼 specializations.

Definition 12. Let a = 𝛼(𝑎1, . . . , 𝑎𝑛) be nonnegative reals. Then given 𝜆, 𝜇 ∈ Sig𝑛, we
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define a random signature 𝜆�a 𝜇 by

Pr(𝜆�a 𝜇 = 𝜈) =
𝑃𝜈(a; 𝑞, 𝑡)

𝑃𝜆(a; 𝑞, 𝑡)𝑃𝜇(a; 𝑞, 𝑡)
𝑐𝜈𝜆,𝜇(𝑞, 𝑡).

Definition 13. Let 𝜃 and 𝜓1, . . . , 𝜓𝑘 be Macdonald-nonnegative specializations such that

each pair 𝜃, 𝜓𝑖 satisfies (2.2.39). The associated ascending Macdonald process is the

probability measure on sequences 𝜆(1), . . . , 𝜆(𝑘) given by

Pr(𝜆(1), . . . , 𝜆(𝑘)) =
𝑄𝜆(1)(𝜓1)𝑄𝜆(2)/𝜆(1)(𝜓2) · · ·𝑄𝜆(𝑘)/𝜆(𝑘−1)(𝜓𝑘)𝑃𝜆(𝑘)(𝜃)∏︀𝑘

𝑖=1Π(𝜓𝑖; 𝜃)
.

The 𝑘 = 1 case of Definition 13 is a measure on partitions, referred to as a Hall-

Littlewood measure. Instead of defining joint distributions all at once as above, one can

define Markov transition kernels on Y.

Definition 14. Let 𝜃, 𝜓 be Hall-Littlewood nonnegative specializations satisfying (2.2.39)

and 𝜆 be such that 𝑃𝜆(𝜃) ̸= 0. The associated Cauchy Markov kernel is defined by

Pr(𝜆→ 𝜈) = 𝑄𝜈/𝜆(𝜓)
𝑃𝜈(𝜃)

𝑃𝜆(𝜃)Π(𝜓; 𝜃)
. (2.2.41)

It is clear that the ascending Hall-Littlewood process above is nothing more than the

joint distribution of 𝑘 steps of a Cauchy Markov kernel with specializations 𝜓𝑖, 𝜃 at the

𝑖𝑡ℎ step. The product convolution � of Definition 12 is related to Macdonald processes

as follows.

Proposition 2.2.10. Let 𝑛 ∈ N ∪ {∞} and b = 𝛼(𝑏1, . . . , 𝑏𝑛) with 𝑏𝑖 ∈ R>0. Let

𝜃(𝑖), 1 ≤ 𝑖 ≤ 𝑘 be arbitrary Macdonald-nonnegative specializations and 𝜈(𝑖) be distributed

by the Macdonald measure with specializations 𝜃(𝑖),b for each 𝑖 = 1, . . . , 𝑘. Then for any

fixed 𝜆(𝑖) ∈ Sig𝑛, 𝑖 = 1, . . . , 𝑘 we have

Pr(𝜈(1) �b · · ·�b 𝜈
(𝜏) = 𝜆(𝜏) for all 𝜏 = 1, . . . , 𝑘)

=
𝑄̃𝜆(1)/(0[𝑛])(𝜃

(1); 𝑞, 𝑡)𝑄̃𝜆(2)/𝜆(1)(𝜃(2); 𝑞, 𝑡) · · · 𝑄̃𝜆(𝑘)/𝜆(𝑘−1)(𝜃(𝑘); 𝑞, 𝑡)𝑃𝜆(𝑘)(b; 𝑞, 𝑡)

Π(𝑞,𝑡)(b; 𝜃(1), . . . , 𝜃(𝑘))
.

Proof. A simple algebraic manipulation using Proposition 2.2.4 to absorb the structure

coefficients 𝑐𝜈𝜆,𝜇.
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2.2.4 Hall-Littlewood and 𝑞-Whittaker polynomials.

We collect useful explicit formulas for the Hall-Littlewood special case (𝑞 = 0) and the

𝑞-Whittaker special case (𝑡 = 0). The former will be the relevant one for almost the

entirety of this thesis, but 𝑞-Whittaker polynomials play a role in Chapter 6. When not

otherwise indicated, everything here may be found in [Mac98a, Ch. III] or simply derived

from results there.

Proposition 2.2.11 (Explicit formulas for Hall-Littlewood polynomials). For 𝜆 ∈ Sig𝑛,

let

𝑣𝜆(𝑡) =
∏︁
𝑖∈Z

(𝑡; 𝑡)𝑚𝑖(𝜆)

(1− 𝑡)𝑚𝑖(𝜆)
.

When 𝑞 = 0 we have

𝑃𝜆(x; 0, 𝑡) =
1

𝑣𝜆(𝑡)

∑︁
𝜎∈𝑆𝑛

𝜎

(︃
x𝜆

∏︁
1≤𝑖<𝑗≤𝑛

𝑥𝑖 − 𝑡𝑥𝑗
𝑥𝑖 − 𝑥𝑗

)︃

where 𝜎 acts by permuting the variables.

For going between 𝑃 and 𝑄 polynomials, we compute the proportionality constant

𝑏𝜆(𝑞, 𝑡) :=
1

⟨𝑃𝜆, 𝑃𝜆⟩(𝑞,𝑡)
. (2.2.42)

Lemma 2.2.12 (See [Mac98a, p339, (6.19)]). The constant 𝑏𝜆(𝑞, 𝑡) of (2.2.42) is given

explicitly as follows. We associate to 𝜆 its Ferrers diagram as in Section 2.2.4. The

boxes in the diagram correspond to pairs (𝑖, 𝑗) with 1 ≤ 𝑖 ≤ 𝜆′𝑗, 1 ≤ 𝑗 ≤ 𝜆𝑖. For such a

box 𝑠 = (𝑖, 𝑗), we define its arm-length 𝑎(𝑠) and leg-length ℓ(𝑠) by the horizontal (resp.

vertical) distance from 𝑠 to the edge of the diagram as in Section 2.2.4, explicitly

𝑎(𝑠) = 𝜆𝑖 − 𝑗 (2.2.43)

ℓ(𝑠) = 𝜆′𝑗 − 𝑖. (2.2.44)

The formula is then

𝑏𝜆(𝑞, 𝑡) =
∏︁
𝑠∈𝜆

1− 𝑞𝑎(𝑠)𝑡ℓ(𝑠)+1

1− 𝑞𝑎(𝑠)+1𝑡ℓ(𝑠)
(2.2.45)

where the product is over boxes 𝑠 inside the diagram of 𝜆.
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3 2 1 0

1 0

1 0

0

3 2 0 0

2 1

1 0

0

(2.2.46)

Figure 2-2: The Ferrers diagram of 𝜆 = (4, 2, 2, 1) (left), with 𝑎(𝑠) and ℓ(𝑠) listed for each
box 𝑠 (middle and right respectively).

The Hall-Littlewood and 𝑞-Whittaker specializations of (2.2.45) will be useful.

Lemma 2.2.13. In the 𝑞-Whittaker specialization,

𝑏𝜆(𝑞, 0) =
∏︁
𝑖

1

(𝑞; 𝑞)𝜆𝑖−𝜆𝑖+1

. (2.2.47)

In the Hall-Littlewood specialization,

𝑏𝜆(0, 𝑡) =
∏︁
𝑖>0

(𝑡; 𝑡)𝑚𝑖(𝜆) (2.2.48)

Proof. Because ℓ(𝑠) ≥ 0, the numerator of (2.2.45) is always 1 when 𝑡 = 0, so

𝑏𝜆(𝑞, 0) =
∏︁
𝑠∈𝜆

ℓ(𝑠)=0

1

1− 𝑞𝑎(𝑠)+1
=
∏︁
𝑖

1

(𝑞; 𝑞)𝜆𝑖−𝜆𝑖+1

. (2.2.49)

Similarly, when 𝑞 = 0 the denominator of (2.2.45) is always 1, and

𝑏𝜆(0, 𝑡) =
∏︁
𝑠∈𝜆

𝑎(𝑠)=0

(1− 𝑡ℓ(𝑠)+1) =
∏︁
𝑖>0

(𝑡; 𝑡)𝜆′
𝑖−𝜆′

𝑖+1
. (2.2.50)

Remark 12. It is easy to see from Lemma 2.2.13 that translation invariance in the sense

of (2.2.15) does not hold even in the Hall-Littlewood case when 𝜆 has some parts equal

to 0, as mentioned in Remark 11.

The explicit forms of the Hall-Littlewood and 𝑞-Whittaker special cases of the formulas

in Lemma 2.2.1 will also be useful.
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Lemma 2.2.14. Let 𝜆, 𝜈 ∈ Sig𝑛 and 𝜇 ∈ Sig𝑛+1 with 𝜇 ≺𝑃 𝜆 and 𝜈 ≺𝑄 𝜆. In the

Hall-Littlewood case 𝑞 = 0 the formulas of Definition 6 specialize to

𝜓𝜆/𝜇(0, 𝑡) =
∏︁
𝑖∈Z

𝑚𝑖(𝜇)=𝑚𝑖(𝜆)+1

(1− 𝑡𝑚𝑖(𝜇))

𝜙𝜆/𝜈(0, 𝑡) =
∏︁
𝑖∈Z

𝑚𝑖(𝜆)=𝑚𝑖(𝜈)+1

(1− 𝑡𝑚𝑖(𝜆)),
(2.2.51)

In the 𝑞-Whittaker case 𝑡 = 0 they specialize to

𝜓𝜆/𝜇(𝑞, 0) =

len(𝜇)∏︁
𝑖=1

⎡⎣𝜆𝑖 − 𝜆𝑖+1

𝜆𝑖 − 𝜇𝑖

⎤⎦
𝑞

𝜙𝜆/𝜇(𝑞, 0) =
1

(𝑞; 𝑞)𝜆1−𝜇1

len(𝜆)−1∏︁
𝑖=1

⎡⎣𝜇𝑖 − 𝜇𝑖+1

𝜇𝑖 − 𝜆𝑖+1

⎤⎦
𝑞

.

(2.2.52)

As in the Macdonald case, the above branching coefficients are 0 when the conditions

𝜇 ≺𝑃 𝜆 (resp. 𝜈 ≺𝑄 𝜆) do not hold.

Proof. Direct computation from Definition 6.

The pure alpha specialization 𝛼(𝑢, 𝑢𝑡, . . . , 𝑢𝑡𝑛−1), often referred as a principal special-

ization, produces simple factorized expressions for Macdonald polynomials. For brevity

we give only the Hall-Littlewood case which is needed later, though we will mention the

Macdonald case in Section 3.3. Let

𝑛(𝜆) :=
𝑛∑︁

𝑖=1

(𝑖− 1)𝜆𝑖 =
∑︁
𝑖≥1

(︂
𝜆′𝑖
2

)︂
. (2.2.53)

The following formulas may be easily derived from Proposition 2.2.11 and (2.2.5).

Proposition 2.2.15 (Principal specialization formulas). For 𝐽, 𝑛 ≥ 1 and 𝜆 ∈ Sig+𝑛 ,

𝑃𝜆(𝑥, 𝑥𝑡, . . . , 𝑥𝑡
𝑛−1; 0, 𝑡) = 𝑥|𝜆|𝑡𝑛(𝜆)

(𝑡; 𝑡)𝑛∏︀
𝑖∈Z(𝑡; 𝑡)𝑚𝑖(𝜆)

𝑄̃𝜆/(0[𝑛])(𝑥, 𝑥𝑡, . . . , 𝑥𝑡
𝐽−1; 0, 𝑡) = 𝑥|𝜆|𝑡𝑛(𝜆)

(𝑡; 𝑡)𝐽
(𝑡; 𝑡)𝑚0(𝜆)+𝐽−𝑛

1(𝑚0(𝜆) + 𝐽 − 𝑛 ≥ 0)

Note that the principal specialization formula for 𝑄 differs from the statement in
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[Mac98a, Ch. III.2, Ex. 1] due to our conventions on signatures, but it may be derived

directly from that statement using (2.2.5) to translate between skew and non-skew 𝑄

polynomials. There are also nice explicit formulas for principally specialized Macdonald

polynomials, see [Mac98a, Ch. VI], but we will not need these except briefly in Section 3.3.

When the principal specialization is infinite, nice formulas for the principally special-

ized skew Hall-Littlewood polynomials were shown in [Kir98].

Theorem 2.2.16. For 𝜇, 𝜆 ∈ Y, we have

𝑃𝜇/𝜆(𝑢, 𝑢𝑡, . . . ; 0, 𝑡) = 𝑢|𝜇|−|𝜆|𝑡𝑛(𝜇/𝜆)
∏︁
𝑥≥1

(𝑡1+𝜇′
𝑥−𝜆′

𝑥 ; 𝑡)𝑚𝑥(𝜆)

(𝑡; 𝑡)𝑚𝑥(𝜇)

. (2.2.54)

For 𝜆, 𝜈 ∈ Sig𝑛,

𝑄𝜈/𝜆(𝑢, 𝑢𝑡, . . . ; 0, 𝑡) = 𝑢|𝜈|−|𝜆|𝑡𝑛(𝜈/𝜆)
∏︁
𝑥∈Z

(𝑡1+𝜈′𝑥−𝜆′
𝑥 ; 𝑡)𝑚𝑥(𝜆)

(𝑡; 𝑡)𝑚𝑥(𝜆)

(2.2.55)

Analogues of Theorem 2.2.16 for finite principal specializations have to our knowledge

not appeared before. We derive them in Section 4.2, where they are necessary to prove

Theorem 1.7.1, and recover Theorem 2.2.16 as a limiting case.

In later sections, we will often omit the ‘; 𝑞, 𝑡’ in the arguments of Macdonald or

Hall-Littlewood polynomials when they are clear from context.
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Chapter 3

Exact results on Hall-Littlewood

polynomials and 𝑝-adic random

matrices

In this chapter, we prove several exact results relating 𝑝-adic random matrices to Hall-

Littlewood polynomials. In Section 3.1 we prove Theorem 1.2.1 from the Introduction,

conditional on certain symmetric functions results proven in Section 3.2. We then ex-

tract a few consequences in 𝑝-adic random matrix theory, Corollary 1.2.2 and Theo-

rem 1.2.3. In an optional appendix Section 3.3, we discuss the structural parallels to

real/complex/quaternion random matrix theory and indicate how similar results may be

proven there.

3.1 Products, corners, and the classical ensembles via

Hall-Littlewood polynomials

Theorem 1.2.1. Fix a prime 𝑝 and let 𝑡 = 1/𝑝.

1. (Truncated Haar ensemble) Let 1 ≤ 𝑛 ≤ 𝑚 ≤ 𝑁 be integers, and 𝐴 be the top-

left 𝑛×𝑚 submatrix of a Haar-distributed element of GL𝑁(Z𝑝). Then SN(𝐴) is a
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random nonnegative signature with distribution given by the Hall-Littlewood measure

Pr(SN(𝐴) = 𝜆) =
𝑃𝜆(1, 𝑡, . . . , 𝑡

𝑛−1; 𝑡)𝑄𝜆(𝑡
𝑚−𝑛+1, . . . , 𝑡𝑁−𝑛; 𝑡)

Π(0,𝑡)(1, 𝑡, . . . , 𝑡𝑛−1; 𝑡𝑚−𝑛+1, . . . , 𝑡𝑁−𝑛)
. (1.2.6)

2. (Corners process) Let 𝑛, 𝑘,𝑁 be integers with 1 ≤ 𝑛 ≤ 𝑁 and 1 ≤ 𝑘 ≤ 𝑁 − 𝑛,

𝜆 ∈ Sig𝑛, and 𝐴 ∈𝑀𝑛×𝑁(Q𝑝) be random with SN(𝐴) = 𝜆 and distribution invariant

under GL𝑛(Z𝑝) × GL𝑁(Z𝑝) acting on the right and left. Let 𝐴𝑐𝑜𝑙 ∈ 𝑀𝑛×(𝑁−𝑘)(Q𝑝)

be the first 𝑁 − 𝑘 columns of 𝐴. Then SN(𝐴𝑐𝑜𝑙) is a random element of Sig𝑛 with

distribution given by

Pr(SN(𝐴𝑐𝑜𝑙) = 𝜈) =
𝑄𝜈/𝜆(1, . . . , 𝑡

−(𝑘−1); 𝑡)𝑃𝜈(𝑡
𝑁−𝑛, . . . , 𝑡𝑁−1; 𝑡)

𝑃𝜆(𝑡𝑁−𝑛, . . . , 𝑡𝑁−1; 𝑡)Π(0,𝑡)(1, . . . , 𝑡−(𝑘−1); 𝑡𝑁−𝑛, . . . , 𝑡𝑁−1)
.

(1.2.7)

Now let 1 ≤ 𝑑 ≤ 𝑛 and 𝐴𝑟𝑜𝑤 ∈ 𝑀(𝑛−𝑑)×𝑁 be the first 𝑛 − 𝑑 rows of 𝐴. Then

SN(𝐴𝑟𝑜𝑤) is a random element of Sig𝑛−𝑑 with distribution

Pr(SN(𝐴𝑟𝑜𝑤) = 𝜇) = 𝑃𝜆/𝜇(1, . . . , 𝑡
𝑑−1; 𝑡)

𝑃𝜇(𝑡
𝑑, . . . , 𝑡𝑛−1; 𝑡)

𝑃𝜆(1, . . . , 𝑡𝑛−1; 𝑡)
. (1.2.8)

3. (Product process) Let 𝐴,𝐵 be random elements of 𝑀𝑛(Q𝑝) with fixed singular

numbers SN(𝐴) = 𝜆, SN(𝐵) = 𝜇, invariant under left- and right-multiplication

by GL𝑛(Z𝑝). Then for any 𝜈 ∈ Sig𝑛, SN(𝐴𝐵) has distribution 𝜆�(1,...,𝑡𝑛−1) 𝜇, i.e.

Pr(SN(𝐴𝐵) = 𝜈) = 𝑐𝜈𝜆,𝜇(0, 𝑡)
𝑃𝜈(1, . . . , 𝑡

𝑛−1; 𝑡)

𝑃𝜆(1, . . . , 𝑡𝑛−1; 𝑡)𝑃𝜇(1, . . . , 𝑡𝑛−1; 𝑡)
. (1.2.9)

Let us flesh out the discussion from the Introduction on how Theorem 1.2.1 is proven.

For Part 3, the results are essentially already contained in [Mac98a, Ch. V] and must be

translated to probabilistic language. Parts 1 and 2 both concern the operation of taking

submatrices of a random matrix, which is equivalent to the multiplicative convolution of

Part 3 with projection matrices. There is a slight difficulty because Part 3 is a statement

about the pair (GL𝑛(Q𝑝),GL𝑛(Z𝑝)) and hence holds only for nonsingular matrices 𝐴,𝐵,

so one must make a limiting argument with nonsingular matrices which are very close

to projection matrices, e.g. diag(1[𝑁 − 𝑘], 𝑝𝐷[𝑘]) for large 𝐷–recall that in the 𝑝-adic

norm, 𝑝𝐷 for large 𝐷 is very small. Since Part 3 relates matrix products to the structure

coefficients 𝑐𝜈𝜆,𝜇(0, 𝑡), to implement the above idea of matrices which limit to projectors
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we must understand asymptotics of 𝑐𝜈𝜆,𝜇(0, 𝑡) for sequences of 𝜆, 𝜇 which approach the

singular numbers of projection matrices. We will first state the relevant asymptotic results

on Macdonald structure coefficients, Proposition 3.1.1 and Proposition 3.1.2, then prove

Theorem 1.2.1 conditional on these. This illustrates why these are the right asymptotic

results on structure coefficients for our setting, which may not be apparent from the

first glance. In the next subsection we will then develop the machinery to establish

Proposition 3.1.1 and Proposition 3.1.2.

Proposition 3.1.1. Let 𝑞, 𝑡 ∈ (−1, 1) be such that the structure coefficients 𝑐𝜈𝜆,𝜇(𝑞, 𝑡) are

all nonnegative1. Let 𝑛 ≤ 𝑚 ≤ 𝑁 be integers such that 𝑛 ≤ 𝑁 −𝑚, let 𝜆 ∈ Sig𝑛, and

let 𝑎1 ≥ 𝑎2 ≥ . . . ≥ 𝑎𝑁 > 0 be real numbers and a = (𝑎1, . . . , 𝑎𝑁). Let 𝑀𝐶𝑎𝑢𝑐ℎ𝑦
𝐷 be

the probability measure on Sig𝑛 with distribution defined by taking the last 𝑛 parts of a

random signature 𝜅 = (𝐷[𝑁 − 𝑛], 𝜆)�a (𝐷[𝑁 −𝑚], 0[𝑚]), or explicitly,

𝑀𝐶𝑎𝑢𝑐ℎ𝑦
𝐷 (𝜈) =

∑︁
𝜅∈Sig𝑁

𝜅𝑁−𝑛+𝑖=𝜈𝑖 for all 𝑖=1,...,𝑛

𝑐𝜅(𝐷[𝑁−𝑛],𝜆),(𝐷[𝑁−𝑚],0[𝑚])(𝑞, 𝑡)
𝑃𝜅(a)

𝑃(𝐷[𝑁−𝑛],𝜆)(a)𝑃(𝐷[𝑁−𝑚],0[𝑚])(a)
.

Then for each 𝜈 ∈ Sig𝑛,

𝑀𝐶𝑎𝑢𝑐ℎ𝑦
𝐷 (𝜈) →

𝑄̃𝜈/𝜆(𝑎
−1
1 , . . . , 𝑎−1

𝑁−𝑚)𝑃𝜈(𝑎𝑁−𝑛+1, . . . , 𝑎𝑁)

𝑃𝜆(𝑎𝑁−𝑛+1, . . . , 𝑎𝑁)Π(𝑎
−1
1 , . . . , 𝑎−1

𝑁−𝑚; 𝑎𝑁−𝑛+1, . . . , 𝑎𝑁)
(3.1.1)

as 𝐷 → ∞.

Proposition 3.1.2. Let 𝑞, 𝑡 ∈ (−1, 1) be such that the structure coefficients 𝑐𝜈𝜆,𝜇(𝑞, 𝑡) are

all nonnegative. Let 0 < 𝑘 ≤ 𝑛 be integers, let 𝜆 ∈ Sig𝑛, and let 𝑎1 ≥ 𝑎2 ≥ . . . ≥

𝑎𝑛 > 0 be real numbers and a = (𝑎1, . . . , 𝑎𝑛). Let 𝑀 𝑏𝑟𝑎𝑛𝑐ℎ
𝐷 be the probability measure

on Sig𝑛−𝑘 with distribution defined by taking the last 𝑛 − 𝑘 parts of a random signature

𝜅 = 𝜆�a (𝐷[𝑘], 0[𝑛− 𝑘]), or explicitly,

𝑀 𝑏𝑟𝑎𝑛𝑐ℎ
𝐷 (𝜇) =

∑︁
𝜅∈Sig𝑛

𝜅𝑘+𝑖=𝜇𝑖 for all 𝑖=1,...,𝑛−𝑘

𝑐𝜅𝜆,(𝐷[𝑘],0[𝑛−𝑘])(𝑞, 𝑡)
𝑃𝜅(a; 𝑞, 𝑡)

𝑃𝜆(a; 𝑞, 𝑡)𝑃(𝐷[𝑘],0[𝑛−𝑘])(a; 𝑞, 𝑡)
.

1Conjecturally, this is true if 𝑞, 𝑡 ∈ [0, 1) or if 𝑞, 𝑡 ∈ (−1, 0], see Matveev [Mat19]. For our application
we will only need the case 𝑞 = 0, 𝑡 = 1/𝑝 ∈ (0, 1), for which the nonnegativity follows from the interpre-
tation of the structure coefficients in terms of the Hall algebra [Mac98a, Ch. III], or alternatively from
Theorem 1.2.1 Part 3.
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Then for each 𝜇 ∈ Sig𝑛−𝑘,

𝑀 𝑏𝑟𝑎𝑛𝑐ℎ
𝐷 (𝜇) → 𝑃𝜆/𝜇(𝑎1, . . . , 𝑎𝑘)

𝑃𝜇(𝑎𝑘+1, . . . , 𝑎𝑛)

𝑃𝜆(a)
as 𝐷 → ∞.

Proof of Theorem 1.2.1, conditional on Proposition 3.1.2 and Proposition 3.1.1. We first

prove Part 3. In this proof we will use essentially the notation of [Mac98a, Ch. V] to state

the relevant results and then show how ours follow. Let G𝑡 = GL𝑛(Q𝑝), 𝐾 = GL𝑛(Z𝑝),

and 𝐿(G𝑡, 𝐾) denote the algebra of compactly supported functions 𝑓 : G𝑡 → C which are

bi-invariant under 𝐾, i.e. 𝑓(𝑘1𝑥𝑘2) = 𝑓(𝑥) for 𝑥 ∈ G𝑡, 𝑘1, 𝑘2 ∈ 𝐾. Define a convolution

operation on 𝐿(G𝑡, 𝐾) by

(𝑓 * 𝑔)(𝑥) =
∫︁

G𝑡

𝑓(𝑥𝑦−1)𝑔(𝑦)𝑑𝑦

where the integration is with respect to the Haar measure on G𝑡 normalized such that 𝐾

has measure 1, mentioned earlier. This multiplication is associative, and may be checked

to be commutative as well. By Proposition 2.1.1, each double coset 𝐾𝑥𝐾 of 𝐾∖G𝑡/𝐾

has a unique representative of the form diag(𝑝𝜆) for some 𝜆 ∈ Sig𝑛. We abuse notation

slightly and write such a double coset as 𝐾𝑝𝜆𝐾. We denote by 1𝜆 the indicator function

on such a double coset; clearly 1𝜆 ∈ 𝐿(G𝑡, 𝐾). We will use the following two results, both

of which may be found in the discussion after [Mac98a, Ch. V, (2.7)]:

• The map 𝜃 : 𝐿(G𝑡, 𝐾) → Λ𝑛[(𝑥1 · · ·𝑥𝑛)−1] given by 𝜃(1𝜆) = 𝑡𝑛(𝜆)𝑃𝜆(𝑥1, . . . , 𝑥𝑛; 0, 𝑡)

is a C-algebra isomorphism, where 𝑛(𝜆) :=
∑︀

𝑖(𝑖− 1)𝜆𝑖. Equivalently,

1𝜆 * 1𝜇 =
∑︁

𝜈∈Sig𝑛

𝑡𝑛(𝜆)+𝑛(𝜇)−𝑛(𝜈)𝑐𝜈𝜆,𝜇(0, 𝑡)1𝜈 .

• The measure of each double coset 𝐾𝑝𝜆𝐾 is

M(𝐾𝑝𝜆𝐾) = 𝑡𝑛(𝜆)−(𝑛−1)|𝜆|𝑃𝜆(1, 𝑡, . . . , 𝑡
𝑛−1; 0, 𝑡).

It follows directly that∫︀
𝑥∈𝐾𝑝𝜈𝐾

(1𝜆 * 1𝜇)(𝑥)𝑑𝑥

M(𝐾𝑝𝜆𝐾)M(𝐾𝑝𝜇𝐾)
= 𝑐𝜈𝜆,𝜇(0, 𝑡)

𝑃𝜈(1, . . . , 𝑡
𝑛−1; 0, 𝑡)

𝑃𝜆(1, . . . , 𝑡𝑛−1; 0, 𝑡)𝑃𝜇(1, . . . , 𝑡𝑛−1; 0, 𝑡)
, (3.1.2)
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using the fact that either (𝑛− 1)|𝜆|+ (𝑛− 1)|𝜇| = (𝑛− 1)|𝜈| or the equality is trivial.

But the LHS of (3.1.2), by the definition of the convolution product, is

1

M(𝐾𝑝𝜆𝐾)M(𝐾𝑝𝜇𝐾)

∫︁
𝑥,𝑦∈G𝑡

1𝜈(𝑥)1𝜆(𝑥𝑦
−1)1𝜇(𝑦)𝑑𝑥𝑑𝑦

Setting 𝐴 = 𝑥𝑦−1, 𝐵 = 𝑦, this is exactly the conditional probability Pr(SN(𝐴𝐵) = 𝜈) as

𝐴,𝐵 vary over 𝐾𝑝𝜆𝐾 and 𝐾𝑝𝜇𝐾 respectively (both normalized to have total measure

1), so Part 3 of Theorem 1.2.1 is proven.

Now consider Part 1. The distribution of the top 𝑛 rows of a Haar-distributed element

of GL𝑁(Z𝑝) is just the unique GL𝑛(Z𝑝) × GL𝑁(Z𝑝)-invariant distribution on 𝑀𝑛×𝑁(Q𝑝)

with singular numbers SN(𝐴) = (0[𝑛]). Hence Part 1 is the special case of (1.2.7) when

𝜆 = (0[𝑛]). Let us deduce (1.2.7) from Proposition 3.1.1.

Fix 𝜆 ∈ Sig𝑛. We wish to compute the distribution of the singular numbers SN(𝑈 diag𝑛×𝑁(𝑝
𝜆)𝑉 𝑃𝑘),

where 𝑈 ∈ GL𝑛(Z𝑝), 𝑉 ∈ GL𝑁(Z𝑝) are Haar distributed and 𝑃𝑘 = diag𝑁×𝑁(1[𝑁−𝑘], 0[𝑘])

is a corank-𝑘 projector. Consider a fixed, deterministic 𝑉0 ∈ GL𝑁(Z𝑝), and let 𝜈 =

SN(𝑈 diag𝑛×𝑁(𝑝
𝜆)𝑉0𝑃𝑘) ∈ Sig𝑛. First note that this is independent of 𝑈 , and setting

𝐴(𝑉0) := diag𝑁×𝑁(𝑝
𝜆, 0[𝑁 − 𝑛])𝑉0𝑃𝑘

we have SN(𝐴(𝑉0)) = (∞[𝑁 − 𝑛], 𝜈) ∈ Sig𝑁 . For 𝐷 > 𝜈1 set

𝐴𝐷(𝑉0) := diag𝑁×𝑁(𝑝
𝜆, 𝑝𝐷[𝑁 − 𝑛])𝑉0 diag𝑁×𝑁(1[𝑁 − 𝑘], 𝑝𝐷[𝑘]).

We claim that SN(𝐴𝐷)𝑁−𝑛+𝑖 = 𝜈𝑖 for each 𝑖 = 1, . . . , 𝑛.

Let 𝑟𝐷 : 𝑀𝑁(Z𝑝) → 𝑀𝑁(Z/𝑝𝐷Z) be the obvious map. Proposition 2.1.1 holds also

for matrices over Z/𝑝𝐷Z, so we may abuse notation and define SN on both 𝑀𝑁(Z𝑝) and

𝑀𝑁(Z/𝑝𝐷Z) as in Definition 3. Let 𝜙𝐷 : Sig𝑁 → Sig𝑁 be the map defined as follows: for

any 𝜅 ∈ Sig𝑁 , let 𝑗 = max({𝑖 : 𝜅𝑖 ≥ 𝐷}), and define 𝜙𝐷(𝜅) := (∞[𝑗], 𝜅𝑗+1, . . . , 𝜅𝑁). It is

clear that the diagram

𝑀𝑁(Z𝑝) Sig𝑁

𝑀𝑁(Z/𝑝𝐷Z) Sig𝑁

SN

𝑟𝐷 𝜙𝐷

SN
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commutes, hence SN(𝐴𝐷(𝑉0))𝑁−𝑛+𝑖 = 𝜈𝑖 for each 𝑖 = 1, . . . , 𝑛, because 𝑟𝐷(𝐴𝐷(𝑉0)) =

𝑟𝐷(𝐴(𝑉0)) and 𝜈𝑖 < 𝐷 for all 𝑖. Thus for any fixed 𝜈 and 𝐷 > 𝜈1, recalling that

𝑉 ∈ GL𝑁(Z𝑝) is Haar distributed, we have

Pr(SN(𝐴𝐷(𝑉 ))𝑁−𝑛+𝑖 = 𝜈𝑖 for 𝑖 = 1, . . . , 𝑛) = Pr(SN(𝐴(𝑉 ))𝑁−𝑛+𝑖 = 𝜈𝑖 for 𝑖 = 1, . . . , 𝑛).

This stabilization for 𝐷 > 𝜈1 in particular implies that

lim
𝐷→∞

Pr(SN(𝐴𝐷(𝑉 ))𝑁−𝑛+𝑖 = 𝜈𝑖 for 𝑖 = 1, . . . , 𝑛) = Pr(SN(𝐴(𝑉 ))𝑁−𝑛+𝑖 = 𝜈𝑖 for 𝑖 = 1, . . . , 𝑛).

The RHS is what we want to compute. By Part 3 of Theorem 1.2.1, the LHS is equal to

lim
𝐷→∞

∑︁
𝜅∈Sig𝑁

𝜅𝑁−𝑛+𝑖=𝜈𝑖 for all 𝑖=1,...,𝑛

𝑐𝜅(𝐷[𝑁−𝑛],𝜆),(𝐷[𝑘],0[𝑁−𝑘])(0, 𝑡)𝑃𝜅(1, . . . , 𝑡
𝑛−1; 0, 𝑡)

𝑃(𝐷[𝑁−𝑛],𝜆)(1, . . . , 𝑡𝑛−1; 0, 𝑡)𝑃(𝐷[𝑘],0[𝑁−𝑘])(1, . . . , 𝑡𝑛−1; 0, 𝑡)
.

By Proposition 3.1.1 this is equal to

𝑄̃𝜈/𝜆(1, . . . , 𝑡
−(𝑘−1))𝑃𝜈(𝑡

𝑁−𝑛, . . . , 𝑡𝑁−1)

𝑃𝜆(𝑡𝑁−𝑛, . . . , 𝑡𝑁−1)Π(1, . . . , 𝑡−(𝑘−1); 𝑡𝑁−𝑛, . . . , 𝑡𝑁−1)
,

which is (1.2.7). Setting 𝑚 = 𝑁 − 𝑘 and 𝜆 = (0[𝑛]), and dividing all variables in both

𝑃 specializations by 𝑡𝑁−𝑛 and multiplying those in the 𝑄 specialization by 𝑡𝑁−𝑛, yields

Theorem 1.2.1 Part 1.

It remains to prove the other case of Part 2, namely (4.3.1). One wishes to compute

the distribution of 𝑃𝑑𝑈 diag𝑛×𝑁(𝑝
𝜆)𝑉 where 𝑃𝑑 ∈ 𝑀𝑛(Z𝑝) is a corank 𝑑 projector and

𝑈, 𝑉 are as above. We may ignore 𝑉 , and by the same argument as before it suffices to

consider the matrix diag𝑛×𝑛(0[𝑛− 𝑑], 𝑝𝐷[𝑑])𝑈 diag𝑛×𝑛(𝑝
𝜆) for large 𝐷. One then applies

Proposition 3.1.2 to yield (4.3.1).

From Theorem 1.2.1 Part 1 we deduce the following. Recall that the intuition for this

statement is that if 𝑁 is very large compared to 𝑚,𝑛, then the entries of an 𝑛×𝑚 corner

of a Haar distributed element of GL𝑁(Z𝑝) become asymptotically iid from the additive

Haar measure on Z𝑝. The analogous statement holds in the complex case, namely that

an 𝑛×𝑚 corner of a Haar distributed element of 𝑈(𝑁) becomes a matrix of iid Gaussians

as 𝑁 → ∞ if one rescales appropriately.
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Corollary 1.2.2. Fix a prime 𝑝 and let 𝑡 = 1/𝑝. Let 1 ≤ 𝑛 ≤ 𝑚, and 𝐴 ∈𝑀𝑛×𝑚(Z𝑝) be

random with iid entries distributed according to the additive Haar measure on Z𝑝. Then

for any 𝜆 ∈ Sig+𝑛 ,

Pr(SN(𝐴) = 𝜆) =
𝑃𝜆(1, . . . , 𝑡

𝑛−1; 𝑡)𝑄𝜆(𝑡
𝑚−𝑛+1, 𝑡𝑚−𝑛+2, . . . ; 𝑡)

Π(0,𝑡)(1, . . . , 𝑡𝑛−1; 𝑡𝑚−𝑛+1, 𝑡𝑚−𝑛+2, . . .)

Proof. Let 𝐴 ∈ 𝑀𝑛×𝑚(Z𝑝) be distributed as in Corollary 1.2.2, and 𝐵𝑁 ∈ 𝑀𝑛×𝑚(Z𝑝) be

an 𝑛×𝑚 corner of a Haar distributed element of GL𝑁(Z𝑝). By Part 1 of Theorem 1.2.1

one has

lim
𝑁→∞

Pr(SN(𝐵𝑁) = 𝜆) =
𝑃𝜆(1, . . . , 𝑡

𝑛−1)𝑄𝜆(𝑡
𝑚−𝑛+1, 𝑡𝑚−𝑛+2, . . .)

Π(0,𝑡)(1, . . . , 𝑡𝑛−1; 𝑡𝑚−𝑛+1, 𝑡𝑚−𝑛+2, . . .)
,

hence it suffices to prove

lim
𝑁→∞

Pr(SN(𝐵𝑁) = 𝜆) = Pr(SN(𝐴) = 𝜆).

It is clear that 𝐴 and 𝐵𝑁 are nonsingular with probability 1, so SN(𝐵𝑁) and SN(𝐴) lie

in Sig+𝑛 (rather than Sig𝑁) with probability 1. Letting 𝐷 > 𝜆1 be an integer, we have by

the argument in the proof of Theorem 1.2.1 that if SN(𝐸) = 𝜆 then SN(𝑟𝐷(𝐸)) = 𝜆 as

well for any fixed nonsingular 𝐸 ∈𝑀𝑛×𝑚(Z𝑝), where 𝑟𝐷 is the reduction modulo 𝑝𝐷 map.

Therefore Pr(SN(𝐵𝑁) = 𝜆) = Pr(SN(𝑟𝐷(𝐵𝑁)) = 𝜆) and similarly with 𝐵𝑁 replaced by

𝐴, so it suffices to prove

lim
𝑁→∞

Pr(SN(𝑟𝐷(𝐵𝑁) = 𝜆) = Pr(SN(𝑟𝐷(𝐴) = 𝜆).

From the discussion of measures at the beginning of the section it follows that 𝑟𝐷(𝐴)

has entries iid uniform over Z/𝑝𝐷Z, and 𝑟𝐷(𝐵𝑁) has the distribution of an 𝑛 × 𝑚

corner of a uniformly random element of GL𝑁(Z/𝑝𝐷Z). A uniformly random element

(𝑎𝑖𝑗)1≤𝑖,𝑗≤𝑁 ∈ GL𝑁(Z/𝑝𝐷Z) may be sampled by first sampling a uniformly random ele-

ment of (𝑎′𝑖𝑗)1≤𝑖,𝑗≤𝑁 ∈ GL𝑁(Z/𝑝Z), then choosing 𝑎𝑖𝑗 ∈ Z/𝑝𝐷Z independently, uniform

in the congruence class of 𝑎′𝑖𝑗. Thus it suffices to show that for any 𝐶 ∈𝑀𝑛×𝑚(Z/𝑝Z),

lim
𝑁→∞

Pr(𝑟1(𝐵𝑁) = 𝐶) = Pr(𝑟1(𝐴) = 𝐶).
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For fixed 𝐶,

(𝑝𝑁−𝑚 − 1)(𝑝𝑁−𝑚 − 𝑝) · · · (𝑝𝑁−𝑚 − 𝑝𝑛−1)

𝑝𝑛𝑁
≤ Pr(𝑟1(𝐵𝑁) = 𝐶) ≤ 𝑝𝑛(𝑁−𝑚)

𝑝𝑛𝑁
;

the lower bound is sharp when 𝐶 is the zero matrix, and the upper bound is sharp when

𝐶 is nonsingular. Both bounds come from counting the number of 𝑛 × 𝑁 nonsingular

matrices over Z/𝑝Z with left 𝑛×𝑚 submatrix 𝐶, and dividing by #𝑀𝑛×𝑁(Z/𝑝Z). The

upper bound is 𝑝−𝑛𝑚 and the lower bound goes to 𝑝−𝑛𝑚 as 𝑁 → ∞. Since Pr(𝑟1(𝐴) =

𝐶) = 𝑝−𝑛𝑚 for any 𝐶, we are done.

Note also that Parts 2, 3 of Theorem 1.2.1 (and the limiting case Corollary 1.2.2)

together with Proposition 2.2.10 immediately imply that joint distributions of singular

numbers of products of 𝑝-adic Haar corners are distributed according to Hall-Littlewood

processes.

Corollary 3.1.3. Let 𝑡 = 1/𝑝, fix 𝑛 ≥ 1 and let 𝑁1, 𝑁2, . . . ∈ Z ∪ {∞} with with 𝑁𝑖 > 𝑛

for all 𝑖. For each 𝑖, let 𝐴𝑖 be the top left 𝑛× 𝑛 corner of a Haar distributed element of

GL𝑁𝑖
(Z𝑝) if 𝑁𝑖 <∞, and let 𝐴𝑖 have iid entries distributed by the additive Haar measure

on Z𝑝 if 𝑁𝑖 = ∞. Then for 𝜆(1), . . . , 𝜆(𝑘) ∈ Sig+𝑛 ,

Pr(SN(𝐴𝜏 · · ·𝐴1) = 𝜆(𝜏) for all 𝜏 = 1, . . . , 𝑘)

=
𝑄̃𝜆(1)/(0[𝑛])(𝑡, . . . , 𝑡

𝑁1−𝑛)𝑄̃𝜆(2)/𝜆(1)(𝑡, . . . , 𝑡𝑁2−𝑛) · · · 𝑄̃𝜆(𝑘)/𝜆(𝑘−1)(𝑡, . . . , 𝑡𝑁𝑘−𝑛)𝑃𝜆(𝑘)(1, . . . , 𝑡𝑛−1)

Π(0,𝑡)(1, . . . , 𝑡𝑛−1; 𝑡, . . . , 𝑡𝑁1−𝑛, 𝑡, . . . , 𝑡𝑁2−𝑛, . . . , 𝑡, . . . , 𝑡𝑁𝑘−𝑛)

The analogue of this result in the real/complex/quaternion case is given in [Ahn22b,

Thm. 3.12]. Additionally, Theorem 1.2.1 together with Hall-Littlewood combinatorics

yields exact formulas for the distribution of singular numbers of a product of additive

Haar matrices stated earlier as Theorem 1.2.3, generalizing the explicit formula for the

Cohen-Lenstra measure which is the case of one matrix.

Proposition 3.1.4. For 𝑛 ≥ 1 and 𝜆, 𝜈 ∈ Sig𝑛, we have

𝑄̃𝜈/𝜆(𝑢, 𝑢𝑡, . . .)𝑃𝜈(1, . . . , 𝑡
𝑛−1)

𝑃𝜆(1, . . . , 𝑡𝑛−1)Π(1, . . . , 𝑡𝑛−1;𝑢, 𝑢𝑡, . . .)
= (𝑢; 𝑡)𝑛𝑢

|𝜈|−|𝜆|𝑡𝑛(𝜈)−𝑛(𝜆)+𝑛(𝜈/𝜆)
∏︁
𝑥∈Z

⎡⎣𝜈 ′𝑥 − 𝜆′𝑥+1

𝜈 ′𝑥 − 𝜈 ′𝑥+1

⎤⎦
𝑡

.

(3.1.3)
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Proof. It follows from the definition in (2.2.17) and telescoping that

1

Π(1, . . . , 𝑡𝑛−1;𝑢, 𝑢𝑡, . . .)
= (𝑢; 𝑡)𝑛.

Combining Proposition 2.2.15 with Theorem 2.2.16 to evaluate 𝑃𝜈 , 𝑃𝜆 and 𝑄̃𝜈/𝜆 respec-

tively yields

𝑄̃𝜈/𝜆(𝑢, 𝑢𝑡, . . .)𝑃𝜈(1, . . . , 𝑡
𝑛−1)

𝑃𝜆(1, . . . , 𝑡𝑛−1)
= 𝑢|𝜈|−|𝜆|𝑡𝑛(𝜈/𝜆)+𝑛(𝜈)−𝑛(𝜆)

∏︁
𝑥∈Z

(𝑡1+𝜈′𝑥−𝜆′
𝑥 ; 𝑡)𝑚𝑥(𝜆)

(𝑡; 𝑡)𝑚𝑥(𝜈)

Noting that ∏︁
𝑥∈Z

(𝑡1+𝜈′𝑥−𝜆′
𝑥 ; 𝑡)𝑚𝑥(𝜆)

(𝑡; 𝑡)𝑚𝑥(𝜈)

=
∏︁
𝑥∈Z

⎡⎣𝜈 ′𝑥 − 𝜆′𝑥+1

𝜈 ′𝑥 − 𝜈 ′𝑥+1

⎤⎦
𝑡

completes the proof.

Proof of Theorem 1.2.3. Follows immediately by combining Theorem 1.2.1 and Proposi-

tion 3.1.4 with 𝑢 = 𝑡 = 1/𝑝.

3.2 Asymptotics of Macdonald polynomials and struc-

ture coefficients

We now develop the machinery to prove Proposition 3.1.1 and Proposition 3.1.2. Both

of these statements involve limits of normalized structure coefficients

𝑃𝜈(𝐷)(𝑎1, . . . , 𝑎𝑛; 𝑞, 𝑡)

𝑃𝜆(𝐷)(𝑎1, . . . , 𝑎𝑛; 𝑞, 𝑡)𝑃𝜇(𝐷)(𝑎1, . . . , 𝑎𝑛; 𝑞, 𝑡)
𝑐
𝜈(𝐷)
𝜆(𝐷),𝜇(𝐷)(𝑞, 𝑡)

for some signatures 𝜆(𝐷), 𝜇(𝐷), 𝜈(𝐷), so we must establish asymptotics both on the Mac-

donald polynomials with real specializations a, and on the structure coefficients 𝑐𝜈𝜆,𝜇(𝑞, 𝑡)

themselves. Both come from Theorem 3.2.1 below, which treats the asymptotics of Mac-

donald polynomials in formal variables 𝑥1, . . . , 𝑥𝑁 .

Theorem 3.2.1. Let 𝑞, 𝑡 ∈ (−1, 1). Fix positive integers 𝑘,𝑁 , let 𝑟1, . . . , 𝑟𝑘 be positive

integers such that
∑︀

𝑖 𝑟𝑖 = 𝑁 , and set 𝑠𝑖 =
∑︀𝑖

𝑗=1 𝑟𝑗 with the convention 𝑠0 = 0. Let

𝐿1 > · · · > 𝐿𝑘 be integers and 𝜆(𝑖) ∈ Sig𝑟𝑖 be any signatures, and define the signature
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𝜆(𝐷) = (𝐿1𝐷 + 𝜆
(1)
1 , . . . , 𝐿1𝐷 + 𝜆

(1)
𝑟1 , . . . , 𝐿𝑘𝐷 + 𝜆

(𝑘)
1 , . . . , 𝐿𝑘𝐷 + 𝜆

(𝑘)
𝑟𝑘 ) ∈ Sig𝑁 for each

𝐷 ∈ N large enough so that this is a valid signature. Then

𝑃𝜆(𝐷)(𝑥1, . . . , 𝑥𝑁 ; 𝑞, 𝑡)∏︀𝑘
𝑖=1(𝑥𝑠𝑖−1+1 · · ·𝑥𝑠𝑖)𝐿𝑖𝐷

→
𝑘∏︁

𝑖=1

𝑃𝜆(𝑖)(𝑥𝑠𝑖−1+1, . . . , 𝑥𝑠𝑖 ; 𝑞, 𝑡)
𝑘−1∏︁
𝑖=1

Π(𝑞,𝑡)(𝑥
−1
𝑠𝑖−1+1, . . . , 𝑥

−1
𝑠𝑖
;𝑥𝑠𝑖+1, . . . , 𝑥𝑁)

(3.2.1)

as 𝐷 → ∞ in the sense that the coefficient of each Laurent monomial 𝑥𝑑11 · · ·𝑥𝑑𝑁𝑁 on the

LHS converges to the corresponding coefficient on the RHS.

Proof. First, note that in the branching rule (2.2.8) there is exactly on Gelfand-Tsetlin

pattern 𝑇𝑚𝑎𝑥 ∈ GT𝑃 (𝜆(𝐷)/()) with weight 𝜆(𝐷), namely the one with all entries as large

as possible. One can check that 𝜓(𝑇𝑚𝑎𝑥) = 1, so 𝑇𝑚𝑎𝑥 contributes the lexicographically

highest-degree monomial x𝜆(𝐷) of 𝑃𝜆(𝐷)(𝑥1, . . . , 𝑥𝑁).

Define the signature 𝜆̂(𝐷) := ((𝐿0·𝐷)[𝑟0], . . . , (𝐿𝑘·𝐷)[𝑟𝑘]), so x𝜆̂(𝐷) =
∏︀𝑘

𝑖=1(𝑥𝑠𝑖−1+1 · · ·𝑥𝑠𝑖)𝐿𝑖𝐷.

The idea of the proof is that for another monomial x𝜆̂(𝐷)+d, the set of GT patterns of

weight x𝜆̂(𝐷)+d stabilizes in size for all large 𝐷, and furthermore the structure of these

GT patterns will be in a sense independent of 𝐷.

Fix d ∈ Z𝑛 for the remainder of the proof. For any fixed monomial xd and suf-

ficiently large 𝐷, all Gelfand-Tsetlin patterns contributing to the coefficient of xd in

𝑃𝜆(𝐷)(𝑥1, . . . , 𝑥𝑁)/x
𝜆̂(𝐷) will be as in Figure 3-1, or in other words, all entries will be

close to those of 𝑇𝑚𝑎𝑥.

It is natural to divide each of the ‘strips’ of entries ≈ 𝐿𝑖𝐷 into two GT patterns, one

triangular of the type in the 𝑃 branching rule and one rectangular of the type in the 𝑄

branching rule, by splitting into the parts above and below row 𝑠𝑖 inclusive, see Figure 3-

2. Where each strip intersects the 𝑠𝑡ℎ𝑖 row one has a signature 𝜅(𝑖) + 𝐿𝑖𝐷, so any 𝑇 ∈

GT𝑃 (𝜆(𝐷)) uniquely specifies smaller constituent GT patterns 𝑇 𝑃
𝑖 ∈ GT𝑃 (𝜅

(𝑖)/()), 𝑇𝑄
𝑖 ∈

GT𝑄,𝑁−𝑠𝑖(𝜆
(𝑖)/𝜅(𝑖)) for each 𝑖 = 1, . . . , 𝑘. It is also clear from the picture that any

choice of these smaller GT patterns, i.e. choice of 𝜅(𝑖) ∈ Sig𝑟𝑖 , 𝑖 = 1, . . . , 𝑘 and elements

of GT𝑃 (𝜅
(𝑖)/()) and GT𝑄,𝑠𝑖(𝜆

(𝑖)/𝜅(𝑖)) for 𝑖 = 1, . . . , 𝑘, uniquely specifies an element of

GT(𝜆(𝐷)) provided 𝐷 is large enough that the rows are still weakly decreasing.

This motivates the following. For signatures 𝜅(1) ∈ Sig𝑟1 , . . . , 𝜅
(𝑘) ∈ Sig𝑟𝑘 and GT

patterns 𝑇 𝑃
𝑖 ∈ GT𝑃 (𝜅

(𝑖)/()), 𝑇𝑄
𝑖 ∈ GT𝑄,𝑁−𝑠𝑖(𝜆

(𝑖)/𝜅(𝑖)) for 𝑖 = 1, . . . , 𝑘, define (for all 𝐷

large enough that this makes sense) 𝐵𝑃𝐷(𝑇
𝑃
1 , . . . , 𝑇

𝑃
𝑘 , 𝑇

𝑄
1 , . . . , 𝑇

𝑄
𝑘 ) ∈ GT𝑃 (𝜆(𝐷)/()) to
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λ
(1)
r1

+ L1D · · · λ
(1)
1

+ L1Dλ
(2)
r2

+ L2D · · · λ
(2)
1

+ L2Dλ
(k)
rk

+ LkD · · · λ
(k)
1

+ LkD

: : :

.

.

.

all entries

≈ LkD

all entries

≈ L2D

all entries

≈ L1D

Figure 3-1: The form of a Gelfand-Tsetlin pattern 𝑇 with 𝑤𝑡(𝑇 ) close to 𝜆(𝐷) for large
𝐷.

λ
(1)
r1

+ L1D · · · λ
(1)
1

+ L1Dλ
(2)
r2

+ L2D · · · λ
(2)
1

+ L2Dλ
(k)
rk

+ LkD · · · λ
(k)
1

+ LkD

: : :

.

.

.

T
Q
1

T P
1

T
Q
2

T P
2

T P
k

row s1

row s2

row sk−1

Figure 3-2: The decomposition into constituent GT patterns.
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be the GT pattern of top row 𝜆(𝐷) which decomposes into 𝑇 𝑃
1 , . . . , 𝑇

𝑃
𝑘 , 𝑇

𝑄
1 , . . . , 𝑇

𝑄
𝑘 as

above. For sufficiently large 𝐷, all GT patterns contributing to xd will be of the form

𝐵𝑃𝐷(𝑇
𝑃
1 , . . . , 𝑇

𝑃
𝑘 , 𝑇

𝑄
1 , . . . , 𝑇

𝑄
𝑘 ) for some 𝑇 𝑃

1 , . . . , 𝑇
𝑄
𝑘 , and furthermore only finitely many

such patterns will contribute to xd (and this finite number does not grow with 𝐷). Hence

we may focus on describing the GT patterns 𝐵𝑃𝐷(𝑇
𝑃
1 , . . . , 𝑇

𝑃
𝑘 , 𝑇

𝑄
1 , . . . , 𝑇

𝑄
𝑘 ).

Given any 𝑇 ∈ GT𝑄,𝑠(𝜇/𝜈) given by 𝜈 = 𝜆(1) ≺𝑄 𝜆(2) ≺𝑄 · · · ≺𝑄 𝜆(𝑠) = 𝜇, define 𝑇 ∈

GT𝑄,𝑠(−𝜈/− 𝜇) by −𝜇 ≺ −𝜆(𝑠−1) ≺ · · · ≺ −𝜆(1) = −𝜈. Similarly, given 𝑇 ∈ GT𝑃 (𝜅/())

defined by () ≺𝑃 𝜆(1) ≺𝑃 · · · ≺𝑃 𝜆(len(𝜅)) = 𝜅, let 𝑇 ∈ GT𝑃 (−𝜅/()) be the GT pattern

with 𝑖𝑡ℎ row −𝜆(𝑖). We claim that

lim
𝐷→∞

𝜓(𝐵𝑃𝐷(𝑇
𝑃
1 , . . . , 𝑇

𝑃
𝑘 , 𝑇

𝑄
1 , . . . , 𝑇

𝑄
𝑘 )) =

𝑘∏︁
𝑖=1

𝜓(𝑇 𝑃
𝑖 )𝜙(𝑇𝑄

𝑖 ). (3.2.2)

In the GT pattern 𝐵𝑃𝐷(𝑇
𝑃
1 , . . . , 𝑇

𝑃
𝑘 , 𝑇

𝑄
1 , . . . , 𝑇

𝑄
𝑘 ), we may view each entry as coming

from one of the constituent GT patterns 𝑇 𝑃
𝑖 or 𝑇𝑄

𝑖 . As 𝐷 → ∞, the difference between

any two entries in a given row of 𝐵𝑃𝐷(𝑇
𝑃
1 , . . . , 𝑇

𝑃
𝑘 , 𝑇

𝑄
1 , . . . , 𝑇

𝑄
𝑘 ) which come from the

same constituent GT pattern remains constant, while the difference between any two

entries which come from different constituent GT patterns goes to infinity.

Recall from (2.2.6) that the 𝑃 branching coefficient 𝜓(𝐵𝑃𝐷(𝑇
𝑃
1 , . . . , 𝑇

𝑃
𝑘 , 𝑇

𝑄
1 , . . . , 𝑇

𝑄
𝑘 ))

is a product of factors
𝑓(𝑡𝑗−𝑖𝑞𝜇𝑖−𝜇𝑗)

𝑓(𝑡𝑗−𝑖𝑞𝜆𝑖−𝜇𝑗)
, (3.2.3)

and
𝑓(𝑡𝑗−𝑖𝑞𝜆𝑖−𝜆𝑗+1)

𝑓(𝑡𝑗−𝑖𝑞𝜇𝑖−𝜆𝑗+1)
. (3.2.4)

Notice that when for example 𝜇𝑖 and 𝜇𝑗 come from different constituent GT patterns of the

GT pattern𝐵𝑃𝐷(𝑇
𝑃
1 , . . . , 𝑇

𝑃
𝑘 , 𝑇

𝑄
1 , . . . , 𝑇

𝑄
𝑘 ), 𝑞𝜇𝑖−𝜇𝑗 → 0 as𝐷 → ∞ since |𝑞| < 1, and hence

𝑓(𝑡𝑗−𝑖𝑞𝜇𝑖−𝜇𝑗) → 𝑓(0) = 1. Similarly the other three factors 𝑓(𝑡𝑗−𝑖𝑞𝜆𝑖−𝜆𝑗+1), 𝑓(𝑡𝑗−𝑖𝑞𝜆𝑖−𝜇𝑗), 𝑓(𝑡𝑗−𝑖𝑞𝜇𝑖−𝜆𝑗+1)

converge to 1. Because the number of these factors in (2.2.6) is finite independent of 𝐷,

this implies that

lim
𝐷→∞

𝜓(𝐵𝑃𝐷(𝑇
𝑃
1 , . . . , 𝑇

𝑃
𝑘 , 𝑇

𝑄
1 , . . . , 𝑇

𝑄
𝑘 ))

is equal the product of those 𝑓(· · · )±1 factors corresponding to pairs of entries coming

from the same constituent GT pattern.

98



First let us consider the constituent GT patterns 𝑇 𝑃
𝑖 . Because 𝑓(𝑡𝑗−𝑖𝑞𝜇𝑖−𝜇𝑗) depends

only on the differences 𝑗 − 𝑖 and 𝜇𝑖 − 𝜇𝑗 but is independent of overall translation of the

indices or the entries (and similarly for the other three 𝑓 terms), we see that the product

of 𝑓(· · · )±1 terms in 𝜓(𝐵𝑃𝐷(𝑇
𝑃
0 , . . . , 𝑇

𝑃
𝑘 , 𝑇

𝑄
1 , . . . , 𝑇

𝑄
𝑘 )) corresponding to entries from a

given constituent GT pattern 𝑇 𝑃
𝑖 is exactly 𝜓(𝑇 𝑃

𝑖 ). By the symmetry of (2.2.6) this is

equal to 𝜓(𝑇 𝑃
𝑖 ), cf. Lemma 2.2.2.

Now consider a constituent GT pattern 𝑇𝑄
𝑖 . It follows from (2.2.7) that the product

of factors (3.2.3) and (3.2.4) corresponding to pairs of entries in 𝑇𝑄
𝑖 is exactly 𝜙(𝑇𝑄

𝑖 ),

proving (3.2.2).

It is an easy check from our decomposition into constituent GT patterns that

x𝑤𝑡(𝐵𝑃𝐷(𝑇𝑃
1 ,...,𝑇𝑃

𝑘 ,𝑇𝑄
1 ,...,𝑇𝑄

𝑘 ))

x𝜆̂(𝐷)
=

𝑘∏︁
𝑖=1

(𝑥
𝑤𝑡(𝑇𝑃

𝑖 )1
𝑠𝑖−1+1 · · ·𝑥𝑤𝑡(𝑇𝑃

𝑖 )𝑟𝑖
𝑠𝑖 )(𝑥

𝑤𝑡(𝑇𝑄
𝑖 )1

𝑠𝑖+1 · · ·𝑥𝑤𝑡(𝑇𝑄
𝑖 )𝑁−𝑠𝑖

𝑁 ). (3.2.5)

Combining (3.2.2), (3.2.5), and Lemma 2.2.2, and summing over the 𝜅(𝑖), yields

lim
𝐷→∞

𝑃𝜆(𝐷)/()(𝑥1, . . . , 𝑥𝑁)

x𝜆̂(𝐷)
[xd]

=
∑︁

𝜅(𝑖)∈Sig𝑟𝑖 ,𝑖=1,...,𝑘

𝑘∏︁
𝑖=1

𝑃𝜅(𝑖)/()(𝑥𝑠𝑖−1+1, . . . , 𝑥𝑠𝑖)𝑄̃−𝜅(𝑖)/−𝜆(𝑖)(𝑥𝑠𝑖+1, . . . , 𝑥𝑁)[x
d]

=
𝑘∏︁

𝑖=1

𝑃−𝜅(𝑖)/()(𝑥
−1
𝑠𝑖−1+1, . . . , 𝑥

−1
𝑠𝑖
)𝑄̃−𝜅(𝑖)/−𝜆(𝑖)(𝑥𝑠𝑖+1, . . . , 𝑥𝑁)[x

d],

where (·)[xd] denotes the coefficient of the xd term of the Laurent polynomial (·). Finally,

applying the Cauchy identity Lemma 2.2.3 to the RHS of the above completes the proof.

Remark 13. We have made no attempt to find the most general hypothesis on 𝑞 and 𝑡

under which the above result holds, as 𝑞, 𝑡 ∈ (−1, 1) is the only range typically used in

probabilistic applications. Some extra complications arise if 𝑞, 𝑡 are such that some of the

𝑓(· · · ) factors in the denominator may vanish, or if |𝑞| ≥ 1–as then the argument that

𝑓(· · · ) factors involving pairs of entries from different constituent GT patterns go to 1

no longer holds. However, we believe that one may be able to prove the same result for

more general values of 𝑞, 𝑡 with some additional analysis of cancellation between 𝑓(· · · )

factors.
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Remark 14. For the Hall-Littlewood case 𝑞 = 0 or the Schur case 𝑞 = 𝑡, the convergence

statement (3.2.2) is actually stabilization to equality for all sufficiently large 𝐷, and hence

the coefficients of monomials in the statement of Theorem 3.2.1 also stabilize for large 𝐷.

This is because the branching coefficients 𝜓(𝑇 ) are ‘local’ in these cases, meaning that

they may be expressed as products over entries of the GT pattern rather than pairs of

entries, so in particular entries of different constituent GT patterns do not interact. In

the case 𝑞 = 𝑡 this is particular clear, as 𝜓(𝑇 ) = 1 for any valid GT pattern 𝑇 .

Furthermore, at 𝑞 = 𝑡 this stabilization is monotonic from below, i.e. for each 𝜇 ∈ Z𝑁 ,

the coefficient of x𝜇 in the LHS of Theorem 3.2.1 (which is an integer, as follows from the

fact that the 𝜓(𝑇 ) are all 1) is increasing in 𝐷 for all 𝐷 such that 𝜆(𝐷) is a signature.

Remark 15. An asymptotic factorization statement somewhat similar to Theorem 3.2.1

was proven for Jack functions in infinitely many variables by Okounkov-Olshanski [OO98,

Thm. 4.1], though we do not believe the two are directly related as our polynomials are

in only finitely many variables.

We now convert Theorem 3.2.1 into a statement about Macdonald polynomials spe-

cialized at real variables.

Definition 15. For any finite subset 𝑆 ⊂ Z𝑁 , let Proj𝑆 : C[𝑥±1
1 , . . . , 𝑥±1

𝑁 ] → C[𝑥±1
1 , . . . , 𝑥±1

𝑁 ]

be the C-linear operator with Proj𝑆 x
d = 1(d ∈ 𝑆)xd.

Proposition 3.2.2. Let 𝑡, 𝑞 ∈ (−1, 1), a = (𝑎1, . . . , 𝑎𝑁) with 𝑎1 > . . . > 𝑎𝑁 > 0 be real

numbers, and 𝐿𝑖, 𝑟𝑖, 𝑠𝑖, 𝜆(𝐷), 𝜆̂(𝐷) be as in Theorem 3.2.1. Then

lim
𝐷→∞

𝑃𝜆(𝐷)(a)

a𝜆̂(𝐷)
=

𝑘∏︁
𝑖=1

𝑃𝜆(𝑖)(𝑎𝑠𝑖−1+1, . . . , 𝑎𝑠𝑖)
𝑘−1∏︁
𝑖=1

Π(𝑞,𝑡)(𝑎
−1
𝑠𝑖−1+1, . . . , 𝑎

−1
𝑠𝑖
; 𝑎𝑠𝑖+1, . . . , 𝑎𝑁)

(3.2.6)

Proof. Let 𝑅𝑞,𝑡(a) be the RHS of (3.2.6). For any 𝜖 > 0 we must find 𝐷0 so that⃒⃒⃒⃒
𝑃𝜆(𝐷)(a)

a𝜆̂(𝐷)
−𝑅𝑞,𝑡(a)

⃒⃒⃒⃒
< 𝜖

for all 𝐷 > 𝐷0. Below we will abuse notation and write Proj𝑆 acting on a Laurent

polynomial in the real numbers 𝑎1, . . . , 𝑎𝑁 to mean ‘take the corresponding polynomial

in formal variables 𝑥𝑖, apply Proj𝑆, then specialize 𝑥𝑖 = 𝑎𝑖 for each 𝑖’. Then for any 𝑆,
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we write

⃒⃒⃒⃒
𝑃𝜆(𝐷)(a)

a𝜆̂(𝐷)
−𝑅𝑞,𝑡(a)

⃒⃒⃒⃒
≤
⃒⃒⃒⃒
Proj𝑆

(︂
𝑃𝜆(𝐷)(a)

a𝜆̂(𝐷)
−𝑅𝑞,𝑡(a)

)︂⃒⃒⃒⃒
+

⃒⃒⃒⃒
(Id−Proj𝑆)

𝑃𝜆(𝐷)(a)

a𝜆̂(𝐷)

⃒⃒⃒⃒
+ |(Id−Proj𝑆)𝑅𝑞,𝑡(a)|, (3.2.7)

The first and third terms of the RHS are easy to bound. The first term of (3.2.7), is

a finite sum of |𝑆| Laurent monomials in 𝑎1, . . . , 𝑎𝑁 with coefficients that converge to 0

as 𝐷 → ∞ by Theorem 3.2.1. Hence for any 𝑆 we may choose 𝐷0 so that⃒⃒⃒⃒
Proj𝑆

(︂
𝑃𝜆(𝐷)(a)

a𝜆̂(𝐷)
−𝑅𝑞,𝑡(a)

)︂⃒⃒⃒⃒
<
𝜖

3

for all 𝐷 > 𝐷0. For the third term, 𝑅𝑞,𝑡(a) is a convergent power series in the variables

𝑎𝑗/𝑎𝑖, 𝑗 > 𝑖, so we may choose 𝑆 sufficiently large that

|(Id−Proj𝑆)𝑅𝑞,𝑡(a)| <
𝜖

3
. (3.2.8)

The second term is slightly trickier. Recall from Lemma 2.2.1 that 𝑓(𝑢) := (𝑡𝑢; 𝑞)∞/(𝑞𝑢; 𝑞)∞.

In particular, since 𝑞, 𝑡 ∈ (−1, 1), 𝑓(𝑢) is defined, continuous, and nonzero on [−1, 1], so⃒⃒⃒⃒
𝑓(𝑢1)

𝑓(𝑢2)

⃒⃒⃒⃒
≤

sup𝑢∈[−1,1] 𝑓(𝑢)

inf𝑢∈[−1,1] 𝑓(𝑢)
. (3.2.9)

Recall that 𝜓(𝑇 ) is a finite product of factors 𝑓(𝑢1)
𝑓(𝑢2)

for 𝑢1, 𝑢2 products of powers of 𝑞, 𝑡

(and in particular lying in [−1, 1]). Hence there is a constant 𝐶 depending only on 𝑁 ,

which is an appropriate power of the RHS of (3.2.9), such that for any 𝜅 ∈ Sig𝑁 and

𝑇 ∈ GT𝑃 (𝜅) we have

|𝜓(𝑇 )| ≤ 𝐶. (3.2.10)

As in (3.2.8) we may choose 𝑆 large enough so that

|(Id−Proj𝑆)𝑅𝑞,𝑞(a)| <
𝜖

3𝐶
. (3.2.11)

By Remark 14 on the Schur case, for any d ∈ Z𝑑 one has that (𝑃𝜆(𝐷)(x; 𝑞, 𝑞)/x
𝜆̂(𝐷))[xd]

is an increasing sequence (in 𝐷) of integers which stabilizes to 𝑅𝑞,𝑞(x)[x
d] for large 𝐷. It

101



follows from this and the nonnegativity of the Laurent monomials ad that

(Id−Proj𝑆)
𝑃𝜆(𝐷)(𝑎1, . . . , 𝑎𝑁 ; 𝑞, 𝑞)

a𝜆̂(𝐷)
≤ (Id−Proj𝑆)𝑅𝑞,𝑞(a) (3.2.12)

(we drop absolute values because all terms in the hidden summations on each side are

positive). Putting together (3.2.10), (3.2.11) and (3.2.12) yields⃒⃒⃒⃒
(Id−Proj𝑆)

𝑃𝜆(𝐷)(a; 𝑞, 𝑡)

a𝜆̂(𝐷)

⃒⃒⃒⃒
≤ 𝐶

⃒⃒⃒⃒
(Id−Proj𝑆)

𝑃𝜆(𝐷)(a; 𝑞, 𝑞)

a𝜆̂(𝐷)

⃒⃒⃒⃒
≤ 𝐶|(Id−Proj𝑆)𝑅𝑞,𝑞(a)|

< 𝜖/3.

This handles the second term of (3.2.7), so choosing 𝑆 large enough that all three 𝜖/3

bounds are simultaneously satisfied completes the proof.

Theorem 3.2.1 may also be used to control asymptotics of the structure coefficients

𝑐𝜈𝜆,𝜇(𝑞, 𝑡). We first prove a simple lemma. Define the dominance order � on Z𝑛 by v�w

if
∑︀

𝑖 𝑣𝑖 =
∑︀

𝑖𝑤𝑖 and
𝑗∑︁

𝑖=1

𝑣𝑖 ≤
𝑗∑︁

𝑖=1

𝑤𝑖 for 𝑗 = 1, . . . , 𝑛.

Lemma 3.2.3. Let 𝜆(𝐷), 𝜇(𝐷), 𝜅(𝐷) ∈ Sig𝑁 be three sequences of signatures of the form

in Theorem 3.2.1 (possibly for different 𝐿𝑖, 𝑟𝑖), such that 𝜆̂(𝐷) + 𝜇̂(𝐷) = 𝜅̂(𝐷). Let

𝜆̃ ∈ Z𝑁 be the tuple such that 𝜆(𝐷) = 𝜆̂(𝐷) + 𝜆̃(𝐷), and define 𝜇̃, 𝜅̃ similarly. Let

𝑆 denote the (finite) interval [𝜅̃, 𝜆̃ + 𝜇̃] in Z𝑁 with respect to the dominance order, or

explicitly 𝑆 = {d ∈ Z𝑁 : 𝜅̃� d� 𝜆̃+ 𝜇̃}. Then

1. The set {lim𝐷→∞ Proj𝑆 𝑃𝜅̂(𝐷)+d(x)/x
𝜅̂(𝐷) : d ∈ 𝑆} is a basis for Proj𝑆 C[𝑥±1 , . . . , 𝑥±𝑁 ].

Here the limits of Laurent polynomials are in the sense of convergence of coefficients

of each monomial.

2. The coefficient of lim𝐷→∞ Proj𝑆 𝑃𝜅(𝐷)/x
𝜅̂(𝐷) in the decomposition of

lim
𝐷→∞

Proj𝑆
𝑃𝜆(𝐷)(x)𝑃𝜇(𝐷)(x)

x𝜅̂(𝐷)

in the above basis is lim𝐷→∞ 𝑐
𝜅(𝐷)
𝜆(𝐷),𝜇(𝐷)(𝑞, 𝑡).
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Proof. The first part follows since the Macdonald polynomials are homogeneous and may

be written as 𝑃𝜆(x) = x𝜆+(lower order terms in the dominance order). The second part

is then clear.

Definition 16. Let 𝜆, 𝜈 ∈ Sig𝑛, 𝜇 ∈ Sig𝑟. Define 𝑑𝜈𝜆,𝜇(𝑞, 𝑡) by2

𝑄̃𝜈/𝜆(𝑥1, . . . , 𝑥𝑟) =
∑︁

𝜇∈Sig𝑟

𝑑𝜈𝜆,𝜇(𝑟)𝑃𝜇(𝑥1, . . . , 𝑥𝑟).

Proposition 3.2.4. Let 𝑛 ≤ 𝑚 ≤ 𝑁 such that 𝑛 ≤ 𝑁 − 𝑚, let 𝜆, 𝜈 ∈ Sig𝑛, and let

𝑞, 𝑡 ∈ (−1, 1). Then

lim
𝐷→∞

𝑐
(2𝐷[𝑁−𝑚−𝑛],2𝐷−𝜂𝑛,...,2𝐷−𝜂1,𝐷[𝑚−𝑛],𝜈1,...,𝜈𝑛)
(𝐷[𝑁−𝑛],𝜆),(𝐷[𝑁−𝑚],0[𝑚]) (𝑞, 𝑡) = 𝑑𝜈𝜆,𝜂(𝑞, 𝑡) (3.2.13)

and

lim
𝐷→∞

𝑐
(2𝐷[𝑁−𝑚]+𝛼,𝐷[𝑚−𝑛]+𝛽,𝜈1,...,𝜈𝑛)
(𝐷[𝑁−𝑛],0[𝑛]),(𝐷[𝑁−𝑚],0[𝑚]) (𝑞, 𝑡) = 0 (3.2.14)

for all 𝛼 ∈ Sig𝑁−𝑚, 𝛽 ∈ Sig𝑚−𝑛 not as in (3.2.13).

Proof. Let 𝜆(𝐷) = (𝐷[𝑁−𝑛], 𝜆), 𝜇(𝐷) = (𝐷[𝑁−𝑚], 0[𝑚]), and 𝜅(𝐷;𝛼, 𝛽, 𝜈) = (2𝐷[𝑁−

𝑚] + 𝛼,𝐷[𝑚 − 𝑛] + 𝛽, 𝜈1, . . . , 𝜈𝑛), which we will write as simply 𝜅(𝐷) when the other

signatures are clear from context. Fix 𝛼, 𝛽, 𝜈, and let 𝑆 be as in Lemma 3.2.3. By

Theorem 3.2.1 we have

𝑃𝜆(𝐷)(x)/x
𝜆̂(𝐷) → 𝑃𝜆(𝑥𝑁−𝑛+1, . . . , 𝑥𝑁)Π(𝑥

−1
1 , . . . , 𝑥−1

𝑁−𝑛;𝑥𝑁−𝑛+1, . . . , 𝑥𝑁)

𝑃𝜇(𝐷)(x)/x
𝜇̂(𝐷) → Π(𝑥−1

1 , . . . , 𝑥−1
𝑁−𝑚;𝑥𝑁−𝑚+1, . . . , 𝑥𝑁).

Splitting the latter Cauchy kernel,

lim
𝐷→∞

Proj𝑆
𝑃𝜆(𝐷)(x)𝑃𝜇(𝐷)(x)

x𝜆̂(𝐷)+𝜇̂(𝐷)

= Proj𝑆 Π(𝑥
−1
1 , . . . , 𝑥−1

𝑁−𝑛;𝑥𝑁−𝑛+1, . . . , 𝑥𝑁)Π(𝑥
−1
1 , . . . , 𝑥−1

𝑁−𝑚;𝑥𝑁−𝑚+1, . . . , 𝑥𝑁−𝑛)

·
(︀
Π(𝑥−1

1 , . . . , 𝑥−1
𝑁−𝑚;𝑥𝑁−𝑛+1, . . . , 𝑥𝑁)𝑃𝜆(𝑥𝑁−𝑛+1, . . . , 𝑥𝑁)

)︀
2These are related by duality to the structure coefficients 𝑐𝜈𝜆,𝜇, see [Mac98a, Ch. VI], but we will

not elaborate on this because we do not need it and due to our conventions with signatures it would be
somewhat cumbersome to state.
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Applying Lemma 2.2.3, the definition of the coefficients 𝑑𝜈𝜆,𝜂, and Lemma 2.2.2, one has

Π(𝑥−1
1 , . . . , 𝑥−1

𝑁−𝑚;𝑥𝑁−𝑛+1, . . . , 𝑥𝑁)𝑃𝜆(𝑥𝑁−𝑛+1, . . . , 𝑥𝑁)

=
∑︁

𝜈∈Sig𝑛

𝑃𝜈(𝑥𝑁−𝑛+1, . . . , 𝑥𝑁)𝑄̃𝜈/𝜆(𝑥
−1
1 , . . . , 𝑥−1

𝑁−𝑚)

=
∑︁

𝜈∈Sig𝑛
𝜂∈Sig𝑁−𝑚

𝑑𝜈𝜆,𝜂𝑃𝜈(𝑥𝑁−𝑛+1, . . . , 𝑥𝑁)𝑃𝜂(𝑥
−1
1 , . . . , 𝑥−1

𝑁−𝑚)

=
∑︁

𝜈∈Sig𝑛
𝜂∈Sig𝑁−𝑚

𝑑𝜈𝜆,𝜂𝑃𝜈(𝑥𝑁−𝑛+1, . . . , 𝑥𝑁)𝑃−𝜂(𝑥1, . . . , 𝑥𝑁−𝑚).

By straightforward application of Theorem 3.2.1,

lim
𝐷→∞

Proj𝑆
𝑃𝜅(𝐷)(x)

x𝜅̂(𝐷)
= Proj𝑆 𝑃𝛼(𝑥1, . . . , 𝑥𝑁−𝑚)𝑃𝛽(𝑥𝑁−𝑚+1, . . . , 𝑥𝑁−𝑛)𝑃𝜈(𝑥𝑁−𝑛+1, . . . , 𝑥𝑁)

· Π(𝑥−1
1 , . . . , 𝑥−1

𝑁−𝑚;𝑥𝑁−𝑚+1, . . . , 𝑥𝑁)Π(𝑥
−1
𝑁−𝑚+1, . . . , 𝑥

−1
𝑁−𝑛;𝑥𝑁−𝑛+1, . . . , 𝑥𝑁)

= Proj𝑆 𝑃𝛼(𝑥1, . . . , 𝑥𝑁−𝑚)𝑃𝛽(𝑥𝑁−𝑚+1, . . . , 𝑥𝑁−𝑛)𝑃𝜈(𝑥𝑁−𝑛+1, . . . , 𝑥𝑁)

· Π(𝑥−1
1 , . . . , 𝑥−1

𝑁−𝑛;𝑥𝑁−𝑛+1, . . . , 𝑥𝑁)Π(𝑥
−1
1 , . . . , 𝑥−1

𝑁−𝑚;𝑥𝑁−𝑚+1, . . . , 𝑥𝑁−𝑛) (3.2.15)

We see that

lim
𝐷→∞

Proj𝑆
𝑃𝜆(𝐷)(x)𝑃𝜇(𝐷)(x)

x𝜆̂(𝐷)+𝜇̂(𝐷)
= Proj𝑆 Π(𝑥

−1
1 , . . . , 𝑥−1

𝑁−𝑛;𝑥𝑁−𝑛+1, . . . , 𝑥𝑁)

·Π(𝑥−1
1 , . . . , 𝑥−1

𝑁−𝑚;𝑥𝑁−𝑚+1, . . . , 𝑥𝑁−𝑛)
∑︁

𝜈∈Sig𝑛
𝜂∈Sig𝑁−𝑚

𝑑𝜈𝜆,𝜂𝑃𝜈(𝑥𝑁−𝑛+1, . . . , 𝑥𝑁)𝑃−𝜂(𝑥1, . . . , 𝑥𝑁−𝑚)

is a finite (because 𝑆 is finite) sum of terms of the form RHS(3.2.15) for those 𝜅(𝐷;𝛼, 𝛽, 𝜈)

for which 𝛼 = −𝜂, 𝛽 = (0[𝑚− 𝑛]). Furthermore, the coefficients of these terms are 𝑑𝜈𝜆,𝜂.

Applying Lemma 3.2.3 completes the proof.

We now combine these results.

Proof of Proposition 3.1.1. Let 𝜆(𝐷), 𝜇(𝐷), 𝜅(𝐷;𝛼, 𝛽, 𝜈) be as in the previous proof, and

𝑆 ⊂ Sig𝑁−𝑚 be finite. Since we have assumed 𝑞, 𝑡 are such that the structure coefficients
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are nonnegative,

𝑀𝐶𝑎𝑢𝑐ℎ𝑦
𝐷 (𝜈) ≥

∑︁
𝜂∈𝑆

𝑐
𝜅(𝐷;−𝜂,(0[𝑚−𝑛]),𝜈)
𝜆(𝐷),𝜇(𝐷)

𝑃𝜅(𝐷;−𝜂,(0[𝑚−𝑛]),𝜈)(a)

𝑃𝜆(𝐷)(a)𝑃𝜇(𝐷)(a)
(3.2.16)

by simply taking only finitely many of the terms in the sum used to define 𝑀𝐶𝑎𝑢𝑐ℎ𝑦
𝐷 .

Note that 𝜅̂ = 𝜆̂ + 𝜇̂, so we may divide numerator by a𝜅̂ and denominator by a𝜆̂ · a𝜇̂ to

obtain the LHS of Proposition 3.2.2. Applying Proposition 3.2.4 and Proposition 3.2.2 to

the structure coefficients and specialized Macdonald polynomials on the RHS of (3.2.16),

respectively, we obtain

lim
𝐷→∞

𝑀𝐶𝑎𝑢𝑐ℎ𝑦
𝐷 (𝜈) ≥

∑︁
𝜂∈𝑆

lim
𝐷→∞

𝑐
𝜅(𝐷;−𝜂,(0[𝑚−𝑛]),𝜈)
𝜆(𝐷),𝜇(𝐷)

𝑃𝜅(𝐷;−𝜂,(0[𝑚−𝑛]),𝜈)(a)/a
𝜅̂

𝑃𝜆(𝐷)(a)/a𝜆̂ · 𝑃𝜇(𝐷)(a)/a𝜇̂

=
∑︁
𝜂∈𝑆

𝑑𝜈𝜆,𝜂
𝑃−𝜂(𝑎1, . . . , 𝑎𝑁−𝑚)𝑃𝜈(𝑎𝑁−𝑛+1, . . . , 𝑎𝑁)

𝑃𝜆(𝑎𝑁−𝑛+1, . . . , 𝑎𝑁)Π(𝑎
−1
1 , . . . , 𝑎−1

𝑁−𝑚; 𝑎𝑁−𝑛+1, . . . , 𝑎𝑁)
.

Because the bound holds for any finite 𝑆, we may replace 𝑆 by Sig𝑁−𝑚 in the above, and

also replace 𝑃−𝜂(𝑎1, . . . , 𝑎𝑁−𝑚) by 𝑃𝜂(𝑎
−1
1 , . . . , 𝑎−1

𝑁−𝑚) by Lemma 2.2.2. Then the above

becomes

∑︁
𝜂∈Sig𝑁−𝑚

𝑑𝜈𝜆,𝜂
𝑃𝜂(𝑎

−1
1 , . . . , 𝑎−1

𝑁−𝑚)𝑃𝜈(𝑎𝑁−𝑛+1, . . . , 𝑎𝑁)

𝑃𝜆(𝑎𝑁−𝑛+1, . . . , 𝑎𝑁)Π(𝑎
−1
1 , . . . , 𝑎−1

𝑁−𝑚; 𝑎𝑁−𝑛+1, . . . , 𝑎𝑁)

=
𝑄̃𝜈/𝜆(𝑎

−1
1 , . . . , 𝑎−1

𝑁−𝑚)𝑃𝜈(𝑎𝑁−𝑛+1, . . . , 𝑎𝑁)

𝑃𝜆(𝑎𝑁−𝑛+1, . . . , 𝑎𝑁)Π(𝑎
−1
1 , . . . , 𝑎−1

𝑁−𝑚; 𝑎𝑁−𝑛+1, . . . , 𝑎𝑁)

by definition of the coefficients 𝑑𝜈𝜆,𝜂. Because

∑︁
𝜈∈Sig𝑛

𝑄̃𝜈/𝜆(𝑎
−1
1 , . . . , 𝑎−1

𝑁−𝑚)𝑃𝜈(𝑎𝑁−𝑛+1, . . . , 𝑎𝑁)

𝑃𝜆(𝑎𝑁−𝑛+1, . . . , 𝑎𝑁)Π(𝑎
−1
1 , . . . , 𝑎−1

𝑁−𝑚; 𝑎𝑁−𝑛+1, . . . , 𝑎𝑁)
= 1

by Lemma 2.2.3, the inequalities

lim
𝐷→∞

𝑀𝐶𝑎𝑢𝑐ℎ𝑦
𝐷 (𝜈) ≥

𝑄̃𝜈/𝜆(𝑎
−1
1 , . . . , 𝑎−1

𝑁−𝑚)𝑃𝜈(𝑎𝑁−𝑛+1, . . . , 𝑎𝑁)

𝑃𝜆(𝑎𝑁−𝑛+1, . . . , 𝑎𝑁)Π(𝑎
−1
1 , . . . , 𝑎−1

𝑁−𝑚; 𝑎𝑁−𝑛+1, . . . , 𝑎𝑁)

must all be equalities, completing the proof.

Proof of Proposition 3.1.2. The proof is very similar to that of Proposition 3.1.1, so we

will go through the argument but neglect some of the analytic details which are the
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same as before. Proceeding as in Proposition 3.2.4, we compute the limiting structure

coefficients

lim
𝐷→∞

𝑐
(𝐷[𝑘]+𝜂,𝜇)
𝜆,(𝐷[𝑘],0[𝑛−𝑘])

for 𝜇 ∈ Sig𝑁−𝑘. Define 𝑐𝜆𝜇,𝜂 by

𝑃𝜆/𝜇(𝑥1, . . . , 𝑥𝑘) =
∑︁

𝜂∈Sig𝑘

𝑐𝜆𝜇,𝜂𝑃𝜂(𝑥1, . . . , 𝑥𝑘)

(these are the dual Littlewood-Richardson coefficients and are related to the usual 𝑐𝜆𝜇,𝜂,

see [Mac98a, Ch. VI], though we will not need this). We have

𝑃𝜆(x)
𝑃𝜇(𝐷)(x)

x(𝐷[𝑘],0[𝑛−𝑘])
→ 𝑃𝜆(x)Π(𝑥

−1
1 , . . . , 𝑥−1

𝑘 ;𝑥𝑘+1, . . . , 𝑥𝑛)

=
∑︁

𝜇∈Sig𝑛−𝑘

𝑐𝜆𝜇,𝜂𝑃𝜂(𝑥1, . . . , 𝑥)𝑃𝜇(𝑥𝑘+1, . . . , 𝑥𝑛)Π(𝑥
−1
1 , . . . , 𝑥−1

𝑘 ;𝑥𝑘+1, . . . , 𝑥𝑛).

Likewise we have

𝑃(𝐷[𝑘]−𝜇,𝜇)(x)

x(𝐷[𝑘],0[𝑛−𝑘])
→ 𝑃𝜂(𝑥1, . . . , 𝑥𝑘)𝑃𝜇(𝑥𝑘+1, . . . , 𝑥𝑛)Π(𝑥

−1
1 , . . . , 𝑥−1

𝑘 ;𝑥𝑘+1, . . . , 𝑥𝑛).

Hence by the same argument as before,

lim
𝐷→∞

𝑐
(𝐷[𝑘]+𝜂,𝜇)
𝜆,(𝐷[𝑘],0[𝑛−𝑘]) = 𝑐𝜆𝜇,𝜂.

We thus have, again using positivity of all of the structure coefficients and specialized

Macdonald polynomials, that

lim
𝐷→∞

𝑀 𝑏𝑟𝑎𝑛𝑐ℎ
𝐷 (𝜇) ≥

∑︁
𝜂∈Sig𝑘

lim
𝐷→∞

𝑐
(𝐷[𝑘]+𝜂,𝜇)
𝜆,(𝐷[𝑘],0[𝑛−𝑘])

𝑃(𝐷[𝑘]+𝜂,𝜇)(a)/a
(𝐷[𝑘],0[𝑁−𝑘])

𝑃𝜆(a)𝑃(𝐷[𝑘],0[𝑛−𝑘])(a)/a(𝐷[𝑘],0[𝑁−𝑘])

=
∑︁

𝜂∈Sig𝑘

𝑐𝜆𝜇,𝜂
𝑃𝜂(𝑎1, . . . , 𝑎𝑘)𝑃𝜇(𝑎𝑘+1, . . . , 𝑎𝑛)

𝑃𝜆(𝑎1, . . . , 𝑎𝑛)

=
𝑃𝜆/𝜇(𝑎1, . . . , 𝑎𝑘)𝑃𝜇(𝑎𝑘+1, . . . , 𝑎𝑛)

𝑃𝜆(𝑎1, . . . , 𝑎𝑛)
.

These sum to 1 by the branching rule, so the inequalities are equalities, completing the

proof.
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3.3 Appendix: Relations to the Archimedean case and

alternate proof of Proposition 3.1.1

This section is not logically necessary for the rest of this thesis, but is a comment on the

relations between Theorem 1.2.1 and results on singular values of corners and products

in the real, complex and quaternion cases, through the lens of symmetric function theory,

which was alluded to in the Introduction. We will first informally state these results in

more detail than in the Introduction in order to highlight the parallel, and give references

to more complete treatments. We will then give an alternate proof of Proposition 3.1.1

which is simpler, but valid only under additional assumptions which do not cover the

Hall-Littlewood case 𝑞 = 0. This was the first proof we found, but we were unable to

justify the 𝑞 → 0 limit and hence resorted to the stronger results proven in the previous

section. However, the proof below has the advantage that it survives the limit to the

real/complex/quaternion cases which we are about to describe, and hence could be used

to adapt the convolution-of-projectors method of Theorem 1.2.1 to prove the analogous

result in this setting. At the end of the appendix we will outline how this could be carried

out.

Fix a parameter 𝛽 > 0 and let 𝑞 = 𝑒−𝜖, 𝑡 = 𝑞𝛽/2. In all cases below, we assume that

the integers 𝑛,𝑚,𝑁, 𝑘 satisfy the same constraints as in Theorem 1.2.1. Below we give an

informal statement of the analogue of Theorem 1.2.1 in the real, complex and quaternion

setting.

1. Define the random signature 𝜆(𝜖) by

Pr(𝜆(𝜖) = 𝜆) =
𝑃𝜆(1, 𝑡, . . . , 𝑡

𝑛−1; 𝑞, 𝑡)𝑄𝜆(𝑡
𝑚−𝑛+1, . . . , 𝑡𝑁−𝑛; 𝑞, 𝑡)

Π(𝑞,𝑡)(1, 𝑡, . . . , 𝑡𝑛−1; 𝑡𝑚−𝑛+1, . . . , 𝑡𝑁−𝑛)

for any 𝜆 ∈ Sig+𝑛 , with 𝑞, 𝑡 depending on 𝜖 as above. Then as 𝜖 → 0, the random

real signature 𝜖𝜆(𝜖) = (𝜖𝜆1(𝜖), . . . , 𝜖𝜆𝑛(𝜖)) converges in distribution to some limiting

random real signature 𝜆(0). When 𝛽 = 1, 2, 4, 𝜆(0) has the same distribution as

(− log(𝑟𝑛), . . . ,− log(𝑟1)), where 𝑟1 ≥ · · · ≥ 𝑟𝑛 are the squared singular values of an

𝑛 × 𝑚 corner of a Haar-distributed element of 𝒪(𝑛),U(𝑛) or Sp*(𝑛) respectively.

This is due to Forrester-Rains [FR05], see also Borodin-Gorin [BG15, Thm. 2.8].
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2. Fix a real signature ℓ of length 𝑛 and define the nonrandom signature

𝜆(𝜖) := (⌊ℓ1/𝜖⌋, . . . , ⌊ℓ𝑛/𝜖⌋) ∈ Sig𝑛 .

Define the random signature 𝜈(𝜖) by

Pr(𝜈(𝜖) = 𝜈) =
𝑄̃𝜈/𝜆(𝜖)(1, . . . , 𝑡

−(𝑘−1); 𝑞, 𝑡)𝑃𝜈(𝑡
𝑁−𝑛, . . . , 𝑡𝑁−1; 𝑞, 𝑡)

𝑃𝜆(𝑡𝑁−𝑛, . . . , 𝑡𝑁−1; 𝑞, 𝑡)Π(𝑞,𝑡)(1, . . . , 𝑡−(𝑘−1); 𝑡𝑁−𝑛, . . . , 𝑡𝑁−1)

for any 𝜈 ∈ Sig𝑛. Then as 𝜖 → 0, 𝜈(𝜖) converges to a random real signature 𝜈(0).

Suppose 𝛽 = 1, 2, 4 and F = R,C,H respectively, and 𝐴𝑐𝑜𝑙 ∈𝑀𝑛×(𝑁−𝑘)(F) is the first

𝑁 − 𝑘 columns of 𝐴 ∈ 𝑀𝑛×𝑁(F) with fixed singular values 𝑒−ℓ := (𝑒−ℓ1 , . . . , 𝑒−ℓ𝑛)

and distribution invariant under the orthogonal, unitary or symplectic groups act-

ing on the right and left. Then the distribution of the negative logarithms of the

squared singular values of 𝐴𝑐𝑜𝑙 is given by 𝜈(0). The statement for (4.3.1) is ex-

actly analogous. We could not locate these exact statements in the literature but

essentially equivalent ones appear in Borodin-Gorin [BG15] and Sun [Sun16] when

considering the Jacobi corners process.

3. Fix real signatures 𝑟, ℓ of length 𝑛 and define nonrandom integer signatures 𝜆(𝜖) as

above and 𝜌(𝜖) similarly with 𝑟 in place of ℓ. Then as 𝜖→ 0, 𝜖 · (𝜌(𝜖)�(1,...,𝑡𝑛−1)𝜆(𝜖))

(where we abuse notation and use � to refer to the convolution operation with

Macdonald polynomials instead of Hall-Littlewood) converges to a random real

signature 𝑠. When 𝛽 = 1, 2, 4, 𝑒−𝑠 gives the distribution of singular values of 𝐴𝐵

where 𝐴,𝐵 are bi-invariant under the orthogonal, unitary or symplectic group and

have fixed singular values 𝑒−𝑟 and 𝑒−ℓ. See Gorin-Marcus [GM20, Prop. 2.2].

More general background on these limits may be found in Ahn [Ahn22b], Borodin-

Gorin [BG15], Gorin-Marcus [GM20], and Sun [Sun16].

Remark 16. The explicit formulas for the above distributions are uniform expressions

in terms of 𝛽, and the distributions for general 𝛽 ∈ [0,∞) are referred to as 𝛽-ensembles.

𝛽 is then seen as an inverse temperature parameter, and the zero-temperature limit

𝛽 → ∞ has in particular been studied, both because it provides tractable though accurate

approximations to 𝛽 = 1, 2, 4, and because it exhibits asymptotic behaviors interesting

in their own right. In particular, the product convolution and corners operation–the
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analogues of Theorem 1.2.1 Parts 3 and 2 respectively–become deterministic in this limit

and are controlled by certain orthogonal polynomials. See Gorin-Marcus [GM20] and

Gorin-Kleptsyn [GK22] for a discussion of the eigenvalue (as opposed to singular value)

case, and Borodin-Gorin [BG15, Cor. 5.4] for the deterministic 𝛽 → ∞ limit of Jacobi

corners; we are not aware of anywhere the 𝛽 → ∞ limits of general corners and products

(the analogues of Parts 2, 3 of Theorem 1.2.1) are worked out explicitly in the literature.

In our setting, viewing the measures and operations of Theorem 1.2.1 for arbitrary 𝑡 ∈

(0, 1) not necessarily a prime power is exactly analogous to this extrapolation to general

𝛽.

We observe the exact same freezing to a deterministic operation in the 𝑝-adic case

of products and corners in the limit 𝑝 → ∞, i.e. 𝑡 → 0. It is interesting to note that

while the 𝛽 → ∞ limit requires extrapolation away from the usual matrix models, the

𝑡 → 0 limit does not because one can find arbitrarily large primes. In the corners case,

the partition 𝜈 in the notation of Theorem 1.2.1 concentrates around 𝜆, and the partition

𝜇 concentrates around (𝜆𝑑+1, . . . , 𝜆𝑛). In the product case, 𝜈 concentrates around (𝜆1 +

𝜇1, . . . , 𝜆𝑛 + 𝜇𝑛). These facts may be easily verified using the explicit formulas for Hall-

Littlewood polynomials in Section 2.2.4, and may also be seen heuristically directly from

the matrix models without any formulas.

Below we prove Proposition 3.1.1 under the additional assumptions that a = (1, 𝑡, . . . , 𝑡𝑁−1)

and 𝑞, 𝑡 ∈ (0, 1). We remark that Proposition 3.1.2 may be proven by similar label-variable

duality manipulations under the restricted hypotheses as above; the modifications to the

proof below are not difficult.

Proof. For the remainder of the proof, we will denote �(1,...,𝑡𝑁−1) by �𝑡 and use Supp for

the support of a measure. Let 𝜆(𝐷) = (𝐷[𝑁 − 𝑛], 𝜆) and 𝜇(𝐷) = (𝐷[𝑁 − 𝑚], 0[𝑚]).

Recall that

𝑀𝐶𝑎𝑢𝑐ℎ𝑦
𝐷 (𝜈) :=

∑︁
𝜅∈Sig𝑁

𝜅𝑁−𝑛+𝑖=𝜈𝑖 for all 𝑖=1,...,𝑛

𝑐𝜅𝜆(𝐷),𝜇(𝐷)(𝑞, 𝑡)
𝑃𝜅(𝑡

𝑁−1, . . . , 1)

𝑃𝜆(𝐷)(𝑡𝑁−1, . . . , 1)𝑃𝜇(𝐷)(𝑡𝑁−1, . . . , 1)

and we wish to show

𝑀𝐶𝑎𝑢𝑐ℎ𝑦
𝐷 (𝜈) →

𝑃𝜈(𝑡
𝑛−1, . . . , 1)𝑄̃𝜈/𝜆(𝑡

𝑁−𝑛, . . . , 𝑡𝑚−𝑛+1)

𝑃𝜆(𝑡𝑛−1, . . . , 1)Π(𝑡𝑛−1, . . . , 1; 𝑡𝑁−𝑛, . . . , 𝑡𝑚−𝑛+1)
(3.3.1)
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(note that we have written the measure in a different form from Proposition 3.1.1 by

using homogeneity to rearrange powers of 𝑡).

Denote the limiting measure of (3.3.1) by ℳ. The proof is by a kind of moments

method which consists of showing the convergence of expectations of observables

E𝜈∼𝑀𝐶𝑎𝑢𝑐ℎ𝑦
𝐷

[𝑃𝛼(𝑞
𝜈1𝑡𝑛−1, . . . , 𝑞𝜈𝑛)] → E𝜈∼ℳ[𝑃𝛼(𝑞

𝜈1𝑡𝑛−1, . . . , 𝑞𝜈𝑛)] (3.3.2)

as 𝐷 → ∞ for each 𝛼 ∈ Sig+𝑛 , followed by an argument that these ‘moments’ are sufficient

to give convergence of measures. We rely on the nontrivial label-variable duality satisfied

by these observables, see [Mac98a, Section 6]:

𝑃𝜈(𝑞
𝛼1𝑡𝑛−1, . . . , 𝑞𝛼𝑛)

𝑃𝜈(𝑡𝑛−1, . . . , 1)
=
𝑃𝛼(𝑞

𝜈1𝑡𝑛−1, . . . , 𝑞𝜈𝑛)

𝑃𝛼(𝑡𝑛−1, . . . , 1)
. (3.3.3)

Such a strategy is used to prove similar statements in [GM20, Section 4].

We first show

⃒⃒⃒
E𝜈∼𝑀𝐶𝑎𝑢𝑐ℎ𝑦

𝐷
[𝑃𝛼(𝑞

𝜈1𝑡𝑛−1, . . . , 𝑞𝜈𝑛)]− E𝜅∼𝜆(𝐷)�𝑡𝜇(𝐷)[𝑃(𝛼,0[𝑁−𝑛])(𝑞
𝜅1𝑡𝑁−1, . . . , 𝑞𝜅𝑁 )]

⃒⃒⃒
→ 0

(3.3.4)

as 𝐷 → ∞. To show (3.3.4) it suffices to show that there exist constants 𝐶(𝛼,𝐷)

independent of 𝜅 ∈ Supp(𝜆(𝐷)�𝑡 𝜇(𝐷)) such that 𝐶(𝛼,𝐷) → 0 as 𝐷 → ∞ and

|𝑃(𝛼,0[𝑁−𝑛])(𝑞
𝜅1𝑡𝑁−1, . . . , 𝑞𝜅𝑁 )− 𝑃𝛼(𝑞

𝜈1𝑡𝑛−1, . . . , 𝑞𝜈𝑛)| < 𝐶(𝛼,𝐷). (3.3.5)

where 𝜈 is defined by 𝜈𝑖 = 𝜅𝑁−𝑛+𝑖. This suffices because the support Supp(𝜆(𝐷)�𝑡𝜇(𝐷))

of this measure contains only 𝜅 for which 𝜅 ⊃ 𝜆(𝐷) by basic properties of the structure

coefficients, hence

⃒⃒⃒
E𝜈∼𝑀𝐶𝑎𝑢𝑐ℎ𝑦

𝐷
[𝑃𝛼(𝑞

𝜈1𝑡𝑛−1, . . . , 𝑞𝜈𝑛)]− E𝜅∼𝜆(𝐷)�𝑡𝜇(𝐷)[𝑃(𝛼,0[𝑁−𝑛])(𝑞
𝜅1𝑡𝑁−1, . . . , 𝑞𝜅𝑁 )]

⃒⃒⃒
< 𝐶(𝛼,𝐷)

by (3.3.5) and linearity of expectation. So let us prove (3.3.5).

𝑃(𝛼,0[𝑁−𝑛]) is a polynomial in 𝑁 variables 𝑞𝜅1𝑡𝑁−1, . . . , 𝑞𝜅𝑁 , which we split into two

collections of variables, the first 𝑁−𝑛 and the last 𝑛. As 𝐷 → ∞, the first 𝑁−𝑛 variables

go to 0 because 𝜅𝑖 ≥ 𝜆(𝐷)𝑖 = 𝐷 for 𝑖 = 1, . . . , 𝑁 − 𝑛, for any 𝜅 ∈ Supp(𝜆(𝐷)�𝑡 𝜇(𝐷)),
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hence

𝑃(𝛼,0[𝑁−𝑛])(𝑞
𝜅(𝐷)1𝑡𝑁−1, . . . , 𝑞𝜅(𝐷)𝑁 ) → 𝑃(𝛼,0[𝑁−𝑛])(0[𝑁 − 𝑛], 𝑡𝑛−1𝑞𝜅(𝐷)𝑁−𝑛+1 , . . . , 𝑞𝜅(𝐷)𝑁 )

= 𝑃𝛼(𝑞
𝜈1𝑡𝑛−1, . . . , 𝑞𝜈𝑛)

for any sequence 𝜅(𝐷) ∈ Supp(𝜆(𝐷) �𝑡 𝜇(𝐷)) with last 𝑛 parts given by 𝜈. The last 𝑛

variables always lie in a compact interval [0, 𝑞𝜆𝑛 ] because 𝜅𝑖 ≥ 𝜆𝑛 for 𝑖 = 𝑁−𝑛+1, . . . , 𝑁

by interlacing, for any 𝜅 ∈ Supp(𝜆(𝐷)�𝑡 𝜇(𝐷)). Hence the above convergence is uniform

over 𝜈 and 𝜅, i.e. (3.3.5) holds.

Thus to show (3.3.2), it suffices to show

E𝜅∼𝜆(𝐷)�𝑡𝜇(𝐷)[𝑃(𝛼,0[𝑁−𝑛])(𝑞
𝜅1𝑡𝑁−1, . . . , 𝑞𝜅𝑁 )] → E𝜈∼ℳ[𝑃𝛼(𝑞

𝜈1𝑡𝑛−1, . . . , 𝑞𝜈𝑛)]. (3.3.6)

Now, using label-variable duality (3.3.3),

E𝜅∼𝜆(𝐷)�𝑡𝜇(𝐷)[𝑃(𝛼,0[𝑁−𝑛])(𝑞
𝜅1𝑡𝑁−1, . . . , 𝑞𝜅𝑁 )]

= E𝜅∼𝜆(𝐷)�𝑡𝜇(𝐷)

[︂
𝑃𝜅(𝑞

𝛼1𝑡𝑁−1, . . . , 1)

𝑃𝜅(𝑡𝑁−1, . . . , 1)
𝑃(𝛼,0[𝑁−𝑛])(𝑡

𝑁−1, . . . , 1)

]︂
=
∑︁

𝜅∈Sig𝑁

𝑐𝜅𝜆(𝐷),𝜇(𝐷)(𝑞, 𝑡)
𝑃𝜅(𝑡

𝑁−1, . . . , 1)𝑃(𝛼,0[𝑁−𝑛])(𝑡
𝑁−1, . . . , 1)

𝑃𝜆(𝐷)(𝑡𝑁−1, . . . , 1)𝑃𝜇(𝐷)(𝑡𝑁−1, . . . , 1)

𝑃𝜅(𝑞
𝛼1𝑡𝑁−1, . . . , 1)

𝑃𝜅(𝑡𝑁−1, . . . , 1)

=
𝑃(𝛼,0[𝑁−𝑛])(𝑡

𝑁−1, . . . , 1)

𝑃𝜆(𝐷)(𝑡𝑁−1, . . . , 1)𝑃𝜇(𝐷)(𝑡𝑁−1, . . . , 1)

∑︁
𝜅∈Sig𝑁

𝑐𝜅𝜆(𝐷),𝜇(𝐷)(𝑞, 𝑡)𝑃𝜅(𝑞
𝛼1𝑡𝑁−1, . . . , 1)

=
𝑃(𝛼,0[𝑁−𝑛])(𝑡

𝑁−1, . . . , 1)

𝑃𝜆(𝐷)(𝑡𝑁−1, . . . , 1)𝑃𝜇(𝐷)(𝑡𝑁−1, . . . , 1)
𝑃𝜆(𝐷)(𝑞

𝛼1𝑡𝑁−1, . . . , 1)𝑃𝜇(𝐷)(𝑞
𝛼1𝑡𝑁−1, . . . , 1)

=
𝑃(𝛼,𝐷[𝑁−𝑛])(𝑞

𝐷𝑡𝑁−1, . . . , 𝑞𝐷𝑡𝑛, 𝑞𝜆1𝑡𝑛−1, . . . , 𝑞𝜆𝑛)𝑃(𝛼,𝐷[𝑁−𝑛])(𝑞
𝐷𝑡𝑁−1, . . . , 𝑞𝐷𝑡𝑚, 𝑡𝑚−1, . . . , 1)

𝑃(𝛼,𝐷[𝑁−𝑛])(𝑡𝑁−1, . . . , 1)
.

As 𝐷 → ∞, the above clearly converges to

𝑃𝛼(𝑞
𝜆1𝑡𝑛−1, . . . , 𝑞𝜆𝑛)𝑃𝛼(𝑡

𝑚−1, . . . , 1)

𝑃𝛼(𝑡𝑁−1, . . . , 1)
,

so we must show

E𝜈∼ℳ[𝑃𝛼(𝑞
𝜈1𝑡𝑛−1, . . . , 𝑞𝜈𝑛)] =

𝑃𝛼(𝑞
𝜆1𝑡𝑛−1, . . . , 𝑞𝜆𝑛)𝑃𝛼(𝑡

𝑚−1, . . . , 1)

𝑃𝛼(𝑡𝑁−1, . . . , 1)
. (3.3.7)

111



Again using label-variable duality, and the Cauchy identity Lemma 2.2.3, we have

E𝜈∼ℳ[𝑃𝛼(𝑞
𝜈1𝑡𝑛−1, . . . , 𝑞𝜈𝑛)]

= E𝜈∼ℳ

[︂
𝑃𝛼(𝑡

𝑛−1, . . . , 1)𝑃𝜈(𝑞
𝛼1𝑡𝑛−1, . . . , 𝑞𝛼𝑛)

𝑃𝜈(𝑡𝑛−1, . . . , 1)

]︂
=
𝑃𝛼(𝑡

𝑛−1, . . . , 1)
∑︀

𝜈∈Sig𝑛
𝑃𝜈(𝑞

𝛼1𝑡𝑛−1, . . . , 𝑞𝛼𝑛)𝑄̃𝜈/𝜆(𝑡
𝑁−𝑛, . . . , 𝑡𝑚−𝑛+1)

Π(𝑡𝑛−1, . . . , 1; 𝑡𝑁−𝑛, . . . , 𝑡𝑚−𝑛+1)𝑃𝜆(𝑡𝑛−1, . . . , 1)

=
Π(𝑞𝛼1𝑡𝑛−1, . . . , 𝑞𝛼𝑛 ; 𝑡𝑁−𝑛, . . . , 𝑡𝑚−𝑛+1)

Π(𝑡𝑛−1, . . . , 1; 𝑡𝑁−𝑛, . . . , 𝑡𝑚−𝑛+1)

𝑃𝛼(𝑡
𝑛−1, . . . , 1)𝑃𝜆(𝑞

𝛼1𝑡𝑛−1, . . . , 𝑞𝛼𝑛)

𝑃𝜆(𝑡𝑛−1, . . . , 1)

=
Π(𝑞𝛼1𝑡𝑛−1, . . . , 𝑞𝛼𝑛 ; 𝑡𝑁−𝑛, . . . , 𝑡𝑚−𝑛+1)

Π(𝑡𝑛−1, . . . , 1; 𝑡𝑁−𝑛, . . . , 𝑡𝑚−𝑛+1)
𝑃𝛼(𝑞

𝜆1𝑡𝑛−1, . . . , 𝑞𝜆𝑛).

Hence (3.3.7) is equivalent to

Π(𝑞𝛼1𝑡𝑛−1, . . . , 𝑞𝛼𝑛 ; 𝑡𝑁−𝑛, . . . , 𝑡𝑚−𝑛+1)

Π(𝑡𝑛−1, . . . , 1; 𝑡𝑁−𝑛, . . . , 𝑡𝑚−𝑛+1)
=
𝑃𝛼(𝑡

𝑚−1, . . . , 1)

𝑃𝛼(𝑡𝑁−1, . . . , 1)
. (3.3.8)

(3.3.8) follows by applying the explicit formula for principally specialized Macdonald

polynomials, [Mac98a, (6.11’)], to the numerator and denominator of the RHS, expanding

the LHS into infinite products and noting that all but finitely many terms cancel, and

comparing the resulting expressions.

We have proven convergence of ‘moments’, so let us upgrade this to convergence of

measures. Consider the compact set

U𝑛 := {(𝑢1, . . . , 𝑢𝑛) ∈ R𝑛 : 0 ≤ 𝑢1 ≤ · · · ≤ 𝑢𝑛 ≤ 𝑞𝜆𝑛}.

Then we have a map 𝜑 : Sig𝑛 → U𝑛 given by 𝜑(𝜈1, . . . , 𝜈𝑛) = (𝑞𝜈1 , . . . , 𝑞𝜈𝑛). Also,

𝑓𝛼(𝑢1, . . . , 𝑢𝑛) :=
𝑃𝛼(𝑢1𝑡

𝑛−1, . . . , 𝑢𝑛)

𝑃𝛼(𝑡𝑛−1, . . . , 1)

defines a function on U𝑛. The subalgebra of 𝒞(U𝑛) generated by the functions 𝑓𝛼 is just

the set of finite linear combinations of 𝑓𝛼 because products of Macdonald polynomials may

be expanded as linear combinations of Macdonald polynomials. This algebra contains the

constant functions (𝑓(0[𝑛]) is constant) and separates points, so by the Stone-Weierstrass

theorem it is dense in 𝒞(U𝑛) with sup norm.

By hypothesis, the structure coefficients are nonnegative and hence 𝑀𝐶𝑎𝑢𝑐ℎ𝑦
𝐷 is indeed
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a probability measure for each 𝐷. To show weak convergence 𝑀𝐶𝑎𝑢𝑐ℎ𝑦
𝐷 → ℳ, we must

show for any 𝑓 ∈ 𝒞(U𝑛) that
∫︀
U𝑛 𝑓𝑑𝜑*(𝑀

𝐶𝑎𝑢𝑐ℎ𝑦
𝐷 ) →

∫︀
U𝑛 𝑓𝑑𝜑*(ℳ). By the above, there

exists a linear combination 𝑔 of 𝑓𝛼s such that sup𝑢∈𝑈𝑛 |𝑓(𝑢)− 𝑔(𝑢)| < 𝜖/3. Since ℳ and

𝑀𝐶𝑎𝑢𝑐ℎ𝑦
𝐷 are probability measures it follows that

∫︀
U𝑛 |𝑓 − 𝑔|𝑑𝜑*(ℳ) < 𝜖/3 and similarly

with ℳ replaced by any 𝑀𝐶𝑎𝑢𝑐ℎ𝑦
𝐷 . By (3.3.2), we may choose 𝐷 such that⃒⃒⃒⃒∫︁

U𝑛

𝑔𝑑𝜑*(𝑀
𝐶𝑎𝑢𝑐ℎ𝑦
𝐷 )−

∫︁
U𝑛

𝑔𝑑𝜑*(ℳ)

⃒⃒⃒⃒
< 𝜖/3.

Putting together the three inequalities yields⃒⃒⃒⃒∫︁
U𝑛

𝑓𝑑𝜑*(𝑀
𝐶𝑎𝑢𝑐ℎ𝑦
𝐷 )−

∫︁
U𝑛

𝑓𝑑𝜑*(ℳ)

⃒⃒⃒⃒
< 𝜖,

hence 𝜑*(𝑀
𝐶𝑎𝑢𝑐ℎ𝑦
𝐷 ) converges weakly to 𝜑*(ℳ). Because both measures are supported on

a discrete subset 𝜑({𝜈 ∈ Sig𝑛 : 𝜈𝑛 ≥ 𝜆𝑛}) of U𝑛, this implies𝑀𝐶𝑎𝑢𝑐ℎ𝑦
𝐷 (𝜈) = 𝜑*(𝑀

𝐶𝑎𝑢𝑐ℎ𝑦
𝐷 )(𝜑(𝜈)) →

𝜑*(ℳ)(𝜑(𝜈)) = ℳ(𝜈) for each 𝜈 ∈ Sig𝑛, completing the proof.

The proofs of Proposition 3.1.1 and Proposition 3.1.2 in Section 3.2 heavily used the

discrete structure of the set of integer signatures, and we have no idea how they would be

modified to the continuum limit to real signatures described earlier. However, we claim

that the above proof could be modified with no substantial changes. Let us briefly outline

why this is so.

Definition 17. Let 𝑟 = (𝑟1, . . . , 𝑟𝑛) ∈ SigR𝑛 have distinct parts, 𝜃 > 0 a parameter, and

𝑦1, . . . , 𝑦𝑛 complex variables. Setting 𝜆(𝜖) = ⌊𝜖−1(𝑟1, . . . , 𝑟𝑛)⌋, we define the (type A)

Heckman-Opdam hypergeometric function

ℱ𝑟(𝑦1, . . . , 𝑦𝑛; 𝜃) := lim
𝜖→0

𝜖𝜃(
𝑛
2)𝑃𝜆(𝑒

𝜖𝑦1 , . . . , 𝑒𝜖𝑦𝑛 ; 𝑞 = 𝑒−𝜖, 𝑡 = 𝑒−𝜃𝜖)

The dual Heckman-Opdam function may be obtained similarly by degenerating 𝑄.

Instead of defining the measures appearing in the singular value setting as limits of

Macdonald measures, as we did earlier in this Appendix, one may instead first take the

limit to Heckman-Opdam functions and then define measures in terms of these. When
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one takes the limit of (3.3.3) in the above regime, one obtains

ℱ𝑟(−𝜆1 − (𝑛− 1)𝜃,−𝜆2 − (𝑛− 2)𝜃, . . . ,−𝜆𝑛; 𝜃)
ℱ𝑟(−(𝑛− 1)𝜃, . . . , 0; 𝜃)

=
𝐽𝜆(𝑒

−𝑟1 , . . . , 𝑒−𝑟𝑛 ; 𝜃)

𝐽𝜆(1, . . . , 1; 𝜃)

where 𝐽𝜆 is the classical Jack polynomial. The same argument used to prove Proposi-

tion 3.1.1 above may be used after this limit, with the Macdonald polynomials replaced

by Heckman-Opdam functions or Jack polynomials as appropriate given the above, and

the sums replaced by integrals. This post-limit version of Proposition 3.1.1 may then

be used to implement the convolution-of-projectors strategy we used in Section 3.1 to

prove the analogue of Theorem 1.2.1 in the real/complex/quaternion setting. We re-

fer to [GM20] for similar random matrix arguments utilizing label-variable duality and

Jack/Heckman-Opdam functions.
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Chapter 4

Branching graphs and infinite 𝑝-adic

matrices

In Section 4.1 we prove formulas for principally specialized skew Hall-Littlewood polyno-

mials. These form the main tool for the classification of 𝜕G𝑡 in Section 4.2. In Section 4.3

we prove an augmented boundary result (Theorem 4.3.3) tailored to the 𝑝-adic random

matrix situation, and use it to prove Theorem 1.7.2 and Theorem 1.7.3. Finally, in Sec-

tion 4.5 we prove a result about Markov dynamics on 𝜕G𝑡 which is motivated by the

dynamics in Chapter 6 and Chapter 8.

4.1 Principally specialized skew Hall-Littlewood poly-

nomials

In this section we prove Theorem 2.2.16 stated earlier, as well as extensions when the

geometric progression is finite and the formulas are less simple in Proposition 4.1.2. Let

us introduce a bare minimum of background on higher spin Hall-Littlewood polynomials

𝐹𝜇/𝜆, 𝐺𝜈/𝜆, which generalize the usual Hall-Littlewood polynomials 𝑃,𝑄 by the addition

of an extra parameter 𝑠. We omit their definition, which may be found in [Bor17, BP17],

as we will only care about the case 𝑠 = 0 when they reduce to slightly renormalized
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Hall-Littlewood polynomials. When 𝑠 = 0, for 𝜆, 𝜈 ∈ Sig≥0
𝑛 , 𝜇 ∈ Sig≥0

𝑛+𝑘 one has

𝐹𝜇/𝜆(𝑥1, . . . , 𝑥𝑘)
⃒⃒
𝑠=0

=
∏︁
𝑖≥0

(𝑡; 𝑡)𝑚𝑖(𝜇)

(𝑡; 𝑡)𝑚𝑖(𝜆)

𝑃𝜇/𝜆(𝑥1, . . . , 𝑥𝑘) (4.1.1)

and

𝐺𝜈/𝜆(𝑥1, . . . , 𝑥𝑘)
⃒⃒
𝑠=0

= 𝑄̃𝜈/𝜆(𝑥1, . . . , 𝑥𝑘) (4.1.2)

by [Bor17, §8.1]. We recall from Chapter 2 that 𝑄̃ is our modified version of the usual

skew dual Hall-Littlewood polynomial where both signatures in the subscript are the same

length; as the same is true for 𝐺, this facilitates comparison between them. Formulas

for principally specialized skew 𝐹 and 𝐺 functions were shown in [Bor17], though we will

state the version given later in [BP17]. We apologize to the reader for giving a formula

for an object which we have not actually defined, but will immediately specialize to the

Hall-Littlewood case, so we hope no confusion arises. We need the following notation.

Definition 18. The normalized terminating 𝑞-hypergeometric function is

𝑟+1𝜑𝑟

⎛⎝𝑡−𝑛; 𝑎1, . . . , 𝑎𝑟

𝑏1, . . . , 𝑏𝑟
; 𝑡, 𝑧

⎞⎠ :=
𝑛∑︁

𝑘=0

𝑧𝑘
(𝑡−𝑛; 𝑡)𝑘
(𝑡; 𝑡)𝑘

𝑟∏︁
𝑖=1

(𝑎𝑖; 𝑡)𝑘(𝑏𝑖𝑡
𝑘; 𝑡)𝑛−𝑘 (4.1.3)

for 𝑛 ∈ Z≥0 and |𝑧|, |𝑡| < 1.

Proposition 4.1.1 ([BP17, Proposition 5.5.1]). Let 𝐽 ∈ Z≥1, 𝜆 ∈ Sig≥0
𝑛 , 𝜇 ∈ Sig≥0

𝑛+𝐽 .

Then

𝐹𝜇/𝜆(𝑢, 𝑡𝑢, . . . , 𝑡
𝐽−1𝑢) =

∏︁
𝑥∈Z≥0

𝑤(𝐽)
𝑢 (𝑖1(𝑥), 𝑗1(𝑥); 𝑖2(𝑥), 𝑗2(𝑥)), (4.1.4)

where the product is over the unique collection of 𝑛+𝐽 up-right paths on the semi-infinite

horizontal strip of height 1 with paths entering from the bottom at positions 𝜆𝑖, 1 ≤ 𝑖 ≤ 𝑛,

𝐽 paths entering from the left, and paths exiting from the top at positions 𝜇𝑖, 1 ≤ 𝑖 ≤ 𝑛+𝐽 ,

see Figure 4-1. Here 𝑖1(𝑥), 𝑗1(𝑥), 𝑖2(𝑥), 𝑗2(𝑥) are the number of paths on the south, west,

north and east edge of the vertex at position 𝑥 as in Figure 4-2, and the weights in the
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product are given by

𝑤(𝐽)
𝑢 (𝑖1, 𝑗1; 𝑖2, 𝑗2) := 𝛿𝑖1+𝑗1,𝑖2+𝑗2

(−1)𝑖1+𝑗2𝑡
1
2
𝑖1(𝑖1+2𝑗1−1)𝑠𝑗2−𝑖1𝑢𝑖1(𝑡; 𝑡)𝑗1(𝑢𝑠

−1; 𝑡)𝑗1−𝑖2

(𝑡; 𝑡)𝑖1(𝑡; 𝑡)𝑗2(𝑢𝑠; 𝑡)𝑖1+𝑗1

× 4𝜑3

⎛⎝ 𝑡−𝑖1 ; 𝑡−𝑖2 , 𝑡𝐽𝑠𝑢, 𝑡𝑠𝑢−1

𝑠2, 𝑡1+𝑗1−𝑖2 , 𝑡1+𝐽−𝑖1−𝑗1
; 𝑡, 𝑡

⎞⎠ . (4.1.5)

Similarly, for 𝜆, 𝜈 ∈ Sig≥0
𝑛 , 𝐺𝜈/𝜆(𝑢, 𝑡𝑢, . . . , 𝑡

𝐽−1𝑢) is given by the product of the same

weights over the unique collection of 𝑛 up-right paths on the same strip entering from the

bottom at positions 𝜆𝑖, 1 ≤ 𝑖 ≤ 𝑛 and exiting from the top at positions 𝜈𝑖, 1 ≤ 𝑖 ≤ 𝑛.

0 𝜆𝑛−1 = 𝜆𝑛 𝜆3 = 𝜆2 𝜆1𝜆4

𝜇2 = 𝜇1𝜇3𝜇4𝜇𝑛+𝐽 𝜇𝑛+𝐽−1

Figure 4-1: The unique path collection corresponding to the function
F𝜇/𝜆(𝑢, 𝑞𝑢, . . . , 𝑞

𝐽−1𝑢) with 𝐽 = 3, 𝑛 = 6, 𝜆 = (7, 6, 6, 4, 1, 1), 𝜇 = (8, 8, 6, 4, 2, 2, 2, 1, 0).

𝑖1 = 2

𝑗1 = 7

𝑖2 = 5

𝑗2 = 4

Figure 4-2: Illustration of the notation for edges, in the example (𝑖1, 𝑗1; 𝑖2, 𝑗2) = (2, 7; 5, 4).

Remark 17. To avoid confusion with [Bor17, BP17], we note that the parameter which

we call 𝑡 for consistency with Hall-Littlewood notation is denoted by 𝑞 in these references.

We now introduce some notation and specialize Proposition 4.1.1 to the Hall-Littlewood

case 𝑠 = 0.
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Definition 19. For 𝜆, 𝜈 ∈ Sig𝑛, we define

𝑛(𝜈/𝜆) :=
∑︁

1≤𝑖<𝑗≤𝑛

max(𝜈𝑗 − 𝜆𝑖, 0) =
∑︁
𝑥≥𝜆𝑛

(︂
𝜈 ′𝑥+1 − 𝜆′𝑥+1

2

)︂
.

We additionally allow the case when 𝜆, 𝜈 ∈ Y; the first formula makes sense with the ≤ 𝑛

removed, while for the second we simply replace the sum over 𝑥 ≥ 𝜆𝑛 by 𝑥 ≥ 0.

Note that 𝑛(𝜈/𝜆)

1. is translation-invariant, 𝑛((𝜈 +𝐷[𝑛])/(𝜆+𝐷[𝑛])) = 𝑛(𝜈/𝜆), and

2. generalizes the standard definition of 𝑛(𝜈) in (2.2.53), namely when 𝜈 ∈ Sig≥0
𝑛 then

𝑛(𝜈) = 𝑛(𝜈/(0[𝑛])).

One may also view 𝑛(𝜈/𝜆) as quantifying the failure of 𝜈 and 𝜆 to interlace; it is 0 when

𝜈, 𝜆 interlace, and increases by 1 when a part of 𝜆 is moved past a part of 𝜈.

Proposition 4.1.2. For 𝐽 ∈ Z≥1, 𝜆 ∈ Sig≥0
𝑛 , 𝜇 ∈ Sig≥0

𝑛+𝐽 ,

𝑃𝜇/𝜆(𝑢, . . . , 𝑢𝑡
𝐽−1) = (𝑡; 𝑡)𝐽𝑢

|𝜇|−|𝜆|
∏︁
𝑥≥0

𝑡𝑚𝑥(𝜆)𝑚𝑥(𝜇)+(𝜇
′
𝑥+1−𝜆′𝑥+1

2 )

(𝑡; 𝑡)𝑚𝑥(𝜇)
2𝜑2

⎛⎝ 𝑡−𝑚𝑥(𝜆); 𝑡−𝑚𝑥(𝜇), 0

𝑡1+𝜇′
𝑥+1−𝜆′

𝑥 , 𝑡1+𝐽−𝜇′
𝑥+𝜆′

𝑥+1

; 𝑡, 𝑡

⎞⎠ .

(4.1.6)

For 𝜆, 𝜈 ∈ Sig𝑛,

𝑄̃𝜈/𝜆(𝑢, . . . , 𝑢𝑡
𝐽−1) = 𝑢|𝜈|−|𝜆|𝑡𝑛(𝜈/𝜆)

∏︁
𝑥∈Z

𝑡𝑚𝑥(𝜆)𝑚𝑥(𝜈)

(𝑡; 𝑡)𝑚𝑥(𝜆)
2𝜑2

⎛⎝ 𝑡−𝑚𝑥(𝜆); 𝑡−𝑚𝑥(𝜈), 0

𝑡1+𝜈′𝑥+1−𝜆′
𝑥 , 𝑡1+𝐽−𝜈′𝑥+𝜆′

𝑥+1

; 𝑡, 𝑡

⎞⎠ .

(4.1.7)

Proof. We begin with (4.1.6). In this case we may apply Proposition 4.1.1 to compute

LHS(4.1.6) = 𝐹𝜇/𝜆(𝑢, . . . , 𝑢𝑡
𝐽−1)

⃒⃒
𝑠=0

∏︁
𝑖≥0

(𝑡; 𝑡)𝑚𝑖(𝜆)

(𝑡; 𝑡)𝑚𝑖(𝜇)

. (4.1.8)

When 𝑠→ 0, the factor 𝑠𝑗2−𝑖1(𝑢𝑠−1; 𝑡)𝑗1−𝑖2 in (4.1.5) converges to (−𝑢)𝑗1−𝑖2𝑡(
𝑗1−𝑖2

2 ) (using

that 𝑗2 − 𝑖1 = 𝑗1 − 𝑖2). The sign cancels with the sign in (4.1.5), and the power of 𝑢
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combines with the 𝑢𝑖1 in (4.1.5) to give 𝑢𝑗2 , so (4.1.5) becomes

𝑤
(𝐽)
𝑡𝑛 (𝑖1, 𝑗1; 𝑖2, 𝑗2) = 𝛿𝑖1+𝑗1,𝑖2+𝑗2𝑢

𝑗2
𝑡
1
2
𝑖1(𝑖1+2𝑗1−1)+(𝑗1−𝑖2

2 )(𝑡; 𝑡)𝑗1
(𝑡; 𝑡)𝑖1(𝑡; 𝑡)𝑗2

4𝜑3

⎛⎝ 𝑡−𝑖1 ; 𝑡−𝑖2 , 0, 0

0, 𝑡1+𝑗1−𝑖2 , 𝑡1+𝐽−𝑖1−𝑗1
; 𝑡, 𝑡

⎞⎠ .

(4.1.9)

In the product (4.1.4) when the weights are specialized to (4.1.9), some of the factors

simplify, as ∏︁
𝑥≥0

(𝑡; 𝑡)𝑗1
(𝑡; 𝑡)𝑖1(𝑡; 𝑡)𝑗2

=
(𝑡; 𝑡)𝐽∏︀

𝑥∈Z(𝑡; 𝑡)𝑖1(𝑥)
(4.1.10)

because the (𝑡;𝑡)𝑗1(𝑥)
(𝑡;𝑡)𝑗2(𝑥)

factor cancels except for a (𝑡; 𝑡)𝐽 from the paths incoming from the

left. Hence

∏︁
𝑥≥0

𝑤(𝐽)
𝑢 (𝑖1, 𝑗1; 𝑖2, 𝑗2) = (𝑡; 𝑡)𝐽

∏︁
𝑥≥0

𝑢𝑗2
𝑡
1
2
𝑖1(𝑖1+2𝑗1−1)+(𝑗1−𝑖2

2 )

(𝑡; 𝑡)𝑚𝑥(𝜆)
2𝜑2

⎛⎝ 𝑡−𝑖1 ; 𝑡−𝑖2 , 0

𝑡1+𝑗1−𝑖2 , 𝑡1+𝐽−𝑖1−𝑗1
; 𝑡, 𝑡

⎞⎠ .

(4.1.11)

Using that 𝑗2 = 𝑖1 + 𝑗1 − 𝑖2 simplifies the exponent of 𝑡 in (4.1.11) to

1

2
𝑖1(𝑖1 + 2𝑗1 − 1) +

(︂
𝑗1 − 𝑖2

2

)︂
=

(︂
𝑗2
2

)︂
+ 𝑖1𝑖2.

To convert to the form in terms of partitions, we record the following translations between

the 𝑖’s and 𝑗’s and the usual conjugate partition notation:

𝑖1(𝑥) = 𝜆′𝑥 − 𝜆′𝑥+1 = 𝑚𝑥(𝜆),

𝑗1(𝑥) = 𝜇′
𝑥 − 𝜆′𝑥,

𝑖2(𝑥) = 𝜇′
𝑥 − 𝜇′

𝑥+1 = 𝑚𝑥(𝜇),

𝑗2(𝑥) = 𝜇′
𝑥+1 − 𝜆′𝑥+1.

(4.1.12)

Translating (4.1.11) into partition notation and multiplying by the
∏︀

𝑖≥0

(𝑡;𝑡)𝑚𝑖(𝜆)

(𝑡;𝑡)𝑚𝑖(𝜇)
factor

of (4.1.8) yields (4.1.6).

To prove (4.1.7) we first note that both sides of (4.1.7) are translation-invariant,

so without loss of generality we may take 𝜆, 𝜈 ∈ Sig>0
𝑛 . We then likewise appeal to

Proposition 4.1.1 and either make the same argument as above or deduce it from (4.1.6)

by considering 𝐹(𝜈,0[𝐽 ])/𝜆(𝑢, . . . , 𝑢𝑡
𝐽−1) for 𝜆, 𝜈 ∈ Sig>0

𝑛 and using the relation between 𝑃
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and 𝑄 polynomials. Since 𝜆, 𝜈 are of the same length we have

∏︁
𝑥≥0

𝑡(
𝑗2(𝑥)

2 ) = 𝑡𝑛(𝜈/𝜆)

by (4.1.12). Finally, note that the product can be extended from 𝑥 ≥ 0 to 𝑥 ∈ Z, which

in this translation-invariant setting is more aesthetically appealing.

Remark 18. While it follows from the branching rule that for nonnegative signatures

𝜇, 𝜆 of appropriate lengths,

𝑃(𝜇,0)/(𝜆,0)(𝑢, . . . , 𝑢𝑡
𝐽−1) = 𝑃𝜇/𝜆(𝑢, . . . , 𝑢𝑡

𝐽−1),

see (2.2.24), this relation is not readily apparent from (4.1.6). The only term on the RHS

of (4.1.6) which a priori might differ after padding 𝜆, 𝜇 with zeros is the 𝑥 = 0 term of the

product. It may be checked that this term is in fact unchanged by padding with zeros,

but this is not immediately obvious from the formula as written.

Taking 𝐽 → ∞, we recover the theorem of [Kir98] which we stated in Chapter 2.

Proof of Theorem 2.2.16. For 𝑛 ≥ len(𝜆), 𝑛+ 𝐽 ≥ len(𝜇), we may identify 𝜇, 𝜆 ∈ Y with

nonnegative signatures 𝜇(𝑛 + 𝐽) ∈ Sig≥0
𝑛+𝐽 , 𝜆(𝑛) ∈ Sig≥0

𝑛 given by truncating. Hence to

compute

𝑃𝜇/𝜆(𝑢, 𝑢𝑡, . . .)

it suffices to take 𝐽 → ∞ in (4.1.6). The polynomial 𝑃𝜇(𝑛+𝐽)/𝜆(𝑛) is independent of 𝑛

for all 𝑛 sufficiently large, see (2.2.24), so we will fix 𝑛 and will abuse notation below

and write 𝜆 for 𝜆(𝑛). We first pull the 1/(𝑡; 𝑡)𝑚𝑥(𝜇) out of the product, and note that

𝑚0(𝜇(𝑛 + 𝐽)) → (𝑡; 𝑡)∞ as 𝐽 → ∞, cancelling the (𝑡; 𝑡)𝐽 term of (4.1.6). We write the

remaining term inside the product in (4.1.6) as

⎛⎝𝑡𝑚𝑥(𝜆)𝑚𝑥(𝜇(𝑛+𝐽))
2𝜑2

⎛⎝ 𝑡−𝑚𝑥(𝜆); 𝑡−𝑚𝑥(𝜇(𝑛+𝐽)), 0

𝑡1+𝜇(𝑛+𝐽)′𝑥+1−𝜆′
𝑥 , 𝑡1+𝐽−𝜇(𝑛+𝐽)′𝑥+𝜆′

𝑥+1

; 𝑡, 𝑡

⎞⎠⎞⎠ . (4.1.13)
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To show (2.2.54) it suffices to show that for 𝑥 > 0,

lim
𝐽→∞

𝑡𝑚𝑥(𝜆)𝑚𝑥(𝜇(𝑛+𝐽))
2𝜑2

⎛⎝ 𝑡−𝑚𝑥(𝜆); 𝑡−𝑚𝑥(𝜇(𝑛+𝐽)), 0

𝑡1+𝜇(𝑛+𝐽)′𝑥+1−𝜆′
𝑥 , 𝑡1+𝐽−𝜇(𝑛+𝐽)′𝑥+𝜆′

𝑥+1

; 𝑡, 𝑡

⎞⎠ = (𝑡1+𝜇′
𝑥−𝜆′

𝑥 ; 𝑡)𝑚𝑥(𝜆).

(4.1.14)

and for 𝑥 = 0,

lim
𝐽→∞

𝑡𝑚𝑥(𝜆)𝑚𝑥(𝜇(𝑛+𝐽))
2𝜑2

⎛⎝ 𝑡−𝑚𝑥(𝜆); 𝑡−𝑚𝑥(𝜇(𝑛+𝐽)), 0

𝑡1+𝜇(𝑛+𝐽)′𝑥+1−𝜆′
𝑥 , 𝑡1+𝐽−𝜇(𝑛+𝐽)′𝑥+𝜆′

𝑥+1

; 𝑡, 𝑡

⎞⎠ = 1. (4.1.15)

We begin with (2.2.54). Then 1+ 𝐽 − 𝜇(𝑛+ 𝐽)′𝑥 + 𝜆′𝑥+1 → ∞ and all other arguments in

the 𝑞-hypergeometric function remain the same, so the LHS of (4.1.14) is

2𝜑1

⎛⎝𝑡−𝑚𝑥(𝜆); 𝑡−𝑚𝑥(𝜇)

𝑡1+𝜇′
𝑥+1−𝜆′

𝑥

; 𝑡, 𝑡

⎞⎠ =

𝑚𝑥(𝜆)∑︁
ℓ=0

𝑡ℓ
(𝑡−𝑚𝑥(𝜆); 𝑡)ℓ

(𝑡; 𝑡)ℓ
(𝑡−𝑚𝑥(𝜇); 𝑡)ℓ(𝑡

1+𝜇′
𝑥+1−𝜆′

𝑥+ℓ; 𝑡)𝑚𝑥(𝜆)−ℓ.

(4.1.16)

To apply known identities, we reexpress the above in terms of the more standard termi-

nating 𝑞-hypergeometric series 2𝜑1 as

(𝑡1+𝜇′
𝑥+1−𝜆′

𝑥 ; 𝑡)𝑚𝑥(𝜆)

𝑚𝑥(𝜆)∑︁
ℓ=0

𝑡ℓ
(𝑡−𝑚𝑥(𝜆); 𝑡)ℓ(𝑡

−𝑚𝑥(𝜇); 𝑡)ℓ

(𝑡; 𝑡)ℓ(𝑡
1+𝜇′

𝑥+1−𝜆′
𝑥 ; 𝑡)ℓ

= (𝑡1+𝜇′
𝑥+1−𝜆′

𝑥 ; 𝑡)𝑚𝑥(𝜆) 2𝜑1

⎛⎝𝑡−𝑚𝑥(𝜆); 𝑡−𝑚𝑥(𝜇)

𝑡1+𝜇′
𝑥+1−𝜆′

𝑥

; 𝑡, 𝑡

⎞⎠ . (4.1.17)

By a special case of the 𝑞-Gauss identity, see e.g. [Koe98, Exercise 3.17],

2𝜑1

⎛⎝𝑡−𝑛; 𝑏

𝑐
; 𝑡, 𝑡

⎞⎠ =
(𝑐/𝑏; 𝑡)𝑛
(𝑐; 𝑡)𝑛

𝑏𝑛. (4.1.18)

Applying (4.1.18) with 𝑏 = 𝑡−𝑚𝑥(𝜇), 𝑐 = 𝑡1+𝜇′
𝑥+1−𝜆′

𝑥 to (4.1.17) yields

2𝜑1

⎛⎝𝑡−𝑚𝑥(𝜆); 𝑡−𝑚𝑥(𝜇)

𝑡1+𝜇′
𝑥+1−𝜆′

𝑥

; 𝑡, 𝑡

⎞⎠ = (𝑡1+𝜇′
𝑥−𝜆′

𝑥 ; 𝑡)𝑚𝑥(𝜆)𝑡
−𝑚𝑥(𝜆)𝑚𝑥(𝜇), (4.1.19)

which shows (4.1.14).

We now show (4.1.15), so let 𝑥 = 0. Then 𝜇𝑥(𝑛 + 𝐽)′ = 𝑛 + 𝐽 , so the arguments of
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the 𝑞-hypergeometric function in (4.1.14) are independent of 𝐽 except for 𝑡−𝑚0(𝜇(𝑛+𝐽)). In

the sum

𝑡𝑚𝑥(𝜆)𝑚𝑥(𝜇(𝑛+𝐽))
2𝜑2

⎛⎝ 𝑡−𝑚𝑥(𝜆); 𝑡−𝑚𝑥(𝜇(𝑛+𝐽)), 0

𝑡1+𝜇(𝑛+𝐽)′𝑥+1−𝜆′
𝑥 , 𝑡1+𝐽−𝜇(𝑛+𝐽)′𝑥+𝜆′

𝑥+1

; 𝑡, 𝑡

⎞⎠ = 𝑡𝑚𝑥(𝜆)𝑚𝑥(𝜇(𝑛+𝐽))

×
𝑚𝑥(𝜆)∑︁
𝑘=0

𝑡𝑘
(𝑡−𝑚𝑥(𝜆); 𝑡)𝑘

(𝑡; 𝑡)𝑘
(𝑡−𝑚𝑥(𝜇(𝑛+𝐽)); 𝑡)𝑘(𝑡

𝑘+1+𝜇(𝑛+𝐽)′𝑥+1−𝜆′
𝑥 ; 𝑡)𝑚𝑥(𝜆)−𝑘(𝑡

𝑘+1−𝑛+𝜆′
𝑥+1 ; 𝑡)𝑚𝑥(𝜆)−𝑘,

the dominant term as 𝐽 → ∞ is the 𝑘 = 𝑚𝑥(𝜆) term, and its limit when normalized by

𝑡𝑚𝑥(𝜆)𝑚𝑥(𝜇(𝑛+𝐽)) is 1. This shows (4.1.15).

The proof of (2.2.55) using (4.1.7) is exactly analogous except that only (4.1.14) is

needed because there are only 𝑛 paths.

4.2 The 𝑡-deformed Gelfand-Tsetlin graph and its bound-

ary

Let 𝑡 ∈ (0, 1) for the remainder of the section. In this section we introduce the Hall-

Littlewood Gelfand-Tsetlin graph and the notion of its boundary, the set of extreme

coherent systems. The main result stated earlier, Theorem 1.7.1, is that the boundary

is naturally in bijection with the set Sig∞ of infinite signatures. We will break it into

three parts: Proposition 4.2.2 gives an explicit coherent system of measures (𝑀𝜇
𝑛 )𝑛≥1 for

each 𝜇 ∈ Sig∞, Proposition 4.2.7 tells that every extreme coherent system must be one

of these, and Proposition 4.2.10 tells that each system (𝑀𝜇
𝑛 )𝑛≥1 is extreme.

The general structure of the proof of Theorem 1.7.1, via the so-called Vershik-Kerov

ergodic method, is similar to e.g. [Ols16, Theorem 6.2] or [Cue18]. A good general

reference for (unweighted) graded graphs, with references to research articles, is [BO17,

Chapter 7].
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4.2.1 Classifying the boundary.

Definition 20. G𝑡 is the weighted, graded graph with vertices

⨆︁
𝑛≥1

Sig𝑛

partitioned into levels indexed by Z≥1. The only edges of G𝑡 are between vertices on levels

differing by 1. Between every 𝜆 ∈ Sig𝑛, 𝜇 ∈ Sig𝑛+1 there is a weighted edge with weight

𝐿𝑛+1
𝑛 (𝜇, 𝜆) := 𝑃𝜇/𝜆(𝑡

𝑛)
𝑃𝜆(1, . . . , 𝑡

𝑛−1)

𝑃𝜇(1, . . . , 𝑡𝑛)
,

and these weights are called cotransition probabilities or (stochastic) links. We use 𝐿𝑛+1
𝑛

to denote the (infinite) Sig𝑛+1 × Sig𝑛 matrix with these weights.

Note 𝐿𝑛+1
𝑛 is a stochastic matrix by the branching rule. More generally, for 𝑚 ∈

Z≥1 ∪ {∞}, 1 ≤ 𝑛 < 𝑚, and 𝜇 ∈ Sig𝑚, 𝜆 ∈ Sig𝑛 we let

𝐿𝑚
𝑛 (𝜇, 𝜆) := 𝑃𝜇/𝜆(𝑡

𝑛, . . . , 𝑡𝑚−1)
𝑃𝜆(1, . . . , 𝑡

𝑛−1)

𝑃𝜇(1, . . . , 𝑡𝑚−1)
. (4.2.1)

When 𝑚 is finite one has 𝐿𝑚
𝑛 = 𝐿𝑛+1

𝑛 𝐿𝑛+2
𝑛 · · ·𝐿𝑚

𝑚−1, where the product is just the usual

matrix product.

Remark 19. The cotransition probabilities define (deterministic) maps ℳ(Sig𝑚) →

ℳ(Sig𝑛), where here and below we use ℳ to denote the space of Borel probability

measures, in this case with respect to the discrete topology on the set of signatures.

Remark 20. Lemma 2.2.2 implies translation-invariance

𝐿𝑚
𝑛 (𝜇, 𝜆) = 𝐿𝑚

𝑛 (𝜇+𝐷[𝑚], 𝜆+𝐷[𝑛]) (4.2.2)

of the cotransition probabilities.

The cotransition probabilities have explicit formulas courtesy of the results of Sec-

tion 4.1, which will be useful in the proofs of Lemma 4.2.5 and Proposition 4.2.7 later.

For 𝜆 ∈ Sig𝑛, we let ⎡⎣𝑛
𝜆

⎤⎦
𝑡

=
(𝑡; 𝑡)𝑛∏︀

𝑖∈Z(𝑡; 𝑡)𝑚𝑖(𝜆)

123



(the 𝑡-deformed multinomial coefficient).

Corollary 4.2.1. For 𝜇 ∈ Sig𝑛+𝐽 , 𝜆 ∈ Sig𝑛,

𝐿𝑛+𝐽
𝑛 (𝜇, 𝜆) =

1⎡⎣𝑛+ 𝐽

𝐽

⎤⎦
𝑡

∏︁
𝑥∈Z

𝑡(𝑛−𝜆′
𝑥)(𝜇

′
𝑥−𝜆′

𝑥)+𝑚𝑥(𝜆)𝑚𝑥(𝜇)

(𝑡; 𝑡)𝑚𝑥(𝜆)
2𝜑2

⎛⎝ 𝑡−𝑚𝑥(𝜆); 𝑡−𝑚𝑥(𝜇), 0

𝑡1+𝜇′
𝑥+1−𝜆′

𝑥 , 𝑡1+𝐽−𝜇′
𝑥+𝜆′

𝑥+1

; 𝑡, 𝑡

⎞⎠ .

(4.2.3)

Proof. By the translation-invariance of Remark 20, it suffices to prove the case when 𝜇, 𝜆

are nonnegative signatures. We combine the formula of Proposition 4.1.2 for 𝑃𝜇/𝜆(𝑡
𝑛, . . . , 𝑡𝑛+𝐽−1)

with the one from Proposition 2.2.15 for the principally specialized non-skew Hall-Littlewood

polynomial. By the latter,

𝑃𝜆(1, . . . , 𝑡
𝑛−1)

𝑃𝜇(1, . . . , 𝑡𝑛+𝐽−1)
=

(𝑡; 𝑡)𝑛
(𝑡; 𝑡)𝑛+𝐽

𝑡𝑛(𝜆)−𝑛(𝜇)
∏︁
𝑖≥0

(𝑡; 𝑡)𝑚𝑖(𝜇)

(𝑡; 𝑡)𝑚𝑖(𝜆)

. (4.2.4)

Note also that by the definition of 𝑛(𝜆),

𝑡𝑛(𝜆)−𝑛(𝜇) =
∏︁
𝑥≥0

𝑡(
𝜆′𝑥+1

2 )−(𝜇
′
𝑥+1
2 ), (4.2.5)

so by the identity (︂
𝑎+ 𝑏

2

)︂
−
(︂
𝑎

2

)︂
−
(︂
𝑏

2

)︂
= 𝑎𝑏

we have

𝑡𝑛(𝜆)−𝑛(𝜇)
∏︁
𝑥≥0

𝑡(
𝜇′𝑥+1−𝜆′𝑥+1

2 ) =
∏︁
𝑥≥0

𝑡−𝜆′
𝑥+1(𝜇

′
𝑥+1−𝜆′

𝑥+1). (4.2.6)

Simplifying the product of (4.1.6) with (4.2.4) by the above manipulations yields

𝐿𝑛+𝐽
𝑛 (𝜇, 𝜆) =

1⎡⎣𝑛+ 𝐽

𝐽

⎤⎦
𝑡

∏︁
𝑥≥0

𝑡(𝑛−𝜆′
𝑥+1)(𝜇

′
𝑥+1−𝜆′

𝑥+1)+𝑚𝑥(𝜆)𝑚𝑥(𝜇)

(𝑡; 𝑡)𝑚𝑥(𝜆)
2𝜑2

⎛⎝ 𝑡−𝑚𝑥(𝜆); 𝑡−𝑚𝑥(𝜇), 0

𝑡1+𝜇′
𝑥+1−𝜆′

𝑥 , 𝑡1+𝐽−𝜇′
𝑥+𝜆′

𝑥+1

; 𝑡, 𝑡

⎞⎠ .

The product may be extended to all 𝑥 ∈ Z since all other terms are 1, at which point it

is manifestly translation-invariant, which yields the result for arbitrary signatures.

Definition 21. A sequence (𝑀𝑛)𝑛≥1 of probability measures on Sig1, Sig2, . . . is coherent
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if ∑︁
𝜇∈Sig𝑛+1

𝑀𝑛+1(𝜇)𝐿
𝑛+1
𝑛 (𝜇, 𝜆) =𝑀𝑛(𝜆)

for each 𝑛 ≥ 1 and 𝜆 ∈ Sig𝑛.

Definition 22. A coherent system of measures (𝑀𝑛)𝑛≥1 is extreme if there do not exist

coherent systems (𝑀 ′
𝑛)𝑛≥1, (𝑀

′′
𝑛)𝑛≥1 different from (𝑀𝑛)𝑛≥1 and 𝑠 ∈ (0, 1) such that 𝑀𝑛 =

𝑠𝑀 ′
𝑛 + (1 − 𝑠)𝑀 ′′

𝑛 for each 𝑛. The set of extreme coherent systems of measures on a

weighted, graded graph is called its boundary, and denoted in our case by 𝜕G𝑡.

In the previous section we considered both signatures (of finite length), and integer

partitions, which have infinite length but stabilize to 0. To describe points on the bound-

ary 𝜕G𝑡 in this section, it turns out that it will be necessary to introduce signatures of

infinite length which are not partitions.

Definition 23. We denote the set of infinite signatures by

Sig∞ := {(𝜇1, 𝜇2, . . .) ∈ Z∞ : 𝜇1 ≥ 𝜇2 ≥ . . .}.

We refer to the 𝜇𝑖 as parts just as with partitions, and define 𝜇′
𝑖 and 𝑚𝑖(𝜇) the exact

same way, though we must allow them to be equal to ∞.

A distinguished subset of Sig∞ is Y, the set of partitions. Translating by any 𝐷 ∈ Z

yields

Y+𝐷 = {𝜇 ∈ Sig∞ : 𝜇𝑖 = 𝐷 for all but finitely many 𝑖}.

However, Sig∞ also contains infinite signatures with parts not bounded below, the set of

which we denote by

Sig𝑢𝑛𝑠𝑡𝑎𝑏𝑙𝑒∞ := {𝜇 ∈ Sig∞ : lim
𝑖→∞

𝜇𝑖 = −∞}.

It is clear that

Sig∞ = Sig𝑢𝑛𝑠𝑡𝑎𝑏𝑙𝑒∞ ⊔
⨆︁
𝐷∈Z

(Y+𝐷)

and we will use this decomposition repeatedly in what follows. To treat the unbounded

signatures we will approximate by signatures in Y +𝐷, which are no more complicated

than partitions, and to this end we introduce the following notation.
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Definition 24. For 𝜆 ∈ Sig𝑢𝑛𝑠𝑡𝑎𝑏𝑙𝑒∞ and 𝐷 ∈ Z, we let

𝜆(𝐷) = (𝜆1, . . . , 𝜆𝑘, 𝐷,𝐷, . . .) ∈ Y+𝐷

where 𝑘 is the largest index such that 𝜆𝑘 > 𝐷.

The first step to proving Theorem 1.7.1 is, for each element of Sig∞, an explicit formula

for a corresponding coherent system of measures on G𝑡; we will later show that these are

exactly the boundary points.

Proposition 4.2.2. For each 𝜇 ∈ Sig∞, there exists a coherent system of measures

(𝑀𝜇
𝑛 )𝑛≥1 on G𝑡, given explicitly by

𝑀𝜇
𝑛 (𝜆) :=

⎡⎣𝑛
𝜆

⎤⎦
𝑡

∏︁
𝑥∈Z

𝑡(𝜇
′
𝑥−𝜆′

𝑥)(𝑛−𝜆′
𝑥)(𝑡1+𝜇′

𝑥−𝜆′
𝑥 ; 𝑡)𝑚𝑥(𝜆). (4.2.7)

for 𝜆 ∈ Sig𝑛.

Before proving Proposition 4.2.2 we will calculate explicit formulas for the links 𝐿𝑚
𝑛

in Proposition 4.1.2, which are a corollary to the formula for principally specialized skew

functions in Theorem 2.2.16.

Corollary 4.2.3. Let 𝑛 ≥ 1. If 𝜆 ∈ Sig≥0
𝑛 , 𝜇 ∈ Y, then

𝑃𝜇/𝜆(𝑡
𝑛, 𝑡𝑛+1, . . .)𝑃𝜆(1, . . . , 𝑡

𝑛−1)

𝑃𝜇(1, 𝑡, . . .)
=

⎡⎣𝑛
𝜆

⎤⎦
𝑡

∏︁
𝑥∈Z>0

𝑡(𝜇
′
𝑥−𝜆′

𝑥)(𝑛−𝜆′
𝑥)(𝑡1+𝜇′

𝑥−𝜆′
𝑥 ; 𝑡)𝑚𝑥(𝜆). (4.2.8)

Furthermore, if instead 𝜆 ∈ Sig𝑛, 𝜇 ∈ Sig𝑢𝑛𝑠𝑡𝑎𝑏𝑙𝑒∞ , then

𝑃(𝜇(𝐷)−𝐷[∞])/(𝜆−𝐷[𝑛])(𝑡
𝑛, 𝑡𝑛+1, . . .)𝑃(𝜆−𝐷[𝑛])(1, . . . , 𝑡

𝑛−1)

𝑃(𝜇(𝐷)−𝐷[∞])(1, 𝑡, . . .)
(4.2.9)

increases monotonically as 𝐷 → −∞, and stabilizes to⎡⎣𝑛
𝜆

⎤⎦
𝑡

∏︁
𝑥∈Z

𝑡(𝜇
′
𝑥−𝜆′

𝑥)(𝑛−𝜆′
𝑥)(𝑡1+𝜇′

𝑥−𝜆′
𝑥 ; 𝑡)𝑚𝑥(𝜆) (4.2.10)

for all 𝐷 < 𝜆𝑛.
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Proof. (4.2.8) follows from Theorem 2.2.16 and Proposition 2.2.15 by the same proof

as that of Corollary 4.2.1, so let us show the monotonicity and stabilization statement.

Substituting (4.2.9) into (4.2.8) and changing variables 𝑥 ↦→ 𝑥+𝐷 in the product yields

𝑃(𝜇(𝐷)−𝐷[∞])/(𝜆−𝐷[𝑛])(𝑡
𝑛, 𝑡𝑛+1, . . .)𝑃(𝜆−𝐷[𝑛])(1, . . . , 𝑡

𝑛−1)

𝑃(𝜇(𝐷)−𝐷[∞])(1, 𝑡, . . .)
=

⎡⎣𝑛
𝜆

⎤⎦
𝑡

∏︁
𝑥∈Z>𝐷

𝑡(𝜇
′
𝑥−𝜆′

𝑥)(𝑛−𝜆′
𝑥)(𝑡1+𝜇′

𝑥−𝜆′
𝑥 ; 𝑡)𝑚𝑥(𝜆).

The factors in the product are all in [0, 1] and are equal to 1 when 𝑥 ≤ 𝜆𝑛, and since the

product is over 𝑥 ∈ Z>𝐷 this completes the proof.

Remark 21. Given the translation-invariance of the links 𝐿𝑚
𝑛 noted in Remark 20, when

𝜇 ∈ Y+𝐷 it is natural to view the expression

𝑃(𝜇−𝐷[∞])/(𝜆−𝐷[𝑛])(𝑡
𝑛, 𝑡𝑛+1, . . .)𝑃(𝜆−𝐷[𝑛])(1, . . . , 𝑡

𝑛−1)

𝑃(𝜇−𝐷[∞])(1, 𝑡, . . .)

as simply
𝑃𝜇/𝜆(𝑡

𝑛, 𝑡𝑛+1, . . .)𝑃𝜆(1, . . . , 𝑡
𝑛−1)

𝑃𝜇(1, 𝑡, . . .)
,

even though in our setup the expressions 𝑃𝜇/𝜆(𝑡
𝑛, 𝑡𝑛+1, . . .) and 𝑃𝜇(1, 𝑡, . . .) are not well-

defined when 𝜇 is not in Y. Hence in view of Theorem 2.2.16 it is natural to view the

coherent systems (𝑀𝜇
𝑛 )𝑛≥1 of Theorem 1.7.1 as being given by links ‘at infinity’

𝑀𝜇
𝑛 (𝜆)“ = ”𝐿∞

𝑛 (𝜇, 𝜆) =
𝑃𝜇/𝜆(𝑡

𝑛, 𝑡𝑛+1, . . .)𝑃𝜆(1, . . . , 𝑡
𝑛−1)

𝑃𝜇(1, 𝑡, . . .)

for general 𝜇 ∈ Sig∞, though we must take a slightly roundabout path to make rigorous

sense of the RHS. Many of the proofs below follow the same pattern of proving a result

for 𝜇 ∈ Y by usual symmetric functions machinery, appealing to translation-invariance

for 𝜇 ∈ Y + 𝐷, and then approximating 𝜇 ∈ Sig𝑢𝑛𝑠𝑡𝑎𝑏𝑙𝑒∞ by elements 𝜇(𝐷) ∈ Y + 𝐷 and

using Corollary 4.2.3 to apply the monotone convergence theorem. We note also that the

formula (4.2.7) is clearly translation-invariant.

Proof of Proposition 4.2.2. We first show 𝑀𝜇
𝑛 is indeed a probability measure. Clearly it

is a nonnegative function on Sig𝑛, but we must show it sums to 1. When 𝜇 ∈ Y this is

by Corollary 4.2.3 and the definition of skew HL polynomials, and the case 𝜇 ∈ Y + 𝐷
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reduces to this one. Hence it remains to show that for 𝜇 ∈ Sig𝑢𝑛𝑠𝑡𝑎𝑏𝑙𝑒∞ ,

∑︁
𝜆∈Sig𝑛

lim
𝐷→−∞

𝑃(𝜇(𝐷)−𝐷[∞])/(𝜆−𝐷[𝑛])(𝑡
𝑛, 𝑡𝑛+1, . . .)𝑃(𝜆−𝐷[𝑛])(1, . . . , 𝑡

𝑛−1)

𝑃(𝜇(𝐷)−𝐷[∞])(1, 𝑡, . . .)
= 1. (4.2.11)

By Corollary 4.2.3, the functions

𝑃(𝜇(𝐷)−𝐷[∞])/(𝜆−𝐷[𝑛])(𝑡
𝑛, 𝑡𝑛+1, . . .)𝑃(𝜆−𝐷[𝑛])(1, . . . , 𝑡

𝑛−1)

𝑃(𝜇(𝐷)−𝐷[∞])(1, 𝑡, . . .)
=

⎡⎣𝑛
𝜆

⎤⎦
𝑡

∏︁
𝑥∈Z>𝐷

𝑡(𝜇
′
𝑥−𝜆′

𝑥)(𝑛−𝜆′
𝑥)(𝑡1+𝜇′

𝑥−𝜆′
𝑥 ; 𝑡)𝑚𝑥(𝜆)

converge to the summand in (4.2.11) from below as 𝐷 → −∞. Hence (4.2.11) follows by

the monotone convergence theorem.

For 𝜇 ∈ Y + 𝐷 for some 𝐷, coherency again follows from the definition of skew

functions and the first part of Corollary 4.2.3. For 𝜇 ∈ Sig𝑢𝑛𝑠𝑡𝑎𝑏𝑙𝑒∞ we must show

∑︁
𝜅∈Sig𝑛+1

lim
𝐷→−∞

𝑃(𝜇(𝐷)−𝐷[∞])/(𝜅−𝐷[𝑛+1])(𝑡
𝑛+1, . . .)𝑃(𝜅−𝐷[𝑛+1])(1, . . . , 𝑡

𝑛)

𝑃(𝜇(𝐷)−𝐷[∞])(1, 𝑡, . . .)

𝑃𝜅/𝜆(𝑡
𝑛)𝑃𝜆(1, . . . , 𝑡

𝑛−1)

𝑃𝜅(1, . . . , 𝑡𝑛)

= lim
𝐷→−∞

𝑃(𝜇(𝐷)−𝐷[∞])/(𝜆−𝐷[𝑛])(𝑡
𝑛, 𝑡𝑛+1, . . .)𝑃(𝜆−𝐷[𝑛])(1, . . . , 𝑡

𝑛−1)

𝑃(𝜇(𝐷)−𝐷[∞])(1, 𝑡, . . .)
. (4.2.12)

Again the monotone convergence theorem allows us to interchange the limit and sum.

The result then follows by translation invariance of the links (4.2.2) and the definition of

skew HL polynomials.

It remains to show that the coherent systems identified in Proposition 4.2.2 are extreme

and that all extreme coherent systems are of this form. Just from the definition, an

arbitrary extreme coherent system is an elusive object. Luckily, the general results of the

Vershik-Kerov ergodic method guarantee that extreme coherent systems can be obtained

through limits of cotransition probabilities for certain regular sequences of signatures,

which are much more concrete.

Definition 25. A sequence (𝜇(𝑛))𝑛≥1 with 𝜇(𝑛) ∈ Sig𝑛 is regular if for every 𝑘 ∈ Z≥1

and 𝜆 ∈ Sig𝑘, the limit

𝑀𝑘(𝜆) := lim
𝑛→∞

𝐿𝑛
𝑘(𝜇(𝑛), 𝜆)

exists and 𝑀𝑘 is a probability measure.
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Proposition 4.2.4. For any extreme coherent system (𝑀𝑘)𝑘≥1 ∈ 𝜕𝐺 there exists a regular

sequence (𝜇(𝑛))𝑛≥1 such that

𝑀𝑘(·) = lim
𝑛→∞

𝐿𝑛
𝑘(𝜇(𝑛), ·).

Proof. Follows from [OO98, Theorem 6.1].

The space of extreme coherent systems obtained from regular sequences as in Propo-

sition 4.2.4 is sometimes referred to as the Martin boundary. It naturally includes into

the boundary, and Proposition 4.2.4 says that in this setup they are in fact equal.

Lemma 4.2.5. Let (𝜇(𝑛))𝑛≥1 be a sequence with 𝜇(𝑛) ∈ Sig𝑛, such that

lim
𝑛→∞

𝜇(𝑛)𝑖 =: 𝜇𝑖

exists and is finite for every 𝑖. Then (𝜇(𝑛))𝑛≥1 is regular and the corresponding coherent

family is (𝑀𝜇
𝑛 )𝑛≥1, where 𝜇 = (𝜇1, 𝜇2, . . .) ∈ Sig∞.

Proof. Let (𝜇(𝑛))𝑛≥1 satisfy the hypothesis. We must show for arbitrary 𝑘, 𝜆 ∈ Sig𝑘 that

lim
𝑛→∞

𝐿𝑛
𝑘(𝜇(𝑛), 𝜆) =𝑀𝜇

𝑘 (𝜆). (4.2.13)

It is easy to see from the explicit formula in Corollary 4.2.1 that 𝐿𝑛
𝑘(𝜇(𝑛), 𝜆) depends only

on the parts of 𝜇(𝑛) which are ≥ 𝜆𝑘. For any fixed 𝑥, it is easy to see that 𝜇(𝑛)′𝑥 → 𝜇′
𝑥. In

fact, for all sufficiently large 𝑛, it must be true that 𝜇(𝑛)′𝑥 = 𝜇′
𝑥 for all 𝑥 ≥ 𝜆𝑘 such that

𝜇′
𝑥 is finite. Hence for all sufficiently large 𝑛 the product in (4.2.3) only has nontrivial

terms when 𝜆𝑘 ≤ 𝑥 ≤ 𝜇1, so it suffices to show that each term converges. This follows by

the exact same argument as the proof of Theorem 2.2.16, again with two cases based on

whether 𝜇(𝑛)′𝑥 stabilizes or 𝜇(𝑛)′𝑥 → ∞.

Lemma 4.2.6. Let 1 ≤ 𝑘 < 𝑛 be integers and 𝜆 ∈ Sig𝑘.

1. If 𝜇 ∈ Sig𝑛 is such that 𝜆′𝑥 > 𝜇′
𝑥 for some 𝑥, then 𝐿𝑛

𝑘(𝜇, 𝜆) = 0.

2. If 𝜇 ∈ Sig∞ is such that 𝜆′𝑥 > 𝜇′
𝑥 for some 𝑥, then 𝑀𝜇

𝑘 (𝜆) = 0.
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Proof. If 𝜇 ∈ Y, 𝜆 ∈ Y and 𝜆′𝑥 > 𝜇′
𝑥 for any 𝑥, it follows from the upper-triangularity

of the branching rule [Mac98a, Chapter III, (5.5’)] that 𝑃𝜆/𝜇(𝑡
𝑘, . . . , 𝑡𝑛−1) = 0, showing

(1). Approximating 𝜇 ∈ Sig∞ with (𝜇1, . . . , 𝜇𝑛) ∈ Sig𝑛 and invoking Lemma 4.2.5 yields

(2).

Lemma 4.2.6 could also be shown by the explicit formula (4.2.7), but as the above

proof shows, it in fact requires only the very basic properties of symmetric functions.

Proposition 4.2.7. Every extreme coherent system is given by (𝑀𝜇
𝑛 )𝑛≥1 for some 𝜇 ∈

Sig∞.

Proof. Let (𝑀𝑛)𝑛≥1 be an extreme coherent system and (𝜇(𝑛))𝑛≥1 be a regular sequence

converging to it, the existence of which is guaranteed by Proposition 4.2.4. We wish to

find 𝜇 ∈ Sig∞ such that

lim
𝑛→∞

𝐿𝑛
𝑘(𝜇(𝑛), 𝜆) =𝑀𝜇

𝑘 (𝜆) (4.2.14)

for all 𝑘 and 𝜆 ∈ Sig𝑘, and will construct 𝜇 as a limit of the signatures 𝜇(𝑛).

Our first step is to show the sequence of first parts (𝜇1(𝑛))𝑛≥1 is bounded above

(and hence all other (𝜇𝑖(𝑛))𝑛≥1 are as well). Suppose for the sake of contradiction that

this is not the case. Then there is a subsequence (𝜇1(𝑛𝑗))𝑗≥1 of (𝜇1(𝑛))𝑛≥1 for which

𝜇1(𝑛𝑗) → ∞. We claim that for any 𝑘 and 𝜆 ∈ Sig𝑘,

lim
𝑗→∞

𝐿
𝑛𝑗

𝑘 (𝜇(𝑛𝑗), 𝜆) = 0. (4.2.15)

This suffices for the contradiction, as then (4.2.15) holds also with 𝑛𝑗 replaced by 𝑛

by regularity of (𝜇(𝑛))𝑛≥1, therefore the sequence of probability measures 𝐿𝑛
𝑘(𝜇(𝑛), ·)

converges to the zero measure, which contradicts the definition of regular sequence. So

let us prove (4.2.15), and to declutter notation let us without loss of generality denote

the subsequence by (𝜇(𝑛))𝑛≥1 as well.

We claim there exists a constant 𝐶𝑘 such that for all 𝐽 ≥ 1 and 𝜈 ∈ Sig𝑘+𝐽 ,

⃒⃒⃒⃒
⃒⃒𝑡𝑚𝑥(𝜈)𝑚𝑥(𝜆)

2𝜑2

⎛⎝ 𝑡−𝑚𝑥(𝜆); 𝑡−𝑚𝑥(𝜈), 0

𝑡1+𝜈′𝑥+1−𝜆′
𝑥 , 𝑡1+𝐽−𝜈′𝑥+𝜆′

𝑥+1

; 𝑡, 𝑡

⎞⎠⃒⃒⃒⃒⃒⃒ ≤ 𝐶𝑘 (4.2.16)

For fixed 𝜆, 1 + 𝜈 ′𝑥+1 − 𝜆′𝑥 and 1 + 𝐽 − 𝜈 ′𝑥 + 𝜆′𝑥+1 are both bounded below independent of
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𝜈 by 1− 𝑘. This gives an upper bound on the factors (𝑏𝑡ℓ; 𝑡)𝑚𝑥(𝜆)−ℓ, 0 ≤ ℓ ≤ 𝑚𝑥(𝜆) where

𝑏 ∈ {𝑡1+𝜈′𝑥+1−𝜆′
𝑥 , 𝑡1+𝐽−𝜈′𝑥+𝜆′

𝑥+1} which appear in the sum expansion (4.1.3) of (4.2.16). The

term 𝑡𝑚𝑥(𝜈)𝑚𝑥(𝜆)(𝑡−𝑚𝑥(𝜈); 𝑡)ℓ is likewise bounded above independent of 𝜈. Because 𝑚𝑥(𝜆)

and 𝜆′𝑥 can only take finitely many values, the claim follows. Furthermore, the LHS

of (4.2.16) is simply 1 whenever 𝑚𝑥(𝜆) = 0, which is true for all but finitely many 𝑥.

Plugging this bound into Corollary 4.2.1 yields

𝐿𝑛
𝑘(𝜇(𝑛), 𝜆) ≤

𝐶𝑘
𝑘⎡⎣𝑛

𝑘

⎤⎦∏︀
𝑖∈Z(𝑡; 𝑡)𝑚𝑖(𝜆)

∏︁
𝑥∈Z

𝑡(𝑘−𝜆′
𝑥)(𝜇(𝑛)

′
𝑥−𝜆′

𝑥). (4.2.17)

For 𝜆1 < 𝑥 ≤ 𝜇(𝑛)1, one has 𝑡(𝑘−𝜆′
𝑥)(𝜇(𝑛)

′
𝑥−𝜆′

𝑥) ≤ 𝑡𝑘 < 1, and our claim (4.2.15) follows.

Now, suppose for the sake of contradiction that there exists 𝑘 for which (𝜇(𝑛)𝑘)𝑛≥1 is

not bounded below. Then for any 𝜆 ∈ Sig𝑘, there are infinitely many 𝑛 for which 𝜇(𝑛)𝑘 <

𝜆𝑘 and consequently 𝜇(𝑛)′𝑥 < 𝜆′𝑥 = 𝑘 for 𝑥 = 𝜆𝑘. By Lemma 4.2.6, 𝐿𝑛
𝑘(𝜇(𝑛), 𝜆) = 0 for all

such 𝑛, therefore 𝐿𝑛
𝑘(𝜇(𝑛), 𝜆) → 0 as 𝑛 → ∞ since (𝜇(𝑛))𝑛≥1 is a regular sequence. This

is a contradiction, therefore (𝜇(𝑛)𝑘)𝑛≥1 is bounded below for each 𝑘.

Since (𝜇(𝑛)𝑘)𝑛≥1 is bounded above and below for each 𝑘, there is a subsequence on

which these converge, and by a diagonalization argument there exists a subsequence

(𝜇(𝑛𝑗))𝑗≥1 on which 𝜇(𝑛𝑗)𝑘 converges for every 𝑘. Letting 𝜇𝑖 = lim𝑗→∞ 𝜇(𝑛𝑗)𝑖 and 𝜇 =

(𝜇1, 𝜇2, . . .) ∈ Sig∞, we have by Lemma 4.2.5 that

lim
𝑗→∞

𝐿
𝑛𝑗

𝑘 (𝜇(𝑛𝑗), 𝜆) =𝑀𝜇
𝑘 (𝜆)

for each 𝜆 ∈ Sig𝑘. Since lim𝑛→∞ 𝐿𝑛
𝑘(𝜇(𝑛), 𝜆) exists by the definition of regular sequence,

it must also be equal to 𝑀𝜇
𝑘 (𝜆). This shows (4.2.14), completing the proof.

For the other direction, Proposition 4.2.10, we will need the basic fact that general

coherent systems are convex combinations of extreme ones.

Proposition 4.2.8. For any coherent system (𝑀𝑛)𝑛≥1 on G𝑡, there exists a Borel1 mea-

1The topology on 𝜕G𝑡 here is the following. For each 𝑛, the set of probability measures on Sig𝑛
inherits a topology from the product topology on R∞ by viewing the measures as functions, which gives
a topology on the inverse limit 𝜕G𝑡.

131



sure 𝜋 on 𝜕G𝑡 such that

𝑀𝑘 =

∫︁
𝑀 ′∈𝜕G𝑡

𝑀 ′
𝑘𝜋(𝑑𝑀

′)

for each 𝑘, where 𝑀 ′ is shorthand for a coherent system (𝑀 ′
𝑛)𝑛≥1.

Proof. Follows from [Ols03, Theorem 9.2].

It will also be necessary to put a topology on Sig∞, namely the one inherited from the

product topology on Z∞ where Z is equipped with the cofinite topology. The following

lemma shows that these natural choices of topology on Sig∞ and 𝜕G𝑡 are compatible.

Lemma 4.2.9. The map

𝑓 : Sig∞ → ℳ(𝜕G𝑡)

𝜇 ↦→ (𝑀𝜇
𝑛 )𝑛≥1

is continuous, hence in particular Borel.

Proof. Since Sig∞ is first-countable, to show 𝑓 is continuous it suffices to show it preserves

limits of sequences. Hence we must show that for any 𝜇 ∈ Sig∞, if 𝜈(1), 𝜈(2), . . . ∈ Sig∞

and 𝜈
(𝑘)
𝑖 → 𝜇𝑖 for all 𝑖, then 𝑀𝜈(𝑘)

𝑛 → 𝑀𝜇
𝑛 pointwise as functions on Sig𝑛. This follows

straightforwardly from the explicit formula (4.2.7) of Proposition 4.2.2.

Proposition 4.2.10. For every 𝜇 ∈ Sig∞, the coherent system (𝑀𝜇
𝑛 )𝑛≥1 is extreme.

Proof. Fix 𝜇 ∈ Sig∞. By Proposition 4.2.7,there is a Borel measure 𝜋 ∈ ℳ(𝜕G𝑡).

𝑀𝜇
𝑘 =

∫︁
𝑀 ′∈𝜕G𝑡

𝑀 ′
𝑘𝜋(𝑑𝑀

′) =

∫︁
𝜈∈Sig∞

𝑀𝜈
𝑘 (𝜄*𝜋)(𝑑𝜈) (4.2.18)

where 𝜄 : 𝜕G𝑡 →˓ Sig∞ is the inclusion guaranteed by Proposition 4.2.7. Because 𝑓 ∘ 𝜄 = Id

and 𝑓 is Borel, 𝜄 is a Borel isomorphism onto its image, hence 𝜄*𝜋 is a Borel measure in

the topology on Sig∞ above.

We first claim that 𝜄*𝜋 is supported on

𝑆≤𝜇 := {𝜈 ∈ Sig∞ : 𝜈𝑖 ≤ 𝜇𝑖 for all 𝑖}.
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Suppose not. Since

Sig∞ ∖𝑆≤𝜇 =
⋃︁
𝑘≥1

{𝜈 ∈ Sig∞ : 𝜈𝑖 > 𝜇𝑖 for at least one 1 ≤ 𝑖 ≤ 𝑘}

and

{𝜈 ∈ Sig∞ : 𝜈𝑖 > 𝜇𝑖 for at least one 1 ≤ 𝑖 ≤ 𝑘} =
⋃︁

𝜆∈Sig𝑘:
∃𝑖 s.t. 𝜆𝑖>𝜇𝑖

{𝜈 ∈ Sig∞ : 𝜈𝑖 = 𝜆𝑖 for all 1 ≤ 𝑖 ≤ 𝑘},

if (𝜄*𝜋)(Sig∞ ∖𝑆≤𝜇) > 0 then there exists 𝑘 and 𝜆 ∈ Sig𝑘 such that

(𝜄*𝜋)({𝜈 ∈ Sig∞ : 𝜈𝑖 = 𝜆𝑖 for all 1 ≤ 𝑖 ≤ 𝑘}) > 0. (4.2.19)

Denoting the set in (4.2.19) by 𝑆𝑘(𝜆) ⊂ Sig∞, we have

𝑀𝜇
𝑘 (𝜆1, . . . , 𝜆𝑘) =

∫︁
𝜈∈𝑆𝑘(𝜆)

𝑀𝜈
𝑘 (𝜆1, . . . , 𝜆𝑘)(𝜄*𝜋)(𝑑𝜈)+

∫︁
𝜈∈Sig∞ ∖𝑆𝑘(𝜆)

𝑀𝜈
𝑘 (𝜆1, . . . , 𝜆𝑘)(𝜄*𝜋)(𝑑𝜈).

(4.2.20)

The LHS is 0 by Lemma 4.2.6. If 𝜈 ∈ 𝑆𝑘(𝜆), then the only factor in

𝑀𝜈
𝑘 (𝜆1, . . . , 𝜆𝑘) =

⎡⎣𝑘
𝜆

⎤⎦
𝑡

∏︁
𝑥∈Z≥𝜆𝑘

𝑡(𝜈
′
𝑥−𝜆′

𝑥)(𝑘−𝜆′
𝑥)(𝑡1+𝜈′𝑥−𝜆′

𝑥 ; 𝑡)𝑚𝑥(𝜆)

which depends on 𝜈 is (𝑡1+𝜈′𝜆𝑘
−𝑘
; 𝑡)𝑚𝜆𝑘

(𝜆), which is clearly bounded below by (𝑡; 𝑡)∞. Hence

the RHS of (4.2.20) is bounded below by

(𝜄*𝜋)(𝑆𝑘(𝜆))(𝑡; 𝑡)∞

⎡⎣𝑘
𝜆

⎤⎦
𝑡

> 0,

a contradiction. Therefore 𝜄*𝜋 is indeed supported on 𝑆≤𝜇.

For each 𝑘 ≥ 1 we may decompose

𝑆≤𝜇 = (𝑆≤𝜇 ∩ 𝑆𝑘(𝜇1, . . . , 𝜇𝑘)) ⊔ (𝑆≤𝜇 ∩ (𝑆𝑘(𝜇1, . . . , 𝜇𝑘))
𝑐)

into those signatures which agree with 𝜇 on the first 𝑘 coordinates and those which do
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not, and

𝑀𝜇
𝑘 (𝜇1, . . . , 𝜇𝑘) =

∫︁
𝜈∈𝑆≤𝜇∩𝑆𝑘(𝜇1,...,𝜇𝑘)

𝑀𝜈
𝑘 (𝜇1, . . . , 𝜇𝑘)(𝜄*𝜋)(𝑑𝜈)

+

∫︁
𝜈∈𝑆≤𝜇∩(𝑆𝑘(𝜇1,...,𝜇𝑘)𝑐)

𝑀𝜈
𝑘 (𝜇1, . . . , 𝜇𝑘)(𝜄*𝜋)(𝑑𝜈). (4.2.21)

The second integral in (4.2.21) is always 0 by Lemma 4.2.6. If 𝜈 ∈ 𝑆≤𝜇 ∩ 𝑆𝑘(𝜇1, . . . , 𝜇𝑘)

then 𝜈 ′𝑥 = 𝜇′
𝑥 for 𝑥 > 𝜇𝑘 and 𝜈 ′𝑥 ≤ 𝜇′

𝑥 when 𝑥 = 𝜇𝑘. Hence

(𝑡1+𝜈′𝑥−𝑘; 𝑡)𝑚𝑥(𝜇1,...,𝜇𝑘) ≤ (𝑡1+𝜇′
𝑥−𝑘; 𝑡)𝑚𝑥(𝜇1,...,𝜇𝑘)

for all 𝑥, and all other factors in (4.2.7) are the same for𝑀𝜈
𝑘 (𝜇1, . . . , 𝜇𝑘) and𝑀𝜇

𝑘 (𝜇1, . . . , 𝜇𝑘),

therefore

𝑀𝜈
𝑘 (𝜇1, . . . , 𝜇𝑘) ≤𝑀𝜇

𝑘 (𝜇1, . . . , 𝜇𝑘) for all 𝜈 ∈ 𝑆≤𝜇 ∩ 𝑆𝑘(𝜇1, . . . , 𝜇𝑘).

Hence (4.2.21) reduces to

𝑀𝜇
𝑘 (𝜇1, . . . , 𝜇𝑘) ≤𝑀𝜇

𝑘 (𝜇1, . . . , 𝜇𝑘) · (𝜄*𝜋)(𝑆≤𝜇 ∩ 𝑆𝑘(𝜇1, . . . , 𝜇𝑘)). (4.2.22)

Since 𝑀𝜇
𝑘 (𝜇1, . . . , 𝜇𝑘) > 0 by (4.2.7), it follows that

(𝜄*𝜋)(𝑆≤𝜇 ∩ 𝑆𝑘(𝜇1, . . . , 𝜇𝑘)) = 1.

Since this is true for all 𝑘 and
⋂︀

𝑘 (𝑆≤𝜇 ∩ 𝑆𝑘(𝜇1, . . . , 𝜇𝑘)) = {𝜇}, it follows that (𝜄*𝜋)({𝜇}) =

1, i.e. 𝜄*𝜋 is the delta mass at 𝜇. Hence (𝑀𝜇
𝑛 )𝑛≥1 is an extreme coherent system, com-

pleting the proof.

4.3 Infinite 𝑝-adic random matrices and corners

In this section, we turn to 𝑝-adic random matrix theory and prove Theorem 1.7.2 and

Theorem 1.7.3. We will first give the basic setup of 𝑝-adic random matrices and the

key result Proposition 4.3.1 which relates the operations of removing rows and columns

to Hall-Littlewood polynomials. In Section 4.3.2 we prove auxiliary boundary results
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on a slightly more complicated branching graph which extends the one in the previous

section, which are tailored to the random matrix corner situation. We then use these to

deduce the result Theorem 1.7.2, that extreme bi-invariant measures on Mat∞×∞(Q𝑝) are

parametrized by the set Sig∞ defined in Definition 26 below, from the parametrization

of the boundary of this augmented branching graph by Sig∞ (Theorem 4.3.3).

4.3.1 𝑝-adic background.

Definition 26. Recall from Definition 3 that for 𝑛 ∈ Z≥1, we let

Sig
𝑛
= {(𝜆1, . . . , 𝜆𝑛) ∈ (Z ∪ {−∞})𝑛 : 𝜆1 ≥ . . . ≥ 𝜆𝑛},

where we take −∞ < 𝑎 for all 𝑎 ∈ Z, and refer to elements of Sig
𝑛

as extended signatures.

The definition of Sig∞ is exactly analogous. For 0 ≤ 𝑘 ≤ 𝑛, we denote by Sig(𝑘)
𝑛

⊂ Sig
𝑛

the set of all extended signatures with exactly 𝑘 integer parts and the rest equal to −∞.

For 𝜆 ∈ Sig(𝑘)
𝑛

, we denote by 𝜆* ∈ Sig𝑘 the signature given by its integer parts.

Definition 27. For 1 ≤ 𝑛 ≤ 𝑚 <∞ and 𝐴 ∈ Mat𝑛×𝑚(Q𝑝), we denote by ESN(𝐴) ∈ Sig∞

the extended signature with first 𝑛 parts given by − SN(𝐴), and all others by −∞. We

refer to the finite parts of ESN(𝐴) as the negative finite singular numbers of 𝐴.

Remark 22. The reason for padding with −∞ is to allow us to treat matrices of different

sizes on equal footing, essentially viewing them as corners of a large matrix of low rank.

This is why it makes sense to work with negative singular numbers in the infinite matrix

context, as otherwise we would have to pad SN(𝐴) with infinitely many ∞ entries on

the left, and we like our infinite tuples to read left to right. Our formalism is somewhat

unwieldy but seemed to be the least awkward one for the problem at hand. We note that

the negative singular numbers are referred to as the singular numbers in [Ass22, BQ17]

and in [VP22a] where the results of this chapter first appeared.

Proposition 4.3.1. Let 𝑛,𝑚 ≥ 1 be integers, 𝜇 ∈ Sig∞ with len(𝜇*) ≤ min(𝑚 + 1, 𝑛),

let 𝐴 ∈ Mat𝑛×(𝑚+1)(Q𝑝) be distributed by the unique bi-invariant measure with negative

singular numbers 𝜇, and let 𝑡 = 1/𝑝. If 𝐴′ ∈ Mat𝑛×𝑚 is the first 𝑚 columns of 𝐴, then
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ESN(𝐴′) is a random element of Sig∞ with

Pr(ESN(𝐴′) = 𝜆) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝑄̃−𝜆*/−𝜇* (𝑡
𝑚+1−𝑘)𝑃−𝜆* (1,...,𝑡

𝑘−1)

𝑃−𝜇* (1,...,𝑡𝑘−1)Π(𝑡𝑚+1−𝑘;1,...,𝑡𝑘−1)
𝜇, 𝜆 ∈ Sig(𝑘)∞ for some 0 ≤ 𝑘 ≤ min(𝑚,𝑛)

𝑃𝜇*/𝜆*(𝑡𝑚)𝑃𝜆* (1,...,𝑡
𝑚−1)

𝑃𝜇* (1,...,𝑡𝑚)
𝜇 ∈ Sig(𝑚+1)

∞ , 𝜆 ∈ Sig(𝑚)

∞

0 otherwise
(4.3.1)

for any 𝜆 ∈ Sig∞.

Proof. In the case where len(𝜇*) = min(𝑚+1, 𝑛) so that 𝐴 is full-rank, the result follows

by applying Part 2 of Theorem 1.2.1 (taking care with sign conventions). The non full-

rank case len(𝜇*) < min(𝑚 + 1, 𝑛) follows from the full-rank case with 𝑚 + 1 > 𝑛, as in

this case the rank of 𝐴 does not change after removing the (𝑚+ 1)𝑡ℎ column.

Because ESN(𝐴) = ESN(𝐴𝑇 ), Proposition 4.3.1 obviously holds for removing rows

rather than columns after appropriately relabeling the indices. By relating matrix corners

to Hall-Littlewood polynomials, Proposition 4.3.1 provides the key to applying the results

on Hall-Littlewood branching graphs to study 𝑝-adic random matrices. In the second

case of the transition probabilities in (4.3.1), one immediately recognizes the cotransition

probabilities of Section 4.2. However, one now has two added features not present in

that section: (1) the signatures may have infinite parts, and (2) with matrices one may

remove either rows or columns, so there are in fact two (commuting) corner maps. In the

next subsection, we augment the branching graph formalism and results of Section 4.2 to

handle this more complicated setup. However, let us first introduce the setup of infinite

matrices.

Definition 28. GL∞(Z𝑝) is the direct limit lim−→GL𝑁(Z𝑝) with respect to inclusions

GL𝑁(Z𝑝) →˓ GL𝑁+1(Z𝑝)

𝐴 ↦→

⎛⎝𝐴 0

0 1

⎞⎠
Equivalently, GL∞(Z𝑝) =

⋃︀
𝑁≥1GL𝑁(Z𝑝) where we identify GL𝑁(Z𝑝) with the group of

infinite matrices for which the top left 𝑁 × 𝑁 corner is an element of GL𝑁(Z𝑝) and all

other entries are 1 on the diagonal and 0 off the diagonal.
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The definition

Mat𝑛×𝑚(Q𝑝) :=

{︂
𝑍 = (𝑍𝑖𝑗) 1≤𝑖≤𝑛

1≤𝑗≤𝑚
: 𝑍𝑖𝑗 ∈ Q𝑝

}︂
.

still makes sense when 𝑛 or 𝑚 is equal to ∞ by replacing 1 ≤ 𝑖 ≤ 𝑛 with 𝑖 ∈ Z≥1 and

similarly for 𝑚. When 𝑛 or 𝑚 is ∞, GL∞(Z𝑝) clearly acts on this space on the appropriate

side.

4.3.2 Auxiliary boundary results and proof of Theorem 1.7.2.

In this subsection we prove a similar result to Theorem 1.7.1, Theorem 4.3.2, and deduce

an extension to a ‘two-dimensional’ version of the branching graph G𝑡 in Theorem 4.3.3.

Definition 29. For each 𝑘 ≥ 1, we define a graded graph

G (𝑘)
𝑡 =

⨆︁
𝑛≥1

G (𝑘)
𝑡 (𝑛)

with vertex set at each level given by G (𝑘)
𝑡 (𝑛) = Sig𝑘. Edges are only between adjacent

levels, and to each edge from 𝜈 ∈ G (𝑘)
𝑡 (𝑛+ 1) to 𝜆 ∈ G (𝑘)

𝑡 (𝑛) is associated a cotransition

probability

Λ̃𝑛+1
𝑛 (𝜈, 𝜆) = 𝑄̃−𝜆/−𝜈(𝑡

𝑛)
𝑃−𝜆(1, 𝑡, . . . , 𝑡

𝑘−1)

𝑃−𝜈(1, 𝑡, . . . , 𝑡𝑘−1)Π(1, 𝑡, . . . , 𝑡𝑘−1; 𝑡𝑛)
.

We define Λ̃𝑚
𝑛 = Λ̃𝑛+1

𝑛 · · · Λ̃𝑚
𝑚−1 for general 1 ≤ 𝑛 < 𝑚 <∞ as before.

The next result is a version of Theorem 1.7.1 for this smaller branching graph G (𝑘)
𝑡 .

Recall the definition of boundary from earlier in this section.

Theorem 4.3.2. For any 𝑡 ∈ (0, 1), the boundary 𝜕G (𝑘)
𝑡 is naturally in bijection with

Sig𝑘. Under this bijection, 𝜇 ∈ Sig𝑘 corresponds to the coherent system (𝑀𝜇
𝑛 )𝑛≥1 defined

explicitly by

𝑀𝜇
𝑛 (𝜆) = 𝑄̃−𝜆/−𝜇(𝑡

𝑛, 𝑡𝑛+1, . . .)
𝑃−𝜆(1, 𝑡, . . . , 𝑡

𝑘−1)

𝑃−𝜇(1, 𝑡, . . . , 𝑡𝑘−1)Π(1, 𝑡, . . . , 𝑡𝑘−1; 𝑡𝑛, 𝑡𝑛+1, . . .)
(4.3.2)

for 𝜆 ∈ Sig𝑘.
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Note we have simultaneously suppressed the 𝑘-dependence in our notation for the

measure 𝑀𝜇
𝑛 on Sig𝑘 and abused notation by using the same for measures on G𝑡 and G (𝑘)

𝑡 ,

but there is no ambiguity if one knows the length of 𝜇. The proof of Theorem 4.3.2 is an

easier version of the proof of Theorem 1.7.1, so we simply give a sketch and outline the

differences.

Proof. We first prove that every extreme coherent system is of the form (4.3.2) for some

𝜇 ∈ Sig𝑘. The analogue of Proposition 4.2.4 similarly follows from the general result

[OO98, Theorem 6.1], so there exists a regular sequence (𝜇(𝑛))𝑛≥1 approximating any

extreme coherent system. Using the explicit formula (4.1.7) of Proposition 4.1.2, a naive

bound as in the proof of Proposition 4.2.7 establishes that 𝜇(𝑛)1 is bounded above.

The analogue of Lemma 4.2.6, namely that Λ̃𝑚
𝑛 (𝜇, 𝜆) = 0 and 𝑀𝜇

𝑛 (𝜆) = 0 if there exists

an 𝑥 for which 𝜆′𝑥 > 𝜇′
𝑥, holds similarly by the branching rule. Using this one obtains

that a regular sequence (𝜇(𝑛))𝑛≥1 must have last parts 𝜇(𝑛)𝑘 bounded below. Together

with the upper bound this yields that (𝜇(𝑛))𝑛≥1 has a convergent subsequence, where

here convergence simply means that all terms in the subsequence are equal to the same

𝜇 ∈ Sig𝑘. It now follows as in the proof of Proposition 4.2.7 that in fact the coherent

system approximated by (𝜇(𝑛))𝑛≥1 must be (𝑀𝜇
𝑛 )𝑛≥1 for this 𝜇.

It remains to prove that every coherent system of the form (4.3.2) is in fact ex-

treme. The proof is the same as that of Proposition 4.2.10 using the above analogue of

Lemma 4.2.6, except that no measure-theoretic details are necessary because the decom-

position of an arbitrary coherent system into extreme ones takes the form of a sum over

the countable set Sig𝑘.

For applications in the next section it is desirable to in some sense combine G𝑡 and

G (𝑘)
𝑡 by working with extended signatures. We wish to define a doubly-graded graph with

cotransition probabilities which generalize the earlier 𝐿𝑛+1
𝑛 , Λ̃𝑛+1

𝑛 and which correspond

to the situation of removing rows and columns from a matrix in Proposition 4.3.1.

Definition 30. Define ̃︀G𝑡 =
⨆︁

𝑚,𝑛≥1

̃︀G𝑡(𝑚,𝑛)
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with ̃︀G𝑡(𝑚,𝑛) = Sig∞ for each 𝑚,𝑛, and edges from ̃︀G𝑡(𝑚+1, 𝑛) to ̃︀G𝑡(𝑚,𝑛) with weights

𝐿𝑚+1,𝑛
𝑚,𝑛 (𝜇, 𝜆) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝑄̃−𝜆*/−𝜇* (𝑡
𝑚+1−𝑘)𝑃−𝜆* (1,...,𝑡

𝑘−1)

𝑃−𝜇* (1,...,𝑡𝑘−1)Π(𝑡𝑚+1−𝑘;1,...,𝑡𝑘−1)
𝜇, 𝜆 ∈ Sig(𝑘)∞ for some 0 ≤ 𝑘 ≤ min(𝑚,𝑛)

𝑃𝜇*/𝜆*(𝑡𝑚)𝑃𝜆* (1,...,𝑡
𝑚−1)

𝑃𝜇* (1,...,𝑡𝑚)
𝜇 ∈ Sig(𝑚+1)

∞ , 𝜆 ∈ Sig(𝑚)

∞

0 otherwise
(4.3.3)

and edges from ̃︀G𝑡(𝑚,𝑛+ 1) to ̃︀G𝑡(𝑚,𝑛) with weights 𝐿𝑚,𝑛+1
𝑚,𝑛 (𝜇, 𝜆) = 𝐿𝑛+1,𝑚

𝑛,𝑚 (𝜇, 𝜆).

It follows immediately from the Cauchy identity Lemma 2.2.3 that

𝐿𝑚+1,𝑛
𝑚,𝑛 𝐿𝑚+1,𝑛+1

𝑚+1,𝑛 = 𝐿𝑚,𝑛+1
𝑚,𝑛 𝐿𝑚+1,𝑛+1

𝑚,𝑛+1 ,

so there is no ambiguity in defining coherent systems of probability measures on ̃︀G𝑡.

Theorem 4.3.3. For 𝑡 ∈ (0, 1), the boundary 𝜕 ̃︀G𝑡 is in bijection with Sig∞. The extreme

coherent system (𝑀𝜇
𝑚,𝑛)𝑚,𝑛≥1 corresponding to 𝜇 ∈ Sig∞ is determined by

𝑀𝜇
𝑚,𝑛(𝜈) =

∑︁
𝜆∈Sig𝑛

𝑀𝜇
𝑛 (𝜆)𝑀

𝜆
𝑚−𝑛+1(𝜈

*)

for 𝑚 ≥ 𝑛 and hence for all 𝑚,𝑛 by coherency. The extreme coherent system correspond-

ing to 𝜇 ∈ Sig(𝑘)∞ is determined by

𝑀𝜇
𝑚,𝑛(𝜈) =

∑︁
𝜆∈Sig𝑘

𝑀𝜇*

𝑛−𝑘+1(𝜆)𝑀
𝜆
𝑚−𝑘+1(𝜈

*)

for 𝑚,𝑛 ≥ 𝑘 and hence for all 𝑚,𝑛 by coherency.

Proof. First note that every coherent system on ̃︀G𝑡 is determined by a sequence of coherent

systems on the subgraphs with vertex sets

⨆︁
𝑚≥𝑛

̃︀G𝑡(𝑚,𝑛) (4.3.4)

for 𝑛 ≥ 1, which are themselves coherent with one another under the links 𝐿𝑚,𝑛+1
𝑚,𝑛 .

By the definition of the cotransition probabilities (4.3.3), a coherent system on (4.3.4)

must decompose as a convex combination of 𝑛+ 1 coherent systems, each one having all
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measures supported on Sig(𝑘)∞ for 0 ≤ 𝑘 ≤ 𝑛. Hence extreme coherent systems on (4.3.4)

are parametrized by Sig
𝑘

by applying Theorem 4.3.2 for each 𝑘.

It follows by the above-mentioned commutativity 𝐿𝑚+1,𝑛
𝑚,𝑛 𝐿𝑚+1,𝑛+1

𝑚+1,𝑛 = 𝐿𝑚,𝑛+1
𝑚,𝑛 𝐿𝑚+1,𝑛+1

𝑚,𝑛+1

that given a coherent system (𝑀𝑚)𝑚≥𝑛 on the graph (4.3.4), (𝑀𝑚𝐿
𝑚,𝑛
𝑚,𝑛−1)𝑚≥𝑛 is a coherent

system on ⨆︁
𝑚≥𝑛

̃︀G𝑡(𝑚,𝑛− 1).

Since 𝐿𝑚,𝑛
𝑚,𝑛−1 takes coherent systems to coherent systems, by decomposing these into

extreme coherent systems it induces a map ℳ(Sig
𝑛
) → ℳ(Sig

𝑛−1
) between spaces of

probability measures on the respective boundaries, i.e. a Markov kernel. It follows from

the explicit formulas (4.3.2), (4.3.3) and the Cauchy identity (2.2.26) that this Markov

map is itself given by 𝐿𝑚,𝑛
𝑚,𝑛−1 on the appropriately restricted domain, after identifying

Sig
𝑛

and Sig
𝑛−1

as subsets of Sig∞ in the obvious way.

Hence 𝜕 ̃︀G𝑡 is in bijection with coherent systems on the graph with vertex set

⨆︁
𝑛≥1

Sig
𝑛

and edges between 𝑛𝑡ℎ and (𝑛− 1)st level given by 𝐿𝑚,𝑛
𝑚,𝑛−1 for any 𝑚 ≥ 𝑛 (note the these

links are independent of 𝑚 ≥ 𝑛 by (4.3.3)). The boundary of this graph is classified by

Sig∞ by combining Theorem 1.7.1 (for coherent systems supported on Sig∞) and Theo-

rem 4.3.2 (for coherent systems supported on Sig(𝑘)∞ ), and the explicit coherent systems

in the statement follow from the above computations.

Proof of Theorem 1.7.2. Any GL∞(Z𝑝)×GL∞(Z𝑝)-invariant measure on Mat∞×∞(Q𝑝) is

uniquely determined by its marginals on 𝑚×𝑛 truncations for finite 𝑚,𝑛, which are each

GL𝑚(Z𝑝)×GL𝑛(Z𝑝)-invariant. The GL𝑛(Z𝑝)×GL𝑚(Z𝑝)-invariant probability measures on

Mat𝑛×𝑚(Q𝑝) are in bijection with probability measures on Sig∞ supported on signatures

with at most min(𝑚,𝑛) finite parts, via the map ESN. Hence removing a row (resp.

column) induces a Markov kernel ℳ(Sig∞) → ℳ(Sig∞), and by Proposition 4.3.1 this

Markov kernel is exactly 𝐿𝑚,𝑛
𝑚,𝑛−1 (resp. 𝐿𝑚,𝑛

𝑚−1,𝑛). Hence Theorem 4.3.3 yields that the

set of extreme GL∞(Z𝑝) × GL∞(Z𝑝)-invariant measures on Mat∞×∞(Q𝑝) is in bijection

with Sig∞. Here the measure 𝐸𝜇 corresponding to 𝜇 is determined by the fact that

each 𝑚 × 𝑛 corner has negative singular numbers distributed by the measure 𝑀𝜇
𝑚,𝑛 in
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Theorem 4.3.3.

We have shown that the extreme bi-invariant measures are parametrized somehow by

Sig∞, but in [BQ17] the measure corresponding to a given 𝜇 ∈ Sig∞ is defined quite

differently, and it is not at all clear a priori that it is the same as our measure 𝐸𝜇. Let

us describe these measures.

In the finite or infinite setting, there are two natural families of random matrices in

Mat𝑛×𝑚(Q𝑝) which are invariant under the natural action of GL𝑛(Z𝑝)×GL𝑚(Z𝑝):

• (Haar) 𝑝−𝑘𝑍, where 𝑘 ∈ Z∪{−∞} and 𝑍 has iid entries distributed by the additive

Haar measure on Z𝑝.

• (Nonsymmetric Wishart-type) 𝑝−𝑘𝑋𝑇𝑌 , where 𝑋 ∈ Z𝑛
𝑝 , 𝑌 ∈ Z𝑚

𝑝 have iid additive

Haar entries.

One can of course obtain invariant measures by summing the above random matrices,

which motivates the following class of measures.

Definition 31. Let 𝜇 ∈ Sig∞, and let 𝜇∞ := limℓ→∞ 𝜇ℓ ∈ Z ∪ {−∞}. Let 𝑋(ℓ)
𝑖 , 𝑌

(ℓ)
𝑗 , 𝑍𝑖𝑗

be iid and distributed by the additive Haar measure on Z𝑝 for 𝑖, 𝑗, ℓ ≥ 1. Then we define

the measure 𝐸̃𝜇 on Mat∞×∞(Q𝑝) as the distribution of the random matrix

(︃ ∑︁
ℓ:𝜇ℓ>𝜇∞

𝑝−𝜇ℓ𝑋
(ℓ)
𝑖 𝑌

(ℓ)
𝑗 + 𝑝−𝜇∞𝑍𝑖𝑗

)︃
𝑖,𝑗≥1

.

It is shown in [BQ17, Theorem 1.3] that the 𝐸̃𝜇, 𝜇 ∈ Sig∞ are exactly the extreme

GL∞(Z𝑝)×GL∞(Z𝑝)-invariant measures on Mat∞×∞(Q𝑝).

Proposition 4.3.4. For any 𝜇 ∈ Sig∞, 𝐸̃𝜇 = 𝐸𝜇.

Proof. By combining Theorem 1.7.2 with the result [BQ17, Theorem 1.3] that the 𝐸̃𝜇 are

exactly the extreme measures, we have that {𝐸̃𝜇 : 𝜇 ∈ Sig∞} = {𝐸𝜇 : 𝜇 ∈ Sig∞}. Hence

for each 𝜇 ∈ Sig∞ there exists 𝜈 ∈ Sig∞ such that 𝐸̃𝜇 = 𝐸𝜈 . Suppose for the sake of

contradiction that 𝜈 ̸= 𝜇. Let 𝑘 ≥ 1 be the smallest index for which 𝜇𝑘 ̸= 𝜈𝑘, let

𝑓 : Mat∞×∞(Q𝑝) → Sig
𝑘
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be the map to the first 𝑘 singular numbers of the top left 𝑘 × 𝑘 corner, and let

𝑆
(𝑘)
≤𝜇 := {𝜆 ∈ Sig

𝑘
: 𝜆𝑖 ≤ 𝜇𝑖 for 1 ≤ 𝑖 ≤ 𝑘}.

We claim that

𝑓*(𝐸̃𝜇) is supported on 𝑆(𝑘)
≤𝜇 and (𝑓*(𝐸̃𝜇))(𝜇1, . . . , 𝜇𝑘) > 0, (4.3.5)

and

𝑓*(𝐸𝜈) is supported on 𝑆(𝑘)
≤𝜈 and (𝑓*(𝐸𝜈))(𝜈1, . . . , 𝜈𝑘) > 0. (4.3.6)

The first, (4.3.5), follows straightforwardly from Definition 31, while (4.3.6) follows

from Theorem 4.3.3 and Lemma 4.2.6.

If 𝜇𝑘 > 𝜈𝑘, then Supp(𝑓*(𝐸̃𝜇)) ) Supp(𝑓*(𝐸𝜈)), while if 𝜇𝑘 < 𝜈𝑘 then Supp(𝑓*(𝐸̃𝜇)) (

Supp(𝑓*(𝐸𝜈)), contradicting the claim 𝑓*(𝐸̃𝜇) = 𝑓*(𝐸𝜈). Therefore there does not exist 𝑘

as above, so 𝜇 = 𝜈, completing the proof.

Combining Proposition 4.3.4 with Theorem 1.7.2 in fact provides a (quite indirect!)

computation of the singular numbers of 𝑚 × 𝑛 truncations of the infinite matrices in

Definition 31.

Corollary 4.3.5. The negative singular numbers of an 𝑚×𝑛 corner of an infinite matrix

with distribution 𝐸̃𝜇 are distributed by the measure 𝑀𝜇
𝑚,𝑛 of Theorem 4.3.3.

It seems possible that the summation which defines the measures 𝑀𝜇
𝑚,𝑛 may be sim-

plified to get more explicit formulas for the above distributions, though we do not address

this question here.

Remark 23. There are several comments on the relation between our setup and that of

[BQ17] which are worth highlighting:

• We work over Q𝑝 while [BQ17] works over an arbitrary non-Archimedean local field

𝐹 . Such a field has a ring of integers 𝒪𝐹 playing the role of Z𝑝 and a uniformizer

𝜔 playing the role of 𝑝, and a finite residue field 𝒪𝐹/𝜔𝒪𝐹
∼= F𝑞. Our results

transfer mutatis mutandis to this setting with 𝑡 = 1/𝑞, as the only needed input

Proposition 4.3.1 transfers in view of Remark 1.

142



• While we simply prove a bijection, a short additonal argument shows that the

space of extreme invariant measures on Mat∞×∞(Q𝑝) is homeomorphic to Sig∞

with natural topologies on both spaces, see the proof of Theorem 1.3 of [BQ17] for

details.

• We have used the language of extreme and ergodic measures interchangeably, but

for an explanation of how the extreme measures are exactly the ergodic ones in the

conventional sense, for this problem and more general versions, see [BQ17, Section

2.1].

Remark 24. As mentioned in the Introduction, [BQ17] also classify extreme measures

on infinite symmetric matrices Sym(N,Q𝑝) := {𝐴 ∈ Mat∞×∞(Q𝑝) : 𝐴
𝑇 = 𝐴} invariant

under the action of GL∞(Z𝑝) by (𝑔, 𝐴) ↦→ 𝑔𝐴𝑔𝑇 . The statement is more involved, essen-

tially due to the fact that the GL𝑛(Z𝑝)-orbits on Sym(𝑛,Q𝑝) are parametrized by their

singular numbers together with additional data, unlike the GL𝑛(Z𝑝)×GL𝑚(Z𝑝)-orbits on

Mat𝑛×𝑚(Z𝑝). To pursue a similar strategy to our proof of Theorem 1.7.2 one would need

an analogue of Proposition 4.3.1, i.e. a result giving the distribution of the GL𝑛−1(Z𝑝)-

orbit of an (𝑛− 1)× (𝑛− 1) corner of an 𝑛× 𝑛 symmetric matrix drawn uniformly from

a fixed GL𝑛(Z𝑝)-orbit. Given that the parametrization of these orbits involves more data

than the (extended) signature specifying their singular numbers, it is not immediately

clear how the answer would be expressed in terms of Hall-Littlewood polynomials.

We do however expect a solution in terms of Hall-Littlewood polynomials to a related

problem which is coarser. The problem is to find the distribution of just the singular num-

bers, rather than GL𝑛−1(Z𝑝)-orbits, of an (𝑛− 1)× (𝑛 − 1) corner of a random element

of Sym(𝑛,Q𝑝) with fixed singular numbers and GL𝑛(Z𝑝)-invariant distribution. The ex-

istence of such a result is suggested by a known expression for the singular numbers of an

𝑛×𝑛 symmetric matrix with iid (apart from the symmetry constraint) entries distributed

by the additive Haar measure on Z𝑝. This distribution was computed in [CKL+15], and

shown to be equivalent to a measure coming from one of the so-called Littlewood identi-

ties for Hall-Littlewood polynomials in [Ful16]. It seems natural that a solution to this

problem could be augmented with the extra data required to parametrize GL𝑛(Z𝑝)-orbits,

answering the question of the previous paragraph. We have not attempted to pursue this

direction.
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4.4 Ergodic decomposition of 𝑝-adic Hua measures

We now define a special family of measures on Mat∞×∞(Q𝑝), the 𝑝-adic Hua measures,

introduced in [Ner13]. Their decomposition into the ergodic measures 𝐸̃𝜇 of Definition 31

was computed in [Ass22]. We will rederive that result, showing in the process that the

𝑝-adic Hua measures have a natural interpretation in terms of measures on partitions

derived from Hall-Littlewood polynomials.

Definition 32. For 𝜆 ∈ Sig𝑛, we set

𝜆+ := (max(𝜆1, 0), . . . ,max(𝜆𝑛, 0)) ∈ Sig≥0
𝑛 .

Definition 33. The 𝑝-adic Hua measure M(𝑠)
𝑛 on Mat𝑛×𝑛(Q𝑝) is defined by

𝑑M(𝑠)
𝑛 (𝐴) =

(𝑝−1−𝑠; 𝑝−1)2𝑛
(𝑝−1−𝑠; 𝑝−1)2𝑛

𝑝|ESN(𝐴)+|(−𝑠−2𝑛)𝑑M(𝑛)(𝐴),

where M(𝑛) is the product over all 𝑛2 matrix entries of the additive Haar measure M on

Q𝑝.

The following computation of the distribution of the singular numbers of M(𝑠)
𝑛 is done

in [Ass22, Proposition 3.1], using Definition 33 and results of [Mac98a, Chapter V].

Proposition 4.4.1. The pushforward of M(𝑠)
𝑛 under − SN : Mat𝑛×𝑛(Q𝑝) → Sig

𝑛
(the

map SN of Definition 3 composed with 𝜆 ↦→ −𝜆) is supported on Sig𝑛 and given by

(︀
− SN*(M(𝑠)

𝑛 )
)︀
(𝜆) =

(𝑢; 𝑡)2𝑛
(𝑢; 𝑡)2𝑛

𝑢|𝜆
+|𝑡(2𝑛−1)(|𝜆+|−|𝜆|)+2𝑛(𝜆) (𝑡; 𝑡)2𝑛∏︀

𝑥∈Z(𝑡; 𝑡)𝑚𝑥(𝜆)

,

where as usual 𝑡 = 1/𝑝, and 𝑢 = 𝑡1+𝑠.

We may now prove the main result, which we recall. Note that by Proposition 4.3.4

the same result holds with 𝐸𝜇 replaced by 𝐸̃𝜇, and it is the latter version which was

proven in [Ass22].

Theorem 1.7.3. Fix a prime 𝑝 and real parameter 𝑠 > −1, and let 𝑡 = 1/𝑝 and 𝑢 =

𝑝−1−𝑠. Then the infinite 𝑝-adic Hua measure M(𝑠)
∞ decomposes into ergodic measures

according to

M(𝑠)
∞ =

∑︁
𝜇∈Y

𝑃𝜇(1, 𝑡, . . . ; 𝑡)𝑄𝜇(𝑢, 𝑢𝑡, . . . ; 𝑡)

Π(1, . . . ;𝑢, . . .)
𝐸𝜇 (1.7.4)
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where 𝐸𝜇 is as defined in Theorem 1.7.2.

Proof. The 𝑝-adic Hua measure is uniquely determined by its projections to 𝑛×𝑛 corners,

and by extremality of the measures 𝐸𝜇 any decomposition into a convex combination of

them is unique. Hence it suffices to show that a matrix 𝐴, distributed by the measure on

Mat∞×∞(Q𝑝) described by RHS(1.7.4), has 𝑛× 𝑛 corners given by the finite 𝑝-adic Hua

measure M(𝑠)
𝑛 . By Proposition 4.4.1 and Theorem 1.7.2, it suffices to show

∑︁
𝜇∈Y

𝑃𝜇(1, 𝑡, . . .)𝑄𝜇(𝑢, 𝑢𝑡, . . .)

Π(1, . . . ;𝑢, . . .)

∑︁
𝜆∈Sig≥0

𝑛

𝑃𝜇/𝜆(𝑡
𝑛, . . .)𝑃𝜆(1, . . . , 𝑡

𝑛−1)

𝑃𝜇(1, 𝑡, . . .)
𝑄̃−𝜈/−𝜆(𝑡, 𝑡

2, . . .)

× 𝑃−𝜈(1, . . . , 𝑡
𝑛−1)

𝑃−𝜆(1, . . . , 𝑡𝑛−1)Π(1, . . . , 𝑡𝑛−1; 𝑡, . . .)
=

(𝑢; 𝑡)2𝑛
(𝑢; 𝑡)2𝑛

𝑢|𝜈
+|𝑡(2𝑛−1)(|𝜈+|−|𝜈|)+2𝑛(𝜈) (𝑡; 𝑡)2𝑛∏︀

𝑥∈Z(𝑡; 𝑡)𝑚𝑥(𝜈)

(4.4.1)

The proof is a surprisingly long series of applications of the Cauchy identity/branching

rule and principal specialization formulas. We first cancel the 𝑃𝜇(1, . . .) factors and apply

the Cauchy identity (2.2.26) to the sum over 𝜇 to obtain

𝑃−𝜈(1, . . . , 𝑡
𝑛−1)

Π(1, . . . ;𝑢, . . .)Π(1, . . . , 𝑡𝑛−1; 𝑡, . . .)

×
∑︁

𝜆∈Sig≥0
𝑛

𝑃𝜆(1, . . . , 𝑡
𝑛−1)

𝑃−𝜆(1, . . . , 𝑡𝑛−1)
𝑄̃−𝜈/−𝜆(𝑡, . . .)𝑄̃𝜆/(0[𝑛])(𝑢, . . .)Π(𝑡

𝑛, . . . ;𝑢, . . .). (4.4.2)

Using that

Π(1, . . . , 𝑡𝑛−1; 𝑡, . . .) = (𝑡; 𝑡)𝑛,

and

𝑃−𝜈(1, . . . , 𝑡
𝑛−1) = 𝑃𝜈(1, . . . , 𝑡

−(𝑛−1)) = 𝑡−(𝑛−1)|𝜈|𝑃𝜈(1, . . . , 𝑡
𝑛−1)

and similarly for 𝜆, (4.4.2) becomes

(𝑡; 𝑡)𝑛𝑃𝜈(1, . . . , 𝑡
𝑛−1)𝑡(𝑛−1)(|𝜆|−|𝜈|)

Π(1, . . . , 𝑡𝑛−1;𝑢, . . .)

∑︁
𝜆∈Sig≥0

𝑛

𝑄̃−𝜈/−𝜆(𝑡, . . .)𝑄̃𝜆/(0[𝑛])(𝑢, . . .). (4.4.3)

It follows from the explicit branching rule Lemma 2.2.14 and the principal specialization
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formula Proposition 2.2.15 for 𝑃 that

𝑄̃−𝜈/−𝜆(𝑥) = 𝑄̃𝜆/𝜈(𝑥)
𝑡−𝑛(𝜆)𝑃𝜆(1, . . . , 𝑡

𝑛−1)

𝑡−𝑛(𝜈)𝑃𝜈(1, . . . , 𝑡𝑛−1)
. (4.4.4)

By definition of skew 𝑄 functions (4.4.4) immediately extends to

𝑄̃−𝜈/−𝜆(𝑥1, . . . , 𝑥𝑘) = 𝑄̃𝜆/𝜈(𝑥1, . . . , 𝑥𝑘)
𝑡−𝑛(𝜆)𝑃𝜆(1, . . . , 𝑡

𝑛−1)

𝑡−𝑛(𝜈)𝑃𝜈(1, . . . , 𝑡𝑛−1)

for any 𝑘, hence to an equality of symmetric functions and hence specializes to

𝑄̃−𝜈/−𝜆(𝑡
𝑛, . . .) = 𝑄̃𝜆/𝜈(𝑡

𝑛, . . .)
𝑡−𝑛(𝜆)𝑃𝜆(1, . . . , 𝑡

𝑛−1)

𝑡−𝑛(𝜈)𝑃𝜈(1, . . . , 𝑡𝑛−1)
. (4.4.5)

By first absorbing the 𝑡(𝑛−1)(|𝜆|−|𝜈|) into 𝑄̃−𝜈/−𝜆 in (4.4.3) and then substituting (4.4.5)

and simplifying 𝑄̃𝜆/(0[𝑛]) via Proposition 2.2.15, (4.4.3) becomes

(𝑡; 𝑡)𝑛𝑃𝜈(1, . . . , 𝑡
𝑛−1)

Π(1, . . . , 𝑡𝑛−1;𝑢, . . .)

∑︁
𝜆∈Sig≥0

𝑛

𝑄̃𝜆/𝜈(𝑡
𝑛, . . .)

𝑡−𝑛(𝜆)𝑃𝜆(1, . . . , 𝑡
𝑛−1)

𝑡−𝑛(𝜈)𝑃𝜈(1, . . . , 𝑡𝑛−1)
𝑢|𝜆|𝑡𝑛(𝜆)

=
(𝑡; 𝑡)𝑛𝑡

𝑛(𝜈)

Π(1, . . . , 𝑡𝑛−1;𝑢, . . .)

∑︁
𝜆∈Sig≥0

𝑛

𝑄̃𝜆/𝜈(𝑡
𝑛, . . .)𝑃𝜆(𝑢, . . . , 𝑢𝑡

𝑛−1).

(4.4.6)

At first glance, the sum on the RHS of (4.4.6) looks like the one in the Cauchy identity

(2.2.16), but there is a nontrivial difference: the sum is over only nonnegative signatures.

If 𝜈 ∈ Sig≥0
𝑛 itself, this poses no issue and the Cauchy identity applies directly, but in

general this is not the case.

Luckily, using the explicit formula in Theorem 2.2.16 we may relate the sum in (4.4.6)

to one to which the Cauchy identity applies. By slightly rearranging terms in Theo-

rem 2.2.16, we have that for 𝜆 ∈ Sig≥0
𝑛 ,

𝑄̃𝜆/𝜈(𝑡
𝑛, . . .) =

𝑡𝑛·(|𝜆|−|𝜈|)∏︀
𝑥∈Z(𝑡; 𝑡)𝑚𝑥(𝜈)

∏︁
𝑥≤0

(𝑡1+𝑛−𝜈′𝑥 ; 𝑡)𝑚𝑥(𝜈)𝑡
(𝑛−𝜈′𝑥

2 )
∏︁
𝑥>0

(𝑡1+𝜆′
𝑥−𝜈′𝑥 ; 𝑡)𝑚𝑥(𝜈)𝑡

(𝜆
′
𝑥−𝜈′𝑥
2 )

𝑄̃𝜆/𝜈+(𝑡
𝑛, . . .) =

𝑡𝑛·(|𝜆|−|𝜈+|)∏︀
𝑥>0(𝑡; 𝑡)𝑚𝑥(𝜈)

∏︁
𝑥>0

(𝑡1+𝜆′
𝑥−𝜈′𝑥 ; 𝑡)𝑚𝑥(𝜈)𝑡

(𝜆
′
𝑥−𝜈′𝑥
2 )

(4.4.7)
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where 𝜈+ is the truncation as in Definition 32. Since

∏︁
𝑥≤0

(𝑡1+𝑛−𝜈′𝑥 ; 𝑡)𝑚𝑥(𝜈) = (𝑡; 𝑡)|{𝑖:𝜈𝑖≤0}| = (𝑡; 𝑡)𝑚0(𝜈+),

(4.4.7) implies that

𝑄̃𝜆/𝜈(𝑡
𝑛, . . .) = 𝑡𝑛·(|𝜈

+|−|𝜈|)+
∑︀

𝑥≤0 (
𝑛−𝜈′𝑥

2 ) (𝑡; 𝑡)𝑚0(𝜈+)∏︀
𝑥≤0(𝑡; 𝑡)𝑚𝑥(𝜈)

𝑄̃𝜆/𝜈+(𝑡
𝑛, . . .).

Therefore

∑︁
𝜆∈Sig≥0

𝑛

𝑄̃𝜆/𝜈(𝑡
𝑛, . . .)𝑃𝜆(𝑢, . . . , 𝑢𝑡

𝑛−1)

= 𝑡𝑛·(|𝜈
+|−|𝜈|)+

∑︀
𝑥≤0 (

𝑛−𝜈′𝑥
2 ) (𝑡; 𝑡)𝑚0(𝜈+)∏︀

𝑥≤0(𝑡; 𝑡)𝑚𝑥(𝜈)

∑︁
𝜆∈Sig≥0

𝑛

𝑄̃𝜆/𝜈+(𝑡
𝑛, . . .)𝑃𝜆(𝑢, . . . , 𝑢𝑡

𝑛−1)

= 𝑡𝑛·(|𝜈
+|−|𝜈|)+

∑︀
𝑥≤0 (

𝑛−𝜈′𝑥
2 ) (𝑡; 𝑡)𝑚0(𝜈+)∏︀

𝑥≤0(𝑡; 𝑡)𝑚𝑥(𝜈)

Π(𝑡𝑛, . . . ;𝑢, . . . , 𝑢𝑡𝑛−1)𝑃𝜈+(𝑢, . . . , 𝑢𝑡
𝑛−1)

=
(𝑡; 𝑡)𝑛

(𝑢𝑡𝑛; 𝑡)𝑛

𝑢|𝜈
+|𝑡𝑛·(|𝜈

+|−|𝜈|)+
∑︀

𝑥≤0 (
𝑛−𝜈′𝑥

2 )+𝑛(𝜈+)∏︀
𝑥∈Z(𝑡; 𝑡)𝑚𝑥(𝜈)

(4.4.8)

by applying (2.2.26) and Proposition 2.2.15. It is an elementary check from the definitions

that

𝑛 · (|𝜈+| − |𝜈|) +
∑︁
𝑥≤0

(︂
𝑛− 𝜈 ′𝑥

2

)︂
+ 𝑛(𝜈+) = (2𝑛− 1)(|𝜈+| − |𝜈|) + 𝑛(𝜈). (4.4.9)

Substituting (4.4.9) into (4.4.8) and the result into (4.4.6) yields

(𝑡; 𝑡)𝑛(𝑢; 𝑡)𝑛𝑡
𝑛(𝜈) (𝑡; 𝑡)𝑛

(𝑢𝑡𝑛; 𝑡)𝑛

𝑢|𝜈
+|𝑡(2𝑛−1)(|𝜈+|−|𝜈|)+𝑛(𝜈)∏︀

𝑥∈Z(𝑡; 𝑡)𝑚𝑥(𝜈)

=
(𝑢; 𝑡)2𝑛
(𝑢; 𝑡)2𝑛

𝑢|𝜈
+|𝑡(2𝑛−1)(|𝜈+|−|𝜈|)+2𝑛(𝜈) (𝑡; 𝑡)2𝑛∏︀

𝑥∈Z(𝑡; 𝑡)𝑚𝑥(𝜈)

,

(4.4.10)

which is the formula in Proposition 4.4.1, completing the proof.

In some sense, the interpretation of the measures 𝑀 (𝑠)
𝑛 which we have given here ex-

plains their special nature and gives a natural non-historical route to their discovery. Let

us suppose that one knew only Proposition 4.3.1 and Theorem 1.7.2, and wished to look

for family of measures on Mat𝑛×𝑛(Q𝑝) which are consistent under taking corners. Any
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measure on the boundary yields such a family (and vice versa), but only for very nice

measures on the boundary do we expect the resulting measure on corners to have any

reasonable description. Because the cotransition probabilities feature principal special-

izations, the natural candidate for this measure on the boundary is a Hall-Littlewood

measure with two principal specializations 𝑢1, 𝑢1𝑡, . . . and 𝑢2, 𝑢2𝑡, . . .. Indeed, the above

combinatorics would break down entirely for other Hall-Littlewood measures. This leaves

one free parameter because one may divide one specialization and multiply the other by

any positive real number without changing the measure, and this free parameter is exactly

the one in the 𝑝-adic Hua measure.

In another direction we note that, if one did not already know the result of [Ass22],

the above considerations could help guess it. Since known natural measures on finite

𝑝-adic matrices have singular numbers distributed by Hall-Littlewood measures by The-

orem 1.2.1 and Corollary 1.2.2, and the ergodic decomposition of a measure on infinite

matrices is the analogue of the distribution of singular numbers of a finite matrix, it

is natural to search for the ergodic decomposition within the space of Hall-Littlewood

measures. As mentioned above, essentially the only Hall-Littlewood measures with nice

explicit densities are those with principal specializations, of finite or infinite length. If one

were of finite length, say 𝑁 , then it is a straightforward consequence of Theorem 1.7.2

that at most 𝑁 singular numbers of any corner are nonzero, which contradicts Proposi-

tion 4.4.1. Hence if the ergodic decomposition is according to a well-behaved (principally

specialized) Hall-Littlewood measure, both specializations must be infinite, and this leads

exactly to the one-parameter family of Hall-Littlewood measures which do indeed appear.

4.5 Markov dynamics on the boundary

For finite 𝑛, one has natural Hall-Littlewood process dynamics on Sig𝑛, as discussed in

Chapter 2. It is natural to ask whether these yield dynamics on the boundary Sig∞,

and whether anything interesting may be said about them. For the 𝑞-Gelfand-Tsetlin

graph mentioned in the Introduction, the resulting dynamics on Sig∞ were studied in

[BG13], see also the references therein for previously studied instances of this question

on branching graphs in which the boundary is continuous rather than discrete. In this

section, we show in Proposition 4.5.1 that the Hall-Littlewood process dynamics on the
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levels of G𝑡 indeed lift to dynamics on 𝜕G𝑡. This is motivated by Chapter 6 and Chapter 8,

which study a continuous-time limit of these dynamics corresponding to a Hall-Littlewood

process with one Plancherel specialization and one 1, 𝑡, . . .. We are not presently aware of

an interpretation of the latter in terms of infinite 𝑝-adic random matrices when 𝑡 = 1/𝑝,

as with earlier results in this chapter.

While the fact that the dynamics in Chapter 8 may be viewed as dynamics on 𝜕G𝑡 is not

technically necessary for their analysis in Chapter 8, it provides an interesting context for

the results of Chapter 8. There exist other dynamics which arise in a structurally similar

manner for different degenerations of Macdonald polynomials, but nonetheless have quite

different asymptotic behavior, as we recall from the discussion in the Section 1.6. Because

Proposition 4.5.1 requires branching graph formalism which is orthogonal to Chapter 8

apart from this motivation, we chose to prove it within this chapter.

We now consider Markovian dynamics on the boundary 𝜕G𝑡. We will show that the

Cauchy dynamics of Definition 14 with fixed principal specialization commute with the

cotransition probabilities of G𝑡 and hence extend to dynamics on the boundary, which are

given by essentially the same formula after identifying the boundary with Sig∞. Skew

𝑄-polynomials generalize easily to infinite signatures: For 𝜈, 𝜆 ∈ Sig∞, define

𝑄𝜈/𝜆(𝛼) :=

⎧⎪⎨⎪⎩𝛼
∑︀

𝑖 𝜈𝑖−𝜆𝑖𝜙𝜈/𝜆 𝜈𝑖 ≥ 𝜆𝑖 for all 𝑖 and
∑︀

𝑖≥1 𝜈𝑖 − 𝜆𝑖 <∞

0 otherwise
(4.5.1)

where 𝜙𝜈/𝜆 is extended from Lemma 2.2.14 to infinite signatures in the obvious way. In

the case 𝜈, 𝜆 ∈ Y, this agrees with the standard branching rule in Lemma 2.2.14.

Definition 34. For 0 < 𝛼 < 1, define

Γ𝑛
𝛼(𝜆, 𝜈) = 𝑄̃𝜈/𝜆(𝛼)

𝑃𝜈(1, . . . , 𝑡
𝑛−1)

𝑃𝜆(1, . . . , 𝑡𝑛−1)Π(𝛼; 1, . . . , 𝑡𝑛−1)
(4.5.2)

for 𝑛 ∈ Z≥1 and 𝜆, 𝜈 ∈ Sig𝑛. For 𝜇, 𝜅 ∈ Y+𝐷, define

Γ∞
𝛼 (𝜇, 𝜅) = 𝑄(𝜅−𝐷[∞])/(𝜇−𝐷[∞])(𝛼)

𝑃(𝜅−𝐷[∞])(1, . . .)

𝑃(𝜇−𝐷[∞])(1, . . .)Π(𝛼; 1, 𝑡, . . .)
. (4.5.3)
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Finally, for 𝜇, 𝜅 ∈ Sig𝑢𝑛𝑠𝑡𝑎𝑏𝑙𝑒∞ , define

Γ∞
𝛼 (𝜇, 𝜅) = lim

𝐷→−∞
Γ∞
𝛼 (𝜇(𝐷), 𝜅(𝐷)). (4.5.4)

When 𝜇 ∈ Y, the dynamics defined by (4.5.3) yields a Hall-Littlewood process with

one infinite specialization 1, 𝑡, . . .. The dynamics studied in Chapter 8 are a continuous-

time limit of these by Lemma 2.2.7. We prove Proposition 4.5.1 in the above discrete-time

setting to minimize technicalities, though the statement for the limiting continuous-time

process is the exactly analogous.

Proposition 4.5.1. For 𝑛 ∈ Z≥1 ∪ {∞}, Γ𝑛
𝛼 is a Markov kernel. For 1 ≤ 𝑛 < 𝑚 < ∞

it commutes with the links 𝐿𝑚
𝑛 in the sense that

Γ𝑛
𝛼𝐿

𝑚
𝑛 = 𝐿𝑚

𝑛 Γ
𝑚
𝛼 . (4.5.5)

Therefore given any coherent system (𝑀𝑛)𝑛≥1 on G𝑡, the pushforward measures (𝑀𝑛Γ
𝑛
𝛼)𝑛≥1

also form a coherent system. The induced map on 𝜕G𝑡 is given by Γ∞
𝛼 .

Proof. The fact that (4.5.2) and (4.5.3) define Markov kernels follows directly from the

Cauchy identity, Lemma 2.2.3 and (2.2.26) respectively. For the infinite case (4.5.4), we

must show

∑︁
𝜅∈Sig∞

lim
𝐷→−∞

𝑄(𝜅(𝐷)−𝐷[∞])/(𝜇(𝐷)−𝐷[∞])(𝛼)
𝑃(𝜅(𝐷)−𝐷[∞])(1, . . .)

𝑃(𝜇(𝐷)−𝐷[∞])(1, . . .)Π(𝛼; 1, 𝑡, . . .)
= 1. (4.5.6)

Note that

𝑄(𝜅(𝐷)−𝐷[∞])/(𝜇(𝐷)−𝐷[∞])(𝛼)
𝑃(𝜅(𝐷)−𝐷[∞])(1, . . .)

𝑃(𝜇(𝐷)−𝐷[∞])(1, . . .)Π(𝛼; 1, 𝑡, . . .)
1(𝜅𝑖 = 𝜇𝑖 whenever 𝜅𝑖 < 𝐷)

increases monotonically as 𝐷 → −∞ in a trivial way, namely it is either 0 (for 𝐷 such

that the indicator is 0) or its final constant value (when the indicator function is nonzero).

Hence we again interchange limit and sum by monotone convergence, obtaining

lim
𝐷→−∞

∑︁
𝜅∈Y+𝐷

𝑄(𝜅−𝐷[∞])/(𝜇(𝐷)−𝐷[∞])(𝛼)
𝑃(𝜅−𝐷[∞])(1, . . .)

𝑃(𝜇(𝐷)−𝐷[∞])(1, . . .)Π(𝛼; 1, 𝑡, . . .)
.

This is 1 by the Cauchy identity (2.2.26).
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Below we will show (4.5.5), from which it follows that the maps Γ𝑛
𝛼 preserve coherent

systems and hence induce a Markov kernel on 𝜕G𝑡. To show that this Markov kernel is

given by Γ∞
𝛼 we must show the ‘𝑚 = ∞’ analogue of (4.5.5), namely for any 𝜇 ∈ Sig∞, 𝜈 ∈

Sig𝑛 one has ∑︁
𝜅∈Sig∞

Γ∞
𝛼 (𝜇, 𝜅)𝑀𝜅

𝑛 (𝜈) =
∑︁

𝜆∈Sig𝑛

𝑀𝜇
𝑛 (𝜆)Γ

𝑛
𝛼(𝜆, 𝜈). (4.5.7)

We will treat (4.5.5) and (4.5.7) simultaneously, and so introduce the notation 𝐿∞
𝑚 (𝜇, ·) :=

𝑀𝜇
𝑛 (·). For (4.5.7), if 𝜇 ∈ Y + 𝐷 for some 𝐷, then by translation-invariance and the

Cauchy identity,

Γ𝑛
𝛼𝐿

∞
𝑛 (𝜇, 𝜈) =

∑︁
𝜆∈Sig𝑛

𝐿∞
𝑛 (𝜇, 𝜆)Γ𝑛

𝛼(𝜆, 𝜈)

=
∑︁

𝜆∈Sig𝑛

𝐿∞
𝑛 (𝜇−𝐷[∞], 𝜆−𝐷[𝑛])Γ𝑛

𝛼(𝜆−𝐷[𝑛], 𝜈 −𝐷[𝑛])

=
∑︁

𝜆∈Sig𝑛

𝑃(𝜇−𝐷[∞])/(𝜆−𝐷[𝑛])(𝑡
𝑛, . . .)

𝑃(𝜆−𝐷[𝑛])(1, . . . , 𝑡
𝑛−1)

𝑃(𝜇−𝐷[∞])(1, . . .)

× 𝑄̃(𝜈−𝐷[𝑛])/(𝜆−𝐷[𝑛])(𝛼)
𝑃(𝜈−𝐷[𝑛])(1, . . . , 𝑡

𝑛−1)

𝑃(𝜆−𝐷[𝑛])(1, . . . , 𝑡𝑛−1)Π(𝛼; 1, . . . , 𝑡𝑛−1)

=
𝑃(𝜈−𝐷[𝑛])(1, . . . , 𝑡

𝑛−1)

(1, . . . , 𝑡𝑛−1)Π(𝛼; 1, . . . , 𝑡𝑛−1)

(︃
1

Π(𝛼; 𝑡𝑛, . . .)

∑︁
𝜅∈Y

𝑃𝜅/(𝜈−𝐷[𝑛])(𝑡
𝑛, . . .)𝑄𝜅/(𝜇−𝐷[∞])(𝛼)

)︃
=
∑︁
𝜅∈Y

𝐿∞
𝑛 (𝜅+𝐷[∞], 𝜈)Γ∞

𝛼 (𝜇, 𝜅+𝐷[∞])

= 𝐿∞
𝑛 Γ∞

𝛼 (𝜇, 𝜈)

The proof of (4.5.5) is the same after replacing ∞ with 𝑚, without the translation by 𝐷

issues. The case 𝜇 ∈ Sig𝑢𝑛𝑠𝑡𝑎𝑏𝑙𝑒∞ of (4.5.7) requires a limiting argument:

Γ𝑛
𝛼𝐿

∞
𝑛 (𝜇, 𝜈) =

∑︁
𝜆∈Sig𝑛

𝑄̃𝜈/𝜆(𝛼)
𝑃𝜈(1, . . . , 𝑡

𝑛−1)

𝑃𝜈(1, . . . , 𝑡𝑛−1)Π(𝛼; 1, . . . , 𝑡𝑛−1)

× lim
𝐷→−∞

𝑃(𝜇(𝐷)−𝐷[∞])/(𝜆−𝐷[𝑛])(𝑡
𝑛, . . .)

𝑃(𝜆−𝐷[𝑛])(1, . . . , 𝑡
𝑛−1)

𝑃(𝜇(𝐷)−𝐷[∞])(1, . . .)
,

and by Theorem 2.2.16 and monotone convergence this is equal to

lim
𝐷→−∞

∑︁
𝜆∈Sig𝑛

𝑄̃𝜈/𝜆(𝛼)𝑃𝜈(1, . . . , 𝑡
𝑛−1)

𝑃𝜈(1, . . . , 𝑡𝑛−1)Π(𝛼; 1, . . . , 𝑡𝑛−1)
𝑃(𝜇(𝐷)−𝐷[∞])/(𝜆−𝐷[𝑛])(𝑡

𝑛, . . .)
𝑃(𝜆−𝐷[𝑛])(1, . . . , 𝑡

𝑛−1)

𝑃(𝜇(𝐷)−𝐷[∞])(1, . . .)
.
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Using that Γ𝑛
𝛼(𝜆, 𝜈) = Γ𝑛

𝛼(𝜆−𝐷[𝑛], 𝜈 −𝐷[𝑛]) yields

lim
𝐷→−∞

𝑃(𝜈−𝐷[𝑛])(1, . . . , 𝑡
𝑛−1)

𝑃(𝜇(𝐷)−𝐷[∞])(1, . . .)

∑︁
𝜆∈Sig𝑛

𝑄̃(𝜈−𝐷[𝑛])/(𝜆−𝐷[𝑛])(𝛼)𝑃(𝜇(𝐷)−𝐷[∞])/(𝜆−𝐷[𝑛])(𝑡
𝑛, . . .).

Applying the Cauchy identity (2.2.26) and the fact that

Π(𝛼; 1, . . . , 𝑡𝑛−1)Π(𝛼; 𝑡𝑛, . . .) = Π(𝛼; 1, . . .),

and rearranging, yields

lim
𝐷→−∞

∑︁
𝜅̃∈Y

𝐿∞
𝑛 (𝜅̃, 𝜈 −𝐷[𝑛])Γ∞

𝛼 (𝜇(𝐷) −𝐷[∞], 𝜅̃).

Changing variables to 𝜅 = 𝜅̃+𝐷[∞] this is

lim
𝐷→−∞

∑︁
𝜅∈Y+𝐷

𝐿∞
𝑛 (𝜅−𝐷[∞], 𝜈 −𝐷[𝑛])Γ∞

𝛼 (𝜇(𝐷) −𝐷[∞], 𝜅−𝐷[∞]). (4.5.8)

For each fixed 𝐷, there is an obvious bijection between Y+𝐷 and

{𝜅 ∈ Sig𝑢𝑛𝑠𝑡𝑎𝑏𝑙𝑒∞ : 𝜅𝑖 = 𝜇𝑖 for all 𝑖 such that 𝜇𝑖 ≤ 𝐷},

as signatures in either set are determined by their parts which are > 𝐷. Hence the sum

in (4.5.8) is equal to

∑︁
𝜅∈Sig𝑢𝑛𝑠𝑡𝑎𝑏𝑙𝑒

∞

𝐿∞
𝑛 (𝜅(𝐷) −𝐷[∞], 𝜈 −𝐷[𝑛])Γ∞

𝛼 (𝜇(𝐷) −𝐷[∞], 𝜅(𝐷) −𝐷[∞])𝐼𝐷(𝜅, 𝜇), (4.5.9)

where

𝐼𝐷(𝜅, 𝜇) := 1(𝜅𝑖 = 𝜇𝑖 for all 𝑖 such that 𝜇𝑖 ≤ 𝐷)

The summands in (4.5.9), as functions of 𝐷, take at most two values, namely 0 (for all

𝜅 ̸= 𝜇, for 𝐷 positive enough that the indicator function is 0) and 𝐿∞
𝑛 (𝜅, 𝜈)Γ∞

𝛼 (𝜇, 𝜅) when

the indicator function is nonzero. Hence monotone convergence again applies, yielding

∑︁
𝜅∈Sig∞

lim
𝐷→−∞

𝐿∞
𝑛 (𝜅(𝐷) −𝐷[∞], 𝜈 −𝐷[𝑛])Γ∞

𝛼 (𝜇(𝐷) −𝐷[∞], 𝜅(𝐷) −𝐷[∞])𝐼𝐷(𝜅, 𝜇).
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The summand stabilizes to 𝐿∞
𝑛 (𝜅, 𝜈)Γ∞

𝛼 (𝜇, 𝜅) (using translation-invariance of 𝐿∞
𝑛 ), hence

the above is equal to 𝐿∞
𝑛 Γ∞

𝛼 (𝜇, 𝜈) as desired. This completes the proof.

153



THIS PAGE INTENTIONALLY LEFT BLANK

154



Chapter 5

Matrix products at fixed size: Limits

and Gaussian fluctuations

The plan of this chapter is as follows. In Section 5.1 we state a general law of large num-

bers and functional central limit theorem for Hall-Littlewood processes, Theorem 5.1.1,

and deduce the LLN and CLT for matrix products Theorem 1.3.1 from it. We spend the

remainder of the section proving Theorem 5.1.1. In Section 5.2 we introduce the ran-

dom sampling algorithm for Hall-Littlewood processes with one principal specialization

1, 𝑡, . . . , 𝑡𝑛−1 by a PushTASEP-like particle system. In Section 5.3 we introduce a simpler

variant of this particle system which is easier to analyze asymptotically, and show that

the two may be coupled with small error. In Section 5.4 we complete the proof by analyz-

ing this particle system. In Section 5.5 we prove the universality of Lyapunov exponents

stated earlier as Theorem 1.3.2.

5.1 Asymptotics of products of random matrices

Recall the main result.

Theorem 1.3.1. Fix 𝑛 ≥ 1, and let 𝑁1, 𝑁2, . . . ∈ Z ∪ {∞} with 𝑁𝑗 > 𝑛 for all 𝑗. For

each 𝑗, if 𝑁𝑗 < ∞ let 𝐴𝑗 be the top left 𝑛 × 𝑛 corner of a Haar distributed element of

GL𝑁𝑗
(Z𝑝), and if 𝑁𝑗 = ∞ let 𝐴𝑗 have iid entries distributed by the additive Haar measure

on Z𝑝. For 𝑘 ∈ N let

(𝜆1(𝑘), . . . , 𝜆𝑛(𝑘)) := SN(𝐴𝑘 · · ·𝐴1).
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Then we have a strong law of large numbers

𝜆𝑖(𝑘)∑︀𝑘
𝑗=1

∑︀𝑁𝑗−𝑛−1
ℓ=0

𝑝−𝑖−ℓ(1−𝑝−1)
(1−𝑝−𝑖−ℓ−1)(1−𝑝−𝑖−ℓ)

→ 1 a.s. as 𝑘 → ∞.

Let

𝜆̄𝑖(𝑘) := 𝜆𝑖(𝑘)−
𝑘∑︁

𝑗=1

𝑁𝑗−𝑛−1∑︁
ℓ=0

𝑝−𝑖−ℓ(1− 𝑝−1)

(1− 𝑝−𝑖−ℓ−1)(1− 𝑝−𝑖−ℓ)

and define the random function of 𝑓𝜆̄𝑖,𝑘 ∈ 𝐶[0, 1] as follows: set 𝑓𝜆̄𝑖,𝑘(0) = 0 and

(𝑓𝜆̄𝑖,𝑘(1/𝑘), 𝑓𝜆̄𝑖,𝑘(2/𝑘), . . . , 𝑓𝜆̄𝑖,𝑘(1)) =
1√︁∑︀𝑘

𝑗=1

∑︀𝑁𝑗−𝑛−1
ℓ=0

𝑝−𝑖−ℓ(1−𝑝−1)(1−𝑝−2𝑖−2ℓ−1)
(1−𝑝−𝑖−ℓ)2(1−𝑝−𝑖−ℓ−1)2

(𝜆̄𝑖(1), . . . , 𝜆̄𝑖(𝑘)),

then linearly interpolate from these values on each interval [ℓ/𝑘, (ℓ + 1)/𝑘]. Then as

𝑘 → ∞, the 𝑛-tuple of random functions (𝑓𝜆̄1,𝑘, . . . , 𝑓𝜆̄𝑛,𝑘) converges in law in the sup

norm topology on 𝐶[0, 1] to 𝑛 independent standard Brownian motions.

In view of Corollary 3.1.3, this is a special case of the result below.

Theorem 5.1.1. Fix the Hall-Littlewood parameter 𝑡 ∈ (0, 1), and 𝑛 ∈ Z>0. Let

𝑥1, 𝑥2, . . . ∈ (𝛿, 1 − 𝛿) for some 𝛿 > 0, and let 𝑥̂𝑖 = (𝑥𝑖, 𝑡𝑥𝑖, . . . , 𝑡
𝑚𝑖−1𝑥𝑖) be collections of

variables in 𝑡-geometric progression, possibly infinite, for each 𝑖. Let (𝜆(1), 𝜆(2), . . .) be

an infinite sequence of random signatures whose marginals are given by a Hall-Littlewood

process,

Pr(𝜆(1) = 𝜆(1), . . . , 𝜆(𝑁) = 𝜆(𝑁)) =
𝑄̃𝜆(𝑁)/𝜆(𝑁−1)(𝑥̂𝑁) · · · 𝑄̃𝜆(2)/𝜆(1)(𝑥̂2)𝑄̃𝜆(1)(𝑥̂1)𝑃𝜆𝑁

(1, . . . , 𝑡𝑛−1)

Π(1, . . . , 𝑡𝑛−1; 𝑥̂1, . . . , 𝑥̂𝑁)
.

Then we have the following strong law of large numbers. For each 𝑖 = 1, . . . , 𝑛,

𝜆𝑖(𝑘)∑︀𝑘
𝑗=1

∑︀𝑚𝑗−1
ℓ=0

𝑡𝑖+ℓ−1𝑥𝑗(1−𝑡)

(1−𝑡𝑖+ℓ𝑥𝑗)(1−𝑡𝑖+ℓ−1𝑥𝑗)

→ 1 a.s. as 𝑘 → ∞. (5.1.1)

We also have the following functional central limit theorem. Let

𝜆̄𝑖(𝑘) := 𝜆𝑖(𝑘)−
𝑘∑︁

𝑗=1

𝑚𝑗−1∑︁
ℓ=0

𝑡𝑖+ℓ−1𝑥𝑗(1− 𝑡)

(1− 𝑡𝑖+ℓ𝑥𝑗)(1− 𝑡𝑖+ℓ−1𝑥𝑗)
.
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Let 𝑓𝜆̄𝑖,𝑘 be the random element of 𝐶[0, 1] defined as follows: set 𝑓(0) = 0 and

(𝑓𝜆̄𝑖,𝑘(1/𝑘), 𝑓𝜆̄𝑖,𝑘(2/𝑘), . . . , 𝑓𝜆̄𝑖,𝑘(1)) =
1√︂∑︀𝑘

𝑗=1

∑︀𝑚𝑗−1
ℓ=0

𝑡𝑖+ℓ−1𝑥𝑗(1−𝑡)(1−𝑡2𝑖+2ℓ−1𝑥2
𝑗 )

(1−𝑡𝑖+ℓ−1𝑥𝑗)2(1−𝑡𝑖+ℓ𝑥𝑗)2

(𝜆̄𝑖(1), . . . , 𝜆̄𝑖(𝑘)),

then linearly interpolate from these values on each interval [ℓ/𝑘, (ℓ + 1)/𝑘]. Then as

𝑘 → ∞, the 𝑛-tuple of random functions (𝑓𝜆̄1,𝑘, . . . , 𝑓𝜆̄𝑛,𝑘) converges in law in the sup

norm topology to 𝑛 independent standard Brownian motions.

Remark 25. Though we have avoided it for the sake of simplicity, it is possible to

define the product process more generally, allowing for nonsquare matrices. In the usual

archimedean case this is done in [Ahn22b, Appendix A], and the 𝑝-adic case is exactly

the same.

5.2 Sampling algorithm for Hall-Littlewood processes

with one principal specialization

In what follows, we will identify signatures 𝜆 ∈ Sig𝑛 with configurations of 𝑛 particles on

Z by placing 𝑚𝑖(𝜆) particles at each position 𝑖 ∈ Z. Each particle corresponds to a part

of 𝜆, and we will refer to them as the 1st, . . . , 𝑛𝑡ℎ particle or ‘particle 1, . . . , particle 𝑛’ to

reflect this, even when some are in the same location. In this numbering, particle 𝑗 will

correspond to a particle at position 𝜆𝑗.

Definition 35. Define the ‘insertion map’ 𝜄 : Z𝑛
≥0×Sig𝑛 → Sig𝑛 by defining 𝜄(𝑎1, . . . , 𝑎𝑛;𝜆)

as follows. First assign to each particle 𝑗 an ‘impulse’ 𝑎𝑗. Particle 𝑛 then moves to the

right until it has either moved 𝑎𝑛 steps or encountered particle 𝑛−1. If it encounters parti-

cle 𝑛−1, then it is ‘blocked’ by particle 𝑛−1 and donates the remainder 𝑎𝑛−(𝜆𝑛−1−𝜆𝑛) of

its impulse to particle 𝑛−1. Particle 𝑛−1 now has impulse 𝑎𝑛−1+max(0, 𝑎𝑛−(𝜆𝑛−1−𝜆𝑛)),

and moves in the same manner, possibly donating some of its impulse to particle 𝑛− 2;

all further particle evolve in the same manner.

Example 5.2.1. To compute 𝜄(1, 4, 2; (5, 3,−1)) = (8, 5, 1) the particles jump as above.

The numbers above the particles represent their impulses; note that impulse-donation from

particle 2 to particle 1 occurs at the third step shown.
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−3 −2 −1 0 1 2 3 4 5 6 7 8 9

2 4 1

−3 −2 −1 0 1 2 3 4 5 6 7 8 9

0 4 1

−3 −2 −1 0 1 2 3 4 5 6 7 8 9

0 03

−3 −2 −1 0 1 2 3 4 5 6 7 8 9

0 0 0

It is obvious from Definition 35 that 𝜆 ≺𝑄 𝜄(𝑎1, . . . , 𝑎𝑛;𝜆) for any a ∈ Z𝑛
≥0. It is also

not hard to check by induction on 𝑖 that one may equivalently define 𝜄 by defining the

(𝑛− 𝑖)𝑡ℎ part

𝜄(𝑎1, . . . , 𝑎𝑛;𝜆)𝑛−𝑖 = min(𝜆𝑛−𝑖−1,max(𝜆𝑛−𝑖+𝑎𝑛−𝑖, 𝜆𝑛−𝑖+1+𝑎𝑛−𝑖+𝑎𝑛−𝑖+1, . . . , 𝜆𝑛+𝑎𝑛−𝑖+. . .+𝑎𝑛))

(5.2.1)

for each 𝑖 = 0, . . . , 𝑛− 1, where we formally take 𝜆0 = ∞ in the edge case 𝑖 = 𝑛− 1.

We now use the insertion 𝜄 with random input 𝑎1, . . . , 𝑎𝑛 to define random signatures,

which we will show in Proposition 5.2.2 yields the ‘Cauchy’ Markov transition dynamics

of Proposition 2.2.9. First we define the measures which will be the distributions of the

𝑎𝑖.

Definition 36. Let 𝐺𝑥 be the measure on Z≥0 which is the distribution of max(𝑋−𝑇, 0)

where 𝑋 ∼ Geom(𝑥), 𝑇 ∼ Geom(𝑡). Explicitly,

𝐺𝑥(ℓ) =
1− 𝑥

1− 𝑡𝑥
(1− 𝑡)1(ℓ>0)𝑥ℓ. (5.2.2)

Equivalently 𝐺𝑥 is defined by the generating function

∑︁
ℓ≥0

𝐺𝑥(ℓ)𝑧
ℓ =

1− 𝑥

1− 𝑡𝑥

1− 𝑡𝑥𝑧

1− 𝑥𝑧
=

Π(0,𝑡)(𝑧;𝑥)

Π(0,𝑡)(1;𝑥)
. (5.2.3)
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Proposition 5.2.2. For 0 < 𝑥 < 1, let 𝑋1, . . . , 𝑋𝑛 be independent with 𝑋𝑖 ∼ 𝐺𝑥𝑡𝑖−1. Let

𝜆, 𝜈 ∈ Sig𝑛 with 𝜆 ≺𝑄 𝜈. Then

Pr(𝜄(𝑋1, . . . , 𝑋𝑛;𝜆) = 𝜈) =
1− 𝑥

1− 𝑡𝑛𝑥

∏︁
𝑗:𝑚𝑗(𝜆)=𝑚𝑗(𝜈)+1

(1− 𝑡𝑚𝑗(𝜆))
𝑛∏︁

𝑖=1

(𝑥𝑡𝑖−1)𝜈𝑖−𝜆𝑖 (5.2.4)

=
𝑄̃𝜈/𝜆(𝑥)𝑃𝜈(1, . . . , 𝑡

𝑛−1)

𝑃𝜆(1, . . . , 𝑡𝑛−1)Π(0,𝑡)(𝑥; 1, . . . , 𝑡𝑛−1)
. (5.2.5)

Proof. We let Pr𝑥(𝜆 → 𝜈) := Pr(𝜄(𝑋1, . . . , 𝑋𝑛;𝜆) = 𝜈). The equality of the RHS of

(5.2.4) with (5.2.5) follows by Proposition 2.2.15 while the first requires proof. We will

explicitly compute Pr𝑥(𝜆→ 𝜈) from the definition of 𝜄.

Let 𝜆 = (𝑎1[𝑘1], . . . , 𝑎𝑟[𝑘𝑟]), where the 𝑎𝑖 are distinct, 𝑘𝑖 are integers ≥ 1 with
∑︀

𝑖 𝑘𝑖 =

𝑛. To avoid cumbersome notation for edge cases, we formally take 𝜆0 = 𝑎0 = ∞ in some

formulas below.

It is clear from the definition that Pr𝑥(𝜆→ 𝜈) is nonzero only if 𝜆 ≺ 𝜈. By interlacing,

only the rightmost particle in the group of 𝑘𝑖 particles at location 𝑎𝑖 can exit to the right;

the location where it stops is 𝜄(𝑋1, . . . , 𝑋𝑛;𝜆)𝑛−(𝑘𝑟+...+𝑘𝑖)+1.

Let us define random variables 𝑁𝑖, 1 ≤ 𝑖 ≤ 𝑟, to be the location of the particle that

jumps out of the 𝑖𝑡ℎ clump after its jump (if no particle leaves the clump, then 𝑁𝑖 = 𝑎𝑖.

Explicitly, 𝑁𝑖 = 𝜄(𝑋1, . . . , 𝑋𝑛;𝜆)𝑛−(𝑘𝑟+...+𝑘𝑖)+1, and so

Pr(𝑁1 = 𝜈1, 𝑁2 = 𝜈𝑘1+1, . . . , 𝑁𝑟 = 𝜈𝑛−𝑘𝑟+1) = Pr
𝑥
(𝜆→ 𝜈)

for any 𝜈 ≻𝑄 𝜆. We will explicitly compute the joint distribution of the 𝑁𝑖, starting with

the distribution of 𝑁𝑟.

By Definition 35, 𝑁𝑟 has distribution

min(𝑎𝑟−1, 𝑎𝑟 +𝑋𝑛−𝑘𝑟+1 + . . .+𝑋𝑛).
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Using the probability generating function (5.2.3), we have that

Pr(𝑋𝑛−𝑘𝑟+1 + . . .+𝑋𝑛 = ℓ) =

(︃
𝑛∏︁

𝑖=𝑛−𝑘𝑟+1

1− 𝑡𝑖−1𝑥

1− 𝑡𝑖𝑥

1− 𝑡𝑖𝑥𝑧

1− 𝑡𝑖−1𝑥𝑧

)︃
[𝑧ℓ] (5.2.6)

=

(︂
1− 𝑡𝑛−𝑘𝑟𝑥

1− 𝑡𝑛𝑥

1− 𝑡𝑛𝑥𝑧

1− 𝑡𝑛−𝑘𝑟𝑥𝑧

)︂
[𝑧ℓ]. (5.2.7)

Expanding this out, we have

Pr(𝑁𝑟 = 𝑎𝑟 + ℓ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1−𝑡𝑛−𝑘𝑟𝑥
1−𝑡𝑛𝑥

ℓ = 0

1−𝑡𝑛−𝑘𝑟𝑥
1−𝑡𝑛𝑥

(1− 𝑡𝑘𝑟)(𝑥𝑡𝑛−𝑘𝑟)ℓ 0 < ℓ < 𝑎𝑟−1 − 𝑎𝑟

1
1−𝑡𝑛𝑥

(1− 𝑡𝑘𝑟)(𝑥𝑡𝑛−𝑘𝑟)ℓ ℓ = 𝑎𝑟−1 − 𝑎𝑟

. (5.2.8)

Note that this formula still makes sense when 𝑟 = 1, as the last case ℓ = ∞ has probability

0.

Now let us find the distribution of 𝑁𝑟−1. Its distribution, conditional on 𝑁𝑟, depends

on whether 𝑁𝑟 < 𝑎𝑟−1 or 𝑁𝑟 = 𝑎𝑟−1.

Case I: 𝑁𝑟 < 𝑎𝑟−1.

In this case, we may compute the conditional distribution of 𝑁𝑟 exactly as before,

obtaining

Pr(𝑁𝑟−1 = 𝑎𝑟−1 + ℓ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1−𝑡𝑛−𝑘𝑟−𝑘𝑟−1𝑥

1−𝑡𝑛−𝑘𝑟𝑥
ℓ = 0

1−𝑡𝑛−𝑘𝑟−𝑘𝑟−1𝑥
1−𝑡𝑛−𝑘𝑟𝑥

(1− 𝑡𝑘𝑟−1)(𝑥𝑡𝑛−𝑘𝑟−𝑘𝑟−1)ℓ 0 < ℓ < 𝑎𝑟−2 − 𝑎𝑟−1

1
1−𝑡𝑛−𝑘𝑟𝑥

(1− 𝑡𝑘𝑟−1)(𝑥𝑡𝑛−𝑘𝑟−𝑘𝑟−1)ℓ ℓ = 𝑎𝑟−2 − 𝑎𝑟−1

.

(5.2.9)

Case II: 𝑁𝑟 = 𝑎𝑟−1.

In this case, the computation is different: Because 𝑁𝑟 may donate some of its jump,

Definition 35 yields that 𝑁𝑟−1 has distribution

min(𝑎𝑟−2, 𝑎𝑟−1 + 𝑌 +𝑋𝑛−𝑘𝑟−𝑘𝑟−1+1 + . . .+𝑋𝑛−𝑘𝑟),
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where 𝑌 comes from the possible jump-donation of 𝑁𝑟 and has distribution given by

Pr(𝑌 = ℓ) = Pr((𝑋𝑛−𝑘𝑟+1 + . . .+𝑋𝑛)− (𝑎𝑟−1 − 𝑎𝑟) = ℓ|𝑋𝑛−𝑘𝑟+1 + . . .+𝑋𝑛 ≥ 𝑎𝑟−1 − 𝑎𝑟).

(5.2.10)

This looks overly complicated, but let us back up and see what it all means. As we noted

before, 𝑋𝑛−𝑘𝑟+1 + . . .+𝑋𝑛 has probability generating function

1− 𝑡𝑛−𝑘𝑟𝑥

1− 𝑡𝑛𝑥

1− 𝑡𝑛𝑥𝑧

1− 𝑡𝑛−𝑘𝑟𝑥𝑧
,

hence

𝑋𝑛−𝑘𝑟+1 + . . .+𝑋𝑛 ∼ max(Geom(𝑡𝑛−𝑘𝑟𝑥)−Geom(𝑡𝑘𝑟), 0).

How, in general, would one sample 𝑍 ∼ Geom(𝑥) − Geom(𝑤)? A simple way is to take

two coin with probability 𝑥 and 𝑤 of heads respectively, and keep flipping them until one

comes up tails, then see how many additional flips it takes before the other comes up

tails–call this (random) number ℓ. If the 𝑤-coin came up tails first, then 𝑍 = ℓ; if the

𝑥-coin came up tails first, 𝑍 = −ℓ. From this description it is clear that if we condition

on 𝑍 ≥ 1, or indeed 𝑍 ≥ 𝑐 for any 𝑐 ≥ 1, we are conditioning on the event that the 𝑤-coin

comes up tails first and the 𝑥-coin comes up heads for at least 𝑐 additional rounds. It is

thus clear that the conditional distribution of 𝑍, given 𝑍 ≥ 𝑐, is 𝑐+Geom(𝑥).

Applying this to our above situation, we have that conditioning 𝑋𝑛−𝑘𝑟+1 + . . . + 𝑋𝑛

to be above some positive number, it will have a geometric distribution. Specifically,

Pr((𝑋𝑛−𝑘𝑟+1+. . .+𝑋𝑛)−(𝑎𝑟−1−𝑎𝑟) = ℓ|𝑋𝑛−𝑘𝑟+1+. . .+𝑋𝑛 ≥ 𝑎𝑟−1−𝑎𝑟) = (1−𝑡𝑛−𝑘𝑟𝑥)(𝑡𝑛−𝑘𝑟𝑥)ℓ.

Hence by (5.2.10), 𝑌 ∼ Geom(𝑡𝑛−𝑘𝑟𝑥), so 𝑌 has probability generating function 1−𝑡𝑛−𝑘𝑟𝑥
1−𝑡𝑛−𝑘𝑟𝑥𝑧

.

Thus 𝑌 +𝑋𝑛−𝑘𝑟−𝑘𝑟−1+1 + . . .+𝑋𝑛−𝑘𝑟 has probability generating function

1− 𝑡𝑛−𝑘𝑟𝑥

1− 𝑡𝑛−𝑘𝑟𝑥𝑧
·
(︂
1− 𝑡𝑛−𝑘𝑟−𝑘𝑟−1𝑥

1− 𝑡𝑛−𝑘𝑟𝑥

1− 𝑡𝑛−𝑘𝑟𝑥𝑧

1− 𝑡𝑛−𝑘𝑟−𝑘𝑟−1𝑥𝑧

)︂
=

1− 𝑡𝑛−𝑘𝑟−𝑘𝑟−1𝑥

1− 𝑡𝑛−𝑘𝑟−𝑘𝑟−1𝑥𝑧
,

i.e.

𝑌 +𝑋𝑛−𝑘𝑟−𝑘𝑟−1+1 + . . .+𝑋𝑛−𝑘𝑟 ∼ Geom(𝑡𝑛−𝑘𝑟−𝑘𝑟−1𝑥).

161



Thus at last we have

Pr(𝑁𝑟−1 = 𝑎𝑟−1+ℓ) =

⎧⎪⎨⎪⎩(1− 𝑡𝑛−𝑘𝑟−𝑘𝑟−1𝑥)(𝑡𝑛−𝑘𝑟−𝑘𝑟−1𝑥)ℓ 0 ≤ ℓ < 𝑎𝑟−2 − 𝑎𝑟−1

(𝑡𝑛−𝑘𝑟−𝑘𝑟−1𝑥)ℓ ℓ = 𝑎𝑟−2 − 𝑎𝑟−1

, (5.2.11)

which concludes the computation of Case II.

A key feature of the distributions computed in (5.2.8), (5.2.9) and (5.2.11) is that the

1 − 𝑡𝑛−𝑘𝑟𝑥 term in (5.2.8), which appears only in the case 𝑁𝑟 < 𝑎𝑟−1 (Case I), cancels

with the 1 − 𝑡𝑛−𝑘𝑟𝑥 appearing in the computation (5.2.9) for Case I; meanwhile, when

𝑁𝑟 = 𝑎𝑟−1 (Case II), it appears neither in (5.2.8) nor in (5.2.11).

Together, (5.2.8), (5.2.9) and (5.2.11) imply the joint distribution

Pr(𝑁𝑟 = 𝑎𝑟 + ℓ1 and 𝑁𝑟−1 = 𝑎𝑟−1 + ℓ2)

=
(1− 𝑡𝑛−𝑘𝑟−𝑘𝑟−1𝑥)1(ℓ2<𝑎𝑟−2−𝑎𝑟−1)

1− 𝑡𝑛𝑥
(1− 𝑡𝑘𝑟)1(ℓ1>0)(1− 𝑡𝑘𝑟−1)1(ℓ1<𝑎𝑟−1−𝑎𝑟 and ℓ2>0)

· (𝑡𝑛−𝑘𝑟𝑥)ℓ1(𝑡𝑛−𝑘𝑟−𝑘𝑟−1𝑥)ℓ2

=
(1− 𝑡𝑛−𝑘𝑟−𝑘𝑟−1𝑥)1(ℓ2<𝑎𝑟−2−𝑎𝑟−1)

1− 𝑡𝑛𝑥
(1− 𝑡𝑘𝑟)1(𝑚𝑎𝑟 (𝜆)=𝑚𝑎𝑟 (𝜈)+1)(1− 𝑡𝑘𝑟−1)1(𝑚𝑎𝑟−1 (𝜆)=𝑚𝑎𝑟−1 (𝜈)+1)

· (𝑡𝑛−𝑘𝑟𝑥)ℓ1(𝑡𝑛−𝑘𝑟−𝑘𝑟−1𝑥)ℓ2

But we see that the computation of the distribution of 𝑁𝑟−1 is exactly the same for

any 𝑁𝑖. There is the same division into Case I and Case II depending on whether 𝑁𝑖+1

achieves its maximum, and the feature that the 1 − 𝑡𝑛−𝑘𝑟𝑥 terms cancel in both Case I

and Case II is also the same. Hence these terms telescope, and we are left with

1− 𝑡𝑛−𝑘𝑟−...−𝑘1𝑥

1− 𝑡𝑛𝑥
=

1− 𝑥

1− 𝑡𝑛𝑥
,

where the 1 − 𝑡𝑛−𝑘𝑟−...−𝑘1𝑥 appears because the last such term does not cancel. Hence
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continuing the above computation yields

Pr(𝑁𝑟 = 𝜈𝑛−𝑘𝑟+1, 𝑁𝑟−1 = 𝜈𝑛−𝑘𝑟−𝑘𝑟−1+1, . . . , 𝑁1 = 𝜈1) (5.2.12)

=
1− 𝑥

1− 𝑡𝑛𝑥

𝑟∏︁
𝑖=1

(1− 𝑡𝑘𝑖)1(𝑚𝑎𝑖 (𝜆)=𝑚𝑎𝑖 (𝜈)+1)

𝑟−1∏︁
𝑖=0

(𝑡𝑛−𝑘𝑟−...−𝑘𝑟−𝑖𝑥)𝜈𝑛−𝑘𝑟−...−𝑘𝑟−𝑖+1−𝑎𝑟−𝑖 (5.2.13)

=
1− 𝑥

1− 𝑡𝑛𝑥

∏︁
𝑗:𝑚𝑗(𝜆)=𝑚𝑗(𝜈)+1

(1− 𝑡𝑚𝑗(𝜆))
𝑛∏︁

𝑖=1

(𝑥𝑡𝑖−1)𝜈𝑖−𝜆𝑖 , (5.2.14)

concluding the proof.

Remark 26. Since the sum over 𝜈 of the LHS of (5.2.4) is clearly 1, Proposition 5.2.2

implies that the sum of the RHS of (5.2.4) is 1, which gives a proof of the corresponding

case of the skew Hall-Littlewood Cauchy identity (Lemma 2.2.3).

It is very important to note that the random variables 𝑋𝑖 above satisfy E[𝑋𝑖] > E[𝑋𝑗]

when 𝑖 < 𝑗. This means that the 𝑖𝑡ℎ particle, which is already ahead of the 𝑗𝑡ℎ particle,

is likely to pull even further ahead if one iterates the above dynamics. Empirically this

may be seen in Figure 1-1. This observation is key to the proof of Theorem 5.1.1, as it

implies that while there may be some interactions between particles, as one iterates the

above dynamics the particles should spread apart and interactions should not contribute

to the limit. Hence by Donsker’s theorem the rescaled fluctuations of the particles should

look like independent Brownian motions.

The rest of this chapter is devoted to making the above heuristic argument precise.

We implement it by coupling the interacting particle dynamics of Proposition 5.2.2 to

dynamics in which the particles do not interact at all, and showing that the error between

the two is small in the limit.

5.3 Coupling to non-interacting particle dynamics

Proposition 5.2.2 gives an explicit sampling algorithm for Hall-Littlewood processes

Pr(𝜆1, . . . , 𝜆𝑁) =
𝑄̃𝜆𝑁/𝜆𝑁−1

(𝑥𝑁) · · · 𝑄̃𝜆2/𝜆1(𝑥2)𝑄̃𝜆1/(0[𝑛])(𝑥1)𝑃𝜆𝑁
(1, . . . , 𝑡𝑛−1)

Π(1, . . . , 𝑡𝑛−1;𝑥1, . . . , 𝑥𝑁)
.
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Theorem 1.3.1 and Theorem 5.1.1 treat Hall-Littlewood processes as above but with

the variables 𝑥𝑖 replaced by geometric progressions 𝑥̂𝑖 (sometimes infinite), and we must

extend our notation slightly to deal with these. We begin by setting up the appropriate

probability space on which the random variables 𝑋𝑖 of Proposition 5.2.2 can be defined

in this more general setting.

Definition 37. A generalized variable 𝑥̂ is a tuple (𝑥, 𝑡𝑥, . . . , 𝑡𝑚−1𝑥) or (𝑥, 𝑡𝑥, . . .) in finite

or infinite geometric progression with common ratio 𝑡. For a generalized variable, define

probability spaces

Ω𝑥̂ =

⎧⎪⎨⎪⎩(Z𝑛
≥0)

𝑚 𝑥̂ = (𝑥, . . . , 𝑡𝑚−1𝑥)

{𝜔 = (𝜔(1), 𝜔(2), . . .) ∈ (Z𝑛
≥0)

∞ : only finitely many 𝜔(𝑖) nonzero} 𝑥̂ = (𝑥, 𝑡𝑥, . . .)

.

Recall the definition of the measure 𝐺𝑥 in Definition 36. Now define the measure 𝐺𝑥̂ on

Ω𝑥̂ by

𝐺𝑥̂ =

⎧⎪⎨⎪⎩𝐺𝑥 × · · · ×𝐺𝑡𝑚−1𝑥 𝑥̂ = (𝑥, 𝑡𝑥, . . . , 𝑡𝑚−1𝑥)

𝐺𝑥 ×𝐺𝑡𝑥 × · · · 𝑥̂ = (𝑥, 𝑡𝑥, . . .)

.

Two things must be justified in this definition. The first is that the infinite product

measure 𝐺𝑥 × 𝐺𝑡𝑥 × · · · on (Z𝑛
≥0)

∞ makes sense, which follows from the Kolmogorov

extension theorem. The second is that this measure is actually supported on the subset

Ω𝑥̂, which follows from a standard Borel-Cantelli argument.

Definition 38. We inductively define 𝜄 on (Z𝑛
≥0)

𝑚,𝑚 > 1 as follows. For 𝜔𝑖 ∈ Z𝑛
≥0, set

𝜄((𝜔1, . . . , 𝜔𝑚);𝜆) := 𝜄(𝜔𝑚; 𝜄((𝜔1, . . . , 𝜔𝑚−1);𝜆)), (5.3.1)

We define 𝜄 : Ω𝑥̂×Sig𝑛 → Sig𝑛 as above when 𝑥̂ is a finite geometric progression, and when

𝑥̂ is an infinite geometric progression the definition readily extends because Ω𝑥̂ consists

of sequences with only finitely many nonzero 𝜔𝑖 ∈ Z𝑛
≥0. Given a sequence 𝑥̂1, 𝑥̂2, . . . of

generalized variables as in Theorem 5.1.1, we will use the following notations.

• Ω := Ω𝑥̂1 × Ω𝑥̂2 × · · · .

• 𝜔 = (𝜔(1), 𝜔(2), . . .) will denote an element of Ω, with each 𝜔(𝑖) denoting an element

of Ω𝑥̂𝑖
.
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Definition 39. Define the sequence 𝜆(0), 𝜆(1), . . . of random signatures on the probabil-

ity space Ω of Definition 38 by setting 𝜆(0) = (0[𝑛]) and inductively defining

𝜆(𝑘,𝜔) := 𝜄(𝜔(𝑘);𝜆(𝑘 − 1,𝜔))

for 𝜔 ∈ Ω, where 𝜄 is defined on 𝜔(𝑘) ∈ Ω𝑥̂𝑘
via (5.3.1). We will usually omit the

dependence on the element of the probability space Ω and simply write 𝜆(𝑘).

In other words, if 𝑥̂𝑘 = (𝑥𝑘, . . . , 𝑡
𝑚−1𝑥𝑘), then 𝜆(𝑘 + 1) comes from 𝜆(𝑘) by inserting

random arrays as in Proposition 5.2.2 with distributions corresponding to the variables

𝑥𝑘, 𝑡𝑥𝑘, . . . , 𝑡
𝑚−1𝑥𝑘.

We now define the non-interacting variant of the randomized insertion algorithm of

Proposition 5.2.2, where each particle’s movement is independent of the others. This is

easier to analyze, and it will be shown in Proposition 5.3.1 that the two may be coupled

with asymptotically negligible effect on the particles’ positions, thus reducing the analysis

of the sampling algorithm in Proposition 5.2.2 to something much simpler.

Definition 40. Define the non-interacting insertion map 𝜂 : Z𝑛
≥0 × Z𝑛 → Z𝑛 by

𝜂(𝑎1, . . . , 𝑎𝑛;v) = (𝑣1 + 𝑎1, . . . , 𝑣𝑛 + 𝑎𝑛),

and extend to 𝜂 : Ω𝑥̂ × Z𝑛 → Z𝑛 as in (5.3.1). Define a random sequence v(0),v(1), . . .

with v(𝑖) ∈ Z𝑛 on Ω by setting v(0) = (0[𝑛]) and

v(𝑘,𝜔) := 𝜂(𝜔(𝑘),v(𝑘 − 1,𝜔)).

Remark 27. Neither the input tuple nor the output tuple of 𝜂 must be a signature, and

if either one happens to be, it does not imply that the other one is.

We now state the result mentioned earlier, that the ‘interacting’ and ‘non-interacting’

dynamics 𝜆(𝑘) and v(𝑘) may be coupled together with a negligible difference between

them.

Proposition 5.3.1. Let 𝑥̂1, 𝑥̂2, . . . be a sequence of generalized variables, 𝑥̂𝑖 = (𝑥𝑖, 𝑡𝑥𝑖, . . . , 𝑡
𝑚𝑖−1𝑥𝑖)

(where we allow 𝑚𝑖 = ∞), such that there exists 𝛿 > 0 for which 𝑥𝑖 ∈ (𝛿, 1− 𝛿).
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Then with probability 1 with respect to the product measure1 𝐺𝑥̂1 ×𝐺𝑥̂2 × · · · on Ω,

sup
𝑘∈Z≥0

|𝜆𝑖(𝑘)− 𝑣𝑖(𝑘)| (5.3.2)

is bounded for every 𝑖.

Informally, the particles interact when a particle behind jumps to the position of

the particle in front. The following lemma shows that in the non-interacting case, such

overlaps occur a negligible amount, which will be used in the proof of Proposition 5.3.1

to show that interactions contribute negligibly overall as well.

Lemma 5.3.2. With the same hypotheses on the 𝑥̂𝑖 as in Proposition 5.3.1, we have that

with probability 1, the set

{𝑘 ∈ Z≥0 : 𝑣𝑖(𝑘) ≤ 𝑣𝑖+1(𝑘 + 1) +𝐵}

is finite for all 𝐵 ∈ Z and all 𝑖.

The proof of Lemma 5.3.2 will be deferred to Section 5.4.

Proof of Prop. 5.3.1. We construct a sequence 𝜆(1)(𝑘) = v(𝑘), 𝜆(2)(𝑘), . . . , 𝜆(𝑛)(𝑘) = 𝜆(𝑘)

of discrete-time stochastic processes on the space of particle configurations, all defined on

Ω𝑥̂1 ×Ω𝑥̂2 × · · · . Informally, 𝜆(𝑗) is the process in which the last 𝑗 particles 𝜆(𝑗)𝑛 , . . . , 𝜆
(𝑗)
𝑛−𝑗

interact as in Definition 39, but particles 𝜆(𝑗)𝑛−𝑗+1, . . . , 𝜆
(𝑗)
1 do not interact with any other

particles, as in Definition 40. We will then prove by induction on 𝑗 that with probability

1,

sup
𝑘∈Z≥0

|𝜆(𝑗)𝑖 (𝑘)− 𝑣𝑖(𝑘)| (5.3.3)

is finite for all 𝑖. When 𝑗 = 𝑛, this will prove (5.3.2).

Now let us be more formal. Let Sig(𝑗)𝑛 = {(𝑣1, . . . , 𝑣𝑛) ∈ Z𝑛 : 𝑣𝑛 ≤ . . . ≤ 𝑣𝑛−𝑗+1}.

Following the indexing theme above, we see that Sig(1)𝑛 = Z𝑛 and Sig(𝑛)𝑛 = Sig𝑛. Once we

have defined 𝜆(𝑖) it will be true that 𝜆(𝑖) takes values in Sig(𝑖)𝑛 .

1Defined on Ω𝑥̂1
× Ω𝑥̂2

× · · · via the Kolmogorov extension theorem.
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Now, define 𝜂(𝑗) : Z𝑛
≥0 × Sig(𝑗)𝑛 → Sig(𝑗)𝑛 by

𝜂(𝑗)(𝑎1, . . . , 𝑎𝑛; 𝑣) = (𝜂(𝑎1, . . . , 𝑎𝑛−𝑗; 𝑣1, . . . , 𝑣𝑛−𝑗), 𝜄(𝑎𝑛−𝑗+1, . . . , 𝑎𝑛; 𝑣𝑛−𝑗+1, . . . , 𝑣𝑛)).

(5.3.4)

In other words, particles 𝑣𝑛−𝑗+1, . . . , 𝑣𝑛 try to jump by 𝑎𝑛−𝑗+1, . . . , 𝑎𝑛 units respectively,

but may donate some of their jumps to the next particle as in the definition of 𝜄, while

particles 𝑣1, . . . , 𝑣𝑛−𝑗 each jump by 𝑎1, . . . , 𝑎𝑛−𝑗 units respectively, independent of the

positions of all other particles. It is clear from this description that the image of 𝜂(𝑗) is

indeed Sig(𝑗)𝑛 . It is also clear that 𝜂(𝑛) = 𝜄, and that

𝜆
(𝑗)
𝑖 (𝑘) = 𝑣𝑖(𝑘) for 𝑖 = 1, . . . , 𝑛− 𝑗.

When 𝑗 = 1 this means that the first 𝑛 − 1 particles do not interact and hence the 𝑛𝑡ℎ

particle has no one to interact with, therefore 𝜂(1) = 𝜂. Just as in (5.3.1), we extend 𝜂(𝑗)

to a map Ω𝑥̂ × Sig(𝑗)𝑛 → Sig(𝑗)𝑛 for any generalized variable 𝑥̂.

Finally, given generalized variables 𝑥̂1, 𝑥̂2, . . ., we define the discrete-time stochastic

processes 𝜆(𝑗)(𝑘) on the probability space Ω := Ω𝑥̂1 ×Ω𝑥̂2 ×· · · by setting 𝜆(𝑗)(0) = (0[𝑛])

and

𝜆(𝑗)(𝑘,𝜔) = 𝜂(𝑗)(𝜔(𝑘), 𝜆(𝑗)(𝑘 − 1,𝜔)) (5.3.5)

where 𝜔 = (𝜔(1), . . .) ∈ Ω as in Definition 38. We will usually write the random variable

𝜆(𝑗)(𝑘) without the dependence on 𝜔.

We claim that the inequalities

𝜆
(𝑗+1)
𝑛−𝑗 (𝑘) ≥ 𝜆

(𝑗)
𝑛−𝑗(𝑘) (5.3.6)

and

𝜆
(𝑗+1)
𝑛−𝑗+𝑖(𝑘) ≤ 𝜆

(𝑗)
𝑛−𝑗+𝑖(𝑘) for 𝑖 = 1, . . . , 𝑗 (5.3.7)

hold for all 𝑘. We prove this by induction on 𝑘, the base case 𝑘 = 0 following since

𝜆(ℓ)(0) = (0[𝑛]). Suppose that (5.3.6) and (5.3.7) hold for some 𝑘. Since (5.3.5) defines

𝜆(𝑗+1)(𝑘+1) and 𝜆(𝑗)(𝑘+1) by inserting 𝜔(𝑘) ∈ Ω𝑥̂𝑘
, which is a sequence of elements of Z𝑛

≥0,

it suffices to show that the inequalities (5.3.6) and (5.3.7) remain true after inserting a

single element of Z𝑛
≥0. To be precise, it suffices to show that for any 𝜈 ∈ Sig(𝑗+1)

𝑛 , 𝜇 ∈ Sig(𝑗)𝑛
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such that2

𝜈𝑛−𝑗 ≥ 𝜇𝑛−𝑗 (5.3.8)

𝜈𝑛−𝑗+𝑖 ≤ 𝜇𝑛−𝑗+𝑖 for 𝑖 = 1, . . . , 𝑗 (5.3.9)

and 𝑎 ∈ Z𝑛
≥0, one has

𝜂(𝑗+1)(𝑎; 𝜈)𝑛−𝑗 ≥ 𝜂(𝑗)(𝑎;𝜇)𝑛−𝑗 (5.3.10)

𝜂(𝑗+1)(𝑎; 𝜈)𝑛−𝑗+𝑖 ≤ 𝜂(𝑗)(𝑎;𝜇)𝑛−𝑗+𝑖 for 𝑖 = 1, . . . , 𝑗. (5.3.11)

(5.3.10) is clear because 𝜂(𝑗)(𝑎;𝜇)𝑛−𝑗 = 𝜇𝑛−𝑗 + 𝑎𝑛−𝑗 while 𝜂(𝑗+1)(𝑎; 𝜈)𝑛−𝑗 ≥ 𝜈𝑛−𝑗 + 𝑎𝑛−𝑗

(where the possible > comes from the fact that 𝜈𝑛−𝑗 may get pushed by the preceding

particle). We now turn to (5.3.11)

Applying (5.2.1) to the 𝜄 in (5.3.4), we have

𝜂(𝑗+1)(𝑎; 𝜈)𝑛−𝑗+𝑖

= min(𝜈𝑛−𝑗+𝑖−1,max(𝜈𝑛−𝑗+𝑖+𝑎𝑛−𝑗+𝑖, 𝜈𝑛−𝑗+𝑖+1+𝑎𝑛−𝑗+𝑖+𝑎𝑛−𝑗+𝑖+1, . . . , 𝜈𝑛+𝑎𝑛−𝑗+𝑖+. . .+𝑎𝑛))

(5.3.12)

for 𝑖 = 1, . . . , 𝑗. Similarly, (5.2.1) implies

𝜂(𝑗)(𝑎;𝜇)𝑛−𝑗+𝑖 =

⎧⎪⎨⎪⎩min(𝜇𝑛−𝑗+𝑖−1,max(𝜇𝑛−𝑗+𝑖 + 𝑎𝑛−𝑗+𝑖, . . . , 𝜇𝑛 + 𝑎𝑛−𝑗+𝑖 + . . .+ 𝑎𝑛)) 𝑖 ≥ 2

max(𝜇𝑛−𝑗+𝑖 + 𝑎𝑛−𝑗+𝑖, . . . , 𝜇𝑛 + 𝑎𝑛−𝑗+𝑖 + . . .+ 𝑎𝑛) 𝑖 = 1

(5.3.13)

Because 𝜈𝑛−𝑗+𝑖 ≤ 𝜇𝑛−𝑗+𝑖, . . . , 𝜈𝑛 ≤ 𝜇𝑛, we have

max(𝜈𝑛−𝑗+𝑖 + 𝑎𝑛−𝑗+𝑖, 𝜈𝑛−𝑗+𝑖+1 + 𝑎𝑛−𝑗+𝑖 + 𝑎𝑛−𝑗+𝑖+1, . . . , 𝜈𝑛 + 𝑎𝑛−𝑗+𝑖 + . . .+ 𝑎𝑛))

≤ max(𝜇𝑛−𝑗+𝑖 + 𝑎𝑛−𝑗+𝑖, 𝜇𝑛−𝑗+𝑖+1 + 𝑎𝑛−𝑗+𝑖 + 𝑎𝑛−𝑗+𝑖+1, . . . , 𝜇𝑛 + 𝑎𝑛−𝑗+𝑖 + . . .+ 𝑎𝑛)).

(5.3.14)

2Note that (5.3.8), (5.3.9) are the same as (5.3.6) and (5.3.7).
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and

𝜈𝑛−𝑗+𝑖−1 ≤ 𝜇𝑛−𝑗+𝑖−1 when 𝑖 ≥ 2. (5.3.15)

Combining the definitions (5.3.12) and (5.3.13) with the inequalities (5.3.14) and (5.3.15)

yields the desired

𝜂(𝑗+1)(𝑎; 𝜈)𝑛−𝑗+𝑖 ≤ 𝜂(𝑗)(𝑎;𝜇)𝑛−𝑗+𝑖 for 𝑖 = 1, . . . , 𝑗.

Thus we have proven (5.3.6) and (5.3.7).

We finally turn to the proof of (5.3.3), by induction on 𝑗. The base case 𝑗 = 1 follows

because 𝜆(1)(𝑘) = v(𝑘) for all 𝑘 as noted earlier. Thus we will suppose that (5.3.3) holds

for some 𝑗 ≥ 1 and verify that it holds for 𝑗 + 1.

We will first show

sup
𝑘∈Z≥0

|𝜆(𝑗+1)
𝑛−𝑗 (𝑘)− 𝑣𝑛−𝑗(𝑘)| <∞ (5.3.16)

almost surely. First note that for 𝑘 such that 𝜆(𝑗+1)
𝑛−𝑗+1(𝑘 + 1) ≤ 𝜆

(𝑗+1)
𝑛−𝑗 (𝑘),

𝜆
(𝑗+1)
𝑛−𝑗 (𝑘 + 1)− 𝜆

(𝑗+1)
𝑛−𝑗 (𝑘) = 𝑣𝑛−𝑗(𝑘 + 1)− 𝑣𝑛−𝑗(𝑘)

because no pushing occurs. For 𝑘 such that

𝜆
(𝑗+1)
𝑛−𝑗+1(𝑘 + 1) > 𝜆

(𝑗+1)
𝑛−𝑗 (𝑘) (5.3.17)

𝜆
(𝑗+1)
𝑛−𝑗 may receive some push from 𝜆

(𝑗+1)
𝑛−𝑗+1, causing it to move further than 𝑣𝑛−𝑗 does

during that round. Hence to show (5.3.16), it suffices to show that the number of 𝑘 for

which (5.3.17) holds is almost surely finite, as then the error sup𝑘∈Z≥0
|𝜆(𝑗+1)

𝑛−𝑗 (𝑘)−𝑣𝑛−𝑗(𝑘)|

is a sum of a finite number of almost surely finite random variables (each one representing

the amount by which the (𝑛− 𝑗)𝑡ℎ particle gets pushed).

By (5.3.6), 𝜆(𝑗+1)
𝑛−𝑗 (𝑘) ≥ 𝜆

(𝑗)
𝑛−𝑗(𝑘), and by (5.3.7) 𝜆(𝑗+1)

𝑛−𝑗+1(𝑘 + 1) ≤ 𝜆
(𝑗)
𝑛−𝑗+1(𝑘 + 1). Hence

for 𝑘 such that (5.3.17) holds,

𝜆
(𝑗)
𝑛−𝑗+1(𝑘 + 1) > 𝜆

(𝑗)
𝑛−𝑗(𝑘)
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also holds, and since 𝜆(𝑗)𝑛−𝑗(𝑘) = 𝑣𝑛−𝑗(𝑘), we have that

𝑣𝑛−𝑗+1(𝑘 + 1) + (𝜆
(𝑗)
𝑛−𝑗+1(𝑘 + 1)− 𝑣𝑛−𝑗+1(𝑘 + 1)) > 𝑣𝑛−𝑗(𝑘) (5.3.18)

holds as well, so it suffices to show that

|{𝑘 : 𝑣𝑛−𝑗+1(𝑘 + 1) + (𝜆
(𝑗)
𝑛−𝑗+1(𝑘 + 1)− 𝑣𝑛−𝑗+1(𝑘 + 1)) > 𝑣𝑛−𝑗(𝑘)}| <∞ a.s. (5.3.19)

By the inductive hypothesis that (5.3.3) holds for 𝑗, we have that

sup
𝑘∈Z≥0

|𝜆(𝑗)𝑛−𝑗+1(𝑘)− 𝑣𝑛−𝑗+1(𝑘)| <∞ (5.3.20)

almost surely. Since by Lemma 5.3.2,

{𝑘 : 𝑣𝑛−𝑗+1(𝑘 + 1) +𝐵 > 𝑣𝑛−𝑗(𝑘)}

is almost surely finite for all 𝐵, it is in particular almost surely finite for the random

𝐵 = sup
𝑘∈Z≥0

|𝜆(𝑗)𝑛−𝑗+1(𝑘)− 𝑣𝑛−𝑗+1(𝑘)|

(the order of quantifiers in Lemma 5.3.2 is important for this conclusion). Since 𝜆(𝑗)𝑛−𝑗(𝑘+

1) − 𝑣𝑛−𝑗(𝑘 + 1) is almost surely bounded, (5.3.19) follows. This completes the proof of

(5.3.16).

Now, since

𝜆
(𝑗+1)
𝑛−𝑗 (𝑘) ≥ 𝜆

(𝑗)
𝑛−𝑗(𝑘) (5.3.21)

𝜆
(𝑗+1)
𝑛−𝑗+𝑖(𝑘) ≤ 𝜆

(𝑗)
𝑛−𝑗+𝑖(𝑘) for 𝑖 = 1, . . . , 𝑗 (5.3.22)

𝜆
(𝑗+1)
𝑖 (𝑘) = 𝜆

(𝑗)
𝑖 (𝑘) for 𝑖 = 1, . . . , 𝑛− 𝑗 − 1 (5.3.23)

𝑛∑︁
𝑖=1

𝜆
(𝑗+1)
𝑖 (𝑘) =

𝑛∑︁
𝑖=1

𝜆
(𝑗)
𝑖 (𝑘), (5.3.24)

it follows that
𝑗∑︁

𝑖=1

(𝜆
(𝑗)
𝑛−𝑗+𝑖(𝑘)− 𝜆

(𝑗+1)
𝑛−𝑗+𝑖(𝑘)) = 𝜆

(𝑗+1)
𝑛−𝑗 (𝑘)− 𝜆

(𝑗)
𝑛−𝑗(𝑘) (5.3.25)
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(this is a kind of conservation of momentum: the amount that the (𝑛 − 𝑗)𝑡ℎ particle is

pushed forward from collisions equals the amount that the particles behind it are pushed

backward). We have

sup
𝑘

|𝜆(𝑗+1)
𝑛−𝑗 (𝑘)− 𝜆

(𝑗)
𝑛−𝑗(𝑘)| ≤ sup

𝑘
|𝜆(𝑗+1)

𝑛−𝑗 (𝑘)− 𝑣𝑛−𝑗(𝑘)|+ sup
𝑘

|𝜆(𝑗)𝑛−𝑗(𝑘)− 𝑣𝑛−𝑗(𝑘)| <∞ a.s.

by applying (5.3.16) to the first term and the inductive hypothesis to the second. Because

the summands 𝜆(𝑗)𝑛−𝑗+𝑖(𝑘) − 𝜆
(𝑗+1)
𝑛−𝑗+𝑖(𝑘) on the LHS of (5.3.25) are nonnegative, it follows

that

sup
𝑘

|𝜆(𝑗)𝑛−𝑗+𝑖(𝑘)− 𝜆
(𝑗+1)
𝑛−𝑗+𝑖(𝑘)| <∞ a.s. (5.3.26)

for 𝑖 = 1, . . . , 𝑗. We thus have

sup
𝑘

|𝜆(𝑗+1)
𝑛−𝑗+𝑖(𝑘)−𝑣𝑛−𝑗+𝑖(𝑘)| ≤ sup

𝑘
|𝜆(𝑗)𝑛−𝑗+𝑖(𝑘)−𝜆

(𝑗+1)
𝑛−𝑗+𝑖(𝑘)|+sup

𝑘
|𝜆(𝑗)𝑛−𝑗+𝑖(𝑘)−𝑣𝑛−𝑗+𝑖| <∞ a.s.

by applying (5.3.26) to the first summand and the inductive hypothesis to the second.

This establishes (5.3.3) for 𝑗+1, for 𝑖 = 𝑛− 𝑗, 𝑛− 𝑗+1, . . . , 𝑛, and the equation is trivial

(the supremum is just 0) when 𝑖 = 1, . . . , 𝑛 − 𝑗 − 1. This completes the induction on 𝑗,

showing that (5.3.3) holds for all 𝑖 and 𝑗. In particular it holds for 𝑗 = 𝑛, which proves

Proposition 5.3.1.

5.4 Analysis of non-interacting particle dynamics v(𝑘)

and proof of Theorem 5.1.1

In the previous subsection, we phrased the relevant Hall-Littlewood process in terms of a

particle system 𝜆(𝑘) in which particles interact, then coupled it to a system v(𝑘) where

they do not interact. In this subsection we analyze v(𝑘) to prove our results. We first

record facts about the means, variances and fourth moments of jumps of v(𝑘) in Lemma

5.4.1, some of which are used to give an overdue proof of Lemma 5.3.2, used in the

previous subsection. We then apply them and Donsker’s theorem to prove an analogue

of Theorem 5.1.1 for v(𝑘), and conclude the desired result for 𝜆(𝑘) by our coupling and

Proposition 5.3.1
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Lemma 5.4.1. Let 𝛿 > 0 and let 𝑥̂1, 𝑥̂2, . . . be generalized variables such that 𝛿 < 𝑥𝑖 <

1− 𝛿 for all 𝑖 as in Proposition 5.3.1. Let v(𝑘) be as in the previous subsection, 𝑌𝑖(𝑘) :=

𝑣𝑖(𝑘)− 𝑣𝑖(𝑘 − 1) for 𝑘 ≥ 0, and 𝑌𝑖(𝑘) = 𝑌𝑖(𝑘)− E𝑌𝑖(𝑘). Then

1. If 𝑥̂𝑘 = (𝑥𝑘, . . . , 𝑡
𝑚−1𝑥𝑘), then

E𝑌𝑖(𝑘) =
𝑚−1∑︁
𝑗=0

𝑥𝑘𝑡
𝑗+𝑖−1(1− 𝑡)

(1− 𝑡𝑗+𝑖𝑥𝑘)(1− 𝑡𝑗+𝑖−1𝑥𝑘)
(5.4.1)

where we allow 𝑚 = ∞. Consequently, there exist constants 𝑏𝑖, 𝐵𝑖 > 0 such that

𝑏𝑖 < E𝑌𝑖(𝑘) < 𝐵𝑖 for all 𝑘.

2. For 𝑥̂𝑘 as above, we have

E[𝑌𝑖(𝑘)2] =
𝑚−1∑︁
𝑗=0

𝑡𝑗+𝑖−1𝑥𝑘(1− 𝑡)(1− 𝑡2𝑗+2𝑖−1𝑥2𝑘)

(1− 𝑡𝑗+𝑖−1𝑥𝑘)2(1− 𝑡𝑗+𝑖𝑥𝑘)2
. (5.4.2)

Consequently, there exist constants 𝑐𝑖, 𝐶𝑖 > 0 such that 𝑐𝑖 < E[𝑌𝑖(𝑘)2] < 𝐶𝑖 for all

𝑘.

3. There exist constants 𝐷𝑖 > 0 such that E[𝑌𝑖(𝑘)4] < 𝐷𝑖 for all 𝑘.

Definition 41. We let 𝜇(𝑡𝑖−1𝑥̂𝑘) denote the RHS of (5.4.1), and 𝜎2(𝑡𝑖−1𝑥̂𝑘) denote the

RHS of (5.4.2), which by Lemma 5.4.1 are the mean and variance of 𝑌𝑖(𝑘) respectively.

Proof. It follows from the definition of 𝑣 that

𝑌𝑖(𝑘) = 𝑣𝑖(𝑘)− 𝑣𝑖(𝑘 − 1) =
𝑚−1∑︁
𝑗=0

𝑍𝑡𝑗+(𝑖−1)𝑥𝑘
, (5.4.3)
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where 𝑍𝑥 ∼ 𝐺𝑥 are independent. We compute

E𝑍𝑥 =
𝑑

𝑑𝑦
|𝑦=1

∑︁
ℓ≥0

Pr(𝑍𝑥 = ℓ)𝑦ℓ

=
𝑑

𝑑𝑦
|𝑦=1

∑︁
ℓ≥0

1− 𝑥

1− 𝑡𝑥
(1− 𝑡)1(ℓ>0)(𝑥𝑦)ℓ

=
𝑑

𝑑𝑦
|𝑦=1

1− 𝑥

1− 𝑡𝑥

1− 𝑡𝑥𝑦

1− 𝑥𝑦

=

[︂
1− 𝑥

1− 𝑡𝑥

−𝑡𝑥(1− 𝑥𝑦) + 𝑥(1− 𝑡𝑥𝑦)

(1− 𝑥𝑦)2

]︂
𝑦=1

=
𝑥(1− 𝑡)

(1− 𝑡𝑥)(1− 𝑥)
.

Combining with (5.4.3) yields (5.4.1). We have

E𝑌𝑖(𝑘) ≥ E𝑍𝑡𝑖−1𝑥𝑘
=

𝑡𝑖−1𝑥𝑘(1− 𝑡)

(1− 𝑡𝑖𝑥𝑘)(1− 𝑡𝑖−1𝑥𝑘)
> 𝑡𝑖−1𝑥𝑘(1− 𝑡) ≥ 𝑡𝑖−1(1− 𝑡)𝛿,

so setting 𝑏𝑖 = 𝑡𝑖−1(1− 𝑡)𝛿 we have 𝑏𝑖 < E𝑌𝑖(𝑘). For the other bound,

E𝑌𝑖(𝑘) ≤
∞∑︁
𝑗=0

𝑡𝑗+𝑖−1𝑥𝑘(1− 𝑡)

(1− 𝑡𝑗+𝑖𝑥𝑘)(1− 𝑡𝑗+𝑖−1𝑥𝑘)

<
1

(1− 𝑡𝑖(1− 𝛿))(1− 𝑡𝑖−1(1− 𝛿)))

∞∑︁
𝑗=0

(1− 𝑡)𝑡𝑖−1𝑥𝑘 · 𝑡𝑗

<
𝑡𝑖−1𝛿

(1− 𝑡𝑖(1− 𝛿))(1− 𝑡𝑖−1(1− 𝛿)))
,

so we may set 𝐵𝑖 =
𝑡𝑖−1𝛿

(1−𝑡𝑖(1−𝛿))(1−𝑡𝑖−1(1−𝛿)))
. This proves Part 1 of the lemma.

For Part 2, we have

𝑌𝑖(𝑘) =
𝑚−1∑︁
𝑗=0

(𝑍𝑡𝑗+(𝑖−1)𝑥𝑘
− E[𝑍𝑡𝑗+(𝑖−1)𝑥𝑘

]).

Set Z̄𝑥 = 𝑍𝑥 − E𝑍𝑥. Since the Z̄’s above are independent, the variances add. Hence

the lower bound 𝑐𝑖 < E[𝑌𝑖(𝑘)2] follows because E[Z̄2
𝑡𝑗+(𝑖−1)𝑥𝑘

] is bounded below for 𝑥𝑘 ∈
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(𝛿, 1− 𝛿). For the upper bound, we compute

E𝑍2
𝑥 =

𝑑

𝑑𝑦
|𝑦=1𝑦

𝑑

𝑑𝑦

∑︁
ℓ≥0

Pr(𝑍𝑥 = ℓ)𝑦ℓ

=
𝑑

𝑑𝑦
|𝑦=1𝑦

1− 𝑥

1− 𝑡𝑥

−𝑡𝑥(1− 𝑥𝑦) + 𝑥(1− 𝑡𝑥𝑦)

(1− 𝑥𝑦)2

=
𝑥(1− 𝑡)(1 + 𝑥)

(1− 𝑥)2(1− 𝑡𝑥)
,

so

E[Z̄2
𝑥] = E𝑍2

𝑥 − (E𝑍𝑥)
2 =

𝑥(1− 𝑡)(1− 𝑡𝑥2)

(1− 𝑥)2(1− 𝑡𝑥)2
, (5.4.4)

proving (5.4.2). This is bounded above by 𝑥
𝛿2(1−𝑡(1−𝛿))2

for 0 < 𝑥 < 1− 𝛿, hence

E[𝑌𝑖(𝑘)2] =
𝑚−1∑︁
𝑗=0

E[Z̄2
𝑡𝑗+(𝑖−1)𝑥𝑘

] (5.4.5)

≤ 1

𝛿2(1− 𝑡(1− 𝛿))2
𝑡𝑖−1𝑥𝑘
1− 𝑡

(5.4.6)

<
1

𝛿2(1− 𝑡(1− 𝛿))2
𝑡𝑖−1(1− 𝛿)

1− 𝑡
(5.4.7)

for all 𝑥𝑘 ∈ (𝛿, 1− 𝛿), so we may set 𝐶𝑖 to be the final expression. This proves Part 2.

For the fourth moment,

E[𝑌𝑖(𝑘)4] =
𝑚−1∑︁
𝑗=0

E[Z̄4
𝑡𝑗+(𝑖−1)𝑥𝑘

] +
∑︁

0≤𝑗 ̸=ℓ≤𝑚−1

E[Z̄2
𝑡𝑗+(𝑖−1)𝑥𝑘

]E[Z̄2
𝑡ℓ+(𝑖−1)𝑥𝑘

]. (5.4.8)

We have

E[Z̄4
𝑥] =

(1− 𝑡)𝑥(𝑥2 + 4𝑥+ 1)

(1− 𝑥)3(1− 𝑡𝑥)

by a similar generating function computation as before, and bounding the sum of these

for 𝑥, 𝑡𝑥, 𝑡2𝑥, . . . in terms of geometric series as before yields that

∞∑︁
𝑗=0

E[Z̄4
𝑡𝑗+𝑖−1𝑥]
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is bounded uniformly over 𝑥 ∈ (0, 1− 𝛿). Likewise,

∑︁
0≤𝑗 ̸=ℓ≤𝑚−1

E[Z̄2
𝑡𝑗+(𝑖−1)𝑥𝑘

]E[Z̄2
𝑡ℓ+(𝑖−1)𝑥𝑘

]

≤

(︃ ∑︁
0≤𝑗≤𝑚−1

E[Z̄2
𝑡𝑗+(𝑖−1)𝑥𝑘

]

)︃

<

(︂
1

𝛿2(1− 𝑡(1− 𝛿))2
𝑡𝑖−1(1− 𝛿)

1− 𝑡

)︂2

by using our previous variance bound at the last step. Hence we have bounded both sums

on the RHS of (5.4.8) uniformly in 𝑥𝑘 ∈ (0, 1− 𝛿), and Part 3 follows.

We now prove Lemma 5.3.2 as promised.

Proof of Lemma 5.3.2. We first claim that it suffices to show that for any given 𝐵,

|{𝑘 ∈ Z≥0 : 𝑣𝑖(𝑘) ≤ 𝑣𝑖+1(𝑘 + 1) +𝐵}| <∞ a.s.

(this differs from the statement of Lemma 5.3.2 in order of quantifiers). This is immediate

because

{𝜔 ∈ Ω : |{𝑘 ∈ Z≥0 : 𝑣𝑖(𝑘,𝜔) ≤ 𝑣𝑖+1(𝑘 + 1,𝜔) +𝐵′}| = ∞ for some 𝐵′}

=
⋃︁
𝐵∈N

{𝜔 ∈ Ω : |{𝑘 ∈ Z≥0 : 𝑣𝑖(𝑘,𝜔) ≤ 𝑣𝑖+1(𝑘 + 1,𝜔) +𝐵}|} (5.4.9)

so it suffices to show the sets on the RHS have measure 0. This is what we will now do.

It follows from the formula in Lemma 5.4.1 Part 1 that E[𝑌𝑖+1(𝑘)] ≤ 𝑡E[𝑌𝑖(𝑘)], hence

𝑘∑︁
𝑗=1

E𝑌𝑖(𝑗)−
𝑘+1∑︁
𝑗=1

E𝑌𝑖+1(𝑗) ≥ (1−𝑡)
𝑘∑︁

𝑗=1

E𝑌𝑖(𝑘)−E𝑌𝑖+1(𝑘+1) ≥ (1−𝑡)𝑏𝑖 ·𝑘−𝐵𝑖+1 (5.4.10)

where 𝑏𝑖, 𝐵𝑖+1 are the constants in Lemma 5.4.1. For 𝑘 such that the RHS of (5.4.10) is
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positive,

Pr(𝑣𝑖(𝑘) ≤ 𝑣𝑖+1(𝑘 + 1) +𝐵) = Pr

(︃
𝑘∑︁

𝑗=1

𝑌𝑖(𝑗)−
𝑘+1∑︁
𝑗=1

𝑌𝑖+1(𝑗) ≤ 𝐵 +
𝑘+1∑︁
𝑗=1

E𝑌𝑖+1(𝑗)−
𝑘∑︁

𝑗=1

E𝑌𝑖(𝑗)

)︃

≤ Pr

(︃
𝑘∑︁

𝑗=1

𝑌𝑖(𝑗)−
𝑘+1∑︁
𝑗=1

𝑌𝑖+1(𝑗) ≤ 𝐵 + (1− 𝑡)𝑏𝑖 · 𝑘 −𝐵𝑖+1

)︃

≤ Pr

(︃⃒⃒⃒⃒
⃒

𝑘∑︁
𝑗=1

𝑌𝑖(𝑗)−
𝑘+1∑︁
𝑗=1

𝑌𝑖+1(𝑗)

⃒⃒⃒⃒
⃒ ≤ 𝐵 + (1− 𝑡)𝑏𝑖 · 𝑘 −𝐵𝑖+1

)︃

(the last step is the only one using the positivity assumption). By Markov’s inequality,

Pr

(︃⃒⃒⃒⃒
⃒

𝑘∑︁
𝑗=1

𝑌𝑖(𝑗)−
𝑘+1∑︁
𝑗=1

𝑌𝑖+1(𝑗)

⃒⃒⃒⃒
⃒ ≤ 𝐵 + (1− 𝑡)𝑏𝑖 · 𝑘 −𝐵𝑖+1

)︃

≤
E
[︂(︁∑︀𝑘

𝑗=1 𝑌𝑖(𝑗)−
∑︀𝑘+1

𝑗=1 𝑌𝑖+1(𝑗)
)︁4]︂

(𝐵 + (1− 𝑡)𝑏𝑖 · 𝑘 −𝐵𝑖+1)4
. (5.4.11)

By Lemma 5.4.1,

E

⎡⎣(︃ 𝑘∑︁
𝑗=1

𝑌𝑖(𝑗)−
𝑘+1∑︁
𝑗=1

𝑌𝑖+1(𝑗)

)︃4
⎤⎦

=
𝑘∑︁

𝑗=1

E[𝑌𝑖(𝑗)4] +
𝑘+1∑︁
𝑗=1

E[𝑌𝑖+1(𝑗)
4] +

𝑘∑︁
𝑗=1

𝑘+1∑︁
ℓ=1

E[𝑌𝑖(𝑗)2]E[𝑌𝑖+1(𝑗)
2]

< 𝑘𝐷𝑖 + (𝑘 + 1)𝐷𝑖+1 + 𝑘(𝑘 + 1)𝐶𝑖𝐶𝑖+1

= 𝑂(𝑘2).

Hence the RHS of (5.4.11) is 𝑂(1/𝑘2). Thus

∑︁
𝑘

Pr(𝑣𝑖(𝑘) ≤ 𝑣𝑖+1(𝑘 + 1) +𝐵) <∞

and so by Borel-Cantelli, {𝑘 ∈ Z≥0 : 𝑣𝑖(𝑘) ≤ 𝑣𝑖+1(𝑘 + 1) + 𝐵} is almost-surely finite,

completing the proof.

Proof of Theorem 5.1.1. We begin with the first claim (5.1.1), the law of large numbers.

By Lemma 5.4.1, 𝜇(𝑡𝑖−1𝑥̂𝑘) and 𝜎2(𝑡𝑖−1𝑥̂𝑘) are the mean and variance, respectively, of
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𝑌𝑖(𝑘). Since
∑︀𝑘

𝑗=1 𝑌𝑖(𝑗) = 𝑣𝑖(𝑘), it suffices to show

𝜆𝑖(𝑘)− E𝑣𝑖(𝑘)
𝑘

→ 1 a.s. as 𝑘 → ∞. (5.4.12)

By Proposition 5.3.1, |𝜆𝑖(𝑘)− 𝑣𝑖(𝑘)| is almost-surely bounded as 𝑘 → ∞. It follows that

𝑣𝑖(𝑘)− 𝜆𝑖(𝑘)

𝑘
→ 0 a.s. as 𝑘 → ∞. (5.4.13)

The uniform variance bound in Lemma 5.4.2 Part 2 ensures that the sequence of ran-

dom variables 𝑌𝑖(1), 𝑌𝑖(2), . . . satisfies the hypothesis of Kolmogorov’s strong law of large

numbers [Shi96, Ch. IV.§3, Thm. 2], hence

∑︀𝑘
𝑗=1 𝑌𝑖(𝑗)−

∑︀𝑘
𝑗=1 E𝑌𝑖(𝑗)

𝑘
→ 0 a.s. as 𝑘 → ∞. (5.4.14)

We have

𝜆𝑖(𝑘)∑︀𝑘
𝑗=1 𝜇(𝑡

𝑖−1𝑥̂𝑗)
= 1 +

𝑘∑︀𝑘
𝑗=1 𝜇(𝑡

𝑖−1𝑥̂𝑗)

(︂
𝑣𝑖(𝑘)− E[𝑣𝑖(𝑘)]

𝑘
+
𝜆𝑖(𝑘)− 𝑣𝑖(𝑘)

𝑘

)︂
. (5.4.15)

By Lemma 5.4.1 Part 1, ⃒⃒⃒⃒
⃒ 𝑘∑︀𝑘

𝑗=1 𝜇(𝑡
𝑖−1𝑥̂𝑗)

⃒⃒⃒⃒
⃒ ≤ 1

𝑏𝑖
,

so ⃒⃒⃒⃒
⃒ 𝜆𝑖(𝑘)∑︀𝑘

𝑗=1 𝜇(𝑡
𝑖−1𝑥̂𝑗)

− 1

⃒⃒⃒⃒
⃒ ≤ 1

𝑏𝑖

(︂
𝑣𝑖(𝑘)− E[𝑣𝑖(𝑘)]

𝑘
+
𝜆𝑖(𝑘)− 𝑣𝑖(𝑘)

𝑘

)︂
.

By (5.4.14) and (5.4.13) respectively, the two terms inside the parentheses on the RHS

go to 0 almost surely as 𝑘 → ∞. This proves (5.1.1), the law of large numbers.

To show the second claim of Theorem 5.1.1, namely the convergence of the rescaled

𝜆𝑖 to Brownian motions, we will use the same strategy of first showing convergence for

the 𝑣𝑖 and then utilizing the coupling. Let

𝑣𝑖(𝑘) = 𝑣𝑖(𝑘)−
𝑘∑︁

𝑗=1

𝜇(𝑡𝑖−1𝑥̂𝑗) =
𝑘∑︁

𝑗=1

𝑌𝑖(𝑗).

Define 𝑓𝑣𝑖,𝑘, a 𝐶[0, 1]-valued random variable on the probability space Ω of Definition 38
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by setting 𝑓𝑣𝑖,𝑘(0) = 0,

(𝑓𝑣𝑖,𝑘(1/𝑘), 𝑓𝑣𝑖,𝑘(2/𝑘), . . . , 𝑓𝑣𝑖,𝑘(1)) =
1√︁∑︀𝑘

𝑗=1 𝜎
2(𝑡𝑖−1𝑥̂𝑗)

(𝑣𝑖(1), . . . , 𝑣𝑖(𝑘))

and linearly interpolating 𝑓𝑣𝑖,𝑘 at other values in [0, 1]. Let the measure 𝑀𝑣𝑖,𝑘 on 𝐶[0, 1]

be the distribution of 𝑓𝑣𝑖,𝑘. We claim that as 𝑘 → ∞, 𝑀𝑣𝑖,𝑘 converges weakly to the

Wiener measure 𝑃𝑊 on 𝐶[0, 1]. By Donsker’s theorem3, this convergence holds if the

Lindeberg condition is satisfied, and it is well-known (see e.g. [Shi96, Ch. III, §4.I.2])

that the Lindeberg condition is implied by the Lyapunov condition. The latter, in our

case, reads that for some 𝛿 > 0,

1

(
∑︀𝑘

𝑗=1 𝜎
2(𝑡𝑖−1𝑥̂𝑗))1+𝛿/2

𝑘∑︁
𝑗=1

E[𝑌𝑖(𝑗)2+𝛿] → 0 as 𝑘 → ∞. (5.4.16)

We will prove (5.4.16) when 𝛿 = 2. Letting 𝑐𝑖, 𝐷𝑖 be as in Lemma 5.4.1, we have

(︃
𝑘∑︁

𝑗=1

𝜎2(𝑡𝑖−1𝑥̂𝑗)

)︃2

> 𝑘2𝑐2𝑖

and
𝑘∑︁

𝑗=1

E[𝑌𝑖(𝑗)4] < 𝑘𝐷𝑖.

Hence the expression in (5.4.16) is bounded above by 𝐷𝑖

𝑐2𝑖

1
𝑘
, and (5.4.16) follows imme-

diately. This verifies that 𝑀𝑣𝑖,𝑘 converges weakly to 𝑃𝑊 as 𝑘 → ∞. Because 𝑣1, . . . , 𝑣𝑛

are independent, we also have that the product measure 𝑀𝑣𝑖,𝑘 × · · · ×𝑀𝑣𝑖,𝑘 on (𝐶[0, 1])𝑛

converges weakly to 𝑃 𝑛
𝑊 , i.e. (𝑓𝑣1,𝑘, . . . , 𝑓𝑣𝑛,𝑘) converges in distribution to 𝑛 independent

Brownian motions.

We wish to show via our coupling that that (𝑓𝜆̄1,𝑘, . . . , 𝑓𝜆̄𝑛,𝑘) converges in distribution

to 𝑃 𝑛
𝑊 as well. We will use the following basic lemma.

Lemma 5.4.2. Let 𝑆 be a metric space with Borel 𝜎-algebra Σ, and 𝑃 a probability

measure on (𝑆,Σ). Let 𝑋𝑛, 𝑌𝑛 be random variables defined on the same probability space

and taking values in 𝑆, such that |𝑋𝑛−𝑌𝑛| → 0 in probability (where | · | denotes the norm

3Many versions in print require that the increments 𝑌𝑖(𝑗) be identically distributed as well as in-
dependent, but a version for random walks with distinct independent increments may be obtained by
specializing Donsker’s theorem for martingales [Bro71, Thm. 3] to this case.
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induced by the metric on 𝑆) and such that the distribution 𝜇𝑌𝑛 of 𝑌𝑛 converges weakly to

𝑃 . Then 𝜇𝑋𝑛 converges weakly to 𝑃 as well.

Proof. We must show that for all 𝑓 ∈ 𝒞𝑏(𝑆), E[𝑓(𝑋𝑛)] →
∫︀
𝑆
𝑓𝑑𝑃 . By hypothesis,

E[𝑓(𝑌𝑛)] →
∫︀
𝑆
𝑓𝑑𝑃 , so it suffices to show E[𝑓(𝑋𝑛)− 𝑓(𝑌𝑛)] → 0. By the convergence in

probability hypothesis, Pr(|𝑋𝑛 − 𝑌𝑛| > 𝛿) → 0 for any 𝛿 > 0.

𝑓 is bounded, so let 𝐵 be such that 𝑓 ≤ 𝐵. We have

E[|𝑓(𝑋𝑛)− 𝑓(𝑌𝑛)|] = E[1|𝑋𝑛−𝑌𝑛|>𝛿|𝑓(𝑋𝑛)− 𝑓(𝑌𝑛)|] + E[1|𝑋𝑛−𝑌𝑛|≤𝛿|𝑓(𝑋𝑛)− 𝑓(𝑌𝑛)|]

≤ 2𝐵 Pr(|𝑋𝑛 − 𝑌𝑛| > 𝛿) + E

[︃
sup

𝑥:|𝑥−𝑌𝑛|≤𝛿

|𝑓(𝑥)− 𝑓(𝑌𝑛)|

]︃
.

Since 𝑔𝛿(𝑦) := sup𝑥∈𝐵̄𝛿(𝑦)
|𝑓(𝑥) − 𝑓(𝑦)| is a continuous, bounded function of 𝑦, the weak

convergence hypothesis yields E[𝑔𝛿(𝑌𝑛)] →
∫︀
𝑆
𝑔𝛿𝑑𝑃 as 𝑛 → ∞. Because 𝑓 is continuous,

lim sup𝛿→0 𝑔𝛿(𝑦) = 0 for all 𝑦, and since 𝑔𝛿 is uniformly bounded by 2𝐵 which is integrable

on (𝑆,Σ, 𝑃 ), we have by reverse Fatou’s lemma that

lim sup
𝛿→0

∫︁
𝑆

𝑔𝛿𝑑𝑃 ≤
∫︁
𝑆

lim sup
𝛿→0

𝑔𝛿𝑑𝑃 = 0.

By the above, for any 𝜖 > 0, we may first choose 𝛿 so that |
∫︀
𝑆
𝑔𝛿𝑑𝑃 | < 𝜖/3, then for

all large enough 𝑛 we have |E[𝑔𝛿(𝑌𝑛)] −
∫︀
𝑆
𝑔𝛿𝑑𝑃 < 𝜖/3 and 2𝐵 Pr(|𝑋𝑛 − 𝑌𝑛| > 𝛿) < 𝜖/3,

yielding that E[|𝑓(𝑋𝑛)− 𝑓(𝑌𝑛)|] < 𝜖. Hence

E[𝑓(𝑋𝑛)− 𝑓(𝑌𝑛)] → 0

as 𝑛→ ∞, completing the proof.

When 𝑆 = 𝐶[0, 1]𝑛 with metric

𝑑((𝑓1, . . . , 𝑓𝑛), (𝑔1, . . . , 𝑔𝑛)) = sup
1≤𝑖≤𝑛

sup
𝑥∈[0,1]

|𝑓𝑖(𝑥)− 𝑔𝑖(𝑥)|,
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and

𝑋𝑘 = (𝑓𝜆̄1,𝑘, . . . , 𝑓𝜆̄𝑛,𝑘) (5.4.17)

𝑌𝑘 = (𝑓𝑣1,𝑘, . . . , 𝑓𝑣𝑛,𝑘) (5.4.18)

we have from above that 𝑌𝑘 converges in distribution to 𝑃 𝑛
𝑊 . To conclude from Lemma

5.4.2 that 𝑋𝑘 converges in distribution to 𝑃 𝑛
𝑊 , it suffices to show that 𝑑(𝑋𝑘, 𝑌𝑘) → 0

in probability. So we must show that for any 𝛿, 𝜖 > 0, Pr(𝑑(𝑋𝑘, 𝑌𝑘) > 𝛿) < 𝜖 for

all sufficiently large 𝑘. Proposition 5.3.1, together with the fact that 𝜆𝑖(𝑘) − 𝜆̄𝑖(𝑘) =

E[𝑣𝑖(𝑘)] = 𝑣𝑖(𝑘)− 𝑣𝑖(𝑘), yields that

𝐵(𝜔) := sup
1≤𝑖≤𝑛

sup
𝑘

|𝜆̄𝑖(𝑘,𝜔)− 𝑣𝑖(𝑘,𝜔)|

is an almost-surely finite random variable on Ω. Hence there exists 𝐷 such that

Pr(𝐵(𝜔) > 𝐷) < 𝜖. (5.4.19)

By the lower bound 𝑐𝑖 in Lemma 5.4.1 Part 2,
∑︀∞

𝑗=1 𝜎
2(𝑡𝑖−1𝑥̂𝑗) diverges, hence there exists

𝐾 such that for all 𝑘 > 𝐾,
𝐷∑︀𝑘

𝑗=1 𝜎
2(𝑡𝑖−1𝑥̂𝑗)

< 𝛿 (5.4.20)

for 𝑖 = 1, . . . , 𝑛.

We therefore have that for 𝑘 > 𝐾 and 𝜔 such that 𝐵(𝜔) ≤ 𝐷,

sup
1≤𝑖≤𝑛

sup
0≤ℓ≤𝑘

1∑︀𝑘
𝑗=1 𝜎

2(𝑡𝑖−1𝑥̂𝑗)
|𝜆̄𝑖(ℓ,𝜔)− 𝑣𝑖(ℓ,𝜔)| < 𝛿. (5.4.21)

Because sup𝑥∈[0,1] |𝑓−𝑔| = sup𝑥=0,1/𝑘,...,1 |𝑓−𝑔| if 𝑓, 𝑔 are piecewise linear on each interval

[ ℓ
𝑘
, ℓ+1

𝑘
], we have

sup
0≤ℓ≤𝑘

1∑︀𝑘
𝑗=1 𝜎

2(𝑡𝑖−1𝑥̂𝑗)
|𝜆̄𝑖(ℓ,𝜔)− 𝑣𝑖(ℓ,𝜔)| = sup

𝑥∈[0,1]
|𝑓𝑣𝑖,𝑘(𝑥)− 𝑓𝜆̄𝑖,𝑘(𝑥)|.

Thus (5.4.21) implies that for 𝜔 such that 𝐵(𝜔) ≤ 𝐷 and 𝑘 > 𝐾,

𝑑(𝑋𝑘(𝜔), 𝑌𝑘(𝜔)) = sup
1≤𝑖≤𝑛

sup
𝑥∈[0,1]

|𝑓𝑣𝑖,𝑘(𝑥)− 𝑓𝜆̄𝑖,𝑘(𝑥)| < 𝛿.
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Together with (5.4.19) this implies that

Pr(𝑑(𝑋𝑘, 𝑌𝑘) > 𝛿) < 𝜖

for all 𝑘 > 𝐾. Since 𝛿, 𝜖 were arbitrary, this is exactly the statement that 𝑑(𝑋𝑘, 𝑌𝑘) → 0

in probability. This completes the proof of Theorem 5.1.1.

Remark 28. It is worth noting that fact that 𝜆𝑖 jumps further than 𝜆𝑗 in expectation

for 𝑖 < 𝑗 comes from the fact that 𝑡 < 1. Hence our technique would no longer hold if

one were to take a simultaneous limit 𝑡→ 1 as well, because the hopping particles would

not outpace the ones behind them and hence interactions between them could contribute

nontrivially in the limit. Such 𝑡 → 1 limits of Hall-Littlewood processes have been

studied by Dimitrov [Dim18] and Corwin-Dimitrov [CD18], though we do not see how

their results would apply directly to our specific case. We note also that the connection

to 𝑝-adic random matrices is lost in this regime.

5.5 Lyapunov exponents

Given the law of large numbers in Theorem 1.3.1 and the formulas in Lemma 5.4.1, the

proof of Theorem 1.3.2 is quite easy. First recall the statement.

Theorem 1.3.2 (Large-𝑛 universality of Lyapunov exponents). For each 𝑛 ∈ N, let

𝑁
(𝑛)
1 , 𝑁

(𝑛)
2 , . . . ∈ Z≥0 ∪ {∞} be such that 𝑁 (𝑛)

𝑗 > 𝑛 and the limiting frequencies

𝜌𝑛(𝑁) := lim
𝑘→∞

|{1 ≤ 𝑗 ≤ 𝑘 : 𝑁
(𝑛)
𝑗 = 𝑁}|

𝑘

exist for all 𝑁 > 𝑛. Let 𝐴(𝑛)
𝑗 be 𝑛 × 𝑛 corners of independent Haar distributed matrices

in GL
𝑁

(𝑛)
𝑗

(Z𝑝) (with the case 𝑁 (𝑛)
𝑗 = ∞ treated as in Theorem 1.3.1). Then for each 𝑛,

the Lyapunov exponents

𝐿
(𝑛)
𝑖 := lim

𝑘→∞

𝜆𝑛−𝑖+1(𝑘)

𝑘

exist almost surely, where 𝜆𝑛−𝑖+1(𝑘) is as in Theorem 1.3.1. Furthermore, the Lyapunov

exponents have limits

lim
𝑛→∞

𝐿
(𝑛)
𝑖

𝑝−𝑛(1− 𝑐(𝑛))
= 𝑝𝑖−1
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for every 𝑖, where 𝑐(𝑛) :=
∑︀

𝑁>𝑛 𝜌𝑛(𝑁)𝑝−(𝑁−𝑛).

Proof. For existence of Lyapunov exponents, we have

𝐿
(𝑛)
𝑖 := lim

𝑘→∞

𝜆𝑛−𝑖+1(𝑘)

𝑘
= lim

𝑘→∞

𝜆𝑛−𝑖+1(𝑘)∑︀𝑘
𝑗=1 𝜇(𝑡

𝑛−𝑖+1,...,𝑡
𝑁

(𝑛)
𝑗

−𝑖
)

𝑘∑︀𝑘
𝑗=1 𝜇(𝑡

𝑛−𝑖+1,...,𝑡
𝑁

(𝑛)
𝑗

−𝑖
)

.

The limit of the numerator exists almost surely by Theorem 1.3.1. For the denominator

we have

∑︀𝑘
𝑗=1 𝜇(𝑡

𝑛−𝑖+1, . . . , 𝑡𝑁
(𝑛)
𝑗 −𝑖)

𝑘
=
∑︁
𝑁>𝑛

|{1 ≤ 𝑗 ≤ 𝑘 : 𝑁
(𝑛)
𝑗 = 𝑁}|

𝑘
𝜇(𝑡𝑛−𝑖+1, . . . , 𝑡𝑁

(𝑛)
𝑗 −𝑖),

hence

lim
𝑘→∞

∑︀𝑘
𝑗=1 𝜇(𝑡

𝑛−𝑖+1, . . . , 𝑡𝑁
(𝑛)
𝑗 −𝑖)

𝑘
=
∑︁
𝑁>𝑛

𝜌𝑛(𝑁)𝜇(𝑡𝑛−𝑖+1, . . . , 𝑡𝑁
(𝑛)
𝑗 −𝑖),

(this uses the fact that 𝜇(𝑡𝑛−𝑖+1, . . . , 𝑡𝑁−𝑖) is bounded as a function of 𝑁). Therefore 𝐿(𝑛)
𝑖

exists almost surely.

Recall that for 𝑍𝑥 ∼ 𝐺𝑥,

E𝑍𝑥 =
𝑥(1− 𝑡)

(1− 𝑡𝑥)(1− 𝑥)
.

It is an elementary check that there exist constants 𝐵(𝑖) depending only on 𝑡 and 𝑖 such

that for any 𝑥 < 1 and 𝑛 ≥ 𝑖,

⃒⃒
E𝑍𝑡𝑛−𝑖𝑥 − (1− 𝑡)𝑥𝑡𝑛−𝑖

⃒⃒
< 𝐵(𝑖)𝑡2𝑛𝑥. (5.5.1)

Let

𝐿̃
(𝑛)
𝑖 := lim

𝑘→∞

∑︀𝑘
𝑗=1

∑︀𝑁
(𝑛)
𝑗 −𝑛

ℓ=1 (1− 𝑡)𝑡𝑛−𝑖 · 𝑡ℓ

𝑘
.

Then

𝐿̃
(𝑛)
𝑖 =

∑︀𝑘
𝑗=1 𝑡

𝑛−𝑖+1(1− 𝑡𝑁
(𝑛)
𝑗 −𝑛)

𝑘
= 𝑡𝑛−𝑖+1(1− 𝑐(𝑛)). (5.5.2)

182



But also by (5.5.1),⃒⃒⃒⃒
⃒⃒⃒ 𝑘∑︁
𝑗=1

𝜇(𝑡𝑛−𝑖+1, . . . , 𝑡𝑁
(𝑛)
𝑗 −𝑖)−

𝑘∑︁
𝑗=1

𝑁
(𝑛)
𝑗 −𝑛∑︁
ℓ=1

(1− 𝑡)𝑡𝑛−𝑖 · 𝑡ℓ

⃒⃒⃒⃒
⃒⃒⃒ < 𝑘∑︁

𝑗=1

𝑁
(𝑛)
𝑗 −𝑛∑︁
ℓ=1

𝐵(𝑖)𝑡2𝑛𝑡ℓ < 𝑘𝐵(𝑖)𝑡2𝑛
𝑡

1− 𝑡
,

hence ⃒⃒⃒
𝐿
(𝑛)
𝑖 − 𝐿̃

(𝑛)
𝑖

⃒⃒⃒
< 𝐵(𝑖)𝑡2𝑛

𝑡

1− 𝑡
.

Since 𝑐(𝑛) ≤ 𝑡 < 1,
𝐵(𝑖)𝑡2𝑛 𝑡

1−𝑡

𝑡𝑛(1−𝑐(𝑛))
= 𝑜(1) as 𝑛→ ∞, so (5.5.2) implies

lim
𝑛→∞

𝐿
(𝑛)
𝑖

𝑡𝑛(1− 𝑐(𝑛))
= lim

𝑛→∞

𝐿̃
(𝑛)
𝑖

𝑡𝑛(1− 𝑐(𝑛))
+

𝐿
(𝑛)
𝑖 − 𝐿̃

(𝑛)
𝑖

𝑡𝑛(1− 𝑐(𝑛))
= 𝑡1−𝑖.

Remark 29. It is worth noting that if one instead considers

lim
𝑘→∞

1

𝑘
log(𝜆𝑖(𝑘))

(which in our analogy corresponds to the 𝑖𝑡ℎ smallest singular value), then the 𝑛 → ∞

limits are not universal and indeed the limits may not exist for some choices of the 𝑁 (𝑛)
𝑗 .

If the 𝑁 (𝑛)
𝑗 are all the same for any fixed 𝑛, then one has

lim
𝑘→∞

1

𝑘
log(𝜆𝑖(𝑘)) = E[𝑌𝑖(𝑘)]

and this clearly depends on the choice of 𝑁 (𝑛)
𝑗 .
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Chapter 6

Local bulk limits of 𝑝-adic Dyson

Brownian motion

6.1 Classifying isotropic processes

In this section we prove Theorem 1.4.3, by deducing it from a result (Proposition 6.1.2)

which translates the constraints of isotropy and stationarity of processes on GL𝑁(Q𝑝)/GL𝑁(Z𝑝)

into a usable form. For expository purposes, we first prove a version in discrete time

(Proposition 6.1.1) which makes the basic ideas of Proposition 6.1.2 slightly more appar-

ent.

Definition 42. A stochastic process 𝑋(𝜏), 𝜏 ∈ Z≥0 on a group 𝐺 has independent incre-

ments if for any 𝑠, 𝜏 ∈ Z≥0, 𝑋(𝜏 + 𝑠)𝑋(𝜏)−1 is independent of the trajectory of 𝑋(𝑦) up

to time 𝜏 . It has stationary increments if

Law(𝑋(𝜏 + 𝑠)𝑋(𝜏)−1) = Law(𝑋(𝑠)𝑋(0)−1) (6.1.1)

for all such 𝑠, 𝜏 . For a subgroup 𝐾 ≤ 𝐺, we further say 𝑋(𝜏) has 𝐾-isotropic increments

if

Law(𝑋(𝜏 + 𝑠)𝑋(𝜏)−1) = Law(𝑘𝑋(𝜏 + 𝑠)𝑋(𝜏)−1𝑘−1) (6.1.2)

for any 𝑘 ∈ 𝐾, 𝑠, 𝜏 ≥ 0. We use the same terminology for continuous-time processes with

Z≥0 replaced everywhere by R≥0.

We now state and prove the discrete-time result, which follows directly from the
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definitions.

Proposition 6.1.1. Let 𝑋(𝜏), 𝜏 ∈ Z≥0 be a discrete-time stochastic process on GL𝑁(Q𝑝)

started at the identity, with stationary, independent, GL𝑁(Z𝑝)-isotropic increments, and

set 𝑀 (𝑑)
𝑋 := Law(SN(𝑋(1)𝑋(0)−1)). Then there exists a distribution on triples (𝑈, 𝑉, 𝜈),

such that the marginal distribution of each pair (𝑈, 𝜈) and (𝑉, 𝜈) is 𝑀𝐻𝑎𝑎𝑟(GL𝑁(Z𝑝)) ×

𝑀
(𝑑)
𝑋 , for which

Law(𝑋(𝜏), 𝜏 ∈ Z≥0) = Law(𝑈𝜏 diag(𝑝
𝜈
(𝜏)
1 , . . . , 𝑝𝜈

(𝜏)
𝑁 )𝑉𝜏 · · ·𝑈1 diag(𝑝

𝜈
(1)
1 , . . . , 𝑝𝜈

(1)
𝑁 )𝑉1, 𝜏 ∈ Z≥0)

(6.1.3)

where (𝑈𝑖, 𝑉𝑖, 𝜈
(𝑖)) are iid copies of (𝑈, 𝑉, 𝜈).

Remark 30. We note that while the pairs (𝑈, 𝜈) and (𝑉, 𝜈) are each distributed by

product measures, the pair (𝑈, 𝑉 ) need not be. For example, one may have 𝑈 = 𝑉 −1 ∼

𝑀𝐻𝑎𝑎𝑟(GL𝑁(Z𝑝)). Of course, 𝑈 and 𝑉 can also be independent Haar matrices.

Proof of Proposition 6.1.1. Consider the increment

𝑋(𝜏 + 1) = (𝑋(𝜏 + 1)𝑋(𝜏)−1)𝑋(𝜏) (6.1.4)

corresponding to the time step 𝜏 → 𝜏 + 1. By the independent increments property

𝑋(𝜏+1)𝑋(𝜏)−1 is independent of 𝑋(0), . . . , 𝑋(𝜏) and distributed as 𝑋(1)𝑋(0)−1. Hence

𝑋(𝜏+1)𝑋(𝜏)−1 = 𝑊𝐷𝑉 for𝑊,𝑉 ∈ GL𝑁(Z𝑝) and𝐷 = diag(𝑝𝜈(𝜏+1)) with 𝜈(𝜏+1) ∼𝑀
(𝑑)
𝑋

by definition of 𝑀 (𝑑)
𝑋 and stationary increments, and all of these are independent of

𝑋(0), . . . , 𝑋(𝜏). By isotropy,

𝑊𝐷𝑉 = 𝑈̃𝑊𝐷𝑉 𝑈̃−1 (6.1.5)

in distribution for any fixed 𝑈̃ ∈ GL𝑁(Z𝑝). Hence by averaging, (6.1.5) also holds when 𝑈̃

is random with Haar distribution independent of 𝑊,𝐷, 𝑉 and 𝑋(0), . . . , 𝑋(𝜏). Because

𝑈̃ is Haar-distributed independent of 𝐷 and of 𝑊 and 𝑉 , 𝑈̃𝑊 and 𝑉 𝑈̃−1 are each Haar-

distributed independent of 𝐷. Defining 𝑈𝜏+1 = 𝑈̃𝑊 and 𝑉𝜏+1 = 𝑉 𝑈̃−1, we thus have

that the increments are of the form in the right hand side of (6.1.3), which completes the

proof.
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We now explicitly define the measure and Poisson rate constant claimed to exist in

Theorem 1.4.3. We will work on the homogeneous space GL𝑁(Q𝑝)/GL𝑁(Z𝑝), since it is

discrete and so all processes on it are Poisson jump processes.

Definition 43. For any 𝑋 ∈ GL𝑁(Q𝑝), we denote by [𝑋] the corresponding coset in

GL𝑁(Q𝑝)/GL𝑁(Z𝑝).

Definition 44. Given a stochastic process 𝑋(𝜏), 𝜏 ∈ R≥0 on GL𝑁(Q𝑝) satisfying the

conditions of Theorem 1.4.3, we define

𝜏 ′ = inf{𝜏 > 0 : [𝑋(𝜏)] ̸= [𝑋(0)]}

𝑀𝑋 = Law(SN(𝑋(𝜏 ′)))

𝑐 = E[𝜏 ′].

(6.1.6)

Proposition 6.1.2. Let 𝑁 ∈ Z≥1 and let 𝑋(𝜏), 𝜏 ∈ R≥0 be a Markov process on GL𝑁(Q𝑝)

started at the identity with stationary, independent, GL𝑁(Z𝑝)-isotropic increments. Then

there exists a distribution on triples (𝑈, 𝑉, 𝜈), such that the marginal distribution of each

pair (𝑈, 𝜈) and (𝑉, 𝜈) is 𝑀𝐻𝑎𝑎𝑟(GL𝑁(Z𝑝))×𝑀𝑋 , for which

Law([𝑋(𝜏)], 𝜏 ∈ R≥0) = Law([𝑈𝑃 (𝜏) diag(𝑝
𝜈
(𝑃 (𝜏))
1 , . . . , 𝑝𝜈

(𝑃 (𝜏))
𝑁 )𝑉𝑃 (𝜏) · · ·𝑈1 diag(𝑝

𝜈
(1)
1 , . . . , 𝑝𝜈

(1)
𝑁 )𝑉1], 𝜏 ∈ R≥0)

(6.1.7)

where (𝑈𝑖, 𝑉𝑖, 𝜈
(𝑖)) are iid copies of (𝑈, 𝑉, 𝜈).

Proof. First note that the dynamics of 𝑋(𝜏) commutes with right-multiplication by

GL𝑁(Z𝑝) (in fact, by GL𝑁(Q𝑝)), so [𝑋(𝜏)] is Markov. Define the Z≥0-valued process

𝑁𝑋(𝜏) = |{0 < 𝑠 ≤ 𝜏 : [𝑋(𝜏)] ̸= lim
𝜖→0+

[𝑋(𝜏 − 𝜖)]}|, (6.1.8)

i.e. the number of times [𝑋(𝜏)] has changed value up to time 𝜏 . By the Markov prop-

erty and stationary increments, 𝑁𝑋(𝜏) is a Poisson process 𝑃 (𝜏) with rate 𝑐 as de-

fined in Definition 44. Let 𝑡1 < 𝑡2 < . . . be the (random) times realizing SN(𝑋(𝜏)) ̸=

lim𝜖→0+ SN(𝑋(𝜏 − 𝜖)) and 𝑡0 = 0, so 𝑋(𝜏) = 𝑋(𝑡𝑁𝑋(𝜏)) and this is equal in distribution
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to 𝑋(𝑡𝑃 (𝜏)). By Kolmogorov’s extension theorem it suffices to show

Law([𝑋(𝑡𝑃 (𝑠))], 0 ≤ 𝑠 ≤ 𝜏) = Law([𝑈𝑃 (𝑠) diag(𝑝
𝜈(𝑃 (𝑠)))𝑉𝑃 (𝑠) · · ·𝑈1 diag(𝑝

𝜈(1))𝑉1, 0 ≤ 𝑠 ≤ 𝜏)

(6.1.9)

for any fixed 𝜏 ∈ R≥0. It further suffices to show the equality of conditional laws

Law([𝑋(𝑡𝑃 (𝑠))], 0 ≤ 𝑠 ≤ 𝜏 |𝑃 (𝑠), 0 ≤ 𝑠 ≤ 𝜏)

= Law([𝑈𝑃 (𝑠) diag(𝑝
𝜈(𝑃 (𝑠)))𝑉𝑃 (𝑠) · · ·𝑈1 diag(𝑝

𝜈(1))𝑉1], 0 ≤ 𝑠 ≤ 𝜏 |𝑃 (𝑠), 0 ≤ 𝑠 ≤ 𝜏),

(6.1.10)

as then one may average over the distribution of 𝑃 (𝑠), 0 ≤ 𝑠 ≤ 𝜏 to obtain (6.1.9). By

the strong Markov property, 𝑋(𝑡𝑖+1)𝑋(𝑡𝑖)
−1 is independent of 𝑋(𝜏), 0 ≤ 𝜏 ≤ 𝑡𝑖 and

independent of 𝑡0, . . . , 𝑡𝑖, hence it suffices to show

Law([𝑋(𝑡𝑖)], 0 ≤ 𝑖 ≤ 𝑛) = Law([𝑈𝑖 diag(𝑝
𝜈(𝑖))𝑉𝑖 · · ·𝑈1 diag(𝑝

𝜈(1))𝑉1], 0 ≤ 𝑖 ≤ 𝑛) (6.1.11)

for all 𝑛 ∈ Z≥1. Since each increment 𝑋(𝑡𝑖+1)𝑋(𝑡𝑖)
−1 is distributed as 𝑋(𝑡1)𝑋(0)−1 by

independent increments, (6.1.11) is exactly the discrete case Proposition 6.1.1 and we are

done.

Proof of Theorem 1.4.3. Since Smith normal form is independent of right-multiplication

by GL𝑁(Z𝑝), we may write SN([𝑋]) for [𝑋] ∈ GL𝑁(Q𝑝)/GL𝑁(Z𝑝) with no ambiguity.

By Proposition 6.1.2,

SN(𝑋(𝜏)) = SN([𝑋(𝜏)]) = SN([𝑈̃𝑃 (𝜏) diag(𝑝
𝜈
(𝑃 (𝜏))
1 , . . . , 𝑝𝜈

(𝑃 (𝜏))
𝑁 )𝑉𝑃 (𝜏) · · · 𝑈̃1 diag(𝑝

𝜈
(1)
1 , . . . , 𝑝𝜈

(1)
𝑁 )𝑉1])

(6.1.12)

in multi-time distribution, where 𝑈̃𝑖, 𝑉𝑖, 𝜈
(𝑖) correspond to the 𝑈𝑖, 𝑉𝑖, 𝜈

(𝑖) in Proposi-

tion 6.1.2. We write them with the tildes to distinguish them from

𝑌 (𝑁,𝑀𝑋 ,𝑐)(𝜏) = 𝑈𝑃 (𝜏) diag(𝑝
𝜈
(𝑃 (𝜏))
1 , . . . , 𝑝𝜈

(𝑃 (𝜏))
𝑁 )𝑉𝑃 (𝜏) · · ·𝑈1 diag(𝑝

𝜈
(1)
1 , . . . , 𝑝𝜈

(1)
𝑁 )𝑉1𝑈0,

(6.1.13)

for which 𝑈𝑖 and 𝑉𝑖 are independent as we recall from Definition 1. As in the proof of
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Proposition 6.1.2 we are reduced to showing that

Law(SN(𝑈𝑖 diag(𝑝
𝜈(𝑖))𝑉𝑖 · · ·𝑈1 diag(𝑝

𝜈(1))𝑉1), 0 ≤ 𝑖 ≤ 𝑛)

= Law(SN(𝑈̃𝑖 diag(𝑝
𝜈(𝑖))𝑉𝑖 · · · 𝑈̃1 diag(𝑝

𝜈(1))𝑉1), 0 ≤ 𝑖 ≤ 𝑛), (6.1.14)

which we do by induction. The base case is trivial, so assume it holds for some 𝑛. Then

by inductive hypothesis,

Law(SN(𝑈̃𝑖 diag(𝑝
𝜈(𝑖))𝑉𝑖 · · · 𝑈̃1 diag(𝑝

𝜈(1))𝑉1), 0 ≤ 𝑖 ≤ 𝑛+ 1)

= Law(SN(𝑈1 diag(𝑝
𝜈(1))𝑉1, . . . , SN(𝑈𝑛 diag(𝑝

𝜈(𝑛)

)𝑉𝑛 · · ·𝑈1 diag(𝑝
𝜈(1))𝑉1),

SN(diag(𝑝𝜈
(𝑛+1)

)𝑉𝑛+1𝑈𝑛 diag(𝑝
𝜈(𝑛)

)𝑉𝑛 · · ·𝑈1 diag(𝑝
𝜈(1))𝑉1)),

(6.1.15)

where we have removed the 𝑈̃𝑛+1 on the left since it does not affect the singular num-

bers. Because (𝜈(𝑛+1), 𝑉𝑛+1) ∼ 𝑀𝑋 × 𝑀𝐻𝑎𝑎𝑟(GL𝑁(Z𝑝)) and (𝜈(𝑛+1), 𝑉𝑛+1) ∼ 𝑀𝑋 ×

𝑀𝐻𝑎𝑎𝑟(GL𝑁(Z𝑝)) as well,

RHS(6.1.15) = Law(SN(𝑈𝑖 diag(𝑝
𝜈(𝑖))𝑉𝑖 · · ·𝑈1 diag(𝑝

𝜈(1))𝑉1), 0 ≤ 𝑖 ≤ 𝑛 + 1) (6.1.16)

(adding back in the 𝑈𝑛+1 which does not affect the singular numbers). This completes

the induction to show (6.1.14) and hence the proof.

Remark 31. The above results and proofs apply mutatis mutandis with the groups

GL𝑁(Z𝑝) ≤ GL𝑁(Q𝑝) replaced by any groups 𝐾 ≤ 𝐺 with 𝐾 compact and 𝐺/𝐾 discrete,

and Sig𝑁 replaced by 𝐾∖𝐺/𝐾.

We now turn attention to those processes with𝑀𝑋 = 𝛿(1,0[𝑁−1]). Theorem 1.4.3 implies

that the evolution of singular numbers of such a process are determined by a rate pa-

rameter which may be absorbed by time change. We refer to the discussion directly after

Theorem 1.4.3 for why these are natural analogues of multiplicative Brownian motion.

Definition 45. For any 𝑁 ∈ Z≥1, we define a continuous-time stochastic process 𝑋(𝑁)(𝜏)

189



on GL𝑁(Q𝑝) by

𝑋(𝑁)(𝜏) = 𝑌 (𝑁,𝛿(1,0[𝑁−1]),1)(𝜏) = 𝑈𝑃 (𝜏) diag(𝑝, 1[𝑁 − 1])𝑉𝑃 (𝜏) · · ·𝑈1 diag(𝑝, 1[𝑁 − 1])𝑉1𝑈0,

(6.1.17)

where 𝑃 (𝜏) is a rate 1 Poisson process and 𝑈𝑖, 𝑉𝑖, 𝑖 ∈ Z≥1 are independent matrices

distributed by the Haar measure on GL𝑁(Z𝑝).

6.2 𝑝-adic Dyson Brownian motion and reflected Pois-

son walks

Much of this section consists of computing and comparing Markov generators. We wish

to go from equalities of generators to equalities of stochastic processes, for which we use

the following standard result (see [Fel15] or [BO12b, Section 4.1], which also give stronger

ones than we need):

Proposition 6.2.1. Let 𝑌𝜏 , 𝜏 ∈ R≥0 be a Markov process on a countable state space 𝒳

with well-defined generator 𝑄 satisfying

sup
𝑎∈𝒳

|𝑄(𝑎, 𝑎)| <∞. (6.2.1)

Then the law of 𝑌𝜏 , 𝜏 ∈ R≥0 is uniquely determined by 𝑄.

We now give the generator for 𝒮, which in light of Proposition 6.2.1 serves as an

alternative and more formal definition.

Definition 46. Let 𝑛 ∈ N∪{∞}, 𝜇 ∈ Sig𝑛 and 𝑡 ∈ (0, 1). We define the stochastic process

𝒮𝜇,𝑛(𝜏) = (𝒮𝜇,𝑛
1 (𝜏), . . . ,𝒮𝜇,𝑛

𝑛 (𝜏)) on Sig𝑛 as the Markov process with initial condition 𝜇

and generator given by1

𝐵𝒮(𝜅, 𝜈) :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−𝑡1−𝑡𝑛

1−𝑡
𝜅 = 𝜈

𝑡ℓ + . . .+ 𝑡ℓ+𝑚𝜅ℓ
(𝜅)−1 = 𝑡ℓ 1−𝑡𝑚𝜅ℓ

(𝜅)

1−𝑡
𝜅 ≺ 𝜈 and (𝜈𝑖)1≤𝑖≤𝑛 = (𝜅𝑖 + 1(𝑖 = ℓ))1≤𝑖≤𝑛

0 otherwise
(6.2.2)

1We suppress 𝑛 and 𝑡 in the notation for the generator, but of course it depends on both.
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As before, when 𝑛 = ∞ we take 𝑡𝑛 = 0 in the above formulas, and may have 𝑚𝜅ℓ
(𝜅) = ∞.

To see that the above generator corresponds to the informal description of the dynam-

ics in the Introduction, note that by those rules the transition rate from 𝜅 to 𝜈 as above

is given by the sum of jump rates of 𝜅ℓ, . . . , 𝜅ℓ+𝑚𝜅ℓ
(𝜅)−1, which are 𝑡ℓ, . . . , 𝑡ℓ+𝑚𝜅ℓ

(𝜅)−1. We

next see that 𝒮(𝑛) corresponds to a Hall-Littlewood process, for which we use the following

notation.

Definition 47. For any 𝑛 ∈ N∪{∞}, we denote by 𝜆(𝑛)(𝜏), 𝜏 ≥ 0 the stochastic process

on Y𝑛 in continuous time 𝜏 with finite-dimensional marginals given by the Hall-Littlewood

process

Pr(𝜆(𝑛)(𝜏𝑖) = 𝜆(𝑖) for all 𝑖 = 1, . . . , 𝑘)

=

(︁∏︀𝑘
𝑗=1𝑄𝜆(𝑗)/𝜆(𝑗−1)(𝛾(𝜏𝑗 − 𝜏𝑗−1); 0, 𝑡)

)︁
𝑃𝜆(𝑘)(1, 𝑡, . . . , 𝑡

𝑛−1; 0, 𝑡)

exp
(︁

𝜏𝑘(1−𝑡𝑛)
1−𝑡

)︁ (6.2.3)

for each sequence of times 0 ≤ 𝜏1 ≤ 𝜏2 ≤ · · · ≤ 𝜏𝑘 and 𝜆(1), . . . , 𝜆(𝑘) ∈ Y𝑛, where in the

product we take the convention 𝜏0 = 0 and 𝜆(0) is the zero partition. More generally,

for 𝜇 ∈ Sig+𝑛 we denote by 𝜆(𝑛,𝜇)(𝜏) the same process started at initial condition 𝜇, i.e.

with marginals defined by 1/𝑃𝜇(1, . . . , 𝑡
𝑛−1; 0, 𝑡) times the expression in (6.2.3) where we

instead take 𝜆(0) = 𝜇.

Lemma 6.2.2. For any 𝑛 ∈ N∪{∞}, 𝜆(𝑛)(𝜏)—and more generally 𝜆(𝑛,𝜇)—has a Markov

generator given by

𝐵𝐻𝐿(𝜅, 𝜈) :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−1−𝑡𝑛

1−𝑡
𝜅 = 𝜈

𝜙𝜈/𝜅(0,𝑡)

1−𝑡
𝑃𝜈(1,𝑡,...,𝑡𝑛−1;0,𝑡)
𝑃𝜅(1,𝑡,...,𝑡𝑛−1;0,𝑡)

𝜅 ≺ 𝜈 and |𝜈| = |𝜅|+ 1

0 otherwise

(6.2.4)

=
1

𝑡
𝐵𝒮(𝜅, 𝜈) (6.2.5)

for any 𝜅, 𝜈 ∈ Sig𝑛.

Finally, we compute the generator of the process on GL𝑁(Q𝑝)/GL𝑁(Z𝑝) described in

the previous section.
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Lemma 6.2.3. Let 𝑁 ∈ Z≥1, 𝑐 ∈ R>0, and 𝑋(𝜏) = 𝑌 (𝑁,𝛿(1,0[𝑁−1]),𝑐) in the notation of

Definition 1. Then the stochastic proces SN(𝑋(𝜏)) has Markov generator 𝑐 1−𝑡
1−𝑡𝑁

𝐵𝐻𝐿.

Having stated the results, the rest of the section consists of doing the computations.

Proof of Lemma 6.2.2. We will first prove (6.2.4). Recall

𝐵𝐻𝐿(𝜅, 𝜈) :=
𝑑

𝑑𝜏

⃒⃒⃒⃒
𝜏=0

Pr(𝜆(𝑛)(𝑇 + 𝜏) = 𝜈|𝜆(𝑛)(𝑇 ) = 𝜅) (6.2.6)

(this is of course independent of 𝑇 by the Markov property). By the equivalence of

the Hall-Littlewood process with the Cauchy dynamics of Definition 14 and the explicit

formula (2.2.30) for the Cauchy kernel, we have

Pr(𝜆(𝑛)(𝑇 + 𝜏) = 𝜈|𝜆(𝑛)(𝑇 ) = 𝜅) =
𝑄𝜈/𝜅(𝛾(𝜏); 𝑡)

exp
(︀
𝜏 1−𝑡𝑛

1−𝑡

)︀ 𝑃𝜈(1, . . . , 𝑡
𝑛−1; 𝑡)

𝑃𝜅(1, . . . , 𝑡𝑛−1; 𝑡)
,

and only the term
𝑄𝜈/𝜅(𝛾(𝜏); 𝑡)

exp
(︀
𝜏 1−𝑡𝑛

1−𝑡

)︀
depends on 𝜏 . When 𝜈 = 𝜅, 𝑄𝜈/𝜅 = 1, so

𝐵𝐻𝐿(𝜅, 𝜅) =
𝑑

𝑑𝜏

⃒⃒⃒⃒
𝜏=0

Pr(𝜆(𝑛)(𝑇 + 𝜏) = 𝜅|𝜆(𝑛)(𝑇 ) = 𝜅) = −1− 𝑡𝑛

1− 𝑡
. (6.2.7)

In general, 𝑄𝜈/𝜅 (viewed as an element of the ring of symmetric functions) is a polynomial

in the 𝑝𝑘, 𝑘 ≥ 1 which is homogeneous of degree |𝜈|−|𝜅| if we define each 𝑝𝑘 to have degree

𝑘. Under the Plancherel specialization, all 𝑝𝑘, 𝑘 ≥ 2 are sent to 0, hence 𝑄𝜈/𝜅(𝛾(𝜏); 𝑡) =

𝑂(𝜏 |𝜈|−|𝜅|) as 𝜏 → 0. It follows that

𝐵𝐻𝐿(𝜅, 𝜈) = 0 if |𝜈| > |𝜅|+ 1. (6.2.8)

When |𝜈| = |𝜅|+ 1, it follows from Lemma 2.2.14 that 𝑄𝜈/𝜅 = 𝜙𝜈/𝜅𝑝1. Hence

𝑄𝜈/𝜅(𝛾(𝜏); 𝑡) = 𝜙𝜈/𝜅
𝜏

1− 𝑡
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and

𝑑

𝑑𝜏

⃒⃒⃒⃒
𝜏=0

Pr(𝜆(𝑛)(𝑇 + 𝜏) = 𝜈|𝜆(𝑛)(𝑇 ) = 𝜅) =
𝜙𝜈/𝜅

1− 𝑡

𝑃𝜈(1, . . . , 𝑡
𝑛−1; 𝑡)

𝑃𝜅(1, . . . , 𝑡𝑛−1; 𝑡)
, (6.2.9)

Combining (6.2.7), (6.2.8) and (6.2.9) yields (6.2.4), so it remains to prove (6.2.5).

The latter equality (6.2.5) is immediate except for the case where 𝜅 ≺ 𝜈 and all

parts in 𝜅 and 𝜈 are the same except for one part which differs by 1. In this case

there are some integers 𝑘, 𝑎 ≥ 0, 𝑏 ≥ 1 such that 𝜅 = (. . . , (𝑘 + 1)[𝑎], 𝑘[𝑏], . . .) and

𝜈 = (. . . , (𝑘+1)[𝑎+1], 𝑘[𝑏− 1], . . .) where we use 𝑥[𝑐] to denote 𝑥 repeated 𝑐 times in the

partition. Let ℓ be the smallest integer so that 𝜅ℓ = 𝑘. To compute (6.2.9) we specialize

Lemma 2.2.14 to obtain

𝜙𝜈/𝜅 = 1− 𝑡𝑎+1,

and plugging this and Proposition 2.2.15 into (6.2.9) yields that in our situation

𝐵𝐻𝐿(𝜅, 𝜈) =
𝑡ℓ−1(1− 𝑡𝑏)

1− 𝑡
= 𝑡ℓ−1 + . . .+ 𝑡(ℓ+𝑏−1)−1, (6.2.10)

proving (6.2.5).

Lemma 6.2.4. Let 𝜆, 𝜇 ∈ Sig𝑁 and let 𝑈 be a Haar-distributed element of GL𝑁(Z𝑝).

Then

Pr(SN(diag(𝑝𝜇)𝑈 diag(𝑝𝜆)) = 𝜈) = 𝑐𝜈𝜆,𝜇(0, 𝑡)
𝑃𝜈(1, . . . , 𝑡

𝑁−1; 0, 𝑡)

𝑃𝜇(1, . . . , 𝑡𝑁−1; 0, 𝑡)𝑃𝜆(1, . . . , 𝑡𝑁−1; 0, 𝑡)
.

(6.2.11)

Proof. This is essentially Part 3 of Theorem 1.2.1, though let us remark on slight dif-

ferences in setup. That result was stated for two matrices 𝐴,𝐵 ∈ GL𝑁(Q𝑝) with

fixed singular numbers 𝜆, 𝜇 respectively, and distribution invariant under left- and right-

multiplication by GL𝑁(Z𝑝). Such matrices are given by 𝑈 diag(𝑝𝜆)𝑉 and 𝑈 ′ diag(𝑝𝜇)𝑉 ′

for 𝑈, 𝑉, 𝑈 ′, 𝑉 ′ independent Haar-distributed elements of GL𝑁(Z𝑝). Hence

SN(𝐴𝐵) = SN(𝑈 diag(𝑝𝜆)𝑉 𝑈 ′ diag(𝑝𝜇)𝑉 ′) = SN(diag(𝑝𝜆)𝑉 𝑈 ′ diag(𝑝𝜇)), (6.2.12)
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and 𝑉 𝑈 ′ has Haar distribution. Hence

Pr(SN(diag(𝑝𝜇)𝑈 diag(𝑝𝜆)) = 𝜈) = Pr(SN(𝐴𝐵) = 𝜈), (6.2.13)

and (6.2.11) now follows by Part 3 of Theorem 1.2.1.

Proof of Lemma 6.2.3. By the definition of 𝑋(𝜏),

Pr(SN(𝑋(𝜏 + 𝜖)) = 𝜈| SN(𝑋(𝜏)) = 𝜇)

= 1(𝜈 = 𝜇) · (1− 𝑐𝜖) + 𝑐𝜖Pr(SN(diag(𝑝𝜇)𝑈 diag(𝑝, 1, . . . , 1)) = 𝜈) +𝑂(𝜖2) (6.2.14)

as 𝜖→ 0. Hence the generator of the process SN(𝑋(𝜏)) on Sig𝑁 is given by

𝐵𝑆𝑁(𝜇, 𝜈) := −𝑐1(𝜇 = 𝜈) + 𝑐Pr(SN(diag(𝑝𝜇)𝑈 diag(𝑝, 1, . . . , 1)) = 𝜈) (6.2.15)

for any 𝜇, 𝜈 ∈ Sig𝑁 .

By Lemma 6.2.4,

Pr(SN(diag(𝑝𝜇)𝑈 diag(𝑝, 1, . . . , 1)) = 𝜈)

= 𝑐𝜈𝜇,(1,0[𝑁−1])(0, 𝑡)
𝑃𝜈(1, . . . , 𝑡

𝑁−1; 0, 𝑡)

𝑃𝜇(1, . . . , 𝑡𝑁−1; 0, 𝑡)𝑃(1,0[𝑁−1])(1, . . . , 𝑡𝑁−1; 0, 𝑡)
. (6.2.16)

By Proposition 2.2.4 and (2.2.51), when 𝜈 ≻ 𝜇 and |𝜈| − |𝜇| = 1 we have

𝜙𝜈/𝜇(0, 𝑡) = 𝑄𝜈/𝜇(1) = 𝑐𝜈𝜇,(1,0[𝑁−1])(0, 𝑡)𝑄(1,0[𝑁−1])(1) = 𝑐𝜈𝜇,(1,0[𝑁−1])(0, 𝑡)(1− 𝑡). (6.2.17)

Additionally,

𝑃(1,0[𝑁−1])(1, . . . , 𝑡
𝑁−1; 0, 𝑡) =

1− 𝑡𝑁

1− 𝑡
(6.2.18)

by Proposition 2.2.15 (one may also simply use that this Hall-Littlewood polynomial is

the elementary symmetric polynomial 𝑒1). Substituting (6.2.18) and (6.2.17) into (6.2.16)

yields

RHS(6.2.16) =
(︂
𝑐
1− 𝑡

1− 𝑡𝑁

)︂
𝜙𝜈/𝜇

1− 𝑡

𝑃𝜈(1, . . . , 𝑡
𝑁−1; 0, 𝑡)

𝑃𝜇(1, . . . , 𝑡𝑁−1; 0, 𝑡)
. (6.2.19)
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Combining with (6.2.15) and Lemma 6.2.2 yields that

𝐵𝑆𝑁(𝜇, 𝜈) =

(︂
𝑐
1− 𝑡

1− 𝑡𝑁

)︂
𝐵𝐻𝐿(𝜇, 𝜈) (6.2.20)

for all 𝜇, 𝜈 ∈ Sig+𝑁 , completing the proof.

Proof of Theorem 1.4.4. Follows from the equality of generators of Lemma 6.2.3, together

with Proposition 6.2.1.

The following corollary also follows from the equality of generators given in Lemma 6.2.2,

together with Proposition 6.2.1.

Corollary 6.2.5. Let 𝑛 ∈ N and 𝜇 ∈ Sig𝑛, and let 𝜆(𝑛,𝜇),𝒮𝜇,𝑛 be as in Definition 47 and

Definition 46 respectively. Then

𝜆(𝑛,𝜇)(𝜏) = 𝒮𝜇,𝑛(𝜏/𝑡) (6.2.21)

in multi-time distribution.

6.3 The stationary law

In this section we compute explicit contour integral formulas, given in Theorem 6.3.1,

for the limiting distribution of conjugate parts of the half-infinite Poisson walk 𝒮𝜈,∞(𝜏),

which will be used to show the corresponding formula for the reflecting Poisson sea in

Theorem 1.4.1. These formulas are valid for suitably small initial conditions 𝜈, which will

also be useful in upcoming random matrix coupling arguments. Because our methods

come from Macdonald processes, we will state things in terms of the Hall-Littlewood

process 𝜆(∞,𝜈)(𝜏) of Definition 47, but this is the same as 𝒮𝜈,∞(𝜏) up to time change by

Corollary 6.2.5.

Let us briefly outline the proof before giving details. We define a family of observables

𝑓𝜇, 𝜇 ∈ Y𝑘 of a random partition 𝜅 by

𝑓𝜇(𝜅) =
𝑃𝜅/𝜇′(1, 𝑡, . . . ; 0, 𝑡)

𝑃𝜅(1, 𝑡, . . . ; 0, 𝑡)
. (6.3.1)
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These have nice expectations when 𝜅 is distributed by the Hall-Littlewood measure we

are interested in, but also may be explicitly inverted to yield a different form, given in

Lemma 6.3.2, for the prelimit probability we wish to take asymptotics of. Though this

expression may look a priori more complicated, it is suitable for converting to contour

integrals (Lemma 6.3.3), and hence for asymptotic analysis. We remark that in the

case when 𝑡 = 1/𝑝, this computation of the probabilities from our observables is in fact

equivalent to that of determining the distribution of a random abelian 𝑝-group from its

‘moments’, as done in [Woo19, Woo17] and later made more computationally explicit in

[SW22a, SW22b]; we will give the details of the translation between these two settings in

an upcoming publication.

Theorem 6.3.1. Let 𝜆(𝜏) = 𝜆(∞,∅)(𝜏) as defined in Definition 47, and fix 𝑘 ∈ Z≥2 and

𝛼 ∈ R. Then for any integers 𝐿1 ≥ . . . ≥ 𝐿𝑘,

lim
𝜏→∞

log𝑡−1 (𝜏)+𝛼∈Z
Pr(𝜆′𝑖(𝜏)− log𝑡−1(𝜏) = 𝐿𝑖 + 𝛼 for all 1 ≤ 𝑖 ≤ 𝑘)

=
(𝑡; 𝑡)𝑘−1

∞
𝑘!(2𝜋i)𝑘

𝑘−1∏︁
𝑖=1

𝑡(
𝐿𝑖−𝐿𝑘

2 )

(𝑡; 𝑡)𝐿𝑖−𝐿𝑖+1

∫︁
Γ̃
𝑘
𝑒

𝑡𝐿𝑘+𝛼

1−𝑡
(𝑤1+...+𝑤𝑘)

∏︀
1≤𝑖 ̸=𝑗≤𝑘(𝑤𝑖/𝑤𝑗; 𝑡)∞∏︀𝑘

𝑖=1(−𝑤
−1
𝑖 ; 𝑡)∞(−𝑡𝑤𝑖; 𝑡)∞

×
𝐿𝑘−1−𝐿𝑘∑︁

𝑗=0

𝑡(
𝑗+1
2 )

⎡⎣𝐿𝑘−1 − 𝐿𝑘

𝑗

⎤⎦
𝑡

𝑃(𝐿1−𝐿𝑘,...,𝐿𝑘−1−𝐿𝑘,𝑗)(𝑤
−1
1 , . . . , 𝑤−1

𝑘 ; 𝑡, 0)
𝑘∏︁

𝑖=1

𝑑𝑤𝑖

𝑤𝑖

(6.3.2)

with contour

Γ̃ := {𝑥+ i : 𝑥 ≤ 0} ∪ {𝑥− i : 𝑥 ≤ 0} ∪ {𝑥+ i𝑦 : 𝑥2 + 𝑦2 = 1, 𝑥 > 0} (6.3.3)

in usual counterclockwise orientation. When 𝑘 = 1, the equality (6.3.2) holds with the

sum over 𝑗 replaced by
∞∑︁
𝑗=0

𝑡(
𝑗+1
2 ) 1

(𝑡; 𝑡)𝑗
𝑃(𝑗)(𝑤

−1
1 ; 𝑡, 0). (6.3.4)

Furthermore, if 𝜈(𝜏), 𝜏 ∈ 𝑡Z+𝛼 is a sequence of partitions such that

𝜈 ′1(𝜏) ≤ log𝑡−1 𝜏 − 2

(︂
𝑘

log 𝑡−1

)︂2

(log log 𝜏)2 (6.3.5)

for all sufficiently large 𝜏 , then the same result holds with 𝜆(𝜏) = 𝜆(∞,𝜈(𝜏))(𝜏).
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Im(𝑤𝑖)

Re(𝑤𝑖)

· · ·

· · ·

Figure 6-1: The contour Γ̃ in C.

Remark 32. The sum in (6.3.4) is equal to (−𝑡𝑤−1
1 ; 𝑡)∞ by the 𝑞-binomial theorem. One

should view this sum as what one naively obtains in the general 𝑘 ≥ 2 form (6.3.2) by

taking 𝑘 = 1 and substituting 𝐿𝑘−1 = ∞ and⎡⎣∞
𝑗

⎤⎦
𝑡

:=
1

(𝑡; 𝑡)𝑗
. (6.3.6)

Remark 33. The reason for the parameter 𝛼 is that for general 𝜏 , 𝜆′𝑖(𝜏)− log𝑡−1(𝜏) will

not be an integer but rather lie on some shift of the integer lattice, and it is necessary

to consider a sequence of 𝜏 where 𝜆′𝑖(𝜏)− log𝑡−1(𝜏) all lie on the same shift Z+ 𝛼 of the

integer lattice in order to have any hope of a 𝑇 → ∞ limiting distribution.

Remark 34. The restriction (6.3.5) ensures that the initial condition 𝜈 is sufficiently

far from the observation point at ≈ log𝑡−1 𝜏 that there is time for the process to relax

to its stationary distribution. We believe that Theorem 6.3.1 continues to hold under

the weaker condition that log𝑡−1 𝜏 − 𝜈 ′1(𝜏) → ∞ at any rate, and it is easy to see that

this condition is necessary to obtain a limit distribution supported on Z. The bound

(log log 𝜏)2 is nonetheless quite good, and arises as a technical condition in certain error

bounds on contour integrals in the proof. We discuss in more detail why it is technically

necessary for our arguments in Remark 36.

It is also clear that the formula on the right hand side of (6.3.2) is invariant under

replacing (𝐿1, . . . , 𝐿𝑘) ↦→ (𝐿1 + 1, . . . , 𝐿𝑘 + 1) and 𝛼 ↦→ 𝛼 − 1, which it should be since
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the left hand side obviously has this invariance.

Lemma 6.3.2. Fix 𝜈 ∈ Y and set 𝜆(𝜏) = 𝜆(∞,𝜈)(𝜏) as defined in Definition 47. Then

for any 𝑘 ∈ Z≥1 and 𝜂 ∈ Y𝑘,

Pr((𝜆′1(𝜏), . . . , 𝜆
′
𝑘(𝜏)) = 𝜂)

= 𝑃𝜂′(1, 𝑡, . . . ; 0, 𝑡)
∑︁
𝜇∈Y𝑘

∑︁
𝜅∈Y𝑘

𝑃𝜈/𝜅(1, 𝑡, . . . ; 0, 𝑡)

𝑃𝜈(1, 𝑡, . . . ; 0, 𝑡)
𝑄𝜇′/𝜅(𝛾(𝜏); 0, 𝑡)𝑃𝜇′/𝜂′(𝛽(−1); 0, 𝑡). (6.3.7)

At first glance it might seem that we could simplify the expression in (6.3.7) still

further by applying the skew Cauchy identity to

∑︁
𝜇∈Y𝑘

𝑄𝜇′/𝜅(𝛾(𝜏); 0, 𝑡)𝑃𝜇′/𝜂′(𝛽(−1); 0, 𝑡) (6.3.8)

to obtain a finite sum. However, this is slightly false: the Cauchy identity would only

apply if the sum were over 𝜇 ∈ Y rather than Y𝑘. The fact that our sum is written

over Y𝑘 rather than Y is not purely cosmetic: if 𝜂′ has length 𝑘 then there will be

𝜇 ∈ Y𝑘+1 with 𝜇′ ≻ 𝜅, 𝜇′ ≻ 𝜂′ (for 𝜅 of length ≤ 𝑘) and consequently nonzero values of

𝑄𝜇′/𝜅(𝛾(𝜏); 0, 𝑡)𝑃𝜇′/𝜂′(𝛽(−1); 0, 𝑡) for such 𝜇 ∈ Y∖Y𝑘. Hence our sum is different from the

one appearing the Cauchy identity, and in our view this fact is largely responsible for the

fact that both the computations and the final formula in this section do not bear much

resemblance to the previously studied asymptotics of Macdonald processes of which we

are aware. Understanding the sum (6.3.8) was a key difficulty in the computations, as it

is not dominated by one or a small collection of terms. While 𝑃𝜇′/𝜂′(𝛽(−1); 0, 𝑡) is explicit

by the branching rule Lemma 2.2.14, the branching rule yields a much more complicated

sum formula for 𝑄𝜇′/𝜅(𝛾(𝜏); 0, 𝑡), the number of terms of which grows superexponentially

in |𝜇| with no clear way to separate into a main term and subleading terms as 𝑇 → ∞. It

turns out, however, that after reexpressing 𝑄𝜇′/𝜅(𝛾(𝜏); 0, 𝑡) using the torus scalar product

(Definition 9) there are surprising simplifications, yielding an expression which is finally

suitable to asymptotics and is given in the next lemma.

Lemma 6.3.3. Keep the notation of Lemma 6.3.2, and let 𝜈 = (max(𝜈1, 𝑘),max(𝜈2, 𝑘), . . .) =
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(𝜈 ′1, . . . , 𝜈
′
𝑘, 0, . . .)

′. Then

Pr((𝜆′1(𝜏), . . . , 𝜆
′
𝑘(𝜏)) = 𝜂) =

(𝑡; 𝑡)𝑘−1
∞

𝑘!(2𝜋i)𝑘
∏︀𝑘−1

𝑖=1 (𝑡; 𝑡)𝜂𝑖−𝜂𝑖+1

∫︁
𝑐T𝑘

𝑒
𝜏

1−𝑡
(𝑧1+...+𝑧𝑘)𝑡

∑︀𝑘
𝑖=1 (

𝜂𝑖
2 )

× 𝑃𝜈(𝛽(𝑧1, . . . , 𝑧𝑘), 1, 𝑡, . . . ; 0, 𝑡)

𝑃𝜈(1, 𝑡, . . . ; 0, 𝑡)

∏︁
1≤𝑖 ̸=𝑗≤𝑘

(𝑧𝑖/𝑧𝑗; 𝑡)∞

×
𝜂𝑘−1−𝜂𝑘∑︁

𝑗=0

𝑡𝑗(𝜂𝑘+1)𝑡(
𝑗
2)

⎡⎣𝜂𝑘−1 − 𝜂𝑘

𝑗

⎤⎦
𝑡

𝑃𝜂+𝑗𝑒𝑘(𝑧
−1
1 , . . . , 𝑧−1

𝑘 ; 𝑡, 0)∏︀𝑘
𝑖=1(−𝑧

−1
𝑖 ; 𝑡)∞

𝑘∏︁
𝑖=1

𝑑𝑧𝑖
𝑧𝑖
,

(6.3.9)

where T denotes the unit circle with counterclockwise orientation, and 𝑐 ∈ R>1 is arbi-

trary.

The rest of the section consists of proofs of the above statements.

Proof of Lemma 6.3.2. By the explicit formulas Proposition 2.2.15 and Theorem 2.2.16,

for any 𝜅 ∈ Y, 𝜇 ∈ Y𝑘 we have

𝑃𝜅/𝜇′(1, 𝑡, . . . ; 0, 𝑡)

𝑃𝜅(1, 𝑡, . . . ; 0, 𝑡)
=

𝑘∏︁
𝑖=1

𝑡(
𝜅′𝑖−𝜇𝑖

2 )−(𝜅
′
𝑖
2 )(𝑡1+𝜅′

𝑖−𝜇𝑖 ; 𝑡)𝜇𝑖−𝜇𝑖+1
, (6.3.10)

By the skew Cauchy identity (2.2.40) we also have

E
[︂
𝑃𝜆(𝜏)/𝜇′(1, 𝑡, . . . ; 0, 𝑡)

𝑃𝜆(𝜏)(1, 𝑡, . . . ; 0, 𝑡)

]︂
=

∑︀
𝜆∈Y𝑄𝜆/𝜈(𝛾(𝜏); 0, 𝑡)𝑃𝜆/𝜇(1, 𝑡, . . . ; 0, 𝑡)

Π0,𝑡(1, 𝑡, . . . ; 𝛾(𝜏))𝑃𝜈(1, 𝑡, . . . ; 0, 𝑡)

=
∑︁
𝜅∈Y𝑘

𝑃𝜈/𝜅(1, 𝑡, . . . ; 0, 𝑡)

𝑃𝜈(1, 𝑡, . . . ; 0, 𝑡)
𝑄𝜇′/𝜅(𝛾(𝜏); 0, 𝑡).

(6.3.11)

However, an important property of the observable (6.3.10) is that it depends on the first

𝑘 parts of 𝜅′ but not on the others. In other words, setting 𝜆̃ = (𝜆′1, . . . , 𝜆
′
𝑘)

′ ∈ Y, we

have
𝑃𝜆/𝜇′(1, 𝑡, . . . ; 0, 𝑡)

𝑃𝜆(1, 𝑡, . . . ; 0, 𝑡)
=
𝑃𝜆̃/𝜇′(1, 𝑡, . . . ; 0, 𝑡)

𝑃𝜆̃(1, 𝑡, . . . ; 0, 𝑡)
. (6.3.12)
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Hence by the branching rule Lemma 2.2.14 and Proposition 2.2.8,

∑︁
𝜇∈Y𝑘

𝑃𝜆/𝜇′(1, 𝑡, . . . ; 0, 𝑡)

𝑃𝜆(1, 𝑡, . . . ; 0, 𝑡)
𝑃𝜇′/𝜂′(𝛽(−1); 0, 𝑡) =

∑︁
𝜇∈Y𝑘

𝑃𝜆̃/𝜇′(1, 𝑡, . . . ; 0, 𝑡)

𝑃𝜆̃(1, 𝑡, . . . ; 0, 𝑡)
𝑃𝜇′/𝜂′(𝛽(−1); 0, 𝑡)

=
𝑃𝜆̃/𝜂′(𝛽(−1), 1, 𝑡, . . . ; 0, 𝑡)

𝑃𝜆̃(1, 𝑡, . . . ; 0, 𝑡)

=
1(𝜆′1(𝜏), . . . , 𝜆

′
𝑘(𝜏)) = 𝜂)

𝑃𝜂′(1, 𝑡, . . . ; 0, 𝑡)
,

(6.3.13)

where we are using the fact that because 𝜆̃′ ∈ Y𝑘, each 𝜇′ ≺ 𝜆̃′ appearing in the branching

rule automatically satisfies 𝜇′
1 ≤ 𝜆̃′1 so 𝜇 ∈ Y𝑘.

Hence

LHS(6.3.7) = 𝑃𝜂′(1, 𝑡, . . . ; 0, 𝑡)E

[︃∑︁
𝜇∈Y𝑘

𝑃𝜆(𝜏)/𝜇′(1, 𝑡, . . . ; 0, 𝑡)

𝑃𝜆(𝜏)(1, 𝑡, . . . ; 0, 𝑡)
𝑃𝜇′/𝜂′(𝛽(−1); 0, 𝑡)

]︃
, (6.3.14)

and to apply (6.3.11) we wish to commute the expectation and the sum, so we must

check the hypothesis of Fubini’s theorem. For 𝑡 ∈ (0, 1), 𝑃𝜆(𝜏)/𝜇′(1, 𝑡, . . . ; 0, 𝑡) ≥ 0 and

𝑃𝜇′/𝜂′(𝛽(1); 0, 𝑡) ≥ 0 since these are Hall-Littlewood nonnegative specializations, so since

𝑃𝜇′/𝜂′(𝛽(−1); 0, 𝑡) = (−1)|𝜇|−|𝜂|𝑃𝜇′/𝜂′(𝛽(1); 0, 𝑡) by homogeneity we have

E

[︃∑︁
𝜇∈Y𝑘

⃒⃒⃒⃒
𝑃𝜆(𝜏)/𝜇′(1, 𝑡, . . . ; 0, 𝑡)

𝑃𝜆(𝜏)(1, 𝑡, . . . ; 0, 𝑡)
𝑃𝜇′/𝜂′(𝛽(−1); 0, 𝑡)

⃒⃒⃒⃒]︃

= E

[︃∑︁
𝜇∈Y𝑘

𝑃𝜆(𝜏)/𝜇′(1, 𝑡, . . . ; 0, 𝑡)

𝑃𝜆(𝜏)(1, 𝑡, . . . ; 0, 𝑡)
𝑃𝜇′/𝜂′(𝛽(1); 0, 𝑡)

]︃

≤ E

[︃∑︁
𝜇∈Y

𝑃𝜆(𝜏)/𝜇′(1, 𝑡, . . . ; 0, 𝑡)

𝑃𝜆(𝜏)(1, 𝑡, . . . ; 0, 𝑡)
𝑃𝜇′/𝜂′(𝛽(1); 0, 𝑡)

]︃

= E
[︂
𝑃𝜆(𝜏)/𝜂′(𝛽(1), 1, 𝑡, . . . ; 0, 𝑡)

𝑃𝜆(𝜏)(1, 𝑡, . . . ; 0, 𝑡)

]︂
=

1

Π0,𝑡(1, 𝑡, . . . ; 𝛾(𝜏))

∑︁
𝜆∈Y

𝑃𝜆/𝜂′(𝛽(1), 1, 𝑡, . . . ; 0, 𝑡)𝑄𝜆/𝜈(𝛾(𝜏); 0, 𝑡)

=
Π0,𝑡(𝛽(1), 1, 𝑡, . . . ; 𝛾(𝜏))

Π0,𝑡(1, 𝑡, . . . ; 𝛾(𝜏))

∑︁
𝜅∈Y

𝑃𝜈/𝜅(𝛽(1), 1, 𝑡, . . . ; 0, 𝑡)𝑄𝜂′/𝜅(𝛾(𝜏); 0, 𝑡),

(6.3.15)

which is finite since the last sum has finitely many nonzero terms. Hence Fubini’s theorem
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applies, yielding

RHS(6.3.14) = 𝑃𝜂′(1, 𝑡, . . . ; 0, 𝑡)
∑︁
𝜇∈Y𝑘

𝑃𝜇′/𝜂′(𝛽(−1); 0, 𝑡)E
[︂
𝑃𝜆(𝜏)/𝜇′(1, 𝑡, . . . ; 0, 𝑡)

𝑃𝜆(𝜏)(1, 𝑡, . . . ; 0, 𝑡)

]︂
= 𝑃𝜂′(1, 𝑡, . . . ; 0, 𝑡)

∑︁
𝜇∈Y𝑘

∑︁
𝜅∈Y𝑘

𝑃𝜈/𝜅(1, 𝑡, . . . ; 0, 𝑡)

𝑃𝜈(1, 𝑡, . . . ; 0, 𝑡)
𝑄𝜇′/𝜅(𝛾(𝜏); 0, 𝑡)𝑃𝜇′/𝜂′(𝛽(−1); 0, 𝑡)

(6.3.16)

(the two sums commute because the sum over 𝜅 is actually over 𝜅 ⊂ 𝜈 and hence finite).

In what follows, the next lemma will often be useful for bounding Macdonald polyno-

mials of complex arguments.

Lemma 6.3.4. Let 𝜆 ∈ Sig𝑛, 𝑞, 𝑡 ∈ (−1, 1), and 𝑧1, . . . , 𝑧𝑛 ∈ C (assume they are nonzero

if 𝜆 ̸∈ Sig+𝑛 ). Then

|𝑃𝜆(𝑧1, . . . , 𝑧𝑛; 𝑞, 𝑡)| ≤ 𝑃𝜆(|𝑧1|, . . . , |𝑧𝑛|; 𝑞, 𝑡). (6.3.17)

Proof. Follows by expanding 𝑃𝜆 via the branching rule Definition 8, noting that the

coefficient of each monomial is nonnegative since 𝑞, 𝑡 ∈ (−1, 1), and applying the triangle

inequality.

Proof of Lemma 6.3.3. Our starting point is Lemma 6.3.2, which yields

Pr((𝜆′1(𝜏), . . . , 𝜆
′
𝑘(𝜏)) = 𝜂′)

= 𝑃𝜂′(1, 𝑡, . . . ; 0, 𝑡)
∑︁

𝜇,𝜅∈Y𝑘

𝑃𝜈/𝜅(1, 𝑡, . . . ; 0, 𝑡)

𝑃𝜈(1, 𝑡, . . . ; 0, 𝑡)
𝑄𝜇′/𝜅(𝛾(𝜏); 0, 𝑡)𝑃𝜇′/𝜂′(𝛽(−1); 0, 𝑡). (6.3.18)

The only place 𝜈 appears above is

𝑃𝜈/𝜅(1, 𝑡, . . . ; 0, 𝑡)

𝑃𝜈(1, 𝑡, . . . ; 0, 𝑡)
, (6.3.19)

which is independent of 𝜈 ′𝑘+1, 𝜈
′
𝑘+2, . . . by (6.3.10) (with 𝜈, 𝜅 substituted for 𝜅, 𝜇′). This

independence also follows from the fact that the projection of the stochastic process 𝜆(𝜏)

to (𝜆′1(𝜏), . . . , 𝜆
′
𝑘(𝜏)) is Markovian. Hence the right hand side of (6.3.18) is the same
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upon replacing 𝜈 by 𝜈, and to keep notation sanitary we use 𝜈 below and simply assume

without loss of generality that 𝜈 ′𝑘+1 = 0.

We now reexpress 𝑄𝜇′/𝜅(𝛾(𝜏); 0, 𝑡) using the torus scalar product. The specific case of

the skew Cauchy identity with specializations 𝛾(𝜏), 𝛽(𝑧1, . . . , 𝑧𝑘) is

∑︁
𝜇∈Y

𝑄𝜇(𝑧1, . . . , 𝑧𝑘; 𝑡, 0)𝑄𝜇′/𝜅(𝛾(𝜏); 0, 𝑡) = Π0,𝑡(𝛾(𝜏); 𝛽(𝑧1, . . . , 𝑧𝑘))𝑄𝜅′(𝑧1, . . . , 𝑧𝑘; 𝑡, 0)

= 𝑒
𝜏

1−𝑡
(𝑧1+...+𝑧𝑘)𝑄𝜅′(𝑧1, . . . , 𝑧𝑘; 𝑡, 0).

(6.3.20)

Since the polynomials 𝑃𝜆(𝑧1, . . . , 𝑧𝑘; 𝑡, 0) are orthogonal with respect to ⟨·, ·⟩′𝑡,0;𝑘 and the

𝑄𝜆 are proportional to them by (2.2.1), (6.3.20) together with the defining orthogonality

property of Macdonald polynomials yields

𝑄𝜇′/𝜅(𝛾(𝜏); 0, 𝑡) =

⟨
𝑒

𝜏
1−𝑡

(𝑧1+...+𝑧𝑘)𝑄𝜅′(𝑧1, . . . , 𝑧𝑘; 𝑡, 0), 𝑃𝜇(𝑧1, . . . , 𝑧𝑘; 𝑡, 0)
⟩′
𝑡,0;𝑘

⟨𝑄𝜇(𝑧1, . . . , 𝑧𝑘; 𝑡, 0), 𝑃𝜇(𝑧1, . . . , 𝑧𝑘; 𝑡, 0)⟩′𝑡,0;𝑘
. (6.3.21)

By the definition of the proportionality constants 𝑏𝜆(𝑞, 𝑡),

⟨𝑄𝜇(𝑧1, . . . , 𝑧𝑘; 𝑡, 0), 𝑃𝜇(𝑧1, . . . , 𝑧𝑘; 𝑡, 0)⟩′𝑡,0;𝑘

= 𝑏𝜇(𝑡, 0) ⟨𝑃𝜇(𝑧1, . . . , 𝑧𝑘; 𝑡, 0), 𝑃𝜇(𝑧1, . . . , 𝑧𝑘; 𝑡, 0)⟩′𝑡,0;𝑘 . (6.3.22)

By Lemma 2.2.13,

𝑏𝜇(𝑡, 0) =
𝑘∏︁

𝑖=1

1

(𝑡; 𝑡)𝜇𝑖−𝜇𝑖+1

. (6.3.23)

By substituting (𝑡, 0) for (𝑞, 𝑡) in [BC14, (2.8)], we have

⟨𝑃𝜇(𝑧1, . . . , 𝑧𝑘; 𝑡, 0), 𝑃𝜇(𝑧1, . . . , 𝑧𝑘; 𝑡, 0)⟩′𝑡,0;𝑘 =
𝑘−1∏︁
𝑖=1

(𝑡; 𝑡)𝜇𝑖−𝜇𝑖+1

(𝑡; 𝑡)∞
. (6.3.24)

Putting these together, the denominator in (6.3.21) is

⟨𝑄𝜇(𝑧1, . . . , 𝑧𝑘; 𝑡, 0), 𝑃𝜇(𝑧1, . . . , 𝑧𝑘; 𝑡, 0)⟩′𝑡,0;𝑘 =
1

(𝑡; 𝑡)𝜇𝑘
(𝑡; 𝑡)𝑘−1

∞
. (6.3.25)

Expressing the 𝑄𝜇′/𝜅(𝛾(𝜏); 0, 𝑡) in (6.3.18) via (6.3.21) and substituting the definition of
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the torus scalar product for the numerator and (6.3.25) for the denominator in (6.3.21),

we obtain

Pr((𝜆′1(𝜏), . . . , 𝜆
′
𝑘(𝜏)) = 𝜂)

=
(𝑡; 𝑡)𝑘−1

∞
𝑘!(2𝜋i)𝑘

𝑃𝜂′(1, 𝑡, . . . ; 0, 𝑡)
∑︁

𝜇,𝜅∈Y𝑘

𝑃𝜈/𝜅(1, 𝑡, . . . ; 0, 𝑡)

𝑃𝜈(1, 𝑡, . . . ; 0, 𝑡)
(𝑡; 𝑡)𝜇𝑘

𝑄𝜇/𝜂(−1; 𝑡, 0)

×
∫︁
T𝑘

𝑒
𝜏

1−𝑡
(𝑧1+...+𝑧𝑘)𝑄𝜅′(𝑧1, . . . , 𝑧𝑘; 𝑡, 0)𝑃𝜇(𝑧1, . . . , 𝑧𝑘; 𝑡, 0)

∏︁
1≤𝑖 ̸=𝑗≤𝑘

(𝑧𝑖/𝑧𝑗; 𝑡)∞

𝑘∏︁
𝑖=1

𝑑𝑧𝑖
𝑧𝑖
.

(6.3.26)

We wish to commute the sum and integral in (6.3.26), so we must check that Fubini’s

theorem applies. We first use the fact that 𝑧 = 𝑧−1 on T to rewrite the integrand as

function analytic away from 0 and ∞ and then expand the contours to 𝑐T to obtain

∫︁
T𝑘

𝑒
𝜏

1−𝑡
(𝑧1+...+𝑧𝑘)𝑃𝜇(𝑧1, . . . , 𝑧𝑘; 𝑡, 0)

∏︁
1≤𝑖 ̸=𝑗≤𝑘

(𝑧𝑖/𝑧𝑗; 𝑡)∞

𝑘∏︁
𝑖=1

𝑑𝑧𝑖
𝑧𝑖

=

∫︁
𝑐T𝑘

𝑒
𝜏

1−𝑡
(𝑧1+...+𝑧𝑘)𝑃𝜇(𝑧

−1
1 , . . . , 𝑧−1

𝑘 ; 𝑡, 0)
∏︁

1≤𝑖 ̸=𝑗≤𝑘

(𝑧𝑖/𝑧𝑗; 𝑡)∞

𝑘∏︁
𝑖=1

𝑑𝑧𝑖
𝑧𝑖

(6.3.27)

where 𝑐 > 1 may be arbitrary. Now

∑︁
𝜇,𝜅∈Y𝑘

(𝑡; 𝑡)𝜇𝑘
𝑃𝜈/𝜅(1, 𝑡, . . . ; 0, 𝑡)|𝑄𝜇/𝜂(−1; 𝑡, 0)|

×

⃒⃒⃒⃒
⃒
∫︁
𝑐T𝑘

∏︁
1≤𝑖 ̸=𝑗≤𝑘

(𝑧𝑖/𝑧𝑗; 𝑡)∞𝑒
𝜏

1−𝑡
(𝑧1+...+𝑧𝑘)𝑄𝜅′(𝑧1, . . . , 𝑧𝑘; 𝑡, 0)𝑃𝜇(𝑧

−1
1 , . . . , 𝑧−1

𝑘 ; 𝑡, 0)
𝑘∏︁

𝑖=1

𝑑𝑧𝑖
𝑧𝑖

⃒⃒⃒⃒
⃒

≤
∑︁

𝜇,𝜅∈Y𝑘

(𝑡; 𝑡)𝜇𝑘
𝑃𝜈/𝜅(1, 𝑡, . . . ; 0, 𝑡)𝑄𝜇/𝜂(1; 𝑡, 0)

(︁
(2𝜋)𝑘𝑄𝜅′(𝑐[𝑘]; 𝑡, 0)𝑒𝑇𝑘𝑐𝑃𝜇(𝑐

−1[𝑘]; 𝑡, 0)(−1; 𝑡)𝑘
2−𝑘

∞

)︁
≤ (2𝜋)𝑘𝑒𝑇𝑘𝑐(−1; 𝑡)𝑘

2−𝑘
∞

(︃∑︁
𝜇∈Y

𝑄𝜇/𝜂(1; 𝑡, 0)𝑃𝜇(𝑐
−1[𝑘]; 𝑡, 0)

)︃(︃∑︁
𝜅∈Y

𝑃𝜈/𝜅(1, 𝑡, . . . ; 0, 𝑡)𝑃𝜅(𝛽(𝑐[𝑘]); 0, 𝑡)

)︃

= (2𝜋)𝑘(−1; 𝑡)𝑘
2−𝑘

∞ 𝑒𝑇𝑘𝑐Π𝑡,0(1; 𝑐
−1[𝑘])𝑃𝜈(𝛽(𝑐[𝑘]), 1, 𝑡, . . . ; 0, 𝑡) <∞.

(6.3.28)

Here we have applied Lemma 6.3.4 and trivial bounds to the integrand, then used the

branching rule and Cauchy identity; note it is important that we have expanded the

contours, as the sum in the Cauchy identity would diverge if the variables of 𝑃𝜇 were 1
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rather than 𝑐−1 < 1. By (6.3.28), Fubini’s theorem applies to (6.3.26) (note that we must

apply multiple times as we additionally split the sum over 𝜇, 𝜅 into two sums below),

hence

RHS(6.3.26) =
(𝑡; 𝑡)𝑘−1

∞
𝑘!(2𝜋i)𝑘

𝑃𝜂′(1, 𝑡, . . . ; 0, 𝑡)

∫︁
𝑐T𝑘

(︃∑︁
𝜅∈Y𝑘

𝑃𝜈/𝜅(1, 𝑡, . . . ; 0, 𝑡)

𝑃𝜈(1, 𝑡, . . . ; 0, 𝑡)
𝑄𝜅′(𝑧1, . . . , 𝑧𝑘; 𝑡, 0)

)︃

×

(︃∑︁
𝜇∈Y𝑘

(𝑡; 𝑡)𝜇𝑘
𝑄𝜇/𝜂(−1; 𝑡, 0)𝑃𝜇(𝑧

−1
1 , . . . , 𝑧−1

𝑘 ; 𝑡, 0)

)︃
𝑒

𝜏
1−𝑡

(𝑧1+...+𝑧𝑘)
∏︁

1≤𝑖 ̸=𝑗≤𝑘

(𝑧𝑖/𝑧𝑗; 𝑡)∞

𝑘∏︁
𝑖=1

𝑑𝑧𝑖
𝑧𝑖

(6.3.29)

Since len(𝜈) ≤ 𝑘, by the branching rule

∑︁
𝜅∈Y𝑘

𝑃𝜈/𝜅(1, 𝑡, . . . ; 0, 𝑡)

𝑃𝜈(1, 𝑡, . . . ; 0, 𝑡)
𝑄𝜅′(𝑧1, . . . , 𝑧𝑘; 𝑡, 0) =

𝑃𝜈(𝛽(𝑧1, . . . , 𝑧𝑘), 1, 𝑡, . . . ; 0, 𝑡)

𝑃𝜈(1, 𝑡, . . . ; 0, 𝑡)
. (6.3.30)

By Proposition 2.2.15 and the definition of 𝜂 = 𝜂(𝜏) in terms of the 𝐿𝑖,

𝑃𝜂′(1, 𝑡, . . . ; 0, 𝑡) =
𝑡
∑︀𝑘

𝑖=1 (
𝜂𝑖
2 )

(𝑡; 𝑡)𝜂𝑘
∏︀𝑘−1

𝑖=1 (𝑡; 𝑡)𝐿𝑖−𝐿𝑖+1

. (6.3.31)

Let us bring the (𝑡; 𝑡)−1
𝜂𝑘

factor inside the sum in (6.3.29) and evaluate the resulting sum

∑︁
𝜇∈Y𝑘

(𝑡; 𝑡)𝜇𝑘

(𝑡; 𝑡)𝜂𝑘
𝑄𝜇/𝜂(−1; 𝑡, 0)𝑃𝜇(𝑧

−1
1 , . . . , 𝑧−1

𝑘 ; 𝑡, 0). (6.3.32)

By the 𝑞-binomial theorem,

(𝑡; 𝑡)𝜇𝑘

(𝑡; 𝑡)𝜂𝑘
= (1− 𝑡𝜂𝑘+1) · · · (1− 𝑡𝜇𝑘) =

𝜇𝑘−𝜂𝑘∑︁
𝑗=0

(−𝑡𝜂𝑘+1)𝑗𝑡(
𝑗
2)

⎡⎣𝜇𝑘 − 𝜂𝑘

𝑗

⎤⎦
𝑡

, (6.3.33)

and we note that we can replace the sum by one over all 𝑗 ≥ 0 since the 𝑞-binomial

coefficient will be 0 when 𝑗 > 𝜇𝑘 − 𝜂𝑘. We will use the identity2

⎡⎣𝜇𝑘 − 𝜂𝑘

𝑗

⎤⎦
𝑡

𝑄𝜇/𝜂(−1; 𝑡, 0) =

⎡⎣𝜂𝑘−1 − 𝜂𝑘

𝑗

⎤⎦
𝑡

(−1)𝑗𝑄𝜇/(𝜂+𝑗𝑒𝑘)(−1; 𝑡, 0) (6.3.34)

to simplify (6.3.32), but first we prove (6.3.34). As before, in the case 𝑘 = 1 we interpret
2We observed (6.3.34) through explicit examples and are not aware of any broader context for it in

symmetric function theory, though this would certainly be interesting if it exists.
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(6.3.34) by taking 𝜂𝑘−1 = ∞ and

⎡⎣∞
𝑗

⎤⎦
𝑡

=
1

(𝑡; 𝑡)𝑗
(6.3.35)

to obtain ⎡⎣𝜇1 − 𝜂1

𝑗

⎤⎦
𝑡

𝑄(𝜇1)/(𝜂1)(−1; 𝑡, 0) =
(−1)𝑗

(𝑡; 𝑡)𝑗
𝑄(𝜇1)/(𝜂1+𝑗)(−1; 𝑡, 0), (6.3.36)

which follows immediately from the branching rule Lemma 2.2.14, so we will prove the

𝑘 ≥ 2 case. By the explicit branching rule Lemma 2.2.14,

𝑄𝜇/𝜂(−1; 𝑡, 0) = (−1)|𝜇/𝜂|
1

(𝑡; 𝑡)𝜇1−𝜂1

⎡⎣𝜂1 − 𝜂2

𝜂1 − 𝜇2

⎤⎦
𝑡

· · ·

⎡⎣𝜂𝑘−2 − 𝜂𝑘−1

𝜂𝑘−2 − 𝜇𝑘−1

⎤⎦
𝑡

⎡⎣𝜂𝑘−1 − 𝜂𝑘

𝜂𝑘−1 − 𝜇𝑘

⎤⎦
𝑡

(6.3.37)

while for any 𝑗 such that 𝜂 + 𝑗𝑒𝑘 = (𝜂1, . . . , 𝜂𝑘−1, 𝜂𝑘 + 𝑗) ≺ 𝜇 we have

𝑄𝜇/(𝜂+𝑗𝑒𝑘)(−1; 𝑡, 0) = (−1)|𝜇/𝜂|−𝑗 1

(𝑡; 𝑡)𝜇1−𝜂1

⎡⎣𝜂1 − 𝜂2

𝜂1 − 𝜇2

⎤⎦
𝑡

· · ·

⎡⎣𝜂𝑘−2 − 𝜂𝑘−1

𝜂𝑘−2 − 𝜇𝑘−1

⎤⎦
𝑡

⎡⎣𝜂𝑘−1 − 𝜂𝑘 − 𝑗

𝜂𝑘−1 − 𝜇𝑘

⎤⎦
𝑡

.

(6.3.38)

By writing out the 𝑞-factorials on both sides and cancelling a pair it is elementary to

check that⎡⎣𝜇𝑘 − 𝜂𝑘

𝑗

⎤⎦
𝑡

⎡⎣𝜂𝑘−1 − 𝜂𝑘

𝜂𝑘−1 − 𝜇𝑘

⎤⎦
𝑡

=

⎡⎣𝜂𝑘−1 − 𝜂𝑘 − 𝑗

𝜂𝑘−1 − 𝜇𝑘

⎤⎦
𝑡

⎡⎣𝜂𝑘−1 − 𝜂𝑘

𝑗

⎤⎦
𝑡

. (6.3.39)

Now (6.3.34) follows by combining (6.3.37), (6.3.38) and (6.3.39).
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By (6.3.34) (or (6.3.36), if 𝑘 = 1) and the Cauchy identity,

(6.3.32) =
∞∑︁
𝑗=0

(−𝑡𝜂𝑘+1)𝑗𝑡(
𝑗
2)
∑︁
𝜇∈Y𝑘

⎡⎣𝜇𝑘 − 𝜂𝑘

𝑗

⎤⎦
𝑡

𝑄𝜇/𝜂(−1; 𝑡, 0)𝑃𝜇(𝑧
−1
1 , . . . , 𝑧−1

𝑘 ; 𝑡, 0)

=
∞∑︁
𝑗=0

(−𝑡𝜂𝑘+1)𝑗𝑡(
𝑗
2)

⎡⎣𝜂𝑘−1 − 𝜂𝑘

𝑗

⎤⎦
𝑡

(−1)𝑗
∑︁
𝜇∈Y𝑘

𝑄𝜇/(𝜂+𝑗𝑒𝑘)(−1; 𝑡, 0)𝑃𝜇(𝑧
−1
1 , . . . , 𝑧−1

𝑘 ; 𝑡, 0)

=

𝜂𝑘−1−𝜂𝑘∑︁
𝑗=0

𝑡𝑗(𝜂𝑘+1)𝑡(
𝑗
2)

⎡⎣𝜂𝑘−1 − 𝜂𝑘

𝑗

⎤⎦
𝑡

𝑃𝜂+𝑗𝑒𝑘(𝑧
−1
1 , . . . , 𝑧−1

𝑘 ; 𝑡, 0)Π𝑡,0(−1; 𝑧−1
1 , . . . , 𝑧−1

𝑘 ).

(6.3.40)

Substituting (6.3.30), (6.3.31) and (6.3.40) into (6.3.29) and replacing Π𝑡,0 by its explicit

product formula (2.2.30) yields

RHS(6.3.29) =
(𝑡; 𝑡)𝑘−1

∞

𝑘!(2𝜋i)𝑘
∏︀𝑘−1

𝑖=1 (𝑡; 𝑡)𝜂𝑖−𝜂𝑖+1

∫︁
𝑐T𝑘

𝑒
𝜏

1−𝑡
(𝑧1+...+𝑧𝑘)𝑡

∑︀𝑘
𝑖=1 (

𝜂𝑖
2 )

∏︁
1≤𝑖 ̸=𝑗≤𝑘

(𝑧𝑖/𝑧𝑗; 𝑡)∞

× 𝑃𝜈(𝛽(𝑧1, . . . , 𝑧𝑘), 1, 𝑡, . . . ; 0, 𝑡)

𝑃𝜈(1, 𝑡, . . . ; 0, 𝑡)

𝜂𝑘−1−𝜂𝑘∑︁
𝑗=0

𝑡𝑗(𝜂𝑘+1)𝑡(
𝑗
2)

⎡⎣𝜂𝑘−1 − 𝜂𝑘

𝑗

⎤⎦
𝑡

𝑃𝜂+𝑗𝑒𝑘(𝑧
−1
1 , . . . , 𝑧−1

𝑘 ; 𝑡, 0)∏︀𝑘
𝑖=1(−𝑧

−1
𝑖 ; 𝑡)∞

𝑘∏︁
𝑖=1

𝑑𝑧𝑖
𝑧𝑖
,

(6.3.41)

where if 𝑘 = 1 we interpret as in the theorem statement. This completes the proof.

In the below proof we will assume the same modification as before to the sum over 𝑗

in the 𝑘 = 1 case without comment.

Proof of Theorem 6.3.1. Write 𝜂(𝜏) = (𝐿1 + log𝑡−1(𝜏) +𝛼, . . . , 𝐿𝑘 + log𝑡−1(𝜏) +𝛼). Then

𝜂𝑖 − 𝜂𝑗 = 𝐿𝑖 − 𝐿𝑗 (6.3.42)
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for each 𝑖, 𝑗, so by Lemma 6.3.3

Pr(𝜆′𝑖(𝜏) = 𝐿𝑖 + log𝑡−1(𝜏) + 𝛼 for all 1 ≤ 𝑖 ≤ 𝑘) =
(𝑡; 𝑡)𝑘−1

∞

𝑘!(2𝜋i)𝑘
∏︀𝑘−1

𝑖=1 (𝑡; 𝑡)𝐿𝑖−𝐿𝑖+1

×
∫︁
𝑐T𝑘

𝑒
𝜏

1−𝑡
(𝑧1+...+𝑧𝑘)𝑡

∑︀𝑘
𝑖=1 (

𝜂𝑖(𝜏)
2 )

∏︁
1≤𝑖 ̸=𝑗≤𝑘

(𝑧𝑖/𝑧𝑗; 𝑡)∞
𝑃𝜈(𝜏)(𝛽(𝑧1, . . . , 𝑧𝑘), 1, 𝑡, . . . ; 0, 𝑡)

𝑃𝜈(𝜏)(1, 𝑡, . . . ; 0, 𝑡)

×
𝐿𝑘−1−𝐿𝑘∑︁

𝑗=0

𝑡𝑗(𝜂𝑘(𝜏)+1)𝑡(
𝑗
2)

⎡⎣𝐿𝑘−1 − 𝐿𝑘

𝑗

⎤⎦
𝑡

𝑃𝜂(𝜏)+𝑗𝑒𝑘(𝑧
−1
1 , . . . , 𝑧−1

𝑘 ; 𝑡, 0)∏︀𝑘
𝑖=1(−𝑧

−1
𝑖 ; 𝑡)∞

𝑘∏︁
𝑖=1

𝑑𝑧𝑖
𝑧𝑖
.

(6.3.43)

(Technically the above requires that 𝜏 is large enough so 𝜂(𝜏) ∈ Y𝑘, which is true as long

as 𝐿𝑘 + log𝑡−1(𝜏) + 𝛼 ≥ 0). We wish to take a limit as 𝜏 → ∞ of the above expression,

so to remove the 𝜏 -dependence inside the exponential we make a change of variables to

𝑤𝑖 = 𝑡−𝜂𝑘(𝜏)𝑧𝑖 = 𝜏𝑡−𝐿𝑘−𝛼𝑧𝑖. For later convenience we also set

𝑔𝜏 (𝑤1, . . . , 𝑤𝑘) :=
𝑃𝜈(𝜏)(𝛽(𝑡

𝜂𝑘(𝜏)𝑤1, . . . , 𝑡
𝜂𝑘(𝜏)𝑤𝑘), 1, 𝑡, . . . ; 0, 𝑡)

𝑃𝜈(𝜏)(1, 𝑡, . . . ; 0, 𝑡)
. (6.3.44)

This yields

RHS(6.3.43) =
(𝑡; 𝑡)𝑘−1

∞

𝑘!(2𝜋i)𝑘
∏︀𝑘−1

𝑖=1 (𝑡; 𝑡)𝐿𝑖−𝐿𝑖+1

∫︁
𝑐𝑡−𝜂𝑘(𝜏)T𝑘

𝑒
𝑡𝐿𝑘+𝛼

1−𝑡
(𝑤1+...+𝑤𝑘)𝑔𝜏 (𝑤1, . . . , 𝑤𝑘)

×
𝐿𝑘−1−𝐿𝑘∑︁

𝑗=0

𝑡𝑗(𝜂𝑘(𝜏)+1)+(𝑗2)

⎡⎣𝐿𝑘−1 − 𝐿𝑘

𝑗

⎤⎦
𝑡

(𝑡−𝜂𝑘(𝜏))|𝜂(𝜏)|+𝑗𝑃𝜂(𝜏)+𝑗𝑒𝑘(𝑤
−1
1 , . . . , 𝑤−1

𝑘 ; 𝑡, 0)

×
∏︀

1≤𝑖 ̸=𝑗≤𝑘(𝑤𝑖/𝑤𝑗; 𝑡)∞
∏︀𝑘

𝑖=1 𝑡
(𝜂𝑖(𝜏)2 )∏︀𝑘

𝑖=1(−𝑡−𝜂𝑘(𝜏)𝑤−1
𝑖 ; 𝑡)∞

𝑘∏︁
𝑖=1

𝑑𝑤𝑖

𝑤𝑖

,

(6.3.45)

where we have used that 𝑃𝜂+𝑗𝑒𝑘 is homogeneous of degree |𝜂|+ 𝑗.

By the elementary identity

(︂
𝑎+ 𝑏

2

)︂
=

(︂
𝑎

2

)︂
+

(︂
𝑏

2

)︂
+ 𝑎𝑏 (6.3.46)

and (6.3.42) we have

(︂
𝜂𝑖
2

)︂
=

(︂
𝜂𝑘
2

)︂
+

(︂
𝐿𝑖 − 𝐿𝑘

2

)︂
+ (𝜂𝑖 − 𝜂𝑘)𝜂𝑘. (6.3.47)
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Additionally, by Lemma 2.2.2 and (6.3.42),

𝑃𝜂+𝑗𝑒𝑘(𝑤
−1
1 , . . . , 𝑤−1

𝑘 ; 𝑡, 0) = (𝑤1 · · ·𝑤𝑘)
−𝜂𝑘𝑃(𝐿1−𝐿𝑘,...,𝐿𝑘−1−𝐿𝑘,𝑗)(𝑤

−1
1 , . . . , 𝑤−1

𝑘 ; 𝑡, 0).

(6.3.48)

Substituting (6.3.47) for 1 ≤ 𝑖 ≤ 𝑘 and (6.3.48) into (6.3.45) and similarly simplifying

the 𝑡 exponent in the 𝜅 term yields

RHS(6.3.45) =
(𝑡; 𝑡)𝑘−1

∞
𝑘!(2𝜋i)𝑘

𝑘−1∏︁
𝑖=1

𝑡(
𝐿𝑖−𝐿𝑘

2 )

(𝑡; 𝑡)𝐿𝑖−𝐿𝑖+1

∫︁
𝑐𝑡−𝜂𝑘(𝜏)T𝑘

𝑒
𝑡𝐿𝑘+𝛼

1−𝑡
(𝑤1+...+𝑤𝑘)

∏︁
1≤𝑖 ̸=𝑗≤𝑘

(𝑤𝑖/𝑤𝑗; 𝑡)∞

×
𝑘∏︁

𝑖=1

𝑤
−𝜂𝑘(𝜏)
𝑖 𝑡(

𝜂𝑘(𝜏)
2 )+(𝜂𝑖(𝜏)−𝜂𝑘(𝜏))𝜂𝑘(𝜏)𝑡−𝜂𝑘(𝜏)𝜂𝑖(𝜏)

(−𝑡−𝜂𝑘𝑤−1
𝑖 ; 𝑡)∞

𝑔𝜏 (𝑤1, . . . , 𝑤𝑘)

×
𝐿𝑘−1−𝐿𝑘∑︁

𝑗=0

𝑡𝑗+(
𝑗
2)

⎡⎣𝐿𝑘−1 − 𝐿𝑘

𝑗

⎤⎦
𝑡

𝑃(𝐿1−𝐿𝑘,...,𝐿𝑘−1−𝐿𝑘,𝑗)(𝑤
−1
1 , . . . , 𝑤−1

𝑘 ; 𝑡, 0)
𝑘∏︁

𝑖=1

𝑑𝑤𝑖

𝑤𝑖

.

(6.3.49)

Noting that

𝑤
−𝜂𝑘(𝜏)
𝑖 𝑡(

𝜂𝑘(𝜏)
2 )+(𝜂𝑖(𝜏)−𝜂𝑘(𝜏))𝜂𝑘(𝜏)𝑡−𝜂𝑘(𝜏)𝜂𝑖(𝜏)

(−𝑡−𝜂𝑘(𝜏)𝑤−1
𝑖 ; 𝑡)∞

=
1

(−𝑤−1
𝑖 ; 𝑡)∞(−𝑡𝑤𝑖; 𝑡)𝜂𝑘(𝜏)

(6.3.50)

and shifting contours yields

RHS(6.3.49) =
(𝑡; 𝑡)𝑘−1

∞
𝑘!(2𝜋i)𝑘

𝑘−1∏︁
𝑖=1

𝑡(
𝐿𝑖−𝐿𝑘

2 )

(𝑡; 𝑡)𝐿𝑖−𝐿𝑖+1

∫︁
Γ(𝜏)𝑘

𝑒
𝑡𝐿𝑘+𝛼

1−𝑡
(𝑤1+...+𝑤𝑘)

∏︀
1≤𝑖 ̸=𝑗≤𝑘(𝑤𝑖/𝑤𝑗; 𝑡)∞∏︀𝑘

𝑖=1(−𝑤
−1
𝑖 ; 𝑡)∞(−𝑡𝑤𝑖; 𝑡)𝜂𝑘(𝜏)

× 𝑔𝜏 (𝑤1, . . . , 𝑤𝑘)

𝐿𝑘−1−𝐿𝑘∑︁
𝑗=0

𝑡(
𝑗+1
2 )

⎡⎣𝐿𝑘−1 − 𝐿𝑘

𝑗

⎤⎦
𝑡

𝑃(𝐿1−𝐿𝑘,...,𝐿𝑘−1−𝐿𝑘,𝑗)(𝑤
−1
1 , . . . , 𝑤−1

𝑘 ; 𝑡, 0)
𝑘∏︁

𝑖=1

𝑑𝑤𝑖

𝑤𝑖

(6.3.51)

where

Γ(𝜏) := {𝑥+ i𝑦 : 𝑥2 + 𝑦2 = 1, 𝑥 > 0} ∪ {𝑥+ i : −𝑡−𝜂𝑘(𝜏)−1/2 < 𝑥 ≤ 0}

∪ {𝑥− i : −𝑡−𝜂𝑘(𝜏)−1/2 < 𝑥 ≤ 0} ∪ {−𝑡−𝜂𝑘(𝜏)−1/2 + i𝑦 : −1 ≤ 𝑦 ≤ 1}, (6.3.52)

see Figure 6-2. For the asymptotics, we will decompose the integration contour into a
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main term contour Γ1(𝜏) and error term contour Γ2(𝜏). First define

𝜉(𝜏) :=

(︂
2 + 1

𝑘

log 𝑡−1

)︂
log log 𝜏. (6.3.53)

Here we have chosen the constant in front of log log 𝜏 in (6.3.53) somewhat arbitrarily so

that as 𝜏 → ∞ the limits

2

(︂
𝑘

log 𝑡−1

)︂2

(log log 𝜏)2 − 𝑘2 − 𝑘

2
𝜉(𝜏)2 − const · 𝜉(𝜏) → ∞ (6.3.54)

and

𝜉(𝜏)−
(︂

2

log 𝑡−1

)︂
log log 𝜏 → ∞ (6.3.55)

hold, as these are needed to control certain error terms in the proof below.

Γ(𝜏) = Γ1(𝜏) ∪ Γ2(𝜏)

Γ1(𝜏) = {𝑥+ i : −𝑡−𝜉(𝜏) < 𝑥 ≤ 0} ∪ {𝑥− i : −𝑡−𝜉(𝜏) < 𝑥 ≤ 0} ∪ {𝑥+ i𝑦 : 𝑥2 + 𝑦2 = 1, 𝑥 > 0}

Γ2(𝜏) = {−𝑡−𝜂𝑘(𝜏)−1/2 + i𝑦 : −1 ≤ 𝑦 ≤ 1} ∪ {𝑥+ i : −𝑡−𝜂𝑘(𝜏)−1/2 < 𝑥 ≤ −𝑡−𝜉(𝜏)}

∪ {𝑥− i : −𝑡−𝜂𝑘(𝜏)−1/2 < 𝑥 ≤ −𝑡−𝜉(𝜏)}.

(6.3.56)

Im(𝑤𝑖)

Re(𝑤𝑖)

−𝑡−𝜉(𝜏) + i

−𝑡−𝜉(𝜏) − i

−𝑡−𝜂𝑘(𝜏)−1/2 + i

−𝑡−𝜂𝑘(𝜏)−1/2 − i

Figure 6-2: The contour Γ(𝜏) decomposed as in (6.3.56), with Γ1(𝜏) in blue and Γ2(𝜏) in
red, and the poles of the integrand at 𝑤𝑖 = −𝑡Z shown.
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We further define another error term contour

Γ3(𝜏) = {𝑥+ i : 𝑥 ≤ −𝑡−𝜉(𝜏)} ∪ {𝑥− i : 𝑥 ≤ −𝑡−𝜉(𝜏)}, (6.3.57)

so that

Γ1(𝜏)∪Γ3(𝜏) = {𝑥+i : 𝑥 ≤ 0}∪{𝑥−i : 𝑥 ≤ 0}∪{𝑥+i𝑦 : 𝑥2+𝑦2 = 1, 𝑥 > 0} = Γ̃ (6.3.58)

Im(𝑤𝑖)

Re(𝑤𝑖)

−𝑡−𝜉(𝜏) + i

−𝑡−𝜉(𝜏) − i

· · ·

· · ·

Figure 6-3: The contour Γ̃ decomposed as in (6.3.58), with Γ1(𝜏) in blue and Γ3(𝜏) in
green.

is independent of 𝜏 . To complete the proof, we must show that

lim
𝜏→∞

log𝑡(𝜏)≡𝛼

RHS(6.3.51) =
(𝑡; 𝑡)𝑘−1

∞
𝑘!(2𝜋i)𝑘

𝑘−1∏︁
𝑖=1

𝑡(
𝐿𝑖−𝐿𝑘

2 )

(𝑡; 𝑡)𝐿𝑖−𝐿𝑖+1

∫︁
Γ̃
𝑘
𝑒

𝑡𝐿𝑘+𝛼

1−𝑡
(𝑤1+...+𝑤𝑘)

∏︀
1≤𝑖 ̸=𝑗≤𝑘(𝑤𝑖/𝑤𝑗; 𝑡)∞∏︀𝑘

𝑖=1(−𝑤
−1
𝑖 ; 𝑡)∞(−𝑡𝑤𝑖; 𝑡)∞

×
𝐿𝑘−1−𝐿𝑘∑︁

𝑗=0

𝑡(
𝑗+1
2 )

⎡⎣𝐿𝑘−1 − 𝐿𝑘

𝑗

⎤⎦
𝑡

𝑃(𝐿1−𝐿𝑘,...,𝐿𝑘−1−𝐿𝑘,𝑗)(𝑤
−1
1 , . . . , 𝑤−1

𝑘 ; 𝑡, 0)
𝑘∏︁

𝑖=1

𝑑𝑤𝑖

𝑤𝑖

. (6.3.59)

To compress notation we abbreviate the 𝜏 -independent part of the integrand as

𝑓(𝑤1, . . . , 𝑤𝑘) :=
(𝑡; 𝑡)𝑘−1

∞
𝑘!

𝑘−1∏︁
𝑖=1

𝑡(
𝐿𝑖−𝐿𝑘

2 )

(𝑡; 𝑡)𝐿𝑖−𝐿𝑖+1

𝑒
𝑡𝐿𝑘+𝛼

1−𝑡
(𝑤1+...+𝑤𝑘)

∏︀
1≤𝑖 ̸=𝑗≤𝑘(𝑤𝑖/𝑤𝑗; 𝑡)∞∏︀𝑘
𝑖=1𝑤𝑖(−𝑤−1

𝑖 ; 𝑡)∞

×
𝐿𝑘−1−𝐿𝑘∑︁

𝑗=0

𝑡(
𝑗+1
2 )

⎡⎣𝐿𝑘−1 − 𝐿𝑘

𝑗

⎤⎦
𝑡

𝑃(𝐿1−𝐿𝑘,...,𝐿𝑘−1−𝐿𝑘,𝑗)(𝑤
−1
1 , . . . , 𝑤−1

𝑘 ; 𝑡, 0). (6.3.60)

210



With this notation, we may rewrite the equality (6.3.59) which we want to show as

lim
𝜏→∞

log𝑡(𝜏)≡𝛼

1

(2𝜋i)𝑘

∫︁
Γ1(𝜏)𝑘

𝑓(𝑤1, . . . , 𝑤𝑘)

(︃
𝑔𝜏 (𝑤1, . . . , 𝑤𝑘)∏︀𝑘
𝑖=1(−𝑡𝑤𝑖; 𝑡)𝜂𝑘(𝜏)

− 1∏︀𝑘
𝑖=1(−𝑡𝑤𝑖; 𝑡)∞

)︃
𝑘∏︁

𝑖=1

𝑑𝑤𝑖

(6.3.61)

+ lim
𝜏→∞

log𝑡(𝜏)≡𝛼

1

(2𝜋i)𝑘

∫︁
Γ(𝜏)𝑘∖Γ1(𝜏)𝑘

𝑓(𝑤1, . . . , 𝑤𝑘)𝑔𝜏 (𝑤1, . . . , 𝑤𝑘)∏︀𝑘
𝑖=1(−𝑡𝑤𝑖; 𝑡)𝜂𝑘(𝜏)

𝑘∏︁
𝑖=1

𝑑𝑤𝑖 (6.3.62)

− lim
𝜏→∞

log𝑡(𝜏)≡𝛼

1

(2𝜋i)𝑘

∫︁
Γ̃
𝑘 ∖Γ1(𝜏)𝑘

𝑓(𝑤1, . . . , 𝑤𝑘)∏︀𝑘
𝑖=1(−𝑡𝑤𝑖; 𝑡)∞

𝑘∏︁
𝑖=1

𝑑𝑤𝑖 = 0. (6.3.63)

We will show each of the three lines (6.3.61), (6.3.62) and (6.3.63) above are 0 separately.

For this, we first state several needed asymptotics for the functions 𝑓 and 𝑔𝜏 , the proofs

of which we defer to later in the section.

Lemma 6.3.5. In the notation of the above proof, for any 𝑤1, . . . , 𝑤𝑘 in Γ̃ or in Γ(𝜏) for

𝜏 sufficiently large,

|𝑓(𝑤1, . . . , 𝑤𝑘)| ≤ 𝐶
𝑘∏︁

𝑖=1

𝑒𝑐1 Re(𝑤𝑖)+
𝑘−1
2

(log 𝑡−1)⌊log𝑡 |𝑤𝑖|⌋2+𝑐2⌊log𝑡 |𝑤𝑖|⌋ (6.3.64)

for some positive constants 𝐶, 𝑐1, 𝑐2 independent of 𝜏 .

Lemma 6.3.6. In the notation of the above proof,

𝑔𝜏 (𝑤1, . . . , 𝑤𝑘) = 1 +𝑂(𝑡𝜂𝑘(𝜏)−𝜈′1(𝜏)−𝜉(𝜏)) (6.3.65)

as 𝜏 → ∞, with implied constant uniform over 𝑤1, . . . , 𝑤𝑘 ∈ Γ1(𝜏).

Outside of Γ1(𝜏) we content ourselves with a cruder bound on 𝑔𝜏 :

Lemma 6.3.7. In the notation of the above proof,

|𝑔𝜏 (𝑤1, . . . , 𝑤𝑘)| = 𝑂(𝑡−(𝑘+1)(𝜈′1(𝜏))
2

) (6.3.66)

as 𝜏 → ∞, with implied constant uniform over 𝑤1, . . . , 𝑤𝑘 in Γ(𝜏).
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To prove (6.3.61) is 0, we claim that

𝑔𝜏 (𝑤1, . . . , 𝑤𝑘)∏︀𝑘
𝑖=1(−𝑡𝑤𝑖; 𝑡)𝜂𝑘(𝜏)

− 1∏︀𝑘
𝑖=1(−𝑡𝑤𝑖; 𝑡)∞

=
𝑔𝜏 (𝑤1, . . . , 𝑤𝑘)

∏︀𝑘
𝑖=1(−𝑡𝜂𝑘(𝜏)+1𝑤𝑖; 𝑡)∞ − 1∏︀𝑘

𝑖=1(−𝑡𝑤𝑖; 𝑡)∞

= 𝑂(𝑡𝜂𝑘(𝜏)−𝜈′1(𝜏)−𝜉(𝜏))

(6.3.67)

if 𝑤𝑖 ∈ Γ1(𝜏) for all 𝑖. For such 𝑤𝑖 we have |𝑡𝜂𝑘(𝜏)+1𝑤𝑖| ≤ 𝑡𝜂𝑘(𝜏)−𝜉(𝜏) (for 𝜏 large enough

so | − 𝑡−𝜉(𝜏) ± 𝑖| ≤ 𝑡−𝜉(𝜏)−1). Hence (−𝑡𝜂𝑘(𝜏)+1𝑤𝑖; 𝑡)∞ = 1 + 𝑂(𝑡𝜂𝑘(𝜏)−𝜉(𝜏)), and combining

with Lemma 6.3.6 (which has the bigger error term that dominates) yields that

𝑔𝜏 (𝑤1, . . . , 𝑤𝑘)
𝑘∏︁

𝑖=1

(−𝑡𝜂𝑘(𝜏)+1𝑤𝑖; 𝑡)∞ = 1 +𝑂(𝑡𝜂𝑘(𝜏)−𝜈′1(𝜏)−𝜉(𝜏)). (6.3.68)

Furthermore, |(−𝑡𝑤𝑖; 𝑡)∞| is bounded away from 0 for 𝑤𝑖 ∈ Γ̃ and Γ1(𝜏) ⊂ Γ̃ for each 𝜏 ,

and combining with (6.3.68) shows (6.3.67).

Since |𝑤𝑖| ≤ 𝑡−𝜉(𝜏)−1 holds for all 𝑤𝑖 ∈ Γ1(𝜏) (for large 𝜏 as above),

𝑒
𝑘−1
2

(log 𝑡−1)⌊log𝑡 |𝑤𝑖|⌋2 = 𝑂(𝑡−
𝑘−1
2

(𝜉(𝜏)+1)2) uniformly over 𝑤𝑖 ∈ Γ1(𝜏). (6.3.69)

The other terms in the exponent of (6.3.64) are dominated by the 𝑘−1
2
(log 𝑡−1)⌊log𝑡 |𝑤𝑖|⌋2

term (using that Re(𝑤𝑖) ≤ 1 on Γ1(𝜏)), so

|𝑓(𝑤1, . . . , 𝑤𝑘)| = 𝑂(𝑡−𝑘 𝑘−1
2

(𝜉(𝜏)+1)2) uniformly over 𝑤1, . . . , 𝑤𝑘 ∈ Γ1(𝜏). (6.3.70)

Multiplying the bounds (6.3.68) and (6.3.70) by the length of the contour Γ1(𝜏) which is

𝑂(𝑡−𝜉(𝜏)), we find that the first line (6.3.61) is bounded by

𝑂(𝑡𝜂𝑘(𝜏)−𝜈′1(𝜏)−𝜉(𝜏)) ·𝑂(𝑡−𝑘 𝑘−1
2

(𝜉(𝜏)+1)2) ·𝑂(𝑡−𝜉(𝜏)) (6.3.71)

as 𝜏 → ∞, and this is 𝑜(1) by (6.3.5) and (6.3.54). This shows the vanishing of the first

line (6.3.61).

For the other two integrals (6.3.62) and (6.3.63), note that |(−𝑡𝑤𝑖; 𝑡)∞| and |(−𝑡𝑤𝑖; 𝑡)𝜂𝑘(𝜏)|

are both bounded away from 0 uniformly over 𝑤𝑖 ∈ Γ̃∪Γ(𝜏); here it is important that the

vertical part of Γ(𝜏) has real part not in −𝑡Z or else the former product would vanish,
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which is why we chose it to have real part −𝑡−𝜂𝑘(𝜏)−1/2 ∈ −𝑡Z+1/2. To prove that the

limits in (6.3.62) and (6.3.63) are 0 it thus suffices to show

lim
𝜏→∞

log𝑡(𝜏)≡𝛼

∫︁
Γ(𝜏)𝑘∖Γ1(𝜏)𝑘

|𝑓(𝑤1, . . . , 𝑤𝑘)| · |𝑔𝜏 (𝑤1, . . . , 𝑤𝑘)|
𝑘∏︁

𝑖=1

𝑑𝑤𝑖 = 0 (6.3.72)

and

lim
𝜏→∞

log𝑡(𝜏)≡𝛼

∫︁
Γ̃
𝑘 ∖Γ1(𝜏)𝑘

|𝑓(𝑤1, . . . , 𝑤𝑘)|
𝑘∏︁

𝑖=1

𝑑𝑤𝑖 = 0. (6.3.73)

We first show (6.3.72). Note that

Γ(𝜏)𝑘 ∖ Γ1(𝜏)
𝑘 =

𝑘⋃︁
𝑖=1

Γ(𝜏)𝑖−1 × Γ2(𝜏)× Γ(𝜏)𝑘−𝑖 (6.3.74)

(not a disjoint union). Hence by symmetry of the integrand it suffices to show

lim
𝜏→∞

log𝑡(𝜏)≡𝛼

∫︁
Γ(𝜏)

(︃∫︁
Γ2(𝜏)𝑘−1

|𝑔𝜏 (𝑤1, . . . , 𝑤𝑘)| · |𝑓(𝑤1, . . . , 𝑤𝑘)|
𝑘−1∏︁
𝑖=1

𝑑𝑤𝑖

)︃
𝑑𝑤𝑘 = 0. (6.3.75)

The bound (6.3.64) on |𝑓 | factors, so combining Lemma 6.3.5 and Lemma 6.3.7 yields

LHS(6.3.75) ≤ lim
𝜏→∞

log𝑡(𝜏)≡𝛼

(︂∫︁
Γ2(𝜏)

𝐶𝑒𝑐1 Re(𝑤)+ 𝑘−1
2

(log 𝑡−1)⌊log𝑡 |𝑤|⌋2+𝑐2⌊log𝑡 |𝑤|⌋𝑑𝑤

)︂

×
(︂∫︁

Γ(𝜏)

𝐶𝑒𝑐1 Re(𝑤)+ 𝑘−1
2

(log 𝑡−1)⌊log𝑡 |𝑤|⌋2+𝑐2⌊log𝑡 |𝑤|⌋𝑑𝑤

)︂𝑘−1

×𝑂(𝑡−(𝑘+1)𝜈′1(𝜏)
2

). (6.3.76)

It is easy to see that⃒⃒⃒⃒∫︁
Γ(𝜏)

𝐶𝑒𝑐1 Re(𝑤)+ 𝑘−1
2

(log 𝑡−1)⌊log𝑡 |𝑤|⌋2+𝑐2⌊log𝑡 |𝑤|⌋𝑑𝑤

⃒⃒⃒⃒
< const (6.3.77)

independent of 𝜏 , since the Re(𝑤) term is negative and dominates because Re(𝑤) ≈ −|𝑤|

on the contour. Hence by (6.3.76) it suffices to show

lim
𝜏→∞

log𝑡(𝜏)≡𝛼

∫︁
Γ2(𝜏)

𝐶𝑒𝑐1 Re(𝑤)+ 𝑘−1
2

(log 𝑡−1)⌊log𝑡 |𝑤|⌋2+𝑐2⌊log𝑡 |𝑤|⌋𝑑𝑤 ×𝑂(𝑡−(𝑘+1)𝜈′1(𝜏)
2

) = 0. (6.3.78)
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Since

𝑘 − 1

2
(log 𝑡−1)⌊log𝑡 |𝑤|⌋2 + 𝑐2⌊log𝑡 |𝑤|⌋ = 𝑜(Re(𝑤)) as 𝑤 → ∞ along

⋃︁
𝜏

Γ2(𝜏),

(6.3.79)

and

inf
𝑤∈Γ2(𝜏)

|𝑤| → ∞ as 𝑇 → ∞, (6.3.80)

there is a constant 0 < 𝑐′1 < 𝑐1 for which

𝐶𝑒𝑐1 Re(𝑤)+ 𝑘−1
2

(log 𝑡−1)⌊log𝑡 |𝑤|⌋2+𝑐2⌊log𝑡 |𝑤|⌋ ≤ 𝑒𝑐
′
1 Re(𝑤) (6.3.81)

on Γ2(𝜏) for all sufficiently large 𝜏 . We may therefore bound⃒⃒⃒⃒∫︁
Γ2(𝜏)

𝐶𝑒𝑐1 Re(𝑤)+ 𝑘−1
2

(log 𝑡−1)⌊log𝑡 |𝑤|⌋2+𝑐2⌊log𝑡 |𝑤|⌋𝑑𝑤

⃒⃒⃒⃒
≤
∫︁
Γ3(𝜏)

𝑒𝑐
′
1 Re(𝑤)𝑑𝑤 + 𝑜(1) (6.3.82)

where the 𝑜(1) corresponds to the vertical part of Γ2(𝜏). Explicitly,

RHS(6.3.82) = 2

∫︁ −𝑡−𝜉(𝜏)

−∞
𝑒𝑐

′
1𝑥𝑑𝑥 =

2

𝑐′1
𝑒−𝑡−𝜉(𝜏)

. (6.3.83)

We have thus shown that the expression inside the limit of (6.3.78) is 𝑂(𝑒−𝑡−𝜉(𝜏)
) ×

𝑂(𝑡−(𝑘+1)𝜈′1(𝜏)
2
). By the naive bound 𝜈 ′1(𝜏) ≤ log𝑡−1 𝜏 (for large enough 𝜏 , by (6.3.5)), we

may rewrite this as

𝑂(𝑒−𝑡−𝜉(𝜏)

)×𝑂(𝑡−(𝑘+1)𝜈′1(𝜏)
2

) = 𝑂(exp(−𝑒(log 𝑡−1)𝜉(𝜏)+(𝑘−1)(log 𝑡−1)𝑒−2 log log 𝜏 )), (6.3.84)

which is 𝑜(1) by (6.3.55). This shows (6.3.72), so the limit (6.3.62) is indeed 0. The case

of (6.3.73) is almost exactly the same, except that (a) the analogue of (6.3.76) yields

directly to treating a single integral over Γ3(𝜏) rather than having to reduce to this as

in (6.3.82), and (b) there is no 𝑔𝜏 so the final bound is in fact better requires only that

𝜉(𝜏) → ∞ at any rate rather than the growth rate (6.3.55) to finish. This shows (6.3.59)

and completes the proof.

Proof of Lemma 6.3.5. If 𝑘 ≥ 2 then the sum over 𝑗 in (6.3.60) is a polynomial in
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𝑤−1
1 , . . . , 𝑤−1

𝑘 , hence if |𝑤𝑖| ≥ 1 for all 𝑖 we have

⃒⃒⃒⃒
⃒⃒𝐿𝑘−1−𝐿𝑘∑︁

𝑗=0

𝑡(
𝑗+1
2 )

⎡⎣𝐿𝑘−1 − 𝐿𝑘

𝑗

⎤⎦
𝑡

𝑃(𝐿1−𝐿𝑘,...,𝐿𝑘−1−𝐿𝑘,𝑗)(𝑤
−1
1 , . . . , 𝑤−1

𝑘 ; 𝑡, 0)

⃒⃒⃒⃒
⃒⃒ < const (6.3.85)

independent of 𝜏 . If 𝑘 = 1, then the sum is

∞∑︁
𝑗=0

𝑡(
𝑗+1
2 )(𝑤−1

1 )𝑗

(𝑡; 𝑡)𝑗
= (−𝑡𝑤−1

1 ; 𝑡)∞ (6.3.86)

by the 𝑞-binomial theorem, and this too is clearly bounded by a constant over all |𝑤1| ≥ 1.

For the products in the denominator of (6.3.60),⃒⃒⃒⃒
1

(−𝑤−1
𝑖 ; 𝑡)∞

⃒⃒⃒⃒
≤
⃒⃒⃒⃒

1

1 + 𝑤−1
𝑖

⃒⃒⃒⃒
1

(𝑡; 𝑡)∞
(6.3.87)

since |𝑤𝑖|−1 ≤ 1, and since out contours do not include −1 the above is bounded by a

constant. Similarly, |1/𝑤𝑖| is clearly bounded above by a constant along our contours.

We now treat nonconstant terms. Since |𝑤𝑗| ≥ 1,

|(𝑤𝑖/𝑤𝑗; 𝑡)∞| ≤ (−|𝑤𝑖|; 𝑡)∞ ≤ (−𝑡⌊log𝑡 |𝑤𝑖|⌋; 𝑡)∞. (6.3.88)

By writing

(−𝑡−𝑏; 𝑡)∞ = (−1; 𝑡)∞𝑡
−𝑏(𝑡𝑏 + 1)𝑡−𝑏+1(𝑡𝑏−1 + 1) · · · 𝑡−1(𝑡+ 1) ≤ 𝑡−(

𝑏+1
2 )(−1; 𝑡)2∞, (6.3.89)

we therefore obtain⃒⃒⃒⃒
⃒ ∏︁
1≤𝑖 ̸=𝑗≤𝑘

(𝑤𝑖/𝑤𝑗; 𝑡)∞

⃒⃒⃒⃒
⃒ ≤ const ·

𝑘∏︁
𝑖=1

𝑒(− log 𝑡)( 𝑘−1
2

⌊log𝑡 |𝑤𝑖|⌋2+ 3(𝑘−1)
2

⌊log𝑡 |𝑤𝑖|⌋). (6.3.90)

Combining (6.3.90) with the previous constant bounds and the trivial bound⃒⃒⃒⃒
𝑒

𝑡𝐿𝑘+𝛼

1−𝑡
𝑤

⃒⃒⃒⃒
= 𝑒𝑐1 Re(𝑤) (6.3.91)

yields (6.3.64).
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Proof of Lemma 6.3.6. First note that

𝑔𝜏 (𝑤1, . . . , 𝑤𝑘) =
∑︁

𝜅⊂𝜈(𝜏)

𝑃𝜈(𝜏)/𝜅(1, 𝑡, . . . ; 0, 𝑡)

𝑃𝜈(𝜏)(1, 𝑡, . . . ; 0, 𝑡)
𝑡𝜂𝑘(𝜏)|𝜅|𝑄𝜅′(𝑤1, . . . , 𝑤𝑘; 𝑡, 0)

=
∑︁

𝜅⊂𝜈(𝜏)

𝑄𝜅′(𝑤1, . . . , 𝑤𝑘; 𝑡, 0)
𝑘∏︁

𝑖=1

𝑡(
𝜈′𝑖(𝜏)−𝜅′𝑖

2 )−(𝜈
′
𝑖(𝜏)

2 )+𝜂𝑘(𝜏)𝜅
′
𝑖(𝑡1+𝜈′𝑖(𝜏)−𝜅′

𝑖 ; 𝑡)𝑚𝑖(𝜅),

(6.3.92)

where we have used the branching rule, the fact that 𝑄𝜅′ is homogeneous of degree |𝜅|,

and the explicit formula (6.3.10). We wish to bound

|𝑔𝜏 (𝑤1, . . . , 𝑤𝑘)− 1|

=

⃒⃒⃒⃒
⃒⃒⃒⃒ ∑︁
𝜅⊂𝜈(𝜏)
𝜅̸=∅

𝑄𝜅′(𝑤1, . . . , 𝑤𝑘; 𝑡, 0)
𝑘∏︁

𝑖=1

𝑡(
𝜈′𝑖(𝜏)−𝜅′𝑖

2 )−(𝜈
′
𝑖(𝜏)

2 )+𝜂𝑘(𝜏)𝜅
′
𝑖(𝑡1+𝜈′𝑖(𝜏)−𝜅′

𝑖 ; 𝑡)𝑚𝑖(𝜅)

⃒⃒⃒⃒
⃒⃒⃒⃒

≤
∑︁

𝜅⊂𝜈(𝜏)
𝜅̸=∅

𝑄𝜅′(|𝑤1|, . . . , |𝑤𝑘|; 𝑡, 0)
𝑘∏︁

𝑖=1

𝑡(
𝜈′𝑖(𝜏)−𝜅′𝑖

2 )−(𝜈
′
𝑖(𝜏)

2 )+𝜂𝑘(𝜏)𝜅
′
𝑖(𝑡1+𝜈′𝑖(𝜏)−𝜅′

𝑖 ; 𝑡)𝑚𝑖(𝜅)

≤
∑︁

𝜅⊂𝜈(𝜏)

𝑄𝜅′(|𝑤1|, . . . , |𝑤𝑘|; 𝑡, 0)
𝑘∏︁

𝑖=1

𝑡(
𝜈′𝑖(𝜏)−𝜅′𝑖

2 )−(𝜈
′
𝑖(𝜏)

2 )+𝜂𝑘(𝜏)𝜅
′
𝑖 − 1,

(6.3.93)

where in the last bound we used that (𝑡1+𝜈′𝑖(𝜏)−𝜅′
𝑖 ; 𝑡)𝑚𝑖(𝜅) ∈ [0, 1]. We rewrite the expo-

nential as

𝑡(
𝜈′𝑖(𝜏)−𝜅′𝑖

2 )−(𝜈
′
𝑖(𝜏)

2 )+𝜂𝑘(𝜏)𝜅
′
𝑖 = 𝑡𝜅

′
𝑖(𝜅

′
𝑖/2+1/2−𝜈′𝑖(𝜏)+𝜂𝑘(𝜏)) ≤ 𝑡𝜅

′
𝑖(𝜅

′
𝑖/2+1/2−𝜈′1(𝜏)+𝜂𝑘(𝜏)). (6.3.94)

Then

𝑘∏︁
𝑖=1

𝑡𝜅
′
𝑖(𝜅

′
𝑖/2+1/2−𝜈′1(𝜏)+𝜂𝑘(𝜏)) = 𝑡𝑛(𝜅)+(𝜂𝑘(𝜏)−𝜈′1(𝜏))|𝜅| =

(︁
𝑡𝜂𝑘(𝜏)−𝜈′1(𝜏)

)︁|𝜅|
𝑄𝜅(1, 𝑡, . . . ; 0, 𝑡).

(6.3.95)
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Substituting (6.3.94) and (6.3.95) into (6.3.93) yields

|𝑔𝜏 (𝑤1, . . . , 𝑤𝑘)− 1| ≤
∑︁

𝜅⊂𝜈(𝜏)

(︁
𝑡𝜂𝑘(𝜏)−𝜈′1(𝜏)

)︁|𝜅|
𝑄𝜅′(|𝑤1|, . . . , |𝑤𝑘|; 𝑡, 0)𝑄𝜅(1, 𝑡, . . . ; 0, 𝑡)− 1

≤
∑︁
𝜅∈Y

(︁
𝑡𝜂𝑘(𝜏)−𝜈′1(𝜏)

)︁|𝜅|
𝑄𝜅′(|𝑤1|, . . . , |𝑤𝑘|; 𝑡, 0)𝑄𝜅(1, 𝑡, . . . ; 0, 𝑡)− 1

= Π0,𝑡(1, 𝑡, . . . ; 𝛽(𝑡
𝜂𝑘(𝜏)−𝜈′1(𝜏)|𝑤1|, . . . , 𝑡𝜂𝑘(𝜏)−𝜈′1(𝜏)|𝑤𝑘|))− 1

=
𝑘∏︁

𝑖=1

(−𝑡𝜂𝑘(𝜏)−𝜈′1(𝜏)|𝑤𝑖|; 𝑡)∞ − 1

(6.3.96)

by the Cauchy identity. In our setting, |𝑤𝑖| ≤ 𝑡−𝜉(𝜏)−1 since 𝑤𝑖 ∈ Γ1(𝜏) for all 𝑖, so by the

𝑞-binomial theorem

𝑘∏︁
𝑖=1

(−𝑡𝜂𝑘(𝜏)−𝜈′1(𝜏)|𝑤𝑖|; 𝑡)∞−1 ≤
𝑘∏︁

𝑖=1

(︃∑︁
𝑗≥0

(︀
𝑡𝜂𝑘(𝜏)−𝜈′1(𝜏)|𝑤𝑖|

)︀𝑗
𝑡(

𝑗
2)

(𝑡; 𝑡)𝑗

)︃
−1 = 𝑂(𝑡𝜂𝑘(𝜏)−𝜈′1(𝜏)−𝜉(𝜏)−1),

(6.3.97)

completing the proof.

Proof of Lemma 6.3.7. By the same manipulations as in the first part of the proof of

Lemma 6.3.6,

|𝑔𝜏 (𝑤1, . . . , 𝑤𝑘)| ≤
∑︁

𝜅⊂𝜈(𝜏)

𝑄𝜅′(𝑡𝜂𝑘(𝜏)|𝑤1|, . . . , 𝑡𝜂𝑘(𝜏)|𝑤𝑘|; 𝑡, 0)
𝑘∏︁

𝑖=1

𝑡𝜅
′
𝑖(𝜅

′
𝑖/2+1/2−𝜈′𝑖(𝜏)). (6.3.98)

We bound this as

RHS(6.3.98) ≤ #{𝜅 ∈ Y : 𝜅 ⊂ 𝜈(𝜏)}× sup
𝜅⊂𝜈(𝜏)

𝑄𝜅′(𝑡𝜂𝑘(𝜏)|𝑤1|, . . . , 𝑡𝜂𝑘(𝜏)|𝑤𝑘|; 𝑡, 0)× sup
𝜅⊂𝜈(𝜏)

𝑘∏︁
𝑖=1

𝑡𝜅
′
𝑖(𝜅

′
𝑖/2+1/2−𝜈′𝑖(𝜏)).

(6.3.99)

Since 𝜅′𝑖 ≤ 𝜈 ′𝑖(𝜏) for each 1 ≤ 𝑖 ≤ 𝑘 and 𝜅′𝑘 = 0, a naive bound gives

#{𝜅 ∈ Y : 𝜅 ⊂ 𝜈(𝜏)} ≤ (𝜈 ′1(𝜏) + 1) · · · (𝜈 ′𝑘(𝜏) + 1). (6.3.100)
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By the branching rule,

𝑄𝜅′(𝑡𝜂𝑘(𝜏)|𝑤1|, . . . , 𝑡𝜂𝑘(𝜏)|𝑤𝑘|; 𝑡, 0)

=
∑︁

∅=𝜌(0)≺𝜌(1)≺...≺𝜌(𝑘)=𝜅′

𝑘∏︁
𝑖=1

(︀
𝑡𝜂𝑘(𝜏)|𝑤𝑖|

)︀|𝜌(𝑖)/𝜌(𝑖−1)| 1

(𝑡; 𝑡)
𝜌
(𝑖)
1 −𝜌

(𝑖−1)
1

𝑖∏︁
𝑗=1

⎡⎣𝜌(𝑖−1)𝑗 − 𝜌
(𝑖−1)
𝑗+1

𝜌(𝑖−1)𝑗 − 𝜌
(𝑖)
𝑗+1

⎤⎦
𝑡

≤ const|𝜅| ·
∑︁

∅=𝜌(0)≺𝜌(1)≺...≺𝜌(𝑘)=𝜅′

(𝑡; 𝑡)−2𝑘2

∞

(6.3.101)

where we have used that 𝑡𝜂𝑘(𝜏)|𝑤𝑖| ≤ const on Γ(𝜏), and bounded the branching coefficients

by (𝑡; 𝑡)−2𝑘2

∞ . Similarly to the proof of Lemma 6.3.6, we bound the number of Gelfand-

Tsetlin patterns ∅ = 𝜌(0) ≺ 𝜌(1) ≺ . . . ≺ 𝜌(𝑘) = 𝜅′ by

𝑘−1∏︁
ℓ=1

#{(𝜁1, . . . , 𝜁ℓ) : 0 ≤ 𝜁𝑖 ≤ 𝜅′1 for all 1 ≤ 𝑖 ≤ ℓ} = (𝜅′1 + 1)(
𝑘
2), (6.3.102)

so (6.3.101) becomes

𝑄𝜅′(|𝑤1|, . . . , |𝑤𝑘|; 𝑡, 0) ≤ const|𝜅|(𝑡; 𝑡)−2𝑘2

∞ (𝜅′1 + 1)(
𝑘
2). (6.3.103)

We now bound the power of 𝑡 in (6.3.99) as

𝑘∏︁
𝑖=1

𝑡𝜅
′
𝑖(𝜅

′
𝑖/2+1/2−𝜈′𝑖(𝜏)) ≤ 𝑡

𝑘
8
−
∑︀𝑘

𝑖=1(𝜈
′
𝑖)

2 ≤ const · 𝑡−𝑘(𝜈′1)
2

. (6.3.104)

Combining (6.3.98), (6.3.103), (6.3.104) and the fact that 𝜅′1 ≤ 𝜈 ′1 and so |𝜅| ≤ 𝑘𝜈 ′1, we

have

|𝑔𝜏 (𝑤1, . . . , 𝑤𝑘)| ≤ const′ · const𝑘𝜈
′
1 · (𝜈 ′1 + 1)(

𝑘
2) · 𝑡−𝑘(𝜈′1)

2

= 𝑂(𝑡−(𝑘+1)(𝜈′1(𝜏))
2

), (6.3.105)

completing the proof.

Remark 35. We initially proved Theorem 6.3.1 and its auxiliary lemmas in the case of

trivial initial condition 𝜈(𝜏) ≡ ∅ only. It was quite unexpected that the addition of an
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initial condition merely produces a simple multiplicative factor

𝑃𝜈(𝛽(𝑧1, . . . , 𝑧𝑘), 1, 𝑡, . . . ; 0, 𝑡)

𝑃𝜈(1, 𝑡, . . . ; 0, 𝑡)

in the integrand of Lemma 6.3.3, which may be treated asymptotically as above.

Remark 36. Our hypothesis log𝑡−1 𝜏 − 𝜈 ′1(𝜏) ≥ 2
(︁

𝑘
log 𝑡−1

)︁2
log log 𝜏 in Theorem 6.3.1,

which we believe is slightly suboptimal as mentioned in Remark 34, comes from the need

for existence of a function 𝜉(𝜏) to split the contours as above. The requirement (6.3.55)

forces 𝜉(𝜏) to be large, while the requirement (6.3.54) forces log𝑡−1 𝜏 − 𝜈 ′1(𝜏) to be larger

than 𝜉(𝜏)2, so improving the bounds in either case could lead to improved versions of the

technical hypothesis (6.3.5).

The requirement (6.3.55) in the proof above essentially comes from the need to domi-

nate the error term bounded in Lemma 6.3.7. This error term came from the main term

in the proof of Lemma 6.3.7, which comes from bounding

𝑃𝜈(𝜏)/𝜅(1, 𝑡, . . . ; 0, 𝑡)

𝑃𝜈(𝜏)(1, 𝑡, . . . ; 0, 𝑡)
, (6.3.106)

and our bound on this term is essentially sharp up to unimportant constants for the case

𝜅′𝑖 ≈ 𝜈 ′𝑖/2, 𝜈 ′𝑘 ≈ 𝜈 ′1. This is why it is not clear to us at the moment how the log log 𝜏 growth

of log𝑡−1 𝜏 − 𝜈 ′1(𝜏) can be improved beyond improving the constant in front of log log 𝜏 .

It seems likely to us that this can be done by manipulating expressions differently before

bounding to take advantage of more cancellations, but the bound we establish suffices for

our application in upcoming work so we have not tried hard to do so.

Remark 37. It seems possible that a more involved version of the above manipulations

could yield an explicit joint distribution of 𝜆′1(𝜏), . . . , 𝜆′𝑘(𝜏) where the initial condition

𝜈(𝜏) have parts 𝜈 ′𝑖(𝜏) which grow like log𝑡−1(𝜏) + 𝑐𝑖. Such a distribution would in partic-

ular be different from the one above, since the fact that 𝜆′𝑖(𝜏) ≥ 𝜈 ′𝑖(𝜏) would make the

conjugate parts 𝜆′𝑖(𝜏) bounded below in the above regime.
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6.4 Residue expansions

The probability distribution in Theorem 6.3.1, which is expressed there by a contour

integral, may be residue-expanded to yield formulas for the same limiting probability in

terms of certain infinite series in 𝑒−𝑡𝑑 , 𝑑 ≤ 𝐿𝑘, which lead to the series formulas for 𝒮(2∞)

given in the Introduction.

Proposition 6.4.1. Let 𝜆(𝜏) be as in Theorem 6.3.1, with or without the initial condition.

Then for any 𝐿 = (𝐿1, . . . , 𝐿𝑘) ∈ Sig𝑘, we have

lim
𝜏→∞

log𝑡−1 (𝜏)+𝛼∈Z
Pr((𝜆′𝑖(𝜏)− log𝑡−1(𝜏)− 𝛼)1≤𝑖≤𝑘 = 𝐿)

=
1

(𝑡; 𝑡)∞

∑︁
𝑑≤𝐿𝑘

𝑒
𝑡𝑑+𝛼

1−𝑡
𝑡
∑︀𝑘

𝑖=1 (
𝐿𝑖−𝑑

2 )

(𝑡; 𝑡)𝐿𝑘−𝑑

∏︀𝑘−1
𝑖=1 (𝑡; 𝑡)𝐿𝑖−𝐿𝑖+1

×
∑︁

𝜇∈Sig𝑘−1
𝜇≺𝐿

(−1)|𝐿|−|𝜇|−𝑑

𝑘−1∏︁
𝑖=1

⎡⎣𝐿𝑖 − 𝐿𝑖+1

𝐿𝑖 − 𝜇𝑖

⎤⎦
𝑡

𝑄(𝜇−(𝑑[𝑘−1]))′(𝛾(𝑡
𝑑+𝛼), 𝛼(1); 0, 𝑡). (6.4.1)

Remark 38. By the branching and principal specialization formulas (Proposition 2.2.15

and Lemma 2.2.14), the formula (6.4.1) may also be written as

1

(𝑡; 𝑡)∞

∑︁
𝑑≤𝐿𝑘

𝑒
𝑡𝑑+𝛼

1−𝑡 𝑃𝐿(𝑑)′(1, 𝑡, . . . ; 0, 𝑡)
∑︁

𝜇∈Sig𝑘−1
𝜇≺𝐿

𝑃𝐿(𝑑)/𝜇(𝑑)(−1; 𝑡, 0)𝑄𝜇(𝑑)′(𝛾(𝑡
𝑑+𝛼), 𝛼(1); 0, 𝑡)

(6.4.2)

where 𝐿(𝑑) := (𝐿1 − 𝑑, . . . , 𝐿𝑘 − 𝑑), 𝜇(𝑑) := (𝜇1 − 𝑑, . . . , 𝜇𝑘 − 𝑑). The fact that the

final answer has such a simple expression in terms of symmetric functions seems in no

way justified by the complicated intermediate manipulations we have taken, and it would

be very interesting to find a simpler proof of Proposition 6.4.1 which explains this. We

remark also that at first glance it might appear that the branching rule (for general

specialized Macdonald symmetric functions) would simplify the sum over 𝜇 in (6.4.2).

The issue is that the sum is over 𝜇 ∈ Sig𝑘−1, which is a smaller index set, c.f. (6.3.8) and

the discussion after for a similar sum in an earlier prelimit expression which appears to

be responsible for the above.

The integrand in our previous contour integral formula (6.3.2) has poles at 𝑤𝑖 =

−𝑡𝑥, 𝑥 ∈ Z, 1 ≤ 𝑖 ≤ 𝑘, all of which lie within Γ̃. To derive Proposition 6.4.1 we wish to
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residue expand at these poles to obtain the right hand side of (6.4.1), but because Γ̃ is not

a closed contour and furthermore the integrand is not meromorphic in a neighborhood of

0, justifying this takes some care. To this end we state the following lemmas. Lemma 6.4.2

is the main algebraic step of computing the residues which arise from shifting contours.

Lemma 6.4.3 shows that the contour integral appearing as an error term in Lemma 6.4.2

is indeed negligible, and hence should be thought of as the statement that the integral in

(6.3.2) is indeed equal to its naive residue expansion. Recall the function 𝑓 from (6.3.60).

Lemma 6.4.2. Fix 𝑘 ∈ Z≥1, and let ℎ ∈ Z≥0 and Γ be a simple closed contour with

interior containing {−𝑡𝑥 : 𝑥 ∈ Z, 𝑥 ≥ −ℎ}. Then for any 𝐿 = (𝐿1, . . . , 𝐿𝑘) ∈ Sig𝑘 and

any integer 𝑛 ≥ 𝐿𝑘,

1

(2𝜋i)𝑘

∫︁
Γ𝑘

𝑓(𝑤1, . . . , 𝑤𝑘)∏︀𝑘
𝑖=1(−𝑡𝑤𝑖; 𝑡)∞

𝑘∏︁
𝑖=1

𝑑𝑤𝑖 =
1

(𝑡; 𝑡)∞

𝐿𝑘∑︁
𝑑=𝐿𝑘−ℎ

𝑒
𝑡𝑑+𝛼

1−𝑡 𝑡
∑︀𝑘

𝑖=1 (
𝐿𝑖−𝑑

2 )

(𝑡; 𝑡)𝐿𝑘−𝑑

∏︀𝑘−1
𝑖=1 (𝑡; 𝑡)𝐿𝑖−𝐿𝑖+1

×
∑︁

𝜇∈Sig𝑘−1
𝜇≺𝐿

(−1)|𝐿|−|𝜇|−𝑑

𝑘−1∏︁
𝑖=1

⎡⎣𝐿𝑖 − 𝐿𝑖+1

𝐿𝑖 − 𝜇𝑖

⎤⎦
𝑡

𝑄(𝜇−(𝑑[𝑘−1]))′(𝛾(𝑡
𝑑+𝛼), 𝛼(1); 0, 𝑡)

+
1

(2𝜋i)𝑘

∫︁
(𝑡𝑛+1/2T)𝑘

𝑓(𝑤1, . . . , 𝑤𝑘)∏︀𝑘
𝑖=1(−𝑡𝑤𝑖; 𝑡)∞

𝑘∏︁
𝑖=1

𝑑𝑤𝑖 (6.4.3)

where 𝑓(𝑤1, . . . , 𝑤𝑘) is as in (6.3.60). In particular, the right hand side is independent of

𝑛 ≥ 𝐿𝑘.

Lemma 6.4.3. Fix 𝑘 ∈ Z≥1 and 𝐿 = (𝐿1, . . . , 𝐿𝑘) ∈ Sig𝑘. Then for any 𝑛 ≥ 𝐿𝑘,

(𝑡; 𝑡)𝑘−1
∞

𝑘!(2𝜋i)𝑘

𝑘−1∏︁
𝑖=1

𝑡(
𝐿𝑖−𝐿𝑘

2 )

(𝑡; 𝑡)𝐿𝑖−𝐿𝑖+1

∫︁
(𝑡𝑛+1/2T)𝑘

𝑒
𝑡𝐿𝑘+𝛼

1−𝑡
(𝑤1+...+𝑤𝑘)

∏︀
1≤𝑖 ̸=𝑗≤𝑘(𝑤𝑖/𝑤𝑗; 𝑡)∞∏︀𝑘

𝑖=1(−𝑤
−1
𝑖 ; 𝑡)∞(−𝑡𝑤𝑖; 𝑡)∞

×
𝐿𝑘−1−𝐿𝑘∑︁

𝑗=0

𝑡(
𝑗+1
2 )

⎡⎣𝐿𝑘−1 − 𝐿𝑘

𝑗

⎤⎦
𝑡

𝑃(𝐿1−𝐿𝑘,...,𝐿𝑘−1−𝐿𝑘,𝑗)(𝑤
−1
1 , . . . , 𝑤−1

𝑘 ; 𝑡, 0)
𝑘∏︁

𝑖=1

𝑑𝑤𝑖

𝑤𝑖

= 0 (6.4.4)

with the sum over 𝑗 interpreted as in Theorem 6.3.1 when 𝑘 = 1.

We also record a certain computation used several times below in the following lemma.

Lemma 6.4.4. For any 𝑤 ∈ C× and 𝑛 ∈ Z,

(−𝑡−𝑛𝑤−1; 𝑡)∞(−𝑡𝑛+1𝑤; 𝑡)∞ = 𝑤−𝑛𝑡−(
𝑛+1
2 )(−𝑤−1; 𝑡)∞(−𝑡𝑤; 𝑡)∞. (6.4.5)
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Proof. A simple direct computation.

Remark 39. Since

(−𝑤−1; 𝑡)∞(−𝑡𝑤; 𝑡)∞ =
𝜃3(𝑡

1/2𝑤; 𝑡)

(𝑡; 𝑡)∞
(6.4.6)

may be written in terms of the Jacobi theta function

𝜃3(𝑧; 𝑡) := (𝑡; 𝑡)∞
∏︁

𝑛∈Z≥0

(1 + 𝑡𝑛+1/2𝑧)(1 + 𝑡𝑛+1/2/𝑧), (6.4.7)

the above computation is in fact equivalent to the standard transformation law

𝜃3(𝑡𝑧; 𝑡) = 𝑡−1/2𝑧−1𝜃3(𝑧; 𝑡). (6.4.8)

It is worth mentioning that Jacobi theta functions have appeared in the related context

of periodic Schur processes introduced in [Bor07], used further in e.g. [ARVP22], [BB19],

[IMS21b, IMS21a, IMS22], and their above transformation law has been useful there.

We are not aware of any closer connection with the present work, however. See e.g.

[EMOT81, Chapter 13] for more background on theta functions, though the notation

there differs from that of [Bor07] which we use above.

Proof of Lemma 6.4.2. The integrand on the left hand side of (6.4.3) is meromorphic

away from 0 and ∞, and for 𝑤1, . . . , 𝑤𝑘−1 fixed it has poles at 𝑤𝑘 = −𝑡𝑚,𝑚 ∈ Z. Of

these, −𝑡ℎ,−𝑡ℎ+1, . . . lie in the interior of Γ. Hence by deforming the 𝑤𝑘 contour to

𝑡𝑛+1/2T we obtain

LHS(6.4.3) =
1

(2𝜋i)𝑘−1

∫︁
Γ𝑘−1

(︃
𝑛∑︁

𝑚=−ℎ

Res𝑤𝑘=−𝑡𝑚
𝑓(𝑤1, . . . , 𝑤𝑘)∏︀𝑘
𝑖=1(−𝑡𝑤𝑖; 𝑡)∞

)︃
𝑘−1∏︁
𝑖=1

𝑑𝑤𝑖 (6.4.9)

+
1

(2𝜋i)𝑘

∫︁
Γ𝑘−1×𝑡𝑛+1/2 T

𝑓(𝑤1, . . . , 𝑤𝑘)∏︀𝑘
𝑖=1(−𝑡𝑤𝑖; 𝑡)∞

𝑘∏︁
𝑖=1

𝑑𝑤𝑖. (6.4.10)

When 𝑤𝑘 = −𝑡𝑚, the factor ∏︁
1≤𝑖 ̸=𝑗≤𝑘

(𝑤𝑖/𝑤𝑗; 𝑡)∞

in the numerator of 𝑓 has zeros at all 𝑤𝑖 ∈ −𝑡Z, 1 ≤ 𝑖 ≤ 𝑘 − 1. Hence

Res𝑤𝑘=−𝑡𝑚
𝑓(𝑤1, . . . , 𝑤𝑘)∏︀𝑘
𝑖=1(−𝑡𝑤𝑖; 𝑡)∞
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is in fact holomorphic away from 0, so the contours of the (𝑘 − 1)-fold integral in (6.4.9)

may be deformed to any simple closed contours containing 0 without any additional

residue terms, in particular they may all be deformed to T. For the 𝑘-fold integral in

(6.4.10) we similarly deform the 𝑤𝑘−1-contour to 𝑡𝑛+1/2T, yielding a term identical (by

symmetry of the variables 𝑤1, . . . , 𝑤𝑘) to the (𝑘 − 1)-fold integral of (6.4.9) except that

one of the integrals is over 𝑡𝑛+1/2T. However, since we may deform to any contours around

0 this makes no difference, and so by pushing each of the 𝑘 contours in (6.4.3) to 𝑡𝑛+1/2T

and using symmetry of the variables to equate the 𝑘 sums of residues (and commuting

the finite sum with the integral) we have

LHS(6.4.3) = 𝑘

𝑛∑︁
𝑚=−ℎ

1

(2𝜋i)𝑘−1

∫︁
T𝑘−1

Res𝑤𝑘=−𝑡𝑚
𝑓(𝑤1, . . . , 𝑤𝑘)∏︀𝑘
𝑖=1(−𝑡𝑤𝑖; 𝑡)∞

𝑘−1∏︁
𝑖=1

𝑑𝑤𝑖

+
1

(2𝜋i)𝑘

∫︁
(𝑡𝑛+1/2T)𝑘

𝑓(𝑤1, . . . , 𝑤𝑘)∏︀𝑘
𝑖=1(−𝑡𝑤𝑖; 𝑡)∞

𝑘∏︁
𝑖=1

𝑑𝑤𝑖.

(6.4.11)

Hence to show (6.4.3) we must show

1

(2𝜋i)𝑘−1

∫︁
T𝑘−1

(︃
𝑛∑︁

𝑚=−ℎ

Res𝑤𝑘=−𝑡𝑚
𝑘𝑓(𝑤1, . . . , 𝑤𝑘)∏︀𝑘

𝑖=1(−𝑡𝑤𝑖; 𝑡)∞

)︃
𝑘−1∏︁
𝑖=1

𝑑𝑤𝑖 =
1

(𝑡; 𝑡)∞

𝐿𝑘∑︁
𝑑=𝐿𝑘−ℎ

𝑒
𝑡𝑑+𝛼

1−𝑡 𝑡
∑︀𝑘

𝑖=1 (
𝐿𝑖−𝑑

2 )∏︀𝑘−1
𝑖=1 (𝑡; 𝑡)𝐿𝑖−𝐿𝑖+1

× 1

(𝑡; 𝑡)𝐿𝑘−𝑑

∑︁
𝜇∈Sig𝑘−1

𝜇≺𝐿

(−1)|𝐿|−|𝜇|−𝑑

𝑘−1∏︁
𝑖=1

⎡⎣𝐿𝑖 − 𝐿𝑖+1

𝐿𝑖 − 𝜇𝑖

⎤⎦
𝑡

𝑄(𝜇−(𝑑[𝑘−1]))′(𝛾(𝑡
𝑑+𝛼), 𝛼(1); 0, 𝑡)

(6.4.12)

(for 𝑘 ≥ 2) and

𝑛∑︁
𝑚=−ℎ

Res𝑤1=−𝑡𝑚
𝑓(𝑤1)

(−𝑡𝑤1; 𝑡)∞
=

1

(𝑡; 𝑡)∞

𝐿1∑︁
𝑑=𝐿1−ℎ

𝑒
𝑡𝑑+𝛼

1−𝑡
𝑡(

𝐿1−𝑑
2 )

(𝑡; 𝑡)𝐿1−𝑑

(−1)𝐿1−𝑑 (6.4.13)

(for 𝑘 = 1). We begin with (6.4.13), where

𝑓(𝑤1)

(−𝑡𝑤1; 𝑡)∞
= 𝑒

𝑡𝐿1+𝛼

1−𝑡
𝑤1

1

𝑤1(−𝑤−1
1 ; 𝑡)∞(−𝑡𝑤1; 𝑡)∞

∞∑︁
𝑗=0

𝑡(
𝑗+1
2 )

(𝑡; 𝑡)𝑗
𝑃(𝑗)(𝑤

−1
1 ; 𝑡, 0)

= 𝑒
𝑡𝐿1+𝛼

1−𝑡
𝑤1

1

𝑤1(−𝑤−1
1 ; 𝑡)∞(−𝑡𝑤1; 𝑡)∞

(−𝑡𝑤−1
1 ; 𝑡)∞

= 𝑒
𝑡𝐿1+𝛼

1−𝑡
𝑤1

1

(−𝑤1; 𝑡)∞

(6.4.14)
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by the 𝑞-binomial theorem, since 𝑃(𝑗)(𝑤
−1
1 ; 𝑡, 0) = 𝑤−𝑗

1 by the branching rule. This func-

tion has simple poles at 𝑤1 = −𝑡−𝑚,𝑚 ∈ Z≥0, of which −𝑡−ℎ,−𝑡−ℎ+1, . . . ,−1 are con-

tained in our contour. The pole at 𝑤1 = −𝑡−𝑚 contributes

𝑒
−𝑡𝐿1+𝛼+𝑚

1−𝑡
1

(1− 𝑡−𝑚) · · · (1− 𝑡−1)(𝑡𝑚)(𝑡; 𝑡)∞
=

1

(𝑡; 𝑡)∞
𝑒

−𝑡𝐿1+𝛼+𝑚

1−𝑡
𝑡(

𝑚
2 )

(𝑡; 𝑡)𝑚
(6.4.15)

Summing (6.4.15) over 0 ≤ 𝑚 ≤ ℎ and making the change of variables 𝑑 = 𝐿1 +𝑚 yields

(6.4.13) and completes the 𝑘 = 1 case.

We now show the 𝑘 ≥ 2 case, (6.4.12). It is not hard to check similarly to above (one

may use Lemma 6.4.4 to simplify the computation, though this is not necessary) that

Res𝑤𝑘=−𝑡𝑚
1

𝑤𝑘(−𝑤−1
𝑘 ; 𝑡)∞(−𝑡𝑤𝑘; 𝑡)∞

=
(−1)𝑚

(𝑡; 𝑡)2∞𝑡
−(𝑚+1

2 )
, (6.4.16)

where we let
(︀
𝑚+1
2

)︀
= (𝑚2 +𝑚)/2 even when 𝑚 is negative. Lemma 6.4.4 also implies

that
(𝑡−𝑚𝑤𝑖; 𝑡)∞(𝑡𝑚𝑤−1

𝑖 ; 𝑡)∞

𝑤𝑖(−𝑤−1
𝑖 ; 𝑡)∞(−𝑡𝑤𝑖; 𝑡)∞

= (1 + 𝑡−𝑚𝑤𝑖)𝑤
𝑚
𝑖 𝑡

−(𝑚+1
2 ). (6.4.17)

Using (6.4.16), (6.4.17) and the explicit formula (6.3.60) for 𝑓 we compute

Res𝑤𝑘=−𝑡𝑚
𝑘𝑓(𝑤1, . . . , 𝑤𝑘)∏︀𝑘

𝑖=1(−𝑡𝑤𝑖; 𝑡)∞
=

(𝑡; 𝑡)𝑘−1

(𝑘 − 1)!

𝑘−1∏︁
𝑖=1

𝑡(
𝐿𝑖−𝐿𝑘

2 )

(𝑡; 𝑡)𝐿𝑖−𝐿𝑖+1

𝑒
𝑡𝐿𝑘+𝛼

1−𝑡
(𝑤1+...+𝑤𝑘−1)

×
∏︁

1≤𝑖 ̸=𝑗≤𝑘−1

(𝑤𝑖/𝑤𝑗; 𝑡)∞

⎛⎝𝐿𝑘−1−𝐿𝑘∑︁
𝑗=0

𝑡(
𝑗+1
2 )

⎡⎣𝐿𝑘−1 − 𝐿𝑘

𝑗

⎤⎦
𝑡

𝑃𝐿̃+𝑗𝑒𝑘
(𝑤−1

1 , . . . , 𝑤−1
𝑘−1,−𝑡

−𝑚; 𝑡, 0)

⎞⎠
×
∏︀𝑘−1

𝑖=1 (1 + 𝑡𝑚𝑤−1
𝑖 )𝑤𝑚

𝑖 𝑡
−(𝑚+1

2 )

(−1)𝑚𝑡−(
𝑚+1

2 )(𝑡; 𝑡)2∞
𝑒

𝑡𝐿𝑘+𝛼+𝑚

1−𝑡 ,

(6.4.18)
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where 𝐿̃ = (𝐿1 − 𝐿𝑘, . . . , 𝐿𝑘−1 − 𝐿𝑘, 0) as before. By the branching rule,

𝐿𝑘−1−𝐿𝑘∑︁
𝑗=0

𝑡(
𝑗+1
2 )

⎡⎣𝐿𝑘−1 − 𝐿𝑘

𝑗

⎤⎦
𝑡

𝑃𝐿̃+𝑗𝑒𝑘
(𝑤−1

1 , . . . , 𝑤−1
𝑘−1,−𝑡

−𝑚; 𝑡, 0)

=

𝐿𝑘−1−𝐿𝑘∑︁
𝑗=0

𝑡(
𝑗+1
2 )

⎡⎣𝐿𝑘−1 − 𝐿𝑘

𝑗

⎤⎦
𝑡

∑︁
𝜇∈Sig𝑘−1

𝜇≺𝐿̃+𝑗𝑒𝑘

(−𝑡−𝑚)|𝐿̃|+𝑗−|𝜇|

⎡⎣ 𝐿1 − 𝐿2

𝐿1 − 𝐿𝑘 − 𝜇1

⎤⎦
𝑡

· · ·

⎡⎣ 𝐿𝑘−2 − 𝐿𝑘−1

𝐿𝑘−2 − 𝐿𝑘 − 𝜇𝑘−2

⎤⎦
𝑡

×

⎡⎣ 𝐿𝑘−1 − 𝐿𝑘 − 𝑗

𝐿𝑘−1 − 𝐿𝑘 − 𝜇𝑘−1

⎤⎦
𝑡

𝑃𝜇(𝑤
−1
1 , . . . , 𝑤−1

𝑘−1; 𝑡, 0)

=
∑︁

𝜇∈Sig𝑘−1

𝜇≺𝐿̃

(−𝑡−𝑚)|𝐿̃|−|𝜇|

⎡⎣ 𝐿1 − 𝐿2

𝐿1 − 𝐿𝑘 − 𝜇1

⎤⎦
𝑡

· · ·

⎡⎣ 𝐿𝑘−2 − 𝐿𝑘−1

𝐿𝑘−2 − 𝐿𝑘 − 𝜇𝑘−2

⎤⎦
𝑡

𝑃𝜇(𝑤
−1
1 , . . . , 𝑤−1

𝑘−1; 𝑡, 0)

×
𝐿𝑘−1−𝐿𝑘∑︁
𝑗=𝜇𝑘−1

⎡⎣ 𝐿𝑘−1 − 𝐿𝑘 − 𝑗

𝐿𝑘−1 − 𝐿𝑘 − 𝜇𝑘−1

⎤⎦
𝑡

⎡⎣𝐿𝑘−1 − 𝐿𝑘

𝑗

⎤⎦
𝑡

𝑡(
𝑗+1
2 )(−𝑡−𝑚)𝑗

=
∑︁

𝜇∈Sig𝑘−1

𝜇≺𝐿̃

(−𝑡−𝑚)|𝐿̃|−|𝜇|

⎡⎣ 𝐿1 − 𝐿2

𝐿1 − 𝐿𝑘 − 𝜇1

⎤⎦
𝑡

· · ·

⎡⎣ 𝐿𝑘−2 − 𝐿𝑘−1

𝐿𝑘−2 − 𝐿𝑘 − 𝜇𝑘−2

⎤⎦
𝑡

𝑃𝜇(𝑤
−1
1 , . . . , 𝑤−1

𝑘−1; 𝑡, 0)

×

⎡⎣ 𝐿𝑘−1 − 𝐿𝑘

𝐿𝑘−1 − 𝐿𝑘 − 𝜇𝑘−1

⎤⎦ (𝑡−𝑚+1; 𝑡)𝜇𝑘−1
,

(6.4.19)

where in the last equality we used the identity⎡⎣ 𝐿𝑘−1 − 𝐿𝑘 − 𝑗

𝐿𝑘−1 − 𝐿𝑘 − 𝜇𝑘−1

⎤⎦
𝑡

⎡⎣𝐿𝑘−1 − 𝐿𝑘

𝑗

⎤⎦
𝑡

=

⎡⎣𝜇𝑘−1

𝑗

⎤⎦
𝑡

⎡⎣ 𝐿𝑘−1 − 𝐿𝑘

𝐿𝑘−1 − 𝐿𝑘 − 𝜇𝑘−1

⎤⎦
𝑡

(6.4.20)

(which is the same as (6.3.39)), and then applied the 𝑞-binomial theorem. By (6.4.18),
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(6.4.19), and the fact that 𝑤−1
𝑖 = 𝑤𝑖 on T,

1

(2𝜋i)𝑘−1

∫︁
T𝑘−1

Res𝑤𝑘=−𝑡𝑚
𝑘𝑓(𝑤1, . . . , 𝑤𝑘)∏︀𝑘

𝑖=1(−𝑡𝑤𝑖; 𝑡)∞

𝑘−1∏︁
𝑖=1

𝑑𝑤𝑖 = (𝑡; 𝑡)𝑘−3
∞

𝑘−1∏︁
𝑖=1

𝑡(
𝐿𝑖−𝐿𝑘

2 )

(𝑡; 𝑡)𝐿𝑖−𝐿𝑖+1

(−1)𝑚𝑡(
𝑚+1

2 )𝑒
𝑡𝐿𝑘+𝛼+𝑚

1−𝑡

×
∑︁

𝜇∈Sig𝑘−1

𝜇≺𝐿̃

(−𝑡−𝑚)|𝐿̃|−|𝜇|(𝑡−𝑚+1; 𝑡)𝜇𝑘−1

𝑘−1∏︁
𝑖=1

⎡⎣ 𝐿𝑖 − 𝐿𝑖+1

𝐿𝑖 − 𝐿𝑘 − 𝜇𝑖

⎤⎦ 1

(𝑘 − 1)!(2𝜋i)𝑘−1

∫︁
T𝑘−1

𝑒
𝑡𝐿𝑘+𝛼

1−𝑡
(𝑤1+...+𝑤𝑘−1)

×
∏︁

1≤𝑖 ̸=𝑗≤𝑘−1

(𝑤𝑖/𝑤𝑗; 𝑡)∞𝑃𝜇(𝑤̄1, . . . , 𝑤̄𝑘−1; 𝑡, 0)
𝑘−1∏︁
𝑖=1

(1 + 𝑡−𝑚𝑤𝑖)𝑤
𝑚−1
𝑖 𝑡−(

𝑚
2 )𝑑𝑤𝑖.

(6.4.21)

We recognize a factor in the above integrand as

𝑘−1∏︁
𝑖=1

𝑒
𝑡𝐿𝑘+𝛼

1−𝑡
𝑤𝑖(1 + 𝑡−𝑚𝑤𝑖) = Π0,𝑡(𝛾(𝑡

𝐿𝑘+𝛼), 𝛼(𝑡−𝑚); 𝛽(𝑤1, . . . , 𝑤𝑘−1))

=
∑︁
𝜆∈Y

𝑄𝜆(𝛾(𝑡
𝐿𝑘+𝛼), 𝛼(𝑡−𝑚); 0, 𝑡)𝑄𝜆′(𝑤1, . . . , 𝑤𝑘−1; 𝑡, 0),

(6.4.22)

by (2.2.40). Note also that since 𝑤𝑖 ∈ T, by Lemma 2.2.2

(𝑤𝑚
1 · · ·𝑤𝑚

𝑘−1)𝑃𝜇(𝑤̄1, . . . , 𝑤̄𝑘−1; 𝑡, 0) = 𝑃𝜇−(𝑚[𝑘−1])(𝑤̄1, . . . , 𝑤̄𝑘−1; 𝑡, 0). (6.4.23)

If 𝜇𝑘−1 −𝑚 < 0, then the above is not a polynomial but a Laurent polynomial, and by

orthogonality of the 𝑞-Whittaker Laurent polynomials (Proposition 2.2.5) the integral in

(6.4.21) is 0. Otherwise, if 𝜇𝑘−1 −𝑚 ≥ 0, orthogonality still implies that only the term

𝜆′ = 𝜇− (𝑚[𝑘 − 1]) of the sum (6.4.22) contributes to the integral in (6.4.21). Hence we

obtain

𝑡−(𝑘−1)(𝑚2 )

(𝑘 − 1)!(2𝜋i)𝑘−1

∫︁
T𝑘−1

Π0,𝑡(𝛾(𝑡
𝐿𝑘+𝛼), 𝛼(𝑡−𝑚); 𝛽(𝑤1, . . . , 𝑤𝑘−1))𝑃𝜇−(𝑚[𝑘−1])(𝑤̄1, . . . , 𝑤̄𝑘−1; 𝑡, 0)

×
∏︁

1≤𝑖 ̸=𝑗≤𝑘−1

(𝑤𝑖/𝑤𝑗; 𝑡)∞

𝑘−1∏︁
𝑖=1

𝑑𝑤𝑖

𝑤𝑖

= 𝑡−(𝑘−1)(𝑚2 )𝑄(𝜇−(𝑚[𝑘−1]))′(𝛾(𝑡
𝐿𝑘+𝛼), 𝛼(𝑡−𝑚); 0, 𝑡)

×1(𝜇𝑘−1−𝑚 ≥ 0)
⟨︀
𝑄𝜇−(𝑚[𝑘−1])(𝑤1, . . . , 𝑤𝑘−1; 𝑡, 0), 𝑃𝜇−(𝑚[𝑘−1])(𝑤1, . . . , 𝑤𝑘−1; 𝑡, 0)

⟩︀′
𝑡,0;𝑘−1

.

(6.4.24)
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By (6.3.25),

⟨︀
𝑄𝜇−(𝑚[𝑘−1])(𝑤1, . . . , 𝑤𝑘−1; 𝑡, 0), 𝑃𝜇−(𝑚[𝑘−1])(𝑤1, . . . , 𝑤𝑘−1; 𝑡, 0)

⟩︀′
𝑡,0;𝑘−1

=
1

(𝑡; 𝑡)𝜇𝑘−1−𝑚(𝑡; 𝑡)𝑘−2
∞

.

(6.4.25)

Combining (6.4.21), (6.4.24) and (6.4.25) and writing

1(𝜇𝑘−1 −𝑚 ≥ 0)
(𝑡−𝑚+1; 𝑡)𝜇𝑘−1

(𝑡; 𝑡)𝜇𝑘−1−𝑚

= 1(𝑚 ≤ 0)
1

(𝑡; 𝑡)−𝑚

(6.4.26)

yields

1

(2𝜋i)𝑘−1

∫︁
T𝑘−1

Res𝑤𝑘=−𝑡𝑚
𝑘𝑓(𝑤1, . . . , 𝑤𝑘)∏︀𝑘

𝑖=1(−𝑡𝑤𝑖; 𝑡)∞

𝑘−1∏︁
𝑖=1

𝑑𝑤𝑖 =
1(𝑚 ≤ 0)

(𝑡; 𝑡)∞

(︃
𝑘−1∏︁
𝑖=1

𝑡(
𝐿𝑖−𝐿𝑘

2 )

(𝑡; 𝑡)𝐿𝑖−𝐿𝑖+1

)︃

× (−1)𝑚𝑡−(𝑘−2)(𝑚2 )+𝑚

(𝑡; 𝑡)−𝑚

𝑒
𝑡𝐿𝑘+𝛼+𝑚

1−𝑡

∑︁
𝜇∈Sig𝑘−1

𝜇≺𝐿̃

(−𝑡−𝑚)|𝐿̃|−|𝜇|
𝑘−1∏︁
𝑖=1

⎡⎣ 𝐿𝑖 − 𝐿𝑖+1

𝐿𝑖 − 𝐿𝑘 − 𝜇𝑖

⎤⎦
𝑡

×𝑄(𝜇−(𝑚[𝑘−1]))′(𝛾(𝑡
𝐿𝑘+𝛼), 𝛼(𝑡−𝑚); 0, 𝑡).

(6.4.27)

Set 𝐿 = (𝐿1, . . . , 𝐿𝑘) = 𝐿̃+ (𝐿𝑘[𝑘]) and relabel 𝜇 ↦→ 𝜇+ (𝐿𝑘[𝑘 − 1]) so that

∑︁
𝜇∈Sig𝑘−1

𝜇≺𝐿̃

(−𝑡−𝑚)|𝐿̃|−|𝜇|
𝑘−1∏︁
𝑖=1

⎡⎣ 𝐿𝑖 − 𝐿𝑖+1

𝐿𝑖 − 𝐿𝑘 − 𝜇𝑖

⎤⎦
𝑡

𝑄(𝜇−(𝑚[𝑘−1]))′(𝛾(𝑡
𝐿𝑘+𝛼), 𝛼(𝑡−𝑚); 0, 𝑡) =

∑︁
𝜇∈Sig𝑘−1

𝜇≺𝐿

(−𝑡−𝑚)|𝐿|−|𝜇|−𝐿𝑘

𝑘−1∏︁
𝑖=1

⎡⎣𝐿𝑖 − 𝐿𝑖+1

𝐿𝑖 − 𝜇𝑖

⎤⎦
𝑡

𝑡−𝑚(|𝜇|−(𝑘−1)(𝐿𝑘+𝑚))𝑄𝜇−((𝐿𝑘+𝑚)[𝑘−1])′(𝛾(𝑡
𝐿𝑘+𝛼+𝑚), 𝛼(1); 0, 𝑡),

(6.4.28)

where we have also used homogeneity of𝑄 to scale the specializations. Setting 𝑑 = 𝐿𝑘+𝑚,

the power of 𝑡 in (6.4.27) (together with the one in (6.4.28)) is

− (𝑘− 2)

(︂
𝑚

2

)︂
+𝑚−𝑚(|𝐿| − |𝜇| −𝐿𝑘)−𝑚(|𝜇| − (𝑘− 1)(𝐿𝑘 +𝑚)) =

𝑘∑︁
𝑖=1

(︂
𝐿𝑖 − 𝑑

2

)︂
(6.4.29)
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by a tedious computation using (6.3.46). The sign in (6.4.27) is (−1)|𝐿|−|𝜇|−𝑑. Putting

this together we have

1

(2𝜋i)𝑘−1

∫︁
T𝑘−1

Res𝑤𝑘=−𝑡𝑚
𝑘𝑓(𝑤1, . . . , 𝑤𝑘)∏︀𝑘

𝑖=1(−𝑡𝑤𝑖; 𝑡)∞

𝑘−1∏︁
𝑖=1

𝑑𝑤𝑖 = 𝑒
𝑡𝑑+𝛼

1−𝑡
𝑡
∑︀𝑘

𝑖=1 (
𝐿𝑖−𝑑

2 )

(𝑡; 𝑡)∞(𝑡; 𝑡)𝐿𝑘−𝑑

∏︀𝑘−1
𝑖=1 (𝑡; 𝑡)𝐿𝑖−𝐿𝑖+1

×
∑︁

𝜇∈Sig𝑘−1
𝜇≺𝐿

(−1)|𝐿|−|𝜇|−𝑑

𝑘−1∏︁
𝑖=1

⎡⎣𝐿𝑖 − 𝐿𝑖+1

𝐿𝑖 − 𝜇𝑖

⎤⎦
𝑡

𝑄(𝜇−(𝑑[𝑘−1]))′(𝛾(𝑡
𝑑+𝛼), 𝛼(1); 0, 𝑡).

(6.4.30)

This shows (6.4.12) and hence completes the proof.

Proof of Lemma 6.4.3. By Lemma 6.4.2, the integral which we wish to compute is inde-

pendent of 𝑛 ≥ 𝐿𝑘. Hence it suffices to show

lim
𝑛→∞
𝑛∈Z

(𝑡; 𝑡)𝑘−1
∞

𝑘!(2𝜋i)𝑘

𝑘−1∏︁
𝑖=1

𝑡(
𝐿𝑖−𝐿𝑘

2 )

(𝑡; 𝑡)𝐿𝑖−𝐿𝑖+1

∫︁
(𝑡𝑛+1/2T)𝑘

𝑒
𝑡𝐿𝑘+𝛼

1−𝑡
(𝑤1+...+𝑤𝑘)

∏︀
1≤𝑖 ̸=𝑗≤𝑘(𝑤𝑖/𝑤𝑗; 𝑡)∞∏︀𝑘

𝑖=1(−𝑤
−1
𝑖 ; 𝑡)∞(−𝑡𝑤𝑖; 𝑡)∞

×
𝐿𝑘−1−𝐿𝑘∑︁

𝑗=0

𝑡(
𝑗+1
2 )

⎡⎣𝐿𝑘−1 − 𝐿𝑘

𝑗

⎤⎦
𝑡

𝑃(𝐿1−𝐿𝑘,...,𝐿𝑘−1−𝐿𝑘,𝑗)(𝑤
−1
1 , . . . , 𝑤−1

𝑘 ; 𝑡, 0)
𝑘∏︁

𝑖=1

𝑑𝑤𝑖

𝑤𝑖

= 0.

(6.4.31)

To simplify expressions we will show (6.4.31) by showing

lim
𝑛→∞
𝑛∈Z

∫︁
(𝑡𝑛+1/2T)𝑘

𝑒
𝑡𝐿𝑘+𝛼

1−𝑡
(𝑤1+...+𝑤𝑘)

∏︀
1≤𝑖 ̸=𝑗≤𝑘(𝑤𝑖/𝑤𝑗; 𝑡)∞∏︀𝑘

𝑖=1(−𝑤
−1
𝑖 ; 𝑡)∞(−𝑡𝑤𝑖; 𝑡)∞

× 𝑃(𝐿1−𝐿𝑘,...,𝐿𝑘−1−𝐿𝑘,𝑗)(𝑤
−1
1 , . . . , 𝑤−1

𝑘 ; 𝑡, 0)
𝑘∏︁

𝑖=1

𝑑𝑤𝑖

𝑤𝑖

= 0 (6.4.32)

for each 𝑗. Letting 𝑤𝑖 = 𝑡𝑛𝑢𝑖 we have

LHS(6.4.32) = lim
𝑛→∞
𝑛∈Z

∫︁
(𝑡1/2T)𝑘

𝑒
𝑡𝐿𝑘+𝛼+𝑛

1−𝑡
(𝑢1+...+𝑢𝑘)

∏︀
1≤𝑖 ̸=𝑗≤𝑘(𝑢𝑖/𝑢𝑗; 𝑡)∞∏︀𝑘

𝑖=1(−𝑡−𝑛𝑢−1
𝑖 ; 𝑡)∞(−𝑡𝑛+1𝑢𝑖; 𝑡)∞

× 𝑡−𝑛(|𝐿|+𝑗−𝑘𝐿𝑘)𝑃(𝐿1−𝐿𝑘,...,𝐿𝑘−1−𝐿𝑘,𝑗)(𝑢
−1
1 , . . . , 𝑢−1

𝑘 ; 𝑡, 0)
𝑘∏︁

𝑖=1

𝑑𝑢𝑖
𝑢𝑖

(6.4.33)
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where we have used homogeneity of 𝑃 . By Lemma 6.4.4,

(−𝑡−𝑛𝑢−1
𝑖 ; 𝑡)∞(−𝑡𝑛+1𝑢𝑖; 𝑡)∞ = 𝑢−𝑛

𝑖 𝑡−(
𝑛+1
2 )(−𝑢−1

𝑖 ; 𝑡)∞(−𝑡𝑢𝑖; 𝑡)∞, (6.4.34)

so

RHS(6.4.33) = lim
𝑛→∞
𝑛∈Z

∫︁
(𝑡1/2T)𝑘

𝑘∏︁
𝑖=1

(︁
𝑢𝑛𝑖 𝑡

(𝑛+1
2 )−𝑛(|𝐿|+𝑗−𝑘𝐿𝑘)

)︁
𝑒

𝑡𝐿𝑘+𝛼+𝑛

1−𝑡
(𝑢1+...+𝑢𝑘) (6.4.35)

×
∏︀

1≤𝑖 ̸=𝑗≤𝑘(𝑢𝑖/𝑢𝑗; 𝑡)∞∏︀𝑘
𝑖=1(−𝑢

−1
𝑖 ; 𝑡)∞(−𝑡𝑢𝑖; 𝑡)∞

𝑃(𝐿1−𝐿𝑘,...,𝐿𝑘−1−𝐿𝑘,𝑗)(𝑢
−1
1 , . . . , 𝑢−1

𝑘 ; 𝑡, 0)
𝑘∏︁

𝑖=1

𝑑𝑢𝑖
𝑢𝑖
. (6.4.36)

The part of the integrand on the second line (6.4.36) is bounded on T𝑘 and is independent

of 𝑛, while the part of the integrand on the first line (6.4.35) goes to 0 in 𝑛 uniformly

over T𝑘, showing (6.4.32) and hence completing the proof.

Proof of Proposition 6.4.1. The idea is to take a family of simple closed contours which

approach the contour Γ̃ defined in Theorem 6.3.1 and also encircle more and more of

the poles −𝑡𝑥. The contours Γ(𝜏) defined in (6.3.56) work, though we write them as

Γ(𝐵), 𝐵 ∈ Z to avoid a clash of notation with the 𝜏 in Proposition 6.4.1. By Lemma 6.4.2

together with Lemma 6.4.3,

1

(2𝜋i)𝑘

∫︁
Γ(𝐵)𝑘

𝑓(𝑤1, . . . , 𝑤𝑘)∏︀𝑘
𝑖=1(−𝑡𝑤𝑖; 𝑡)∞

𝑘∏︁
𝑖=1

𝑑𝑤𝑖 =

𝐿𝑘∑︁
𝑑=𝐿𝑘−𝜂𝑘(𝐵)

𝑒
𝑡𝑑+𝛼

1−𝑡
𝑡
∑︀𝑘

𝑖=1 (
𝐿𝑖−𝑑

2 )

(𝑡; 𝑡)∞(𝑡; 𝑡)𝐿𝑘−𝑑

∏︀𝑘−1
𝑖=1 (𝑡; 𝑡)𝐿𝑖−𝐿𝑖+1

×
∑︁

𝜇∈Sig𝑘−1
𝜇≺𝐿

(−1)|𝐿|−|𝜇|−𝑑

𝑘−1∏︁
𝑖=1

⎡⎣𝐿𝑖 − 𝐿𝑖+1

𝐿𝑖 − 𝜇𝑖

⎤⎦
𝑡

𝑄(𝜇−(𝑑[𝑘−1]))′(𝛾(𝑡
𝑑+𝛼), 𝛼(1); 0, 𝑡) + 0. (6.4.37)

It follows immediately that

lim
𝐵→∞
𝐵∈Z

1

(2𝜋i)𝑘

∫︁
Γ(𝐵)𝑘

𝑓(𝑤1, . . . , 𝑤𝑘)∏︀𝑘
𝑖=1(−𝑡𝑤𝑖; 𝑡)∞

𝑘∏︁
𝑖=1

𝑑𝑤𝑖 = RHS(6.4.1). (6.4.38)
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The limit

lim
𝐵→∞
𝐵∈Z

1

(2𝜋i)𝑘

∫︁
Γ(𝐵)𝑘

𝑓(𝑤1, . . . , 𝑤𝑘)∏︀𝑘
𝑖=1(−𝑡𝑤𝑖; 𝑡)∞

𝑘∏︁
𝑖=1

𝑑𝑤𝑖

=
(𝑡; 𝑡)𝑘−1

∞
𝑘!(2𝜋i)𝑘

𝑘−1∏︁
𝑖=1

𝑡(
𝐿𝑖−𝐿𝑘

2 )

(𝑡; 𝑡)𝐿𝑖−𝐿𝑖+1

∫︁
Γ̃
𝑘
𝑒

𝑡𝐿𝑘+𝛼

1−𝑡
(𝑤1+...+𝑤𝑘)

∏︀
1≤𝑖 ̸=𝑗≤𝑘(𝑤𝑖/𝑤𝑗; 𝑡)∞∏︀𝑘

𝑖=1(−𝑤
−1
𝑖 ; 𝑡)∞(−𝑡𝑤𝑖; 𝑡)∞

×
𝐿𝑘−1−𝐿𝑘∑︁

𝑗=0

𝑡(
𝑗+1
2 )

⎡⎣𝐿𝑘−1 − 𝐿𝑘

𝑗

⎤⎦
𝑡

𝑃(𝐿1−𝐿𝑘,...,𝐿𝑘−1−𝐿𝑘,𝑗)(𝑤
−1
1 , . . . , 𝑤−1

𝑘 ; 𝑡, 0)
𝑘∏︁

𝑖=1

𝑑𝑤𝑖

𝑤𝑖

(6.4.39)

follows by the estimate Lemma 6.3.5 exactly as with (6.3.72) in the proof of Theorem 6.3.1.

Combining (6.4.38) with (6.4.39) completes the proof.

6.5 Tightness and the limiting random variable

In the Introduction, we stated that the limiting formulas on the right hand side of (6.3.2)

and (6.4.1) define a Sig𝑘-valued random variable, but Theorem 6.3.1 and Proposition 6.4.1

do not a priori imply this because mass may escape to ±∞. In this section we show that

there is no escape of mass and the formulas indeed define a random variable.

Proposition 6.5.1. In the notation of Theorem 6.3.1, the sequence of Sig𝑘-valued random

variables

(𝜆′𝑖(𝜏)− log𝑡−1(𝜏)− 𝛼)1≤𝑖≤𝑘, 𝜏 ∈ 𝑡−N+𝛼 (6.5.1)

is tight.

Proof. We must show that for every 𝜖 > 0, there exists 𝐷 = 𝐷(𝜖) such that

Pr(−𝐷 ≤ 𝜆′𝑘(𝜏)− log𝑡−1(𝜏)− 𝛼 ≤ 𝜆′1(𝜏)− log𝑡−1(𝜏)− 𝛼 ≤ 𝐷) > 1− 𝜖 (6.5.2)

for all 𝜏 ∈ 𝑡−N+𝛼. For the upper bound in (6.5.2), first note that 𝜆′1 is Markov, and if

𝜆′1(𝜏) = 𝑥 at some 𝜏 then the waiting time before 𝜆′1 jumps to 𝑥+1 follows an exponential

distribution with rate 𝑡𝑥/(1 − 𝑡). This is because 𝜆′1 will increase as soon as one of the

clocks 𝑥+ 1, 𝑥+ 2, . . . rings, and these have rates 𝑡𝑥, 𝑡𝑥+1, . . .. Hence for 𝐷 ∈ N we have

Pr(𝜆′1(𝜏) > 𝐷) = Pr(
𝐷∑︁
𝑖=0

𝐸𝑖 ≤ 𝜏) (6.5.3)
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where 𝐸𝑖 ∼ Exp(𝑡𝑖/(1− 𝑡)). Clearly

Pr(
𝐷∑︁
𝑖=0

𝐸𝑖 ≤ 𝜏) ≤ Pr(𝐸𝐷 ≤ 𝜏) = 1− 𝑒−
𝑡𝐷

1−𝑡
𝜏 . (6.5.4)

Hence

Pr(𝜆′1(𝜏)− log𝑡−1(𝜏)− 𝛼 ≤ 𝐷) ≥ 𝑒−
𝑡
log

𝑡−1 (𝜏)+𝛼+𝐷

1−𝑡
𝜏 = 𝑒−

𝑡𝛼+𝐷

1−𝑡 . (6.5.5)

Now for the lower bound of (6.5.2). Suppose that 𝜆′𝑘(𝜏) = 𝑥 at some time 𝜏 , and

consider the waiting time until 𝜆′𝑘 jumps to 𝑥+1. If clock 𝑥+1 rings 𝑘 times then 𝜆′𝑘 will

jump, even in the unfavorable case 𝜆′𝑘(𝜏) = . . . = 𝜆′1(𝜏) = 𝑥; note that there are many

other ways the clocks can ring to cause 𝜆′𝑘 to jump, we are just choosing this one for the

lower bound. So the waiting time until 𝜆′𝑘 jumps to 𝑥 + 1 is upper-bounded by a sum

of 𝑘 independent Exp(𝑡𝑥) random variables. Denoting this sum of 𝑘 random variables by

𝐸𝑘,𝑥, it follows as before that

Pr(𝜆′𝑘(𝜏) ≤ 𝐻) ≤ Pr(
𝐻−1∑︁
𝑖=0

𝐸𝑘,𝑖 > 𝜏) (6.5.6)

where in contrast to (6.5.3) we have an inequality rather than an equality because we have

only bounded the waiting time rather than giving it exactly. By Markov’s inequality,

Pr(
𝐻−1∑︁
𝑖=0

𝐸𝑘,𝑖 > 𝜏) ≤ E[
∑︀𝐻−1

𝑖=0 𝐸𝑘,𝑖]

𝜏
=
𝑘𝑡−𝐻+1

𝜏

1− 𝑡𝐻

1− 𝑡
≤ 𝑘𝑡−𝐻+1

(1− 𝑡)𝜏
. (6.5.7)

Hence

Pr(𝜆′𝑘(𝜏)− log𝑡−1(𝜏)− 𝛼 ≥ −𝐷) ≥ 1− 𝑘𝑡𝐷+2−log𝑡−1 (𝜏)−𝛼

(1− 𝑡)𝜏
= 1− 𝑡𝐷

𝑘𝑡2−𝛼

1− 𝑡
. (6.5.8)

Since the bounds (6.5.5) and (6.5.8) are both independent of 𝜏 and both go to 1 as

𝐷 → ∞, together they show (6.5.2).

Our motivation for tightness was to show that the limit formulas of Theorem 6.3.1 and

Proposition 6.4.1 actually define a random variable, which was stated as Theorem 1.4.1

in the Introduction.

Proof of Theorem 1.4.1. For any 𝜒 ∈ R>0, taking 𝛼 = log𝑡((1 − 𝑡)𝜒) in Theorem 6.3.1
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and combining Proposition 6.5.1 with Prokhorov’s theorem shows that the formula (1.4.1)

defines a valid random variable. By Theorem 6.3.1 and Proposition 6.4.1, the right hand

sides of (1.4.3) and (1.4.1) are equal, completing the proof.

From now on we state limit results in terms of the random variables ℒ𝑘,𝜒 rather than

limit probabilities, which substantially declutters notation.

6.6 Examples of residue formula for ℒ𝑘,𝜒

In this section we compute more explicitly the infinite series formula in Theorem 1.4.1

for 𝑘 = 1, 𝑘 = 2, and an example case of 𝑘 = 3.

Corollary 6.6.1. In the notation of Theorem 1.4.1, for any 𝜒 ∈ R>0 the Z-valued random

variable ℒ1,𝜒 is defined by

Pr(ℒ1,𝜒 = 𝐿) =
1

(𝑡; 𝑡)∞

∑︁
𝑚≥0

𝑒−𝜒𝑡𝐿−𝑚 (−1)𝑚𝑡(
𝑚
2 )

(𝑡; 𝑡)𝑚
(6.6.1)

for all 𝐿 ∈ Z.

Proof. Follows immediately from Theorem 1.4.1, by noting that the sum over 𝜇 ∈ Sig𝑘−1

has only one term 𝜇 = () and is equal to (−1)𝐿−𝑑, and changing variables to𝑚 = 𝐿−𝑑.

In the case 𝑘 = 2, Theorem 1.4.1 has the following reduction.

Corollary 6.6.2. In the notation of Theorem 1.4.1, for any 𝐿 ∈ Z and 𝑥 ∈ Z≥0,

Pr(ℒ2,𝜒 = (𝐿+ 𝑥, 𝐿)) =
𝑡(

𝑥
2)

(𝑡; 𝑡)∞

∑︁
𝑚≥0

𝑒−𝜒𝑡𝐿−𝑚

(−1)𝑚𝑡𝑚
2+(𝑥−1)𝑚

×
𝑥∑︁

𝑖=0

(−1)𝑥−𝑖

(𝑡; 𝑡)𝑥−𝑖

⎡⎣𝑚+ 𝑖

𝑖

⎤⎦
𝑡

(︂
(𝑡𝐿−𝑚𝜒)𝑖+𝑚

(𝑖+𝑚)!
+

(𝑡𝐿−𝑚𝜒)𝑖+𝑚−11(𝑖+𝑚 ≥ 1)

(𝑖+𝑚− 1)!

)︂
(6.6.2)

Proof. Follows by substituting the branching rule definition Lemma 2.2.1 of 𝑄(𝜇−(𝑑))′ into

the formula in Theorem 1.4.1 and making the change of variables 𝑚 = 𝐿−𝑑. Since 𝑘−1 =

1, the 𝑄 polynomials appearing are all of the form 𝑄(1[𝑚+𝑖])(𝛾(𝑡
𝐿−𝑚(1−𝑡)𝜒), 𝛼(1); 0, 𝑡) for

0 ≤ 𝑖 ≤ 𝑥, which may be simply expanded by the branching rule to yield the above.
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Example 6.6.3. In the notation of Theorem 1.4.1,

Pr(ℒ3,𝜒 = (𝐿+ 2, 𝐿, 𝐿))

=
1

(𝑡; 𝑡)∞(𝑡; 𝑡)2

(︂
(𝑒−𝑡𝐿𝜒𝑡)

(︂
(𝑡; 𝑡)2

(𝑡𝐿𝜒)2

2!
− 𝑡(1− 𝑡2)

𝑡𝐿𝜒

1!
+ 𝑡2

)︂
− 𝑒−𝑡𝐿−1𝜒𝑡3

1− 𝑡

(︂
(1− 𝑡)4(1 + 𝑡)(3 + 2𝑡+ 𝑡2)

(𝑡𝐿−1𝜒)4

4!
+ (1− 𝑡)3(1 + 𝑡)𝑡3(1− 2𝑡− 𝑡2 − 𝑡3)

(𝑡𝐿−1𝜒)3

3!

+(1− 𝑡)2𝑡(−1 + 𝑡+ 𝑡2)
(𝑡𝐿−1𝜒)2

2!
− (1− 𝑡)2𝑡

𝑡𝐿−1𝜒

1!
+ (1− 𝑡)

)︂
+
𝑒−𝑡𝐿−2𝜒𝑡8

(𝑡; 𝑡)2

(︂
(1− 𝑡)6(1 + 𝑡)2(9 + 13𝑡+ 12𝑡2 + 7𝑡3 + 3𝑡4 + 𝑡5)

(𝑡𝐿−2𝜒)6

6!

+ (1− 𝑡)5(1 + 𝑡)2(4− 2𝑡− 4𝑡2 − 6𝑡3 − 4𝑡4 − 2𝑡5 − 𝑡6)
(𝑡𝐿−2𝜒)5

5!

+ (1− 𝑡)4(1− 𝑡)𝑡(−3 + 3𝑡2 + 2𝑡3 + 𝑡4)
(𝑡𝐿−2𝜒)4

4!

+(1− 𝑡)4(1 + 𝑡)𝑡(−2− 𝑡)
(𝑡𝐿𝜒)3

3!
+ (1− 𝑡)3(1− 𝑡)

(𝑡𝐿−2𝜒)2

2!

)︂
−𝑒

−𝑡𝐿−3𝜒𝑡16

(𝑡; 𝑡)3
(. . .) +

𝑒−𝑡𝐿−4𝜒𝑡27

(𝑡; 𝑡)4
(. . .) + . . .

)︃
,

(6.6.3)

where we have only computed the first three terms in the series.

We now show the computation. By Theorem 1.4.1 with a change of variables 𝐿− 𝑑 =
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𝑚,

LHS (6.6.3) =
1

(𝑡; 𝑡)∞

∑︁
𝑑≤𝐿

𝑒−𝜒𝑡𝑑𝑃(𝐿−𝑑+2,𝐿−𝑑,𝐿−𝑑)′(1, 𝑡, . . . ; 0, 𝑡)

×
∑︁

𝜇∈Sig𝑘−1

𝜇≺(𝐿+2,𝐿,𝐿)

𝑃(𝐿−𝑑+2,𝐿−𝑑,𝐿−𝑑)/(𝜇1−𝑑,𝜇2−𝑑)(−1; 𝑡, 0)𝑄(𝜇1−𝑑,𝜇2−𝑑)′(𝛾(𝑡
𝑑(1− 𝑡)𝜒), 𝛼(1); 0, 𝑡)

=
1

(𝑡; 𝑡)∞

∑︁
𝑚≥0

𝑒−𝜒𝑡𝐿−𝑚 𝑡(
𝑚+2

2 )+2(𝑚2 )

(𝑡; 𝑡)2(𝑡; 𝑡)0(𝑡; 𝑡)𝑚

⎛⎝⎡⎣2
0

⎤⎦
𝑡

(−1)𝑚𝑄(𝑚+2,𝑚)′(· · · ; 0, 𝑡)

+

⎡⎣2
1

⎤⎦
𝑡

(−1)𝑚+1𝑄(𝑚+1,𝑚)′(· · · ; 0, 𝑡) +

⎡⎣2
2

⎤⎦
𝑡

(−1)𝑚+2𝑄(𝑚,𝑚)′(· · · ; 0, 𝑡)

⎞⎠
=

1

(𝑡; 𝑡)∞(𝑡; 𝑡)2

∑︁
𝑚≥0

𝑒−𝑡𝐿−𝑚𝜒 𝑡
3
2
𝑚2+ 1

2
𝑚+1

(𝑡; 𝑡)𝑚
(−1)𝑚

× (𝑄(𝑚+2,𝑚)′(· · · ; 0, 𝑡)− (1 + 𝑡)𝑄(𝑚+1,𝑚)′(· · · ; 0, 𝑡) +𝑄(𝑚,𝑚)′(· · · ; 0, 𝑡)),

(6.6.4)

where we have used Lemma 2.2.14 and Proposition 2.2.15 and written · · · for the special-

ization 𝛾(𝑡𝐿−𝑚(1−𝑡)𝜒), 𝛼(1). It remains to compute the three Hall-Littlewood polynomials

in the last line of (6.6.4), and since there is not a closed form we compute the first few

terms 𝑚 = 0, 1.

For any 𝜆 ∈ Y the branching rule yields

𝑄𝜆(𝛾(𝑔), 𝛼(𝑎); 𝑞, 𝑡) =

𝜆1∑︁
𝑐=0

𝜑(𝑐)(𝑞, 𝑡)𝑎
𝑐

∑︁
𝐵∈𝑆𝑌 𝑇 (𝜆/(𝑐))

𝜑𝐵(𝑞, 𝑡)𝑔
|𝜆|−𝑐

(|𝜆| − 𝑐)!
. (6.6.5)

Here 𝑆𝑌 𝑇 (𝜆/(𝑐)) is the set of standard Young tableaux corresponding to this skew shape,

and for a tableau 𝐵 identified with a sequence of partitions (𝑐) = 𝜆(0) ≺ . . . ≺ 𝜆(|𝜆|−𝑐) = 𝜆,

we use the shorthand

𝜑𝐵(𝑞, 𝑡) :=

|𝜆|−𝑐∏︁
𝑖=1

𝜑𝜆(𝑖)/𝜆(𝑖−1)(𝑞, 𝑡) (6.6.6)

where 𝜑𝜆(𝑖)/𝜆(𝑖−1) is as in Definition 6. It follows from Lemma 2.2.14 that

𝜑(𝑐)(0, 𝑡) = (1− 𝑡𝑐), (6.6.7)

so it remains to compute the sum in (6.6.5). For each Hall-Littlewood polynomial appear-
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ing in (6.6.4) with 𝑚 = 0, 1, 2 we will enumerate the pairs (𝑐, 𝐵) with 𝐵 ∈ 𝑆𝑌 𝑇 (𝜆/(𝑐))

and give their coefficients.

m=0: We compute the coefficient of 𝑒−𝑡𝐿𝜒 in (6.6.3). Trivially 𝑄(0,0)′(· · · ; 0, 𝑡) = 1.

For 𝑄(1,0)′(· · · ; 0, 𝑡) we may either take 𝑐 = 0 or 𝑐 = 1: in each case there is one tableau,

and the cases contribute (1 − 𝑡)(𝑡𝐿𝜒)1/1! and 1 − 𝑡 respectively. For 𝑄(2,0)′(· · · ; 0, 𝑡) we

again may either take 𝑐 = 0 or 𝑐 = 1, and in both cases have one skew tableau3,

1

2
and

1
, (6.6.8)

yielding coefficients (𝑡; 𝑡)2(𝑡
𝐿𝜒)2/2! and (𝑡; 𝑡)2(𝑡

𝐿𝜒)/1! respectively in (6.6.5). Summing

these yields the desired coefficient.

m=1: We obtain

𝑄(1,1)′(· · · ; 0, 𝑡) = 𝑄(2)(· · · ; 0, 𝑡) = (1− 𝑡)2
(𝑡𝐿−1𝜒)2

2!
+ (1− 𝑡)2

(𝑡𝐿−1𝜒)1

1!
+ (1− 𝑡)

(𝑡𝐿−1𝜒)0

0!
(6.6.9)

with the three summands coming from the three skew tableaux

1 2 and 1 and . (6.6.10)

Similarly

𝑄(2,1)′(· · · ; 0, 𝑡) = (1− 𝑡)3(2 + 𝑡)
(𝑡𝐿−1𝜒)3

3!
+ (1− 𝑡)3(2 + 𝑡)

(𝑡𝐿−1𝜒)2

2!
+ (1− 𝑡)2

(𝑡𝐿−1𝜒)1

1!
(6.6.11)

with tableaux
1 2

3
and 1 3

2
(6.6.12)

contributing (1− 𝑡)3 and (1− 𝑡)2(1− 𝑡2) respectively to the degree 3 term,

1

2
and 2

1
(6.6.13)

3Here and elsewhere we denote the missing boxes, referred to as (𝑐) above, by colored boxes.
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also contributing (1− 𝑡)3 and (1− 𝑡)2(1− 𝑡2) respectively to the degree 2 term, and

1
(6.6.14)

contributing (1− 𝑡)2 to the degree 0. Finally,

𝑄(3,1)′(· · · ; 0, 𝑡) = 𝑄(2,1,1)(· · · ; 0, 𝑡) = (1− 𝑡)2(1− 𝑡2)
(𝑡𝐿−1𝜒)2

2!

+ ((1− 𝑡)3(1− 𝑡2)+ (1− 𝑡)2(1− 𝑡2)2+(1− 𝑡)2(1− 𝑡2)(1− 𝑡3))

(︂
(𝑡𝐿−1𝜒)3

3!
+

(𝑡𝐿−1𝜒)4

4!

)︂
.

(6.6.15)

m=2: Here the three relevant tableaux for the degree-4 term are

1 2

3

4

, 1 3

2

4

, 1 4

2

3

(6.6.16)

in the same order as their coefficients in (6.6.15). The skew tableaux for the degree 3

term are the same as for 𝑚 = 1, but with the 1 box replaced by and the other indices

shifted down by 1 to yield a skew standard Young tableau, and their coefficients are exactly

the same. Only one tableau contributes to the degree 2 term, namely

1

2

. (6.6.17)

Summing the above and simplifying yields the coefficient of the 𝑒−𝑡𝐿−2𝜒 term in (6.6.3).

One may, either by hand or by computer, generate the coefficient of any given re-

maining 𝑒−𝑡𝐿−𝑚𝜒 term for 𝑚 > 2, but the number of tableaux grows with 𝑚 and there

is no closed form of which we are aware. However, because 𝑒−𝑡𝐿−𝑚𝜒 shrinks very fast as

𝑚 increases (particularly if 𝑡 is not close to 1), it is in fact quite easy to compute good

approximations of this probability for any given values of 𝑡, 𝜒, 𝐿 by computing a small

number of terms.
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6.7 The case of pure 𝛼 specializations

For concreteness we did the computations in Section 6.3 for the Plancherel process 𝜆(𝜏),

but for matrix products it is desirable to compute a similar limit distribution of Hall-

Littlewood alpha Cauchy dynamics

Pr(𝜆→ 𝜈) = 𝑄𝜈/𝜆(𝛼1, 𝛼2, . . . ; 0, 𝑡)
𝑃𝜈(1, 𝑡, . . . ; 0, 𝑡)

𝑃𝜆(1, 𝑡, . . . ; 0, 𝑡)Π0,𝑡(𝛼1, . . . ; 1, 𝑡, . . .)
, (6.7.1)

see Proposition 6.8.1 below. Luckily our computations from Section 6.3 generalize straight-

forwardly. We use the power sum symmetric polynomial

𝑝1(𝛼1, 𝛼2, . . .) =
∑︁
𝑖≥1

𝛼𝑖 (6.7.2)

in that result to highlight the similarity with Theorem 6.3.1, where the Plancherel-

specialized 𝑝1 also appears in the formulas.

Proposition 6.7.1. Let 𝑘 ∈ Z≥1 and 𝛼 ∈ R, and let 𝜑 be a pure alpha Hall-Littlewood

nonnegative specialization determined by 𝛼 parameters 𝛼1 ≥ 𝛼2 ≥ . . . with 0 < 𝛼1 < 1.

Let 𝜆̃(𝑠), 𝑠 ∈ Z≥0 be distributed by the Hall-Littlewood measure

Pr(𝜆̃(𝑠) = 𝜆) =
𝑄𝜆(𝛼1[𝑠], 𝛼2[𝑠], . . . ; 0, 𝑡)𝑃𝜆(1, 𝑡, . . . ; 0, 𝑡)

Π0,𝑡(𝛼1[𝑠], 𝛼2[𝑠], . . . ; 1, 𝑡, . . .)
. (6.7.3)

Let (𝑠𝑛)𝑛∈N be any sequence with 𝑠𝑛
𝑛→∞−−−→ ∞ such that log𝑡 𝑠𝑛 converges in R/Z, and let

𝛼 be a lift of this limit to R. Then

(𝜆̃′𝑖(𝑠𝑛)− [log𝑡−1(𝑠𝑛) + 𝛼])1≤𝑖≤𝑘 → ℒ𝑘,𝑡𝛼𝑝1(𝛼1,𝛼2,...) (6.7.4)

where [·] is the nearest integer function.
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Proof. Since Sig𝑘 is a discrete set, it suffices to show convergence of probabilities

lim
𝑛→∞

Pr(𝜆̃′𝑖(𝑠𝑛)− [log𝑡−1(𝑠𝑛) + 𝛼] = 𝐿𝑖 for all 1 ≤ 𝑖 ≤ 𝑘)

=
(𝑡; 𝑡)𝑘−1

∞
𝑘!(2𝜋i)𝑘

𝑘−1∏︁
𝑖=1

𝑡(
𝐿𝑖−𝐿𝑘

2 )

(𝑡; 𝑡)𝐿𝑖−𝐿𝑖+1

∫︁
Γ̃
𝑘
𝑒𝑝1(𝛼1,𝛼2,...)𝑡

𝐿𝑘+𝛼(𝑤1+...+𝑤𝑘)

∏︀
1≤𝑖 ̸=𝑗≤𝑘(𝑤𝑖/𝑤𝑗; 𝑡)∞∏︀𝑘

𝑖=1(−𝑤
−1
𝑖 ; 𝑡)∞(−𝑡𝑤𝑖; 𝑡)∞

×
𝐿𝑘−1−𝐿𝑘∑︁

𝑗=0

𝑡(
𝑗+1
2 )

⎡⎣𝐿𝑘−1 − 𝐿𝑘

𝑗

⎤⎦
𝑡

𝑃(𝐿1−𝐿𝑘,...,𝐿𝑘−1−𝐿𝑘,𝑗)(𝑤
−1
1 , . . . , 𝑤−1

𝑘 ; 𝑡, 0)
𝑘∏︁

𝑖=1

𝑑𝑤𝑖

𝑤𝑖

, (6.7.5)

where if 𝑘 = 1 we interpret the sum on the last line as in Theorem 6.3.1.

Lemma 6.3.2 holds with 𝜆(𝜏) replaced by 𝜆̃(𝑠) on the left hand side and 𝛾(𝜏) replaced

by 𝜑[𝑠] (i.e. 𝜑 repeated 𝑠 times, recall Definition 10) on the right hand side, by the exact

same proof. Similarly, Lemma 6.3.3 holds with 𝜆(𝜏) replaced by 𝜆̃(𝑠) on the left hand

side and

𝑒
𝜏

1−𝑡
(𝑧1+...+𝑧𝑘) = Π0,𝑡(𝛾(𝜏); 𝛽(𝑧1, . . . , 𝑧𝑘)) (6.7.6)

on the right hand side replaced by

Π0,𝑡(𝜑[𝑠]; 𝛽(𝑧1, . . . , 𝑧𝑘)) =
∏︁

1≤𝑖≤𝑘
𝑗≥1

(1 + 𝛼𝑗𝑧𝑖). (6.7.7)

We now explain how the asymptotic analysis used to prove Theorem 6.3.1 carries over.

Let

𝑎 =
∑︁
𝑗≥1

𝛼𝑗, (6.7.8)

and

𝜂(𝑠) = (𝐿𝑖 + [log𝑡−1(𝑠) + 𝛼])1≤𝑖≤𝑘 (6.7.9)

and make the change of variables 𝑤𝑖 = 𝑡−𝜂𝑘(𝑠)𝑧𝑖 = 𝑠𝑡−𝛼−𝐿𝑘𝑧𝑖 · (1+𝑜(1)), where 𝑜(1) comes

from (log𝑡−1(𝑠)+𝛼)− [log𝑡−1(𝑠)+𝛼]. Fix a constant 𝛿 > 0 with 𝛼1 < (1+ 𝛿)−1 < 1. Then

the same manipulations as in the proof of Theorem 6.3.1 to consolidate the powers of 𝑡
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after the change of variables give

Pr((𝜆̃(𝑠)′𝑖)1≤𝑖≤𝑘 = 𝜂(𝑠)) =
(𝑡; 𝑡)𝑘−1

∞
𝑘!(2𝜋i)𝑘

𝑘−1∏︁
𝑖=1

𝑡(
𝐿𝑖−𝐿𝑘

2 )

(𝑡; 𝑡)𝐿𝑖−𝐿𝑖+1

∫︁
Γ(𝑠)𝑘

∏︁
1≤𝑖≤𝑘
𝑗≥1

(1 + 𝑡𝛼+𝐿𝑘𝛼𝑗𝑤𝑖/𝑠(1 + 𝑜(1)))𝑠

×
∏︀

1≤𝑖 ̸=𝑗≤𝑘(𝑤𝑖/𝑤𝑗; 𝑡)∞∏︀𝑘
𝑖=1(−𝑤

−1
𝑖 ; 𝑡)∞(−𝑡𝑤𝑖; 𝑡)𝜂𝑘(𝑠)

𝐿𝑘−1−𝐿𝑘∑︁
𝑗=0

𝑡(
𝑗+1
2 )

⎡⎣𝐿𝑘−1 − 𝐿𝑘

𝑗

⎤⎦
𝑡

× 𝑃(𝐿1−𝐿𝑘,...,𝐿𝑘−1−𝐿𝑘,𝑗)(𝑤
−1
1 , . . . , 𝑤−1

𝑘 ; 𝑡, 0)
𝑘∏︁

𝑖=1

𝑑𝑤𝑖

𝑤𝑖

,

(6.7.10)

where the contour Γ′(𝑠) is given in Figure 6-4, and is similar to the one Γ(𝜏) from the

proof of Theorem 6.3.1 with 𝜏 = 𝑠 but lies slightly to the right of it in general.

Im(𝑤𝑖)

Re(𝑤𝑖)

−𝑡−𝜉(𝜏) + i

−𝑡−𝜉(𝜏) − i

−(1 + 𝛿)𝑡−𝜂𝑘(𝑠) + i

−(1 + 𝛿)𝑡−𝜂𝑘(𝑠) − i

Figure 6-4: The contour Γ′(𝑠) with the analogous decomposition to (6.3.56) into Γ1(𝑠) in
blue and Γ′

2(𝑠) in red.

The reason for the slightly different contour from earlier is that now

Re(𝑡𝛼+𝐿𝑘𝛼𝑗𝑤𝑖/𝑠𝑛(1 + 𝑜(1))) ≥ −(1 + 𝛿)𝛼𝑗(1 + 𝑜(1)) > −1 (6.7.11)

for all 𝑤𝑖 ∈ Γ′(𝑠𝑛) and 𝑛 large enough that the 𝑜(1) term is sufficiently small. This implies
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that

⃒⃒⃒⃒
1 +

𝑡𝛼+𝐿𝑘𝛼𝑗

𝑠𝑛
𝑤𝑖(1 + 𝑜(1))

⃒⃒⃒⃒
=

√︃(︂
1 +

𝑡𝛼+𝐿𝑘𝛼𝑗(1 + 𝑜(1))

𝑠𝑛
Re(𝑤𝑖)

)︂2

+

(︂
𝑡𝛼+𝐿𝑘𝛼𝑗(1 + 𝑜(1))

𝑠𝑛
Im(𝑤𝑖)

)︂2

≤
⃒⃒⃒⃒
1 +

𝑡𝛼+𝐿𝑘𝛼𝑗(1 + 𝑜(1))

𝑠𝑛
Re(𝑤𝑖)

⃒⃒⃒⃒
+

⃒⃒⃒⃒
𝑡𝛼+𝐿𝑘𝛼𝑗(1 + 𝑜(1))

𝑠𝑛
Im(𝑤𝑖)

⃒⃒⃒⃒
≤ 1 +

𝑡𝛼+𝐿𝑘𝛼𝑗(1 + 𝑜(1))

𝑠𝑛
(Re(𝑤𝑖) + 1),

(6.7.12)

where the last line follows by (6.7.11) (to remove the absolute value on the first factor)

and the bound Im(𝑤𝑖) ≤ 1.

To simplify notation we express the integrand in terms of

𝑓(𝑤1, . . . , 𝑤𝑘) :=
(𝑡; 𝑡)𝑘−1

∞
𝑘!

𝑘−1∏︁
𝑖=1

𝑡(
𝐿𝑖−𝐿𝑘

2 )

(𝑡; 𝑡)𝐿𝑖−𝐿𝑖+1

∏︀
1≤𝑖 ̸=𝑗≤𝑘(𝑤𝑖/𝑤𝑗; 𝑡)∞∏︀𝑘
𝑖=1𝑤𝑖(−𝑤−1

𝑖 ; 𝑡)∞

×
𝐿𝑘−1−𝐿𝑘∑︁

𝑗=0

𝑡(
𝑗+1
2 )

⎡⎣𝐿𝑘−1 − 𝐿𝑘

𝑗

⎤⎦
𝑡

𝑃(𝐿1−𝐿𝑘,...,𝐿𝑘−1−𝐿𝑘,𝑗)(𝑤
−1
1 , . . . , 𝑤−1

𝑘 ; 𝑡, 0), (6.7.13)

which is the function 𝑓 of (6.3.60) without the exponential factor. Then similarly to

(6.3.61), (6.3.62) and (6.3.63), we must show

lim
𝑛→∞

1

(2𝜋i)𝑘

∫︁
Γ1(𝑠𝑛)𝑘

𝑓(𝑤1, . . . , 𝑤𝑘)𝑔𝑠𝑛(𝑤1, . . . , 𝑤𝑘)
∏︀

1≤𝑖≤𝑘
𝑗≥1

(1 + 𝑡𝛼+𝐿𝑘𝛼𝑗𝑤𝑖/𝑠𝑛(1 + 𝑜(1)))𝑠𝑛∏︀𝑘
𝑖=1(−𝑡𝑤𝑖; 𝑡)𝜂𝑘(𝑠𝑛)

(6.7.14)

− 𝑓(𝑤1, . . . , 𝑤𝑘)𝑒
𝑡𝛼+𝐿𝑘

∑︀𝑘
𝑖=1 𝑤𝑖∏︀𝑘

𝑖=1(−𝑡𝑤𝑖; 𝑡)∞

𝑘∏︁
𝑖=1

𝑑𝑤𝑖 (6.7.15)

+ lim
𝑛→∞

1

(2𝜋i)𝑘

∫︁
Γ′(𝑠𝑛)𝑘∖Γ1(𝑠𝑛)𝑘

𝑓(𝑤1, . . . , 𝑤𝑘)
∏︀

1≤𝑖≤𝑘
𝑗≥1

(︁
1 +

𝑤𝑖𝛼𝑗𝑡
𝛼+𝐿𝑘

𝑠𝑛(1+𝑜(1))

)︁𝑠𝑛
𝑔𝑠𝑛(𝑤1, . . . , 𝑤𝑘)∏︀𝑘

𝑖=1(−𝑡𝑤𝑖; 𝑡)𝜂𝑘(𝑠𝑛)

𝑘∏︁
𝑖=1

𝑑𝑤𝑖

(6.7.16)

− lim
𝑛→∞

1

(2𝜋i)𝑘

∫︁
Γ̃
𝑘 ∖Γ1(𝑠𝑛)𝑘

𝑓(𝑤1, . . . , 𝑤𝑘)𝑒
𝑡𝛼+𝐿𝑘

∑︀𝑘
𝑖=1 𝑤𝑖∏︀𝑘

𝑖=1(−𝑡𝑤𝑖; 𝑡)∞

𝑘∏︁
𝑖=1

𝑑𝑤𝑖 = 0, (6.7.17)

where 𝑔𝑠 is as in (6.3.44). We will show each line is 0 separately. The third line (6.7.17)

is exactly the same as (6.3.63) and has been shown in the proof of Theorem 6.3.1. For
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the first line (6.7.14), we have

∏︁
1≤𝑖≤𝑘
𝑗≥1

(1 + 𝑡𝛼+𝐿𝑘𝛼𝑗𝑤𝑖/𝑠𝑛(1 + 𝑜(1)))𝑠𝑛 = 𝑒𝑎𝑡
𝛼+𝐿𝑘

∑︀𝑘
𝑖=1 𝑤𝑖+𝑂(𝑤2

𝑖 /𝑠𝑛)

= 𝑒𝑎𝑡
𝛼+𝐿𝑘

∑︀𝑘
𝑖=1 𝑤𝑖(1 +𝑂(𝑤2

𝑖 /𝑠𝑛))

(6.7.18)

as 𝑛 → ∞. Combining with the estimate Lemma 6.3.6 and using that 𝑤2
𝑖 /𝑠 is 𝑜(1)

uniformly over 𝑤𝑖 ∈ Γ1(𝑠), (6.7.14) follows exactly as earlier with (6.3.61).

For the second line, we need an analogue of Lemma 6.3.5. By (6.7.12) and the ele-

mentary inequality (︁
1 +

𝑥

𝑛

)︁𝑛
≤ 𝑒𝑥, (6.7.19)

we have

∏︁
𝑗≥1

(1 + 𝑡𝛼+𝐿𝑘𝛼𝑗𝑤𝑖/𝑠(1 + 𝑜(1)))𝑠 ≤
∏︁
𝑗≥1

𝑒𝑡
𝛼+𝐿𝑘𝛼𝑗(Re(𝑤𝑖)+1) = 𝑒𝑎𝑡

𝛼+𝐿𝑘 (Re(𝑤𝑖)+1), (6.7.20)

for all large enough 𝑠 so that the (1 + 𝑜(1)) factor may be neglected. Hence

⃒⃒⃒⃒
⃒⃒⃒𝑓(𝑤1, . . . , 𝑤𝑘)

∏︁
1≤𝑖≤𝑘
𝑗≥1

(1 + 𝑡𝛼+𝐿𝑘𝛼𝑗𝑤𝑖/𝑠(1 + 𝑜(1)))𝑠

⃒⃒⃒⃒
⃒⃒⃒

≤ 𝐶
∏︁

1≤𝑖≤𝑘

𝑒𝑎𝑡
𝛼+𝐿𝑘 (Re(𝑤𝑖)+1)+ 𝑘−1

2
(log 𝑡−1)⌊log𝑡 |𝑤𝑖|⌋2+𝑐2⌊log𝑡 |𝑤𝑖|⌋, (6.7.21)

where we have bounded 𝑓 as in the proof of Lemma 6.3.5. The rest of the proof of the

vanishing of (6.7.16) is the same as for (6.3.62), with (6.7.21) in place of Lemma 6.3.5.

Remark 40. One may try to carry through the above argument with dual 𝛽 parameters

in the specialization, but the Cauchy kernel

Π0,𝑡(𝛽(𝑏1, 𝑏2, . . .); 𝛽(𝑧1, . . . , 𝑧𝑘)) = Π𝑡,0(𝑏1, . . . ; 𝑧1, . . . , 𝑧𝑘) =
1∏︀

1≤𝑖≤𝑘
𝑗≥1

(𝑏𝑗𝑧𝑖; 𝑡)∞
(6.7.22)

creates extra poles in the integrand, in contrast to the alpha and Plancherel cases treated

in Theorem 6.3.1 and Proposition 6.7.1. These probably can be dealt with, but we did

not attempt to carry this out since we only need the alpha and Plancherel cases for our

random matrix results.
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6.8 From 𝒮(∞) to matrix bulk limits

In this section we deduce for the limiting distribution of singular numbers in the bulk for

the processes 𝑋(𝜏) of Section 6.1 and for products of additive Haar matrices. We begin

with the first, which is slightly easier.

Proposition 6.8.1. Let 𝑐 ∈ R>0, and for each 𝑁 ∈ Z≥1 let 𝑋(𝜏)(𝑁), 𝜏 ∈ R≥0 be the

stochastic process 𝑋(𝑁,𝑐)
𝜏 of Definition 45. Fix 𝛼 ∈ R, and let 𝜏𝑁 ∈ 𝑡𝛼+Z, 𝑁 ≥ 1 be a

sequence of real numbers such that

1. 𝜏𝑁 → ∞ as 𝑁 → ∞, and

2. 𝑁 − log𝑡−1 𝜏𝑁 → ∞.

Then for any 𝑘 ∈ Z≥1,

(SN(𝑋(𝜏)(𝑁))′𝑖 − log𝑡−1 𝜏𝑁 − 𝛼)1≤𝑖≤𝑘 → ℒ𝑘,𝑐𝑡𝛼 (6.8.1)

in distribution.

Proof. By Proposition 6.5.1, it suffices to show that for any 𝑘 ∈ Z≥1 and integers 𝐿1 ≥

. . . ≥ 𝐿𝑘,

lim
𝑁→∞

Pr((SN(𝑋(𝜏)(𝑁))′𝑖 − log𝑡−1 𝜏𝑁 − 𝛼)1≤𝑖≤𝑘 = (𝐿1, . . . , 𝐿𝑘))

=
(𝑡; 𝑡)𝑘−1

∞
𝑘!(2𝜋i)𝑘

𝑘−1∏︁
𝑖=1

𝑡(
𝐿𝑖−𝐿𝑘

2 )

(𝑡; 𝑡)𝐿𝑖−𝐿𝑖+1

∫︁
Γ̃
𝑘
𝑒𝑐𝑡

𝐿𝑘+𝛼(𝑤1+...+𝑤𝑘)

∏︀
1≤𝑖 ̸=𝑗≤𝑘(𝑤𝑖/𝑤𝑗; 𝑡)∞∏︀𝑘

𝑖=1(−𝑤
−1
𝑖 ; 𝑡)∞(−𝑡𝑤𝑖; 𝑡)∞

×
𝐿𝑘−1−𝐿𝑘∑︁

𝑗=0

𝑡(
𝑗+1
2 )

⎡⎣𝐿𝑘−1 − 𝐿𝑘

𝑗

⎤⎦
𝑡

𝑃(𝐿1−𝐿𝑘,...,𝐿𝑘−1−𝐿𝑘,𝑗)(𝑤
−1
1 , . . . , 𝑤−1

𝑘 ; 𝑡, 0)
𝑘∏︁

𝑖=1

𝑑𝑤𝑖

𝑤𝑖

, (6.8.2)

where if 𝑘 = 1 we interpret the sum on the last line as in Theorem 6.3.1. By Theorem 1.4.4

and Corollary 6.2.5,

SN(𝑋(𝜏)(𝑁)) = 𝜆(𝑁)

(︂
𝑐
1− 𝑡

1− 𝑡𝑁
𝜏

)︂
(6.8.3)

in (multi-time) distribution, where 𝜆(𝑁) is as in Definition 47. We claim that it suffices
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to show

lim
𝑁→∞

Pr((𝜆(𝑁)(𝜏𝑁)
′
𝑖 − log𝑡−1 𝜏𝑁 − 𝛼)1≤𝑖≤𝑘 = (𝐿1, . . . , 𝐿𝑘))

=
(𝑡; 𝑡)𝑘−1

∞
𝑘!(2𝜋i)𝑘

𝑘−1∏︁
𝑖=1

𝑡(
𝐿𝑖−𝐿𝑘

2 )

(𝑡; 𝑡)𝐿𝑖−𝐿𝑖+1

∫︁
Γ̃
𝑘
𝑒

𝑡𝐿𝑘+𝛼

1−𝑡
(𝑤1+...+𝑤𝑘)

∏︀
1≤𝑖 ̸=𝑗≤𝑘(𝑤𝑖/𝑤𝑗; 𝑡)∞∏︀𝑘

𝑖=1(−𝑤
−1
𝑖 ; 𝑡)∞(−𝑡𝑤𝑖; 𝑡)∞

×
𝐿𝑘−1−𝐿𝑘∑︁

𝑗=0

𝑡(
𝑗+1
2 )

⎡⎣𝐿𝑘−1 − 𝐿𝑘

𝑗

⎤⎦
𝑡

𝑃(𝐿1−𝐿𝑘,...,𝐿𝑘−1−𝐿𝑘,𝑗)(𝑤
−1
1 , . . . , 𝑤−1

𝑘 ; 𝑡, 0)
𝑘∏︁

𝑖=1

𝑑𝑤𝑖

𝑤𝑖

. (6.8.4)

First note that replacing 𝜏𝑁 by 𝑐(1− 𝑡)𝜏𝑁 and 𝛼 by 𝛼− log𝑡−1(𝑐(1− 𝑡)) in (6.8.4) yields

(6.8.2). Furthermore, since 𝑁 − log𝑡−1 𝜏𝑁 → ∞ as 𝑁 → ∞, we have that

𝑐
1− 𝑡

1− 𝑡𝑁
𝜏𝑁 = 𝑐(1− 𝑡)𝜏𝑁 + 𝑜(1), (6.8.5)

and 𝜆(𝑁) is a Poisson jump process with the exit rate from any state bounded above, hence

if (𝜆(𝑁)(𝑐(1 − 𝑡)𝜏𝑁)
′
𝑖 − log𝑡−1(𝜏𝑁) − 𝛼)1≤𝑖≤𝑘 has a limiting distribution then (𝜆(𝑁)(𝑐(1 −

𝑡)𝜏𝑁/(1− 𝑡𝑁))′𝑖 − log𝑡−1(𝜏𝑁)− 𝛼)1≤𝑖≤𝑘 must have the same limiting distribution. Thus it

suffices to show (6.8.4), and the remainder of the proof consists of doing so by arguing

that the Hall-Littlewood processes 𝜆(𝑁)(𝜏) and 𝜆(𝜏) (the latter of which was analyzed in

Theorem 6.3.1) are not so different on the timescale we consider.

Define stopping times

𝑇
(𝑁)
𝑁 := inf({𝜏 ∈ R≥0 : 𝜆

(𝑁)(𝜏)′1 = 𝑁})

𝑇𝑁 := inf({𝜏 ∈ R≥0 : 𝜆(𝜏)
′
1 = 𝑁})

Ξ𝑁 := inf
𝑗≥𝑁+1

(time at which clock 𝑗 rings for 𝜆(𝜏)).

(6.8.6)

Conditionally on the event that clocks 𝑁 + 1, 𝑁 + 2, . . . do not ring on a given time

interval, both 𝜆
(𝑁)
𝑖 (𝜏), 1 ≤ 𝑖 ≤ 𝑁 and 𝜆𝑖(𝜏), 1 ≤ 𝑖 ≤ 𝑁 have the same local dynamics

controlled by 𝑁 Poisson clocks on that interval, by Corollary 6.2.5. Taking the time

interval [0, 𝜏𝑁 ], since min(𝜏𝑁 , 𝑇
(𝑁)
𝑁 ) and min(𝜏𝑁 , 𝑇𝑁) are measurable with respect to the

𝜎-algebras generated by 𝜆(𝑁)([0, 𝜏𝑁 ]) and 𝜆([0, 𝜏𝑁 ]) respectively, this implies that

Law(min(𝜏𝑁 , 𝑇
(𝑁)
𝑁 )) = Law(min(𝜏𝑁 , 𝑇𝑁)|Ξ𝑁 > 𝜏𝑁) (6.8.7)
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and

Law((𝜆(𝑁)(𝜏𝑁)
′
1, . . . , 𝜆

(𝑁)(𝜏𝑁)
′
𝑘)|𝑇

(𝑁)
𝑁 > 𝜏𝑁) = Law((𝜆(𝜏𝑁)

′
1, . . . , 𝜆(𝜏𝑁)

′
𝑘)|𝑇𝑁 > 𝜏𝑁 and Ξ𝑁 > 𝜏𝑁).

(6.8.8)

The explicit description of our dynamics implies the distributional equality

Law(𝑇𝑁) = Law

(︃
𝑁−1∑︁
𝑖=0

𝑌𝑡𝑖/(1−𝑡)

)︃
(6.8.9)

where 𝑌𝑟 is an exponential distribution with rate 𝑟. Because 𝑁 − log𝑡−1 𝜏𝑁 → ∞,

E[𝑌𝑡𝑁−1/(1−𝑡)] = (1− 𝑡)𝑡1−𝑁 ≫ 𝜏𝑁 , (6.8.10)

and the fluctuations of 𝑌𝑡𝑁−1/(1−𝑡) are of lower order than its mean, hence

lim
𝑁→∞

Pr(𝑇𝑁 > 𝜏𝑁) = 1. (6.8.11)

Furthermore, since the first time one of the clocks 𝑁 + 1, 𝑁 + 2, . . . rings follows an

exponential distribution with rate 𝑡𝑁+1/(1 − 𝑡), the hypothesis 𝑁 − log𝑡−1 𝜏𝑁 → ∞ is

exactly what is needed to guarantee that the probability that any of clocks𝑁+1, 𝑁+2, . . .

rings on the interval we are concerned with is asymptotically negligible, i.e.

lim
𝑁→∞

Pr(Ξ𝑁 ≤ 𝜏𝑁) = 0. (6.8.12)

From (6.8.11) and (6.8.12) it follows that

lim
𝑁→∞

Pr(𝑇𝑁 > 𝜏𝑁 and Ξ𝑁 > 𝜏𝑁) = 1. (6.8.13)

By (6.8.7) follows by (6.8.12) and (6.8.13),

lim
𝑁→∞

Pr(𝑇
(𝑁)
𝑁 > 𝜏𝑁) = lim

𝑁→∞
Pr(𝑇𝑁 > 𝜏𝑁 |Ξ𝑁 > 𝜏𝑁)

= lim
𝑁→∞

Pr(𝑇𝑁 > 𝜏𝑁 and Ξ𝑁 > 𝜏𝑁)

Pr(Ξ𝑁 > 𝜏𝑁)

= 1.

(6.8.14)
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From (6.8.14) it follows that

LHS(6.8.4) = lim
𝑁→∞

Pr((𝜆(𝑁)(𝜏𝑁)
′
𝑖 − log𝑡−1(𝜏𝑁))1≤𝑖≤𝑘 = (𝐿𝑖 + 𝛼)1≤𝑖≤𝑘|𝑇 (𝑁)

𝑁 > 𝜏𝑁) · Pr(𝑇 (𝑁)
𝑁 > 𝜏𝑁)

+ lim
𝑁→∞

Pr((𝜆(𝑁)(𝜏𝑁)
′
𝑖 − log𝑡−1(𝜏𝑁))1≤𝑖≤𝑘 = (𝐿𝑖 + 𝛼)1≤𝑖≤𝑘|𝑇 (𝑁)

𝑁 ≤ 𝜏𝑁) · Pr(𝑇 (𝑁)
𝑁 ≤ 𝜏𝑁)

= lim
𝑁→∞

Pr((𝜆(𝑁)(𝜏𝑁)
′
𝑖 − log𝑡−1(𝜏𝑁))1≤𝑖≤𝑘 = (𝐿𝑖 + 𝛼)1≤𝑖≤𝑘|𝑇 (𝑁)

𝑁 > 𝜏𝑁).

(6.8.15)

By (6.8.7),

RHS(6.8.15) = lim
𝑁→∞

Pr((𝜆(𝜏𝑁)
′
𝑖 − log𝑡−1(𝜏𝑁))1≤𝑖≤𝑘 = (𝐿𝑖 + 𝛼)1≤𝑖≤𝑘|𝑇𝑁 > 𝜏𝑁 and Ξ𝑁 > 𝜏𝑁)

= lim
𝑁→∞

1

Pr(𝑇𝑁 > 𝜏𝑁 and Ξ𝑁 > 𝜏𝑁)
(Pr((𝜆(𝜏𝑁)

′
𝑖 − log𝑡−1(𝜏𝑁))1≤𝑖≤𝑘 = (𝐿𝑖 + 𝛼)1≤𝑖≤𝑘)

−Pr((𝜆(𝜏𝑁)
′
𝑖 − log𝑡−1(𝜏𝑁))1≤𝑖≤𝑘 = (𝐿𝑖 + 𝛼)1≤𝑖≤𝑘 and (𝑇𝑁 ≤ 𝜏𝑁 or Ξ𝑁 ≤ 𝜏𝑁)) .

(6.8.16)

Since Pr(𝑇𝑁 > 𝜏𝑁 and Ξ𝑁 > 𝜏𝑁) = 1− 𝑜(1) by (6.8.13), we have

RHS(6.8.16) = lim
𝑁→∞

Pr((𝜆(𝜏𝑁)
′
𝑖 − log𝑡−1(𝜏𝑁))1≤𝑖≤𝑘 = (𝐿𝑖 + 𝛼)1≤𝑖≤𝑘). (6.8.17)

By Theorem 6.3.1, the above is equal to the right hand side of (6.8.2), and this completes

the proof.

For matrix products, the constraint that the number of matrix products is an in-

teger rather than a real number forces us to make a slightly messier statement (recall

Theorem 1.4.2) than with continuous-time processes, but it is essentially the same, and

the argument likewise goes by matching to a Hall-Littlewood process with one infinite

principal specialization (though in this case the other specialization is alpha rather than

Plancherel).

Proof of Theorem 1.4.2. To control subscripts we abuse notation we write 𝑁 for 𝑁𝑗 be-

low, so all limits should be interpreted as along our subsequence (𝑁𝑗)𝑗≥1. By Proposi-
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tion 6.5.1 it suffices to show

lim
𝑁→∞

Pr((SN(𝐴(𝑁)
𝑠𝑁

· · ·𝐴(𝑁)
1 )′𝑖 − [log𝑡−1(𝑠) + 𝛼])1≤𝑖≤𝑘 = (𝐿1, . . . , 𝐿𝑘))

=
(𝑡; 𝑡)𝑘−1

∞
𝑘!(2𝜋i)𝑘

𝑘−1∏︁
𝑖=1

𝑡(
𝐿𝑖−𝐿𝑘

2 )

(𝑡; 𝑡)𝐿𝑖−𝐿𝑖+1

∫︁
Γ̃
𝑘
𝑒

𝑡𝐿𝑘+𝛼+1

1−𝑡
(𝑤1+...+𝑤𝑘)

∏︀
1≤𝑖 ̸=𝑗≤𝑘(𝑤𝑖/𝑤𝑗; 𝑡)∞∏︀𝑘

𝑖=1(−𝑤
−1
𝑖 ; 𝑡)∞(−𝑡𝑤𝑖; 𝑡)∞

×
𝐿𝑘−1−𝐿𝑘∑︁

𝑗=0

𝑡(
𝑗+1
2 )

⎡⎣𝐿𝑘−1 − 𝐿𝑘

𝑗

⎤⎦
𝑡

𝑃(𝐿1−𝐿𝑘,...,𝐿𝑘−1−𝐿𝑘,𝑗)(𝑤
−1
1 , . . . , 𝑤−1

𝑘 ; 𝑡, 0)
𝑘∏︁

𝑖=1

𝑑𝑤𝑖

𝑤𝑖

, (6.8.18)

where if 𝑘 = 1 we interpret the sum on the last line as in Theorem 6.3.1. For any 𝑠 ∈ N, let

𝜆̃(𝑠) be a Hall-Littlewood measure with one specialization 1, 𝑡, . . . and one 𝛼(𝑡, 𝑡2, . . .)[𝑠].

Then Proposition 6.7.1 applies with 𝑎 = 𝑡+ 𝑡2 + . . . = 𝑡/(1− 𝑡), yielding

lim
𝑁→∞

Pr(𝜆̃′𝑖(𝑠𝑁)− [log𝑡−1(𝑠𝑁) + 𝛼] = 𝐿𝑖 for all 1 ≤ 𝑖 ≤ 𝑘)

=
(𝑡; 𝑡)𝑘−1

∞
𝑘!(2𝜋i)𝑘

𝑘−1∏︁
𝑖=1

𝑡(
𝐿𝑖−𝐿𝑘

2 )

(𝑡; 𝑡)𝐿𝑖−𝐿𝑖+1

∫︁
Γ̃
𝑘
𝑒

𝑡𝐿𝑘+𝛼+1

1−𝑡
(𝑤1+...+𝑤𝑘)

∏︀
1≤𝑖 ̸=𝑗≤𝑘(𝑤𝑖/𝑤𝑗; 𝑡)∞∏︀𝑘

𝑖=1(−𝑤
−1
𝑖 ; 𝑡)∞(−𝑡𝑤𝑖; 𝑡)∞

×
𝐿𝑘−1−𝐿𝑘∑︁

𝑗=0

𝑡(
𝑗+1
2 )

⎡⎣𝐿𝑘−1 − 𝐿𝑘

𝑗

⎤⎦
𝑡

𝑃(𝐿1−𝐿𝑘,...,𝐿𝑘−1−𝐿𝑘,𝑗)(𝑤
−1
1 , . . . , 𝑤−1

𝑘 ; 𝑡, 0)
𝑘∏︁

𝑖=1

𝑑𝑤𝑖

𝑤𝑖

. (6.8.19)

Let 𝜆̃(𝑁)(𝑠), 𝑠 ∈ Z≥0 be a Hall-Littlewood process with transition probabilities

Pr(𝜆̃(𝑁)(𝑠+1) = 𝜈|𝜆̃(𝑁)(𝑠) = 𝜅) = 𝑄𝜈/𝜅(𝑡, 𝑡
2, . . . ; 0, 𝑡)

𝑃𝜈(1, . . . , 𝑡
𝑁−1; 0, 𝑡)

Π0,𝑡(𝑡, 𝑡2, . . . ; 1, . . . , 𝑡𝑁−1)𝑃𝜅(1, . . . , 𝑡𝑁−1; 0, 𝑡)
(6.8.20)

(and initial condition ∅ ∈ Y). By Proposition 5.2.2, both 𝜆̃ and 𝜆̃(𝑁) have a sampling

algorithm4 for which we briefly recall the important points. First, the random step

𝜆̃(𝑠) ↦→ 𝜆̃(𝑠 + 1) involves an infinite number of substeps, indexed by the alpha variables

𝑡, 𝑡2, . . ., of which with probability 1 only finitely many are nontrivial. Second, each such

substep involves sampling random variables 𝑋1, . . . , 𝑋𝑁 (for 𝜆̃(𝑁)) or 𝑋1, 𝑋2, . . . (for 𝜆̃)

and applying an ‘insertion map’

(next state) = 𝜄𝑁(𝑋1, . . . , 𝑋𝑁 ; (initial state)) (6.8.21)

4It was stated for simplicity in the case where the fixed principal specialization is finite, but holds for
an infinite principal specialization—and hence 𝜆̃—as well.

246



(for 𝜆̃(𝑁)) or

(next state) = 𝜄∞(𝑋1, 𝑋2, . . . ; (initial state)) (6.8.22)

(for 𝜆̃). These insertion maps have the property that for any 𝜅 ∈ Y𝑁 , if 0 = 𝑋𝑁+1 =

𝑋𝑁+2 = . . ., then

𝜄𝑁(𝑋1, . . . , 𝑋𝑁 ;𝜅) = 𝜄∞(𝑋1, 𝑋2, . . . ;𝜅). (6.8.23)

Now define stopping times

𝑇
(𝑁)
𝑁 := min({𝑠 ∈ Z≥0 : 𝜆̃

(𝑁)(𝑠)′1 = 𝑁})

𝑇𝑁 := min({𝑠 ∈ Z≥0 : 𝜆̃(𝑠)
′
1 = 𝑁})

Ξ𝑁 := min{𝑠 ∈ Z≥0 : at some substep of 𝜆̃(𝑠) ↦→ 𝜆̃(𝑠+ 1), max
𝑗≥𝑁+1

𝑋𝑗 ≥ 1}

(6.8.24)

The rest of the proof proceeds exactly as for Proposition 6.8.1 by showing that the

variables 𝑋𝑁+1, 𝑋𝑁+2, . . . will all be 0 with high probability on [0, 𝑠𝑁 ], hence 𝜆̃′𝑖(𝑠𝑁) =

𝜆̃(𝑁)(𝑠𝑁)
′
𝑖 by the properties of the sampling algorithm outlined above, and then using

(6.8.19) in place of (6.8.4).

Remark 41. The results of Chapter 5 show that the singular numbers of 𝑁×𝑁 products

of corners of Haar-distributed elements of GL𝐷(Z𝑝), 𝐷 > 𝑁 also form a Hall-Littlewood

process, and Theorem 1.4.2 carries over mutatis mutandis to that setting with no changes

other than the parameter of ℒ𝑘,·.
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Chapter 7

Universal local limits for 𝑝-adic matrix

products

7.1 Constructing the limit process

In this section we construct the bulk and edge limit processes mentioned in the Introduc-

tion, by coupling together many copies of the process 𝒮𝜇,∞(𝑇 ) discussed in the previous

section. We will give a uniform construction with general initial condition which includes

both the bulk and edge cases, and to set up this formalism we define an extended version

of earlier signature notation. Throughout this section, 𝑡 ∈ (0, 1) is a fixed real parameter.

Definition 48. Let Z̄ = Z ∪ {±∞}. We define

Sig𝑛 := {(𝜆1, . . . , 𝜆𝑛) ∈ Z𝑛 : 𝜆1 ≥ 𝜆2 ≥ . . . ≥ 𝜆𝑛}

and ̂︁Sig𝑛 := {(𝜆1, . . . , 𝜆𝑛) ∈ Z̄𝑛 : 𝜆1 ≥ 𝜆2 ≥ . . . ≥ 𝜆𝑛},

where we take ∞ > 𝑥 > −∞ for any 𝑥 ∈ Z. Furthermore we define the infinite versions

Sig∞ := {(𝜇𝑛)𝑛∈Z≥1
∈ ZZ≥1 : 𝜇𝑛+1 ≤ 𝜇𝑛 for all 𝑛 ∈ Z≥1}

and ̂︁Sig∞ := {(𝜇𝑛)𝑛∈Z ∈ Z̄Z≥1 : 𝜇𝑛+1 ≤ 𝜇𝑛 for all 𝑛 ∈ Z≥1},
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and the bi-infinite versions

Sig2∞ := {(𝜇𝑛)𝑛∈Z ∈ ZZ : 𝜇𝑛+1 ≤ 𝜇𝑛 for all 𝑛 ∈ Z}

and ̂︁Sig2∞ := {(𝜇𝑛)𝑛∈Z ∈ Z̄Z : 𝜇𝑛+1 ≤ 𝜇𝑛 for all 𝑛 ∈ Z}.

For 𝑥 ∈ Z̄, we write (𝑥[2∞]) = (𝑥)𝑛∈Z. For any finite interval 𝐼 ⊂ Z, define

𝜋𝐼 : ̂︁Sig2∞ → ̂︁Sig|𝐼|
𝜇 ↦→ (𝜇𝑖)𝑖∈𝐼

and for a half-infinite interval 𝐼 = [𝑎,∞) define 𝜋𝐼 : ̂︁Sig2∞ → ̂︁Sig∞ in the same way.

We refer to the elements 𝜆𝑛, 𝜇𝑛 above as parts, as is standard terminology with integer

partitions. Finally, we use Sig+𝑛 , ̂︁Sig+𝑛 , Sig+2∞, ̂︁Sig+2∞ to denote the subsets where all parts

are either ≥ 0 or equal to −∞.

Definition 49. Given 𝜇 = (𝜇𝑛)𝑛∈Z ∈ ̂︁Sig2∞, we define 𝜇′ = (𝜇′
𝑛)𝑛∈Z ∈ ̂︁Sig2∞ by

𝜇′
𝑖 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
the unique index 𝑗 such that 𝜇𝑗 ≥ 𝑖, 𝜇𝑗+1 < 𝑖 lim𝑛→∞ 𝜇−𝑛 ≥ 𝑖 > lim𝑛→∞ 𝜇𝑛

−∞ 𝑖 > lim𝑛→∞ 𝜇−𝑛

∞ 𝑖 ≤ lim𝑛→∞ 𝜇𝑛

.

Though in Theorem 1.5.1 we stated that the limit process 𝒮𝜇,2∞ is a bulk limit of the

processes 𝒮𝜈,𝑛 with 𝑛 particles, for the construction it turns out to be much better to

work with the ‘half-infinite’ version 𝒮𝜇,∞(𝜏) defined previously in Definition 2. To couple

many such processes together, it is helpful to define notation for certain shifted versions.

Definition 50. For 𝜇 ∈ ̂︁Sig∞ and 𝑡 ∈ (0, 1), we define the stochastic process

𝒮𝜇,𝑛(𝑇 ) = (𝒮𝜇,𝑛
−𝑛 (𝑇 ),𝒮

𝜇,𝑛
−𝑛+1(𝑇 ), . . .) = (𝒮𝜇,∞

1 (𝑡−𝑛−1𝑇 ),𝒮𝜇,∞
2 (𝑡−𝑛−1𝑇 ), . . .). (7.1.1)

Strictly speaking, the description in Definition 50 only make sense if finitely many

Poisson clocks ring on any interval. This is simple to show, and we do so in Lemma 7.1.1

once we have set up the relevant probability space. We also emphasize that 𝒮𝜇,𝑛(𝑇 ) is

250



merely a notational shift of 𝒮𝜇,∞(𝑇 ) as defined in Definition 2, where we make the indices

start at −𝑛 rather than 1, and speed up time by a factor of 𝑡−𝑛−1 so that 𝒮𝜇,𝑛
1 (𝑇 ) has

jump rate 𝑡, similarly to 𝒮𝜇,𝑛
1 (𝑇 ) and 𝒮𝜇,∞

1 (𝑇 ).

Definition 51. Define the probability space

Ω :=
∏︁
𝑖∈Z

RN
≥0

with the obvious product 𝜎-algebra. Define the probability measure

Poiss :=
∏︁
𝑖∈Z

Poiss𝑡𝑖 ∈ ℳ(Ω)

where Poiss𝑟 ∈ ℳ(RN
≥0) is the product over the N factors of the distributions of rate-𝑟

exponential variables.

Clearly Poiss𝑟 may be identified with the law of a rate 𝑟 Poisson jump process on

time 𝑇 ≥ 0 by viewing each R≥0 factor as specifying the waiting time between adjacent

jumps (or in the case of the first factor, the waiting time between time 𝑇 = 0 and the

first jump). Heuristically, 𝒮𝜇,2∞(𝑇 ) is defined by giving each 𝒮𝜇,2∞
𝑖 (𝑇 ) an independent

exponential clock with rate 𝑡𝑖, and having 𝒮𝜇,2∞
𝑖 (𝑇 ) jump when its clock rings; here, Ω

is exactly the space of possible sequences of ring times of all of the Z-many clocks, and

the measure Poiss is exactly the desired Poisson measure on the ring times. The main

difficulty consists in making sense of this when lim𝑛→−∞ 𝜇𝑛 is finite, i.e. when infinitely

many particles with rates in increasing geometric progression are all located at a single

point and so infinitely many of their clocks ring on any time interval.

However, we first make formal the above claim that with probability 1 only finitely

many clocks with indices belonging to any half-infinite interval [𝑖,∞) ring on a given time

interval, which was necessary for Definition 50 to make sense. First define notation

jumps : R≥0 ×
(︀
RN

≥0

)︀
→ Z≥0

(𝑇, (𝑎1, 𝑎2, . . .)) ↦→ sup ({𝑛 ≥ 0 :
𝑛∑︁

𝑖=1

𝑎𝑖 ≤ 𝑇 })
(7.1.2)

i.e. jumps(𝑇, ·) tells how many times the clock parametrized by the element of RN
≥0 has

rung by time 𝑇 .
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Definition 52. Denote

̃︀Ω := {𝜔 ∈ Ω :
∞∑︁
𝑗=𝑖

jumps(𝑇, 𝜋𝑗(𝜔)) <∞ holds for every 𝑇 ≥ 0 and 𝑖 ∈ Z}.

Lemma 7.1.1. The set ̃︀Ω ⊂ Ω has full measure.

Proof. It is an elementary computation with exponential random variables that for any

𝑇 and 𝑖,
∞∑︁
𝑗=𝑖

jumps(𝑇, 𝜋𝑗(𝜔)) <∞ (7.1.3)

with probability 1. Hence the set of 𝜔 ∈ Ω for which (7.1.3) holds for all 𝑇 ′ ∈ [0, 𝑇 ] is full

measure, and the complement Ω ∖ ̃︀Ω is therefore a union over 𝑖 ∈ Z, 𝑇 ∈ N of measure 0

sets. It therefore has measure 0, so ̃︀Ω has full measure.

We may couple the processes 𝒮𝜋[−𝑛,∞)(𝜇),𝑛(𝑇 ) on the probability space ̃︀Ω as follows.

Simply note that any sequence of clock ring times for 𝒮𝜋[−𝑛,∞)(𝜇),𝑛
−𝑛 ,𝒮𝜋[−𝑛,∞)(𝜇),𝑛

−𝑛+1 , . . ., viewed

as an element of
∏︀∞

𝑖=−𝑛 RN
≥0, determines (𝒮𝜋[−𝑛,∞)(𝜇),𝑛

−𝑛 (𝑇 ),𝒮𝜋[−𝑛,∞)(𝜇),𝑛

−𝑛+1 (𝑇 ), . . .) for all 𝑇 ≥ 0

by the jump rules of Definition 2. The random variable 𝒮𝜋[−𝑛,∞)(𝜇),𝑛(𝑇 ) is then a function

on this probability space,

𝒮𝜋[−𝑛,∞)(𝜇),𝑛(𝑇 ) :
∞∏︁

𝑖=−𝑛

RN
≥0 → ̂︁Sig∞

for any 𝑇 ≥ 0. Therefore

∏︁
𝑛≥1

𝒮𝜋[−𝑛,∞)(𝜇),𝑛(𝑇 ) ∘ Proj[−𝑛,∞) : ̃︀Ω →
∏︁
𝑛≥1

̂︁Sig∞
defines a coupling of all random variables {𝒮𝜋[−𝑛,∞)(𝜇),𝑛(𝑇 ) : 𝑛 ≥ 1} on ̃︀Ω, where Proj[−𝑛,∞)

denotes projection onto coordinates −𝑛,−𝑛 + 1, . . .. For each 𝜔 ∈ ̃︀Ω we denote by

(𝒮𝜋[−𝑛,∞)(𝜇),𝑛

𝑖 (𝑇 ))(𝜔) ∈ Z̄ the corresponding coordinate of 𝒮𝜋[−𝑛,∞)(𝜇),𝑛(𝑇 ) under 𝜔. Fi-

nally, we may define the desired object.

Definition 53. For any 𝜇 ∈ ̂︁Sig2∞, we define the continuous-time stochastic process
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𝒮𝜇,2∞
𝑇 , 𝑇 ≥ 0 on ̂︁Sig2∞ by setting

𝒮𝜇,2∞(𝑇 ) : ̃︀Ω → ̂︁Sig2∞
𝜔 ↦→

(︁
lim
𝑛→∞

(𝒮𝜋[−𝑛,∞)(𝜇),𝑛

𝑖 (𝑇 ))(𝜔)
)︁
𝑖∈Z

(7.1.4)

for each 𝑇 ≥ 0.

We note that the limit must be taken along 𝑛 ∈ Z≥−𝑖, as 𝒮𝜋[−𝑛,∞)(𝜇),𝑛

𝑖 (𝑇 ))(𝜔) is only

well-defined if 𝑛 ≥ −𝑖.

Proposition 7.1.2. For any 𝑇 ≥ 0 and 𝜔 ∈ ̃︀Ω, the limit (7.1.4) exists and defines â︁Sig2∞-valued random variable1. Furthermore, the resulting stochastic process in 𝑇 ≥ 0 is

Markov.

We first establish a preparatory lemma. This

Lemma 7.1.3. For every 𝑛 ∈ Z≥1, 𝜔 ∈ ̃︀Ω, 𝑇 ∈ R≥0, 𝑖 ∈ Z≥−𝑛, the inequality

(𝒮𝜋[−𝑛,∞)(𝜇),𝑛

𝑖 (𝑇 ))(𝜔) ≥ (𝒮𝜋[−𝑛−1,∞)(𝜇),𝑛+1

𝑖 (𝑇 ))(𝜔) (7.1.5)

holds.

Lemma 7.1.3 is a purely deterministic/combinatorial fact, and the idea behind it is

that 𝒮 ·,𝑛+1
𝑇 has an extra particle in front compared to 𝒮 ·,𝑛

𝑇 , which may block the others

but will never bring them further ahead. It holds for the half-infinite processes 𝒮 but

not for the finite 𝑛 approximations 𝒮𝜋[−𝑛,𝑛](𝜇),𝑛, as these do not account for pushing by

higher-indexed particles. This is the main reason we use the former process rather than

the latter in our construction.

Proof of Lemma 7.1.3. Since 𝜔 ∈ ̃︀Ω, the clocks −𝑛− 1,−𝑛,−𝑛+ 1, . . . only ring a finite

number of times in any interval [0, 𝑇 ]. Additionally, the lemma clearly holds at time

𝑇 = 0. Hence it suffices to show that if (7.1.5) is true for each 𝑖 before a given clock

rings, then it is also true for each 𝑖 after that clock rings, for then we may induct on the

(finite, by above) number of rings. Let 𝑇 ≥ 0 be such that (7.1.5) holds at time 𝑇 , and

under the event 𝜔 exactly one clock rings on the interval [𝑇, 𝑇 + 𝜖].

1i.e. it is measurable in the 𝜎-algebra on ̂︁Sig2∞ ⊂ Z̄Z inherited from the product 𝜎-algebra, where
each Z̄ factor has the discrete 𝜎-algebra
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If the strict inequality case of (7.1.5) holds for a given 𝑖 before the clock rings (i.e. at

time 𝑇 ), then clearly (7.1.5) still holds after at time 𝑇 + 𝜖 because the 𝒮𝜋[−𝑛,∞)(𝜇),𝑛

𝑖 can

change by at most 1 when any clock rings. So it remains to consider the case where the

equality case

(𝒮𝜋[−𝑛,∞)(𝜇),𝑛

𝑖 (𝑇 ))(𝜔) = (𝒮𝜋[−𝑛−1,∞)(𝜇),𝑛+1

𝑖 (𝑇 ))(𝜔), (7.1.6)

of (7.1.5) holds for some index 𝑖 at time 𝑇 , and the (𝑛+ 1)𝑡ℎ approximation has a jump

at the same index,

(𝒮𝜋[−𝑛−1,∞)(𝜇),𝑛+1

𝑖 (𝑇 + 𝜖))(𝜔) = (𝒮𝜋[−𝑛−1,∞)(𝜇),𝑛+1

𝑖 (𝑇 ))(𝜔) + 1. (7.1.7)

To show that (7.1.5) continues to hold at time 𝑇 + 𝜖, we must show that this jump occurs

at the same location for the 𝑛𝑡ℎ approximation,

(𝒮𝜋[−𝑛,∞)(𝜇),𝑛

𝑖 (𝑇 + 𝜖))(𝜔) = (𝒮𝜋[−𝑛,∞)(𝜇),𝑛

𝑖 (𝑇 ))(𝜔) + 1 (7.1.8)

The clock that rings to induce the jump (7.1.7) must be the 𝑗𝑡ℎ clock, for some 𝑗 ≥ 𝑖

for which (𝒮𝜋[−𝑛−1,∞)(𝜇),𝑛+1

𝑗 (𝑇 ))(𝜔) = (𝒮𝜋[−𝑛−1,∞)(𝜇),𝑛+1

𝑖 (𝑇 ))(𝜔), by the definition of our

dynamics. Since (7.1.5) held before the jump, we have

(𝒮𝜋[−𝑛,∞)(𝜇),𝑛

𝑖 (𝑇 ))(𝜔) ≥ (𝒮𝜋[−𝑛,∞)(𝜇),𝑛

𝑗 (𝑇 ))(𝜔)

≥ (𝒮𝜋[−𝑛−1,∞)(𝜇),𝑛+1

𝑗 (𝑇 ))(𝜔)

= (𝒮𝜋[−𝑛−1,∞)(𝜇),𝑛+1

𝑖 (𝑇 ))(𝜔)

= (𝒮𝜋[−𝑛,∞)(𝜇),𝑛

𝑖 (𝑇 ))(𝜔)

(7.1.9)

(using (7.1.6)), so all above inequalities must be equalities. It follows that the particle

of 𝒮𝜋[−𝑛,∞),𝑛

𝑇 which jumps on [𝑇, 𝑇 + 𝜖] began at position (𝒮𝜋[−𝑛,∞)(𝜇),𝑛

𝑖 (𝑇 ))(𝜔) rather than

some other one. Hence one of the following must be true: (a) (7.1.8) holds, or (b)

𝑖 > −𝑛 and (𝒮𝜋[−𝑛,∞)(𝜇),𝑛

𝑖 (𝑇 ))(𝜔) = (𝒮𝜋[−𝑛,∞)(𝜇),𝑛

𝑖−1 (𝑇 ))(𝜔) (for then 𝒮𝜋[−𝑛,∞)(𝜇),𝑛

𝑖 is blocked

by 𝒮𝜋[−𝑛,∞)(𝜇),𝑛

𝑖−1 ).

Suppose for the sake of contradiction that (b) holds. Then since (7.1.5) holds for 𝑖−1

254



at time 𝑇 by inductive hypothesis,

(𝒮𝜋[−𝑛,∞)(𝜇),𝑛

𝑖 (𝑇 ))(𝜔) = (𝒮𝜋[−𝑛,∞)(𝜇),𝑛

𝑖−1 (𝑇 ))(𝜔)

≥ (𝒮𝜋[−𝑛−1,∞)(𝜇),𝑛+1

𝑖−1 (𝑇 ))(𝜔)

≥ (𝒮𝜋[−𝑛−1,∞)(𝜇),𝑛+1

𝑖 (𝑇 ))(𝜔)

= (𝒮𝜋[−𝑛,∞)(𝜇),𝑛

𝑖 (𝑇 ))(𝜔),

(7.1.10)

so again all inequalities must be equalities and

(𝒮𝜋[−𝑛−1,∞)(𝜇),𝑛+1

𝑖−1 (𝑇 ))(𝜔) = (𝒮𝜋[−𝑛−1,∞)(𝜇),𝑛+1

𝑖 (𝑇 ))(𝜔). (7.1.11)

Since only one jump occurs on the interval [𝑇, 𝑇 + 𝜖], (7.1.7) and (7.1.11) imply that

(𝒮𝜋[−𝑛−1,∞)(𝜇),𝑛+1

𝑖 (𝑇 + 𝜖))(𝜔) = (𝒮𝜋[−𝑛−1,∞)(𝜇),𝑛+1

𝑖−1 (𝑇 + 𝜖))(𝜔) + 1, (7.1.12)

which violates the weakly decreasing order. Hence (b) cannot hold, so (7.1.8) holds,

which completes the proof.

Proof of Proposition 7.1.2. We show that for any 𝜔 ∈ ̃︀Ω, 𝑖 ∈ Z, 𝑇 ∈ R≥0, the limit

lim
𝑛→∞

(𝒮𝜋[−𝑛,∞)(𝜇),𝑛

𝑖 (𝑇 ))(𝜔) (7.1.13)

exists.

The sequence ((𝒮𝜋[−𝑛,∞)(𝜇),𝑛

𝑖 (𝑇 ))(𝜔))𝑛≥−𝑖 is bounded below by (𝒮𝜋[−𝑛,∞)(𝜇),𝑛

𝑖 (0))(𝜔) (which

is independent of 𝑛 ≥ −𝑖), because coordinates of 𝒮 ·,𝑛
𝑇 are nondecreasing in time. Since

((𝒮𝜋[−𝑛,∞)(𝜇),𝑛

𝑖 (𝑇 ))(𝜔))𝑛≥−𝑖 is also decreasing in 𝑛 by Lemma 7.1.3, it is immediate that

the limit (7.1.13) exists. Hence 𝒮𝜇,2∞(𝑇 ) is well-defined. Furthermore, each coordinate

𝒮𝜇,2∞
𝑖 (𝑇 ) is a limit of measurable functions 𝒮𝜋[−𝑛,∞)(𝜇),𝑛

𝑖 (𝑇 ) : ̃︀Ω → Z̄ and hence measur-

able, so 𝒮𝜇,2∞(𝑇 ) is measurable with respect to the product 𝜎-algebra on Z̄Z.

We now show 𝒮𝜇,2∞(𝑇 ) is Markov, which holds by the following facts:

• For any fixed 𝑇 ≥ 0, 𝒮𝜇,2∞(𝑇 ) is determined by (𝒮𝜋[−𝑛,∞)(𝜇),𝑛)𝑛≥1(𝑇 ) by the above.

• For 𝑠 ≥ 0 and for each 𝑛 ≥ 1, 𝒮𝜋[−𝑛,∞)(𝜇),𝑛(𝑇 + 𝑠) is determined by 𝒮𝜋[−𝑛,∞)(𝜇),𝑛(𝑇 )

together with the complete data of which clocks ring when on the interval [𝑇, 𝑇 +𝑠],
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by definition.

• The complete data of which clocks ring when on the interval [𝑇, 𝑇+𝑠] is independent

of everything earlier, by the memoryless property of exponential distributions.

This completes the proof.

We now prove that our construction satisfies the property stated in the introduction

as Theorem 1.5.1, that it is the bulk limit of the processes 𝒮𝜈,𝑛. We in fact prove a slightly

more general statement which allows arbitrary initial conditions and gives almost-sure

convergence, from which Theorem 1.5.1 follows by taking 𝜇 = (0[2∞]).

Proposition 7.1.4. For any 𝜇 ∈ ̂︁Sig2∞, there exists a stochastic process 𝒮𝜇,2∞(𝑇 ), 𝑇 ≥ 0,

with 𝒮𝜇,2∞(0) = 𝜇, which is a bulk limit of the processes 𝒮𝜈,𝑛 above in the following

sense. The processes 𝒮(𝜇1−𝑟𝑛 ,...,𝜇𝑛−𝑟𝑛 ),𝑛(𝑇 ), 𝑛 ≥ 1 may be coupled on ̃︀Ω such that for any

𝐷 ∈ N, 𝑇1 ∈ R≥0 and sequence of ‘bulk observation points’ 𝑟𝑛, 𝑛 ≥ 1 with 𝑟𝑛 → ∞ and

𝑛− 𝑟𝑛 → ∞,

(𝒮(𝜇1−𝑟𝑛 ,...,𝜇𝑛−𝑟𝑛 ),𝑛
𝑟𝑛−𝐷 (𝑡−𝑟𝑛𝑇 ), . . . ,𝒮(𝜇1−𝑟𝑛 ,...,𝜇𝑛−𝑟𝑛 ),𝑛

𝑟𝑛+𝐷 (𝑡−𝑟𝑛𝑇 )) → (𝒮𝜇,2∞
−𝐷 (𝑇 ), . . . ,𝒮𝜇,2∞

𝐷 (𝑇 ))

(7.1.14)

almost surely for all 0 ≤ 𝑇 ≤ 𝑇1.

Proof. We couple 𝒮(𝜇1−𝑟𝑛 ,...,𝜇𝑛−𝑟𝑛 ),𝑛(𝑇 ), 𝑛 ≥ 1 on ̃︀Ω in the obvious way, namely by defining

𝒮(𝜇1−𝑟𝑛 ,...,𝜇𝑛−𝑟𝑛 ),𝑛(𝑇 ) : 𝜋[1−𝑟𝑛,𝑛−𝑟𝑛](̃︀Ω) → ̂︁Sig𝑛 (7.1.15)

by identifying the 𝑛 coordinates of 𝜋[1−𝑟𝑛,𝑛−𝑟𝑛](̃︀Ω) with the clock times of the 𝑛 particles

of 𝒮(𝜇1−𝑟𝑛 ,...,𝜇𝑛−𝑟𝑛 ),𝑛. Similarly, we have the coupling

𝒮(𝜇1−𝑟𝑛 ,𝜇2−𝑟𝑛 ,...),𝑟𝑛−1(𝑇 ) : 𝜋[1−𝑟𝑛,∞)(̃︀Ω) : ̂︁Sig∞ . (7.1.16)

For each 𝜔 ∈ ̃︀Ω, there exists an index 𝑗0 such that clocks 𝑗0, 𝑗0 +1, . . . do not ring on the

interval [0, 𝑇1]. Hence as long as 𝑛− 𝑟𝑛 ≥ 𝑗0,

𝒮(𝜇1−𝑟𝑛 ,...,𝜇𝑛−𝑟𝑛 ),𝑛(𝑇 )(𝜔) = 𝜋[1,𝑛]

(︁
𝒮(𝜇1−𝑟𝑛 ,𝜇2−𝑟𝑛 ,...),𝑟𝑛−1(𝑇 )(𝜔)

)︁
(7.1.17)
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for any 𝑇 ∈ [0, 𝑇1]. Because 𝑛 − 𝑟𝑛 → ∞, this is true for all sufficiently large 𝑛. Since

𝑟𝑛 → ∞,

lim
𝑛→∞

𝒮(𝜇1−𝑟𝑛 ,𝜇2−𝑟𝑛 ,...),𝑟𝑛−1
𝑖 (𝑇 ) = lim

𝑛→∞
𝒮(𝜇−𝑛,𝜇−𝑛+1,...),𝑛
𝑖 (𝑇 ) = 𝒮2∞,𝜇(𝑇 ). (7.1.18)

Combining (7.1.18) with (7.1.17) completes the proof.

Definition 54. One may identify the set Sig𝑒𝑑𝑔𝑒 of (1.5.2) with

{𝜈 ∈ ̂︁Sig2∞ : 𝜈𝑖 ∈ Z for 𝑖 ≤ 0 and 𝜈1 = 𝜈2 = . . . = −∞}. (7.1.19)

For any 𝜇 ∈ Sig𝑒𝑑𝑔𝑒, letting 𝜇̂ ∈ ̂︁Sig2∞ be its image under the above map, we define

𝒮𝜇,𝑒𝑑𝑔𝑒(𝑇 ) = 𝒮 𝜇̂,2∞(𝑇 ). (7.1.20)

Some properties of 𝒮𝜇,2∞(𝑇 ) will be useful later.

Definition 55. For any 𝑑 ∈ Z we define 𝐹𝑑 : ̂︁Sig2∞ → ̂︁Sig2∞ by

𝐹𝑑((𝜇𝑛)𝑛∈Z) = (min(𝜇𝑛, 𝑑))𝑛∈Z.

We define 𝐹𝑑 on ̂︁Sig∞ and ̂︁Sig𝑛 in exactly the same way.

Proposition 7.1.5. For any 𝑑 ∈ Z and 𝜇 ∈ ̂︁Sig∞, 𝐹𝑑(𝒮𝜇,2∞(𝑇 )) is a Markov process.

Proof. It is clear from Definition 2 and Definition 50 that 𝐹𝑑(𝒮𝜈,𝑛(𝑇 )) is a Markov process

for any 𝜈 ∈ ̂︁Sig∞. Clearly 𝐹𝑑(𝒮𝜇,2∞(𝑇 )) is a limit of 𝐹𝑑(𝒮𝜋[−𝑛,∞](𝜇),𝑛(𝑇 )), by the same

proof as Proposition 7.1.2, and the Markov property is inherited by the limit as in that

proof.

Note that if 𝜇 has a part 𝜇𝑖 ≥ 𝑑, then only the parts 𝐹𝑑(𝒮𝜇,2∞)𝑗, 𝑗 > 𝑖 can evolve,

leading to a much simpler process because the sum of their jump rates is finite. The

following result, which we have stated in terms of Markov generators because we will

need this later, says informally that if 𝜇 has a part ≥ 𝑑, then 𝐹𝑑(𝒮𝜇,2∞) evolves by the

same reflecting Poisson dynamics as the prelimit process. This will be extremely useful

for random matrix results, as for such 𝜇 we may check convergence to 𝐹𝑑(𝒮𝜇,2∞) by taking

asymptotics of generators/transition matrices.
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Proposition 7.1.6. Let 𝑑 ∈ N and let 𝜇 ∈ ̂︁Sig2∞ be such that

𝑖0 := 𝜇′
𝑑 + 1 = inf({𝑖 ∈ Z : 𝜇𝑖 < 𝑑}) > −∞, (7.1.21)

and let

𝑁 :=

⎧⎪⎨⎪⎩∞ 𝜇𝑖 > −∞ for all 𝑖

max({𝑖 : 𝜇𝑖 > −∞}) else
(7.1.22)

Let 𝑄 : 𝐹𝑑(̂︁Sig2∞) → 𝐹𝑑(̂︁Sig2∞) be the matrix defined by

𝑄(𝜈, 𝜅) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
− 𝑡𝜈

′
𝑑+1−𝑡𝑁+1

1−𝑡
𝜅 = 𝜈

𝑡𝑖(1−𝑡𝑚𝜈𝑖 (𝜈))
1−𝑡

there exists 𝑖 ∈ Z such that 𝜅𝑗 = 𝜈𝑗 + 1(𝑗 = 𝑖) for all 𝑗 ∈ Z

0 else
(7.1.23)

for all 𝜈, 𝜅 ∈ 𝐹𝑑(̂︁Sig2∞). Then the matrix exponential 𝑒𝑇𝑄 : 𝐹𝑑(̂︁Sig2∞) → 𝐹𝑑(̂︁Sig2∞) is

well-defined, and

Pr(𝐹𝑑(𝒮𝜇,2∞(𝑇 + 𝑇0)) = 𝜅|𝐹𝑑(𝒮𝜇,2∞(𝑇0)) = 𝜈) = (𝑒𝑇𝑄)(𝜈, 𝜅). (7.1.24)

Proof. Applying 𝐹𝑑 to Definition 53,

𝐹𝑑(𝒮𝜇,2∞(𝑇 )) = lim
𝑛→∞

𝐹𝑑(𝒮𝜋[−𝑛,∞)(𝜇),𝑛(𝑇 )). (7.1.25)

For all 𝑛 > −𝑖0, it is clear from the definition of 𝒮 that the (multi-time joint) law

of 𝐹𝑑(𝒮𝜋[−𝑛,∞)(𝜇),𝑛(𝑇 )) is independent of 𝑛. Note that for any 𝜈 as above all entries

𝐹𝑑(𝒮𝜋[−𝑛,∞)(𝜈),𝑛(𝑇 ))𝑗, 𝑗 ≤ 𝜈 ′𝑑 never change because they are already equal to 𝑑. Addi-

tionally, if 𝑁 is finite the entries 𝐹𝑑(𝒮𝜇,2∞(𝑇 ))𝑗, 𝑗 > 𝑁 do not change because they are

equal to −∞. Meanwhile, all entries 𝐹𝑑(𝒮𝜋[−𝑛,∞)(𝜇),𝑛(𝑇 ))𝑗, 𝑖0 ≤ 𝑗 ≤ 𝑁 jump according

to Poisson clocks of rate 𝑡𝑗 as before, until they reach 𝑑, at which point they jump no

longer. It follows that 𝐹𝑑(𝒮𝜋[−𝑛,∞)(𝜇),𝑛(𝑇 )) has Markov generator given by (7.1.23), after

identifying the state space with 𝐹𝑑(̂︁Sig2∞) by padding with entries 𝑑 on the left. Hence

by (7.1.25), 𝐹𝑑(𝒮𝜇,2∞(𝑇 )) also has Markov generator 𝑄.
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Definition 56. Define the forward shift map

𝑠 : ̂︁Sig2∞ → ̂︁Sig2∞
(𝜇𝑛)𝑛∈Z ↦→ (𝜇𝑛+1)𝑛∈Z

Because the 𝑖𝑡ℎ coordinate 𝜇𝑖(𝑇 ) of 𝒮𝜇,2∞(𝑇 ) behaves as a Poisson jump process

with rate 𝑡𝑖 (neglecting interactions with the other coordinates), the 𝑖𝑡ℎ coordinate of

𝑠(𝒮𝜇,2∞(𝑇 )) has rate 𝑡𝑖+1 = 𝑡 · 𝑡𝑖, i.e. 𝑠 has the effect of slowing down each jump rate by

a factor of 𝑡. Heuristically this justifies the following.

Proposition 7.1.7. If 𝑎 ∈ Z and 𝜇 = (𝑎)𝑛∈Z, then

𝑠(𝒮𝜇,2∞(𝑡−1 · 𝑇 )) = 𝒮𝜇,2∞(𝑇 ) (7.1.26)

in distribution as stochastic processes.

Proof. Define a map

𝜉 : Ω → Ω

((𝑎𝑛,𝑖)𝑖∈N)𝑛∈Z ↦→ ((𝑡 · 𝑎𝑛+1,𝑖)𝑖∈N)𝑛∈Z

The map 𝜉 scales the waiting times 𝑎𝑛,𝑖 by 𝑡 and shifts which coordinate 𝜇𝑛 they cor-

respond to. Since these waiting times are exponential variables with rates in geometric

progression with common ratio 𝑡 under the measure Poiss ∈ ℳ(Ω) defined in the proof

of Proposition 7.1.2, it follows that

𝜉*(Poiss) = Poiss . (7.1.27)

It is also immediate from the definition of 𝜉 that for any 𝑇 ≥ 0 and 𝜔 ∈ ̃︀Ω,

(𝒮𝜋[−𝑛,∞)(𝜇),𝑛

𝑖 (𝑇 ))(𝜔) = (𝒮𝜋[−𝑛−1,∞)(𝜇),𝑛+1

𝑖−1 (𝑡−1𝑇 ))(𝜉(𝜔)). (7.1.28)

Hence clearly

lim
𝑛→∞

(𝒮𝜋[−𝑛,∞)(𝜇),𝑛

𝑖 (𝑇 ))(𝜔) = lim
𝑛→∞

(𝒮𝜋[−𝑛−1,∞)(𝜇),𝑛+1

𝑖−1 (𝑡−1𝑇 ))(𝜉(𝜔)), (7.1.29)
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and in view of the construction in Definition 53 this implies (7.1.26).

For completeness, we record how the results proven above yield what was stated in

the Introduction.

Proof of Theorem 1.5.1. In Proposition 7.1.2 we show that 𝒮2∞,𝜇 is a well-defined Markov

process, and the properties (1), (2) and (3) stated in Theorem 1.5.1 follow from Propo-

sition 7.1.4, Proposition 7.1.7 and Proposition 7.1.5 respectively.

7.1.1 Convergence of measures on ̂︁Sig2∞
Having constructed the putative universal object 𝒮𝜇,2∞ and shown some basic properties,

we now set up what is needed to prove convergence to it. To speak of weak convergence of̂︁Sig2∞-valued random variables, we must at minimum equip ̂︁Sig2∞ with a topology. The

space Z̄ has a natural topology with open sets generated by finite subsets of Z together

with intervals2 [−∞, 𝑛] and [𝑛,∞] for each 𝑛 ∈ Z. For concreteness later we note that

the closed sets in this topology are those which, if the contain arbitrarily large positive

(resp. negative) finite integers, also contain ∞ (resp. −∞).

We now give ̂︁Sig2∞ the topology it inherits from the product topology on Z̄Z, where

each Z̄ factor has the topology above. Equivalently, this is the topology of pointwise

convergence on Z̄Z. When we speak of measures on ̂︁Sig2∞, we will always mean measures

with respect to the Borel 𝜎-algebra determined by this topology. Note that this is just

the product 𝜎-algebra of the discrete 𝜎-algebras on each Z̄ factor, which is the one we

took earlier in Proposition 7.1.2.

The space Z̄ is second-countable and separable, hence metrizable by Urysohn’s theo-

rem, hence the product Z̄Z (and therefore ̂︁Sig2∞) is metrizable as well. This makes the

following two definitions of weak convergence equivalent by the portmanteau theorem.

Definition 57. A sequence of probability measures (𝑀𝑛)𝑛≥1 on ̂︁Sig2∞ converges weakly

to 𝑀 if, for every 𝑆 ⊂ ̂︁Sig2∞ which is a continuity set of 𝑀 (i.e. 𝑀(𝜕𝑆) = 0), 𝑀𝑛(𝑆) →

𝑀(𝑆) as 𝑛→ ∞. Equivalently, for every continuous 𝑓 : ̂︁Sig2∞ → R,

∫︁
Z̄Z
𝑓𝑑𝑀𝑛 →

∫︁
Z̄Z
𝑓𝑑𝑀.

2In both cases, the interval includes the infinite endpoint, as indicated by the square braces.
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We reduce weak convergence to a more checkable, combinatorial condition, which is

what we will actually show. For 𝐼 ⊂ Z let 𝜋𝐼 : Z̄Z → Z̄𝐼 be the projection.

Lemma 7.1.8. A sequence of probability measures (𝑀𝑛)𝑛≥1 on ̂︁Sig2∞ converges weakly

to a probability measure 𝑀 if, for every finite 𝐼 ⊂ Z and 𝑑 ∈ Z, the convergence of

pushforward measures

((𝜋𝐼)*(𝑀𝑛))({𝑏}) → ((𝜋𝐼)*(𝑀))({𝑏})

holds for every 𝑏 ∈ Z̄𝐼 . The same statement holds for measures on ̂︁Sig𝑘2∞ and finite sets

𝐼 ⊂ Z𝑘.

Proof of Lemma 7.1.8. We prove the 𝑘 = 1 case, as the general case is exactly analogous.

Let

𝒰 = {𝜋−1
𝐽 (𝐴) : 𝐽 ⊂ Z finite, and 𝐴 ⊂ 𝜋𝐽(Z̄Z) a product of singleton sets} ∪ {∅}.

(7.1.30)

We note that (i) 𝒰 is closed under finite intersections, and (ii) every open set in Z̄Z

is a countable union of elements of 𝒰 , which follows since Z̄ is countable. By [Bil68,

Theorem 2.2], the two properties (i), (ii) imply that for weak convergence 𝑀𝑛 → 𝑀 , it

suffices to check that

𝑀𝑛(𝑈) →𝑀(𝑈) (7.1.31)

for every 𝑈 ∈ 𝒰 ; this captures the intuitive notion that 𝒰 is a ‘large enough’ collection

of sets to determine weak convergence. For a set 𝜋−1
𝐽 (𝐴) as in (7.1.30), by definition

((𝜋𝐽)*(𝑀𝑛))(𝐴) =𝑀𝑛(𝜋
−1
𝐽 (𝐴))

and similarly for 𝑀 , therefore our hypothesis implies (7.1.31), which completes the proof.

We note that the converse of Lemma 7.1.8 is not true. For instance, the Dirac delta

measure at (𝐷)𝑛∈Z converges weakly as 𝐷 → ∞ to the Dirac delta measure at (∞)𝑛∈Z,

but the set 𝜋−1
0 ({∞}) (which is not a continuity set of the latter measure) has probability

0 under the former measures and probability 1 under the latter measure.
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7.2 Main theorem statement and comments

We wish to talk about random finite-length partitions—singular numbers of the matrix

product process—converging to random elements of ̂︁Sig2∞, so it is convenient to define

an embedding of Y𝑁 into ̂︁Sig2∞.

Definition 58. For 𝜆 ∈ Y𝑁 define

𝜄𝑛(𝜆) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∞ 𝑛 ≤ 0

𝜆𝑛 1 ≤ 𝑛 ≤ 𝑁

−∞ 𝑛 > 𝑁

,

and let

𝜄 :Y𝑁 →˓ ̂︁Sig2∞
(𝜆1, . . . , 𝜆𝑁) ↦→ (𝜄𝑛(𝜆))𝑛∈Z.

We are now able to state the main dynamical result, which in the bulk case we will

later augment to include the single-time marginal as well. It applies to both the bulk and

edge: the sequence (𝑟𝑁)𝑁≥1, which represents ‘observation points’ of the matrix product

process, may be taken such that 0 ≪ 𝑟𝑁 ≪ 𝑁 for a bulk limit, or 𝑟𝑁 = 𝑁 − 𝑘 for fixed

𝑘 for an edge limit.

Theorem 7.2.1. For each 𝑁 ∈ N, let 𝐴(𝑁)
𝑖 , 𝑖 ≥ 1 be an iid sequence of GL𝑁(Z𝑝)-bi-

invariant random matrices in Mat𝑁(Z𝑝), and let 𝑟𝑁 be a ‘bulk observation point’ such

that 𝑟𝑁 and the random variable

𝑋𝑁 := corank(𝐴
(𝑁)
𝑖 (mod 𝑝)) (7.2.1)

satisfy

(i) 𝑟𝑁 → ∞ as 𝑁 → ∞,

(ii) Pr(𝑋𝑁 = 0) < 1 for every 𝑁 , and
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(iii) 𝑋𝑁 is far away from 𝑟𝑁 with high probability, in the sense that for every 𝑗 ∈ N,

Pr(𝑋𝑁 > 𝑟𝑁 − 𝑗|𝑋𝑁 > 0) → 0 as 𝑁 → ∞. (7.2.2)

Let 𝜇 ∈ ̂︁Sig+2∞ be such that lim𝑛→∞ 𝜇−𝑛 = ∞, and let 𝐵(𝑁) ∈ Mat𝑁(Z𝑝), 𝑁 ≥ 1 be any

fixed matrices with singular numbers around 𝑟𝑁 matching 𝜇, i.e. for every 𝑖 ∈ Z

(𝑠𝑟𝑁 ∘ 𝜄(SN(𝐵(𝑁))))𝑖 = 𝜇𝑖

for all sufficiently large 𝑁 . Define the prelimit matrix product process Π(𝑁)(𝜏) = SN(𝐴
(𝑁)
𝜏 · · ·𝐴(𝑁)

1 𝐵(𝑁))

for 𝜏 ∈ Z≥0, and the shifted version on ̂︁Sig2∞
Λ(𝑁)(𝑇 ) := 𝑠𝑟𝑁 ∘ 𝜄(Π(𝑁)(⌊𝑐𝑁𝑇 ⌋)), 𝑇 ∈ R≥0

with time change given by

𝑐𝑁 :=
𝑡−𝑟𝑁

E[𝑡− len(SN(𝐴
(𝑁)
𝑖 )) − 1]

𝑁 = 1, 2, . . . (7.2.3)

Then we have convergence

Λ(𝑁)(𝑇 )
𝑁→∞−−−→ 𝒮𝜇,2∞(𝑇 ) (7.2.4)

in finite-dimensional distribution.

Many remarks on Theorem 7.2.1 are in order. First of all, the hypothesis (7.2.1) is

not the same as what was given in the Introduction. The latter was in fact a stronger

hypothesis, as we show now.

Proposition 7.2.2. Let (𝑟𝑁)𝑁∈N be a sequence with 𝑟𝑁 → ∞ and 𝑟𝑁 ≤ 𝑁 . For each 𝑁

let 𝑋𝑁 be a random variable taking values in [[𝑁 ]], such that for every 𝑗 ∈ Z we have

Pr(𝑋𝑁 ≥ 𝑟𝑁 + 𝑗) = 𝑜(Pr(𝑋𝑁 ≥ 1)) as 𝑁 → ∞. (7.2.5)

Then

Pr(𝑋𝑁 ≥ 𝑟𝑁 + 𝑗) = 𝑜(E[1(𝑋𝑁 ≤ 𝑟𝑁)(𝑡
𝑟𝑁−𝑋𝑁 − 𝑡𝑟𝑁 )]) (7.2.6)

for every 𝑗 ∈ Z.
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Proof. Since (𝑡𝑟𝑁−𝑋𝑁 − 𝑡𝑟𝑁 ) = 0 when 𝑋𝑁 = 0,

1(𝑋𝑁 ≤ 𝑟𝑁)(𝑡
𝑟𝑁−𝑋𝑁 − 𝑡𝑟𝑁 ) ≤ 1(1 ≤ 𝑋𝑁 ≤ 𝑟𝑁) ≤ 1(𝑋𝑁 ≥ 1), (7.2.7)

hence

E[1(𝑋𝑁 ≤ 𝑟𝑁)(𝑡
𝑟𝑁−𝑋𝑁 − 𝑡𝑟𝑁 )] ≤ Pr(𝑋𝑁 ≥ 1). (7.2.8)

Proof of Theorem 1.5.2. By Proposition 7.2.2, the hypothesis in Theorem 1.5.2 implies

the one in Theorem 7.2.1, and the convergence (7.2.4) clearly implies the version in

Theorem 1.5.2.

Proof of Theorem 1.5.3. Exactly as for Theorem 1.5.2, taking 𝑟𝑁 = 𝑁 in Theorem 7.2.1

and using the natural inclusion Sig𝑒𝑑𝑔𝑒 →˓ ̂︁Sig2∞ taking (𝜇𝑖)𝑖∈Z≤0
to (. . . , 𝜇−1, 𝜇0,−∞,−∞, . . .).

One might also wonder where the definition of 𝑐𝑁 came from; why 1(𝑋𝑁 ≤ 𝑟𝑁) rather

than, say, 1(𝑋𝑁 ≤ 𝑟𝑁 − 1)? We show that this is simply a matter of convenience and our

hypothesis guarantee that any cutoff near 𝑟𝑁 will give the same result.

Proposition 7.2.3. Suppose 𝑟𝑁 and 𝑋𝑁 are such that for every 𝑗 ∈ Z,

Pr(𝑋𝑁 ≥ 𝑟𝑁 + 𝑗) = 𝑜(E[1(𝑋𝑁 ≤ 𝑟𝑁)(𝑡
𝑟𝑁−𝑋𝑁 − 𝑡𝑟𝑁 )]) as 𝑁 → ∞. (7.2.9)

Then for every 𝑗 ∈ Z,

E[1(𝑋𝑁 ≤ 𝑟𝑁 + 𝑗)(𝑡𝑟𝑁−𝑋𝑁 − 𝑡𝑟𝑁 )] = (1 + 𝑜(1))E[1(𝑋𝑁 ≤ 𝑟𝑁)(𝑡
𝑟𝑁−𝑋𝑁 − 𝑡𝑟𝑁 )]. (7.2.10)

Proof. We will prove the case 𝑗 > 0, as the case 𝑗 < 0 is the same after replacing 𝑟𝑁 by

𝑟𝑁 − 𝑗. It suffices to show

E[1(𝑟𝑁 < 𝑋𝑁 ≤ 𝑟𝑁 + 𝑗)(𝑡𝑟𝑁−𝑋𝑁 − 𝑡𝑟𝑁 )] = 𝑜(1)E[1(𝑋𝑁 ≤ 𝑟𝑁)(𝑡
𝑟𝑁−𝑋𝑁 − 𝑡𝑟𝑁 )]. (7.2.11)
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Since

E[1(𝑟𝑁 < 𝑋𝑁 ≤ 𝑟𝑁 + 𝑗)(𝑡𝑟𝑁−𝑋𝑁 − 𝑡𝑟𝑁 )] ≤ 𝑡−𝑗 Pr(𝑟𝑁 < 𝑋𝑁 ≤ 𝑟𝑁 + 𝑗) ≤ 𝑡−𝑗 Pr(𝑋𝑁 > 𝑟𝑁),

(7.2.12)

which is 𝑜(E[1(𝑋𝑁 ≤ 𝑟𝑁)(𝑡
𝑟𝑁−𝑋𝑁 − 𝑡𝑟𝑁 )]) by (7.2.9), (7.2.11) follows.

7.3 Reducing Theorem 7.2.1 to Markov generator asymp-

totics

Our goal is to understand the asymptotic dynamics of singular numbers Π(𝑁)(𝜏) =

SN(𝐴𝜏 · · ·𝐴1) under matrix products 𝐴1, 𝐴2, . . . ∈ Mat𝑁(Z𝑝) in an ‘observation win-

dow’ around some 𝑟𝑁 , i.e. Π(𝑁)
𝑖 (𝜏) where 𝑖 = 𝑟𝑁 +𝑐𝑜𝑛𝑠𝑡. It is helpful to view the Π

(𝑁)
𝑖 (𝜏)

as a collection of particles on Z, which may inhabit the same location, and which ‘jump’

in discrete time 𝜏 by Π
(𝑁)
𝑖 (𝜏 +1)−Π

(𝑁)
𝑖 (𝜏) at each ‘time step’ 𝜏 ↦→ 𝜏 +1. To establish a

continuous-time Poisson-type limit of this evolution, we show the following:

1. With probability 1−𝑂(𝑝−𝑟𝑁 ), none of the singular numbers Π(𝑁)
𝑖 (𝜏), 𝑖 ≈ 𝑟𝑁 change

under the time step 𝜏 ↦→ 𝜏 + 1 (and in fact, we see this is true for all 𝑖 ≥ 𝑟𝑁 as

well).

2. For each 𝑖 ≈ 𝑟𝑁 , we show the probability Π
(𝑁)
𝑖 (𝜏) jumps at a given time step is

𝑐𝑝−𝑖 + 𝑂(𝑝−2𝑟𝑁 ) for 𝑐 independent of 𝑖 which we explicitly compute, in the case

when Π
(𝑁)
𝑖 (𝜏) is not equal to any other part of 𝜆(𝜏), and otherwise is given by a

slightly different formula since multiple parts may push one another. This leads to

the jump rates of the continuous-time process seen in Theorem 7.2.1.

3. We show that the probability that more than one jump occurs among 𝑖 ≈ 𝑟𝑁 is

𝑂(𝑝−2𝑟𝑁 ) and hence may be discounted.

This section contains the abstract nonsense portion of the proof of Theorem 7.2.1.

We first state three lemmas about random matrices, which correspond to (1), (2) and

(3) of the above sketch and contain all of the needed hard computations, and then show

how they imply Theorem 7.2.1. The proofs of the lemmas themselves will be deferred to

Section 7.5.

265



Definition 59. Let 𝑑 ∈ N and let 𝐴 be a random element of Mat𝑁(Z𝑝) with law invariant

under GL𝑁(Z𝑝) on the right. Then we define the Markov transition matrix on pairs

𝜅, 𝜈 ∈ 𝐹𝑑(Sig
+
𝑁) by

𝑃𝐴,𝑑(𝜈, 𝜅) := Pr(𝐹𝑑(SN(𝐴
(𝑁)𝐵)) = 𝜅), (7.3.1)

where 𝐵 is any matrix with SN(𝐵) = 𝜈.

Lemma 7.3.1. Let (𝑟𝑁)𝑁∈N be a sequence with 𝑟𝑁 ≤ 𝑁 and 𝑟𝑁 → ∞, and for each

𝑁 ∈ N let 𝐴(𝑁) be a GL𝑁(Z𝑝)-right-invariant random matrix in Mat𝑁(Z𝑝) with Pr(𝐴(𝑁) ∈

GL𝑁(Z𝑝)) < 1 and

Pr(corank(𝐴(𝑁) (mod 𝑝)) ≥ 𝑟𝑁 − 𝑗) = 𝑜(𝑐−1
𝑁 ) for all 𝑗 ≥ 0 (7.3.2)

where

𝑐−1
𝑁 := E[1(corank(𝐴(𝑁) (mod 𝑝)) ≤ 𝑟𝑁)(𝑡

𝑟𝑁−corank(𝐴(𝑁) (mod 𝑝)) − 𝑡𝑟𝑁 )]. (7.3.3)

Fix 𝑑 ∈ N and let 𝑃𝐴(𝑁),𝑑 be as in Definition 59. Then as 𝑁 → ∞,

𝑃𝐴(𝑁),𝑑(𝜈
(𝑁), 𝜈(𝑁)) = 1− 𝑡(𝜈

(𝑁))′𝑘+1 − 𝑡𝑁−𝑟𝑁+1

1− 𝑡
𝑐−1
𝑁 + 𝑜(𝑐−1

𝑁 ). (7.3.4)

Furthermore, for any 𝐿 ∈ Z the implied constant is uniform over all 𝜈(𝑁) ∈ 𝐹𝑑(Sig
+
𝑁)

with (𝜈𝑁)′𝑘 ≥ 𝐿+ 𝑟𝑁 .

Remark 42. Note that we do not require the asymptotic in Lemma 7.3.1 and below

to be uniform over choices of the distribution of 𝐴(𝑁) or the sequence (𝑟𝑁)𝑁∈N which

we assume to be fixed. Also, we will not need the uniformity of implied constants for

Theorem 7.2.1, but we will need it for upcoming results, so we prove it here.

Lemma 7.3.2. Assume the same setup as Lemma 7.3.1. Then for any sequence of pairs

𝜈(𝑁), 𝜅(𝑁) ∈ 𝐹𝑑(Sig
+
𝑁) with 𝜈(𝑁) ≺ 𝜅(𝑁) and |𝜅(𝑁)/𝜈(𝑁)| = 1,

𝑃𝐴(𝑁),𝑑(𝜈
(𝑁), 𝜅(𝑁)) = 𝑡𝑗(𝑁)1− 𝑡𝑚𝜈𝑗 (𝜈)

1− 𝑡
𝑐−1
𝑁 + 𝑜(𝑐−1

𝑁 ) (7.3.5)

where 𝑗 = 𝑗(𝑁) is the unique index such that 𝜅(𝑁)
𝑗 = 𝜈

(𝑁)
𝑗 + 1, and implied constant in

(7.3.5) is uniform over all such sequences of pairs 𝜈(𝑁), 𝜅(𝑁) with (𝜈(𝑁))′𝑘 ≥ 𝐿+ 𝑟𝑁 .
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Lemma 7.3.3. Assume the same setup as Lemma 7.3.1. Then

𝑃𝐴(𝑁),𝑑(𝜈
(𝑁), {𝜅 ∈ 𝐹𝑑(̂︁Sig𝑁) : 𝜅 ⊃ 𝜈(𝑁) and |𝜅/𝜈(𝑁)| ≥ 2}) = 𝑜(𝑐−1

𝑁 ) (7.3.6)

uniformly over all sequences 𝜈(𝑁) ∈ Sig+𝑁 , 𝑁 ≥ 1 with (𝜈(𝑁))′𝑘 ≥ 𝐿.

Now we show Theorem 7.2.1 conditional on the above lemmas. As a technical conve-

nience, we work with slightly different prelimit processes.

Definition 60. In the setting of Theorem 7.2.1, define the (shifted) discrete-time singular

number process Π̃(𝑁)(𝜏) = (Π̃(𝑁)(𝜏)𝑖)𝑖∈Z, 𝜏 ∈ Z≥0 on ̂︁Sig2∞ by

Π̃(𝑁)(𝜏) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∞ 𝑖 < 1− 𝑟𝑁

Π(𝑁)(𝜏)𝑖+𝑟𝑁 1− 𝑟𝑁 ≤ 𝑖 ≤ 𝑁 − 𝑟𝑁

𝜇𝑖 𝑖 > 𝑁 − 𝑟𝑁

. (7.3.7)

Define the continuous-time version by

Λ̃(𝑁)(𝑇 ) = (Λ̃
(𝑁)
𝑖 (𝑇 ))𝑖∈Z = Π̃(𝑁)(⌊𝑐𝑁𝑇 ⌋). (7.3.8)

In other words, Π̃(𝑁) agrees with Π(𝑁) on all coordinates 𝑖 ≤ 𝑁 − 𝑟𝑁 , and all later

coordinates are the same as those of 𝜇 and do not change as time 𝑇 increases. The

process Λ̃(𝑁)(𝑇 ) has the advantage that 𝐹𝑑(Λ̃
(𝑁)(0)) = 𝐹𝑑(𝜇) whenever 𝑁 is large enough

so that SN(𝐵(𝑁)) has at least one part ≥ 𝑑 (of course, the fact that this is true for large

𝑁 requires the hypothesis lim𝑛→∞ 𝜇−𝑛 = ∞ of Theorem 7.2.1), hence 𝐹𝑑(Λ̃
(𝑁)(𝑇 )) and

𝐹𝑑(𝒮𝜇,2∞(𝑇 )) have the same initial condition.

Lemma 7.3.4. To prove Theorem 7.2.1, it suffices to prove that under the same hypothe-

ses,

𝐹𝑑(Λ̃
(𝑁)(𝑇 ))

𝑁→∞−−−→ 𝐹𝑑(𝒮𝜇,2∞(𝑇 ))

in finite-dimensional distribution for any 𝑑 ∈ N.

Proof. To show Theorem 7.2.1 it suffices to show that for any sequence of times 0 ≤ 𝑇1 <
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. . . < 𝑇𝑘, we have convergence of random vectors

(Λ(𝑁)(𝑇1), . . . ,Λ
(𝑁)(𝑇𝑘)) → (𝒮𝜇,2∞(𝑇1), . . . ,𝒮𝜇,2∞(𝑇𝑘))

in distribution. By Lemma 7.1.8 it suffices to check convergence of measures on sets∏︀𝑘
𝑖=1 𝜋

−1
𝐼𝑖
({𝑏𝑖}) with 𝑏𝑖 = (𝑏𝑖,1, . . . , 𝑏𝑖,|𝐼𝑖|) ∈ Z̄𝐼𝑖 . For any projection 𝜋𝐽 to finitely many

coordinates, 𝜋𝐽(Λ(𝑁)) = 𝜋𝐽(Λ̃
(𝑁)) for all sufficiently large 𝑁 in terms of 𝐽 . Hence it

suffices to show

(Λ̃(𝑁)(𝑇1), . . . , Λ̃
(𝑁)(𝑇𝑘)) → (𝒮𝜇,2∞(𝑇1), . . . ,𝒮𝜇,2∞(𝑇𝑘))

in distribution. Letting 𝑑 be some integer satisfying

𝑑 > sup
1≤𝑖≤𝑘

sup
1≤𝑗≤|𝐼𝑖|

𝑏𝑖,𝑗,

it therefore suffices to check 𝐹𝑑(Λ̃
(𝑁)(𝑇 )) converges in joint distribution at 𝑇1, . . . , 𝑇𝑘 to

𝐹𝑑(𝒮𝜇,2∞(𝑇 )).

We now wish to prove the desired convergence in finite-dimensional distribution by

analyzing the transition matrix and generator, respectively, of the discrete-time process

𝐹𝑑(Π̃
(𝑁)(𝜏)), 𝜏 = 0, 1, . . . and the continuous-time process 𝐹𝑑(𝒮𝜇,2∞(𝑇 )). For these con-

siderations it is natural to consider a restricted state space, Σ(𝑑, 𝜇), which we now define.

Definition 61. Define a partial order ⊂ on ̂︁Sig2∞ by

𝜈 ⊂ 𝜅 ⇐⇒ 𝜈𝑖 ≤ 𝜅𝑖 for all 𝑖. (7.3.9)

For 𝜈 ⊂ 𝜅, we define

|𝜅/𝜈| =
∑︁
𝑖∈Z

𝜅𝑖 − 𝜈𝑖 ∈ Z≥0 ∪ {∞}, (7.3.10)

where in the sum we take the convention that ∞−∞ = (−∞)− (−∞) = 0 and ∞−𝑛 =

𝑛− (−∞) = ∞ for all 𝑛 ∈ Z. Finally, we set

Σ(𝑑, 𝜇) := {𝜈 ∈ 𝐹𝑑(̂︁Sig2∞) : 𝜈 ⊃ 𝜇, |𝜈/𝜇| <∞}.
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Lemma 7.3.5. For 𝜇 ∈ ̂︁Sig2∞ with lim𝑛→∞ 𝜇−𝑛 = ∞ and any 𝑑 ∈ N, the Markov

process 𝐹𝑑(𝒮𝜇,2∞(𝑇 )) remains on Σ(𝑑, 𝜇) for all time with probability 1, and its transition

matrix 𝑄 (restricted to Σ(𝑑, 𝜇) is upper-triangular with respect to the partial order ⊂ of

Definition 61.

Proof. By Proposition 7.1.6, the sum of transition rates of 𝐹𝑑(𝒮𝜇,2∞) out of any state is

bounded above by the sum of transition rates out of state 𝜇, which is (𝑡𝑖0 − 𝑡𝑁+1)/(1− 𝑡)

and hence finite. Therefore with probability 1, 𝐹𝑑(𝒮𝜇,2∞(𝑇 )) stays on Σ(𝑑, 𝜇). Upper-

triangularity follows from the explicit definition in Proposition 7.1.6.

Lemma 7.3.6. In the setting of Theorem 7.2.1, for any 𝑑 ∈ N, 𝐹𝑑(Π̃
(𝑁)(𝜏)) is a Markov

chain. Furthermore, the set ̂︁Sig2∞ ∖Σ(𝑑, 𝜇) is absorbing for this process, so it projects

to a Markov process on Σ(𝑑, 𝜇) ∪ {ℵ} by identifying all states in ̂︁Sig2∞ ∖Σ(𝑑, 𝜇) with ℵ.

Finally, the transition matrix 𝑃𝑁 of this Markov process is upper-triangular with respect

to the partial order ⊂ of Definition 61.

Proof. The diagonal entries of the Smith normal form of any 𝐴 ∈ Mat𝑁(Z/𝑝𝑑Z) will lie

in {1, 𝑝, . . . , 𝑝𝑑−1, 0}, and so we define SN(𝐴) ∈ Sig𝑁 to have all parts in {0, 1, . . . , 𝑑},

where all 0 entries in the diagonal of the Smith normal form correspond to parts 𝑑. It is

then clear that for any 𝐴 ∈ Mat𝑁(Z𝑝),

𝐹𝑑(SN(𝐴)) = SN(𝐴 (mod 𝑝𝑑)). (7.3.11)

Since 𝐴
(𝑁)
⌊𝑐𝑁𝑇 ⌋ · · ·𝐴

(𝑁)
1 𝐵(𝑁) (mod 𝑝𝑑) is a product of independent matrices over Z/𝑝𝑑Z,

𝐹𝑑(Π̃
(𝑁)(𝜏))

𝑠𝑟𝑁 ∘ 𝜄(SN(𝐴(𝑁)
𝜏 · · ·𝐴(𝑁)

1 𝐵(𝑁) (mod 𝑝𝑑))) (7.3.12)

is a Markov process. Because Π̃(𝑁)(𝜏) is the same as above except on coordinates 𝑖 >

𝑁 − 𝑟𝑁 , which do not evolve in time under either process, Π̃(𝑁)(𝜏) is also a Markov

process. Clearly 𝐹𝑑(Π̃
(𝑁)(𝜏)) has upper-triangular transition matrix with respect to ⊃,

since multiplying matrices over Z𝑝 can only increase their singular numbers. Hence if it

ever leaves Σ(𝑑, 𝜇), it will not return, so it projects to a Markov process on Σ(𝑑, 𝜇) ∪

{ℵ}.

Note that if 𝑑 > lim𝑛→∞ 𝜇−𝑛, then 𝐹𝑑(Π̃
(𝑁)(𝜏))𝑖 = 𝑑 > 𝜇𝑖 for all sufficiently large
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negative 𝑖, hence in fact 𝐹𝑑(Π̃
(𝑁)(𝜏)) lives on ̂︁Sig2∞ ∖Σ(𝑑, 𝜇). When 𝑑 ≤ lim𝑛→∞ 𝜇−𝑛,

however, it is not hard to see that 𝐹𝑑(Π̃
(𝑁)(𝜏)) will remain on Σ(𝑑, 𝜇) with probability

1, though we find this fact as a consequence of later statements rather than explicitly

deriving it. Finally, we may prove the desired result.

Proof of Theorem 7.2.1, assuming Lemma 7.3.1, Lemma 7.3.2, and Lemma 7.3.3. By Lemma 7.3.4,

it suffices to show for any sequence of times 0 ≤ 𝑇1 < . . . < 𝑇𝑘 that

(𝐹𝑑(Λ̃
(𝑁)(𝑇𝑖))1≤𝑖≤𝑘 → (𝐹𝑑(𝒮𝜇,2∞(𝑇𝑖)))1≤𝑖≤𝑘 (7.3.13)

weakly as 𝑁 → ∞. It follows from Proposition 7.1.6 that

Pr(𝒮𝜇,2∞(𝑇𝑖) = 𝜈(𝑖) for all 1 ≤ 𝑖 ≤ 𝑘)

= (𝑒𝑇1𝑄)(𝐹𝑑(𝜇), 𝜈
(1))(𝑒(𝑇2−𝑇1)𝑄)(𝜈(1), 𝜈(2)) · · · (𝑒(𝑇𝑘−𝑇𝑘−1)𝑄)(𝜈(𝑘−1), 𝜈(𝑘)) (7.3.14)

when all 𝜈(𝑖) lie in Σ(𝑑, 𝜇), and (7.3.14) is 0 otherwise. Hence to show (7.3.13), by (7.3.14)

we must show

𝑃
⌊𝑐𝑁𝑇𝑖⌋−⌊𝑐𝑁𝑇𝑖−1⌋
𝑁 (𝜈(𝑖−1), 𝜈(𝑖))

𝑁→∞−−−→ (𝑒(𝑇𝑖−𝑇𝑖−1)𝑄)(𝜈(𝑖−1), 𝜈(𝑖)). (7.3.15)

Let 𝑃𝑁,𝑖 and 𝑄𝑖 be the restrictions of 𝑃𝑁 and 𝑄 to the finite poset interval [𝜈(𝑖−1), 𝜈(𝑖)] ⊂

Σ(𝑑, 𝜇). Then by upper-triangularity (see Lemma 7.3.6 and Lemma 7.3.5 respectively),

𝑃
⌊𝑐𝑁𝑇𝑖⌋−⌊𝑐𝑁𝑇𝑖−1⌋
𝑁,𝑖 (𝜈(𝑖−1), 𝜈(𝑖)) = 𝑃

⌊𝑐𝑁𝑇𝑖⌋−⌊𝑐𝑁𝑇𝑖−1⌋
𝑁 (𝜈(𝑖−1), 𝜈(𝑖)) (7.3.16)

(𝑒(𝑇𝑖−𝑇𝑖−1)𝑄𝑖)(𝜈(𝑖−1), 𝜈(𝑖)) = (𝑒(𝑇𝑖−𝑇𝑖−1)𝑄)(𝜈(𝑖−1), 𝜈(𝑖)). (7.3.17)

This implies that in order to show (7.3.15), it suffices to show

𝑃
⌊𝑐𝑁𝑇𝑖⌋−⌊𝑐𝑁𝑇𝑖−1⌋
𝑁,𝑖 (𝜈(𝑖−1), 𝜈(𝑖))

𝑁→∞−−−→ (𝑒(𝑇𝑖−𝑇𝑖−1)𝑄𝑖)(𝜈(𝑖−1), 𝜈(𝑖)). (7.3.18)

The latter is an equality of finite matrices, and because they are finite it suffices to show

𝑃𝑁,𝑖 = 𝐼 + 𝑐−1
𝑁 𝑄𝑖 + 𝑜(𝑐−1

𝑁 ). (7.3.19)
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For any 𝜂, 𝜅 ∈ [𝜈(𝑖−1), 𝜈(𝑖)] ⊂ Σ(𝑑, 𝜇), we have

𝑃𝑁,𝑖(𝜂, 𝜅) = 𝑃𝑁(𝜂, 𝜅) = 𝑃
𝐴

(𝑁)
𝑖 ,𝑑

((𝜂𝑖)1−𝑟𝑁≤𝑖≤𝑁−𝑟𝑁 , (𝜅𝑖)1−𝑟𝑁≤𝑖≤𝑁−𝑟𝑁 ) (7.3.20)

and 𝑄𝑖(𝜂, 𝜅) = 𝑄(𝜂, 𝜅). We recall from Proposition 7.1.6 that

𝑄(𝜂, 𝜅) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
− 𝑡𝜂

′
𝑑+1−𝑡𝑁+1

1−𝑡
𝜅 = 𝜂

𝑡𝑖(1−𝑡𝑚𝜂𝑖 (𝜂))
1−𝑡

there exists 𝑖 ∈ Z such that 𝜅𝑗 = 𝜂𝑗 + 1(𝑗 = 𝑖) for all 𝑗 ∈ Z

0 else

.

(7.3.21)

The asymptotics of Lemma 7.3.1, Lemma 7.3.2, and Lemma 7.3.3 for (7.3.20), which

correspond to the three cases of (7.3.21), yield (7.3.19) in these three cases and hence

complete the proof.

7.4 Nonasymptotic linear-algebraic bounds

The purpose of this section is to prove three nonasymptotic statements about random

matrix products, Lemma 7.4.1, Lemma 7.4.2, and Lemma 7.4.3. In the next section we

will use these to prove Lemma 7.3.1, Lemma 7.3.2, and Lemma 7.3.3 respectively.

For the remainder of this section, we fix the following notation: Let 𝑁 ∈ Z≥1 and

𝜇, 𝜆 ∈ Y𝑁 be fixed partitions, let 𝐴 = (𝑎𝑖𝑗)1≤𝑖,𝑗≤𝑁 be a Haar-distributed element of

GL𝑁(Z𝑝), and let 𝜈 = SN(diag(𝑝𝜆)𝐴 diag(𝑝𝜇)) (a random partition). We write col𝑗(𝐴) =

(𝑎𝑖𝑗)1≤𝑖≤𝑁 ∈ Z𝑁
𝑝 and similarly for other matrices.

Lemma 7.4.1. In the setting of this section, for any 1 ≤ 𝑟 ≤ 𝑁

Pr(𝜈𝑗 = 𝜇𝑗 for all 𝑗 ≥ 𝑟) ≥
𝑁∏︁
𝑗=𝑟

1− 𝑡𝑗−len(𝜆)

1− 𝑡𝑗
=

(𝑡; 𝑡)𝑁−len(𝜆)(𝑡; 𝑡)𝑟−1

(𝑡; 𝑡)𝑟−1−len(𝜆)(𝑡; 𝑡)𝑁
(7.4.1)

with equality if 𝜇𝑟−1 > 𝜇𝑟.

We remark that the right hand side of (7.4.1) is 0 when 𝑟 ≤ len(𝜆). If 𝜇𝑟−1 = 𝜇𝑟 the

statement becomes trivial, but if 𝜇𝑟−1 > 𝜇𝑟 it is a useful statement.

271



Lemma 7.4.2. If len(𝜆) + 1 ≤ 𝑟 ≤ 𝑁 is such that 𝜇𝑟−1 > 𝜇𝑟 and 𝑚𝜇𝑟(𝜇) = 𝑚, then

(1− 𝑡𝑟−len(𝜆))𝐶(𝑟,𝑁,𝑚, 𝜆) ≤ Pr(𝜈𝑟 = 𝜇𝑟 + 1 and 𝜈𝑗 = 𝜇𝑗 for all 𝑗 > 𝑟) ≤ 𝐶(𝑟,𝑁,𝑚, 𝜆)

(7.4.2)

where

𝐶(𝑟,𝑁,𝑚, 𝜆) := (𝑡𝑟−len(𝜆) − 𝑡𝑟)
1− 𝑡𝑚

1− 𝑡

(𝑡; 𝑡)𝑟−1(𝑡; 𝑡)𝑁−len(𝜆)

(𝑡; 𝑡)𝑁(𝑡; 𝑡)𝑟−len(𝜆)

Lemma 7.4.3. For any len(𝜆) + 1 ≤ 𝑟 ≤ 𝑁 ,

Pr

(︃
𝑁∑︁
𝑗=𝑟

𝜈𝑗 − 𝜇𝑗 ≥ 2

)︃
≤ 1−

(𝑡; 𝑡)𝑟−1(𝑡; 𝑡)𝑁−len(𝜆)

(𝑡; 𝑡)𝑁(𝑡; 𝑡)𝑟−len(𝜆)

(︂
1− 𝑡𝑟−len(𝜆) + 𝑡𝑟−len(𝜆)(1− 𝑡𝑁−𝑟+1)

1− 𝑡len(𝜆)

1− 𝑡

)︂
.

Proving Lemma 7.4.1, Lemma 7.4.2, and Lemma 7.4.3 requires many auxiliary steps,

which we begin proving. The following fact will be useful in proving Lemma 7.4.1 and

later.

Lemma 7.4.4. In the setting of this section, let

𝑣𝑗 = (𝑎𝑖,𝑗)len(𝜆)<𝑖≤𝑁 (mod 𝑝) ∈ F𝑁−len(𝜆)
𝑝 .

Then the following implication and partial converse hold:

1. If the set {𝑣𝑗 : 𝑟 ≤ 𝑗 ≤ 𝑁} is linearly independent, then 𝜈𝑗 = 𝜇𝑗 for all 𝑗 ≥ 𝑟.

2. Suppose that additionally 𝜇𝑟−1 > 𝜇𝑟. If 𝜈𝑗 = 𝜇𝑗 for all 𝑗 ≥ 𝑟, then {𝑣𝑗 : 𝑟 ≤ 𝑗 ≤ 𝑁}

is linearly independent.

Proof. Let

𝐴′ := diag(𝑝𝜆)𝐴 diag(𝑝𝜇) = (𝑝𝜆𝑖+𝜇𝑗𝑎𝑖,𝑗)1≤𝑖,𝑗≤𝑁 . (7.4.3)

First, suppose that {𝑣𝑗 : 𝑟 ≤ 𝑗 ≤ 𝑁} is a linearly independent set. Then the col𝑁(𝐴
′)

has an entry 𝑝𝜇𝑁𝑎𝑖,𝑁 with valuation 𝜇𝑁 , equivalently 𝑎𝑖,𝑁 ∈ Z×
𝑝 , and all other entries

of 𝐴′ have valuation at least 𝜇𝑁 . Hence by row and column operations we may cancel

all entries in the same row and column as 𝑝𝜇𝑁𝑎𝑖,𝑁 and multiply its row by 𝑎−1
𝑖,𝑁 ∈ Z𝑝,
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obtaining a matrix

⎛⎜⎜⎜⎜⎜⎜⎝
𝑝𝜆1+𝜇1 𝑎̃1,1 · · · 𝑝𝜆1+𝜇𝑁−1 𝑎̃1,𝑁−1 0

...
. . .

...
...

𝑝𝜆𝑁−1+𝜇1 𝑎̃𝑁−1,1 · · · 𝑝𝜆𝑁−1+𝜇𝑁−1 𝑎̃𝑁−1,𝑁−1 0

0 · · · 0 𝑝𝜇𝑁

⎞⎟⎟⎟⎟⎟⎟⎠ (7.4.4)

for some 𝑎̃𝑖,𝑗 ∈ Z𝑝.

By the linear independence assumption we may then find an entry 𝑝𝜇𝑁−1𝑎𝑖,𝑁−1 in the

(𝑁 − 1)st column of the matrix in (7.4.4), and cancel again, etc. Continuing, we obtain

a matrix⎛⎜⎜⎜⎜⎜⎜⎝
𝑝𝜆1+𝜇1 𝑎̂1,1 · · · 𝑝𝜆1+𝜇𝑟−1 𝑎̂1,𝑟−1

...
. . .

... 0(𝑁−𝑟+1)×𝑟

𝑝𝜆𝑟−1+𝜇1 𝑎̂𝑟−1,1 · · · 𝑝𝜆𝑟−1+𝜇𝑟−1 𝑎̂𝑟−1,𝑟−1

0𝑟×(𝑁−𝑟+1) diag(𝑝𝜇𝑟 , . . . , 𝑝𝜇𝑁 )

⎞⎟⎟⎟⎟⎟⎟⎠ , (7.4.5)

for some 𝑎̂𝑖,𝑗 ∈ Z𝑝, with the same singular numbers as 𝐴′. Its top left (𝑟 − 1) × (𝑟 − 1)

submatrix 𝐴 = (𝑝𝜆𝑖+𝜇𝑗 𝑎̂𝑖,𝑗)1≤𝑖,𝑗≤𝑟−1 lies in 𝑝𝜇𝑟−1 Mat(𝑟−1)×(𝑟−1)(Z𝑝), so all parts of SN(𝐴)

are at least 𝜇𝑟−1, hence

SN(𝐴′) = (SN(𝐴), 𝜇𝑟, 𝜇𝑟+1, . . . , 𝜇𝑁).

Now for the reverse implication, let us assume that 𝜇𝑟−1 > 𝜇𝑟 and suppose that the set

{(𝑎𝑖,𝑗)len(𝜆)<𝑖≤𝑁 : 𝑟 ≤ 𝑗 ≤ 𝑁} is not linearly independent modulo 𝑝. Let 𝑘′ be the largest

index for which {𝑣𝑘′ , . . . , 𝑣𝑁} is linearly dependent, and 𝑘 ≤ 𝑘′ the largest index such

that additionally 𝜇𝑘 < 𝜇𝑘−1. By the assumption 𝜇𝑟−1 > 𝜇𝑟 it follows that 𝑘 ≥ 𝑟. We

claim 𝜈𝑘 > 𝜇𝑘. By definition of 𝑘′, there must exist a relation

𝑐𝑘′𝑣𝑘′ + . . .+ 𝑐𝑁𝑣𝑁 = 0

with 𝑐𝑘′ ̸= 0 in F𝑁−len(𝜆)
𝑝 , so without loss of generality take 𝑐𝑘′ = 1. Letting 𝐶𝑗 be a lift
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of 𝑐𝑗 to Z𝑝, we therefore have that

val𝑝 (col𝑘′(𝐴
′) + 𝐶𝑘′+1 col𝑘′+1(𝐴

′) + . . . 𝐶𝑁 col𝑁(𝐴
′)) ≥ 𝜇𝑘′ + 1.

The matrix 𝐴′′, obtained from 𝐴′ via column operations replacing col𝑘′(𝐴
′) by col𝑘′(𝐴

′)+

𝐶𝑘′+1 col𝑘′+1(𝐴
′) + . . . 𝐶𝑁 col𝑁(𝐴

′), thus has the same singular numbers as 𝐴′ and fur-

thermore has val𝑝(col𝑗(𝐴′′)) ≥ 𝜇𝑘 + 1 for 𝑗 = 1, . . . , 𝑘− 1, 𝑘′. It follows immediately that

𝜈 has at least 𝑘 parts ≥ 𝜇𝑘 + 1, and since 𝜈𝑗 ≥ 𝜇𝑗 for all 𝑗 this implies 𝜈𝑘 ≥ 𝜇𝑘 + 1. This

proves the reverse implication.

The forward direction of Lemma 7.4.4 is a corollary of the following inequality, though

we are not sure how one would establish the backward direction through the considera-

tions used in the proof below.

Lemma 7.4.5. Let 𝜆, 𝜇 ∈ Y𝑁 , 1 ≤ 𝑟 ≤ 𝑁 with len(𝜆) < 𝑟, and 𝑘 ≥ 0. Then for any

𝐵 = (𝑏𝑖𝑗)1≤𝑖,𝑗≤𝑁 ∈ GL𝑁(Z𝑝),

⃒⃒⃒⃒
SN

(︂
(𝑏𝑖𝑗)len(𝜆)<𝑖≤𝑁

𝑟≤𝑗≤𝑁

)︂⃒⃒⃒⃒
≤

𝑁∑︁
𝑗=𝑟

SN(𝑝𝜆𝐵𝑝𝜇)𝑗 − 𝜇𝑗. (7.4.6)

Proof of Lemma 7.4.5. Let

𝐵′ = (𝑏𝑖𝑗)len(𝜆)<𝑖≤𝑁
𝑟≤𝑗≤𝑁

.

Since 𝑟 > len(𝜆), by Corollary 2.1.4

𝑁∑︁
𝑗=𝑟

SN(𝑝𝜆𝐵𝑝𝜇)𝑗 ≤
𝑁−𝑟+1∑︁
𝑗=1

SN(𝐵′𝑝(𝜇𝑟,...,𝜇𝑁 ))𝑗 = | SN(𝐵′𝑝(𝜇𝑟,...,𝜇𝑁 ))|. (7.4.7)

By Proposition 2.1.5,

| SN(𝐵′𝑝(𝜇𝑟,...,𝜇𝑁 ))| =
𝑁∑︁
𝑗=𝑟

𝜇𝑗 + | SN(𝐵′)|. (7.4.8)

Combining (7.4.7) with (7.4.8) and subtracting
∑︀𝑁

𝑗=𝑟 𝜇𝑗 from both sides yields (7.4.6).

Proof of Lemma 7.4.1. In light of Lemma 7.4.4, we must show (in the notation of that
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result) that

Pr({𝑣𝑗 : 𝑟 ≤ 𝑗 ≤ 𝑁} is linearly independent) =
𝑁∏︁
𝑗=𝑟

𝑝𝑗 − 𝑝len(𝜆)

𝑝𝑗 − 1
. (7.4.9)

When 𝑟 ≤ len(𝜆) this reduces easily to 0 = 0, so suppose 𝑟 > len(𝜆). The columns

col𝑟(𝐴), . . . , col𝑁(𝐴) are chosen independently from the Haar measure, conditioned to

be linearly independent modulo 𝑝. This implies that the columns col𝑗(𝐴) (mod 𝑝) are

chosen from the uniform measure on F𝑁
𝑝 , conditionally on being linearly independent.

Therefore

Pr({𝑣𝑗 : 𝑟 ≤ 𝑗 ≤ 𝑁} is linearly independent) =
#𝑆2

#𝑆1

(7.4.10)

where

𝑆1 := {𝐵 = (𝑏𝑖,𝑗) ∈ Mat𝑁×(𝑁−𝑟+1)(F𝑝) : 𝐵 is full rank}

𝑆2 := {𝐵 = (𝑏𝑖,𝑗) ∈ Mat𝑁×(𝑁−𝑟+1)(F𝑝) : (𝑏𝑖,𝑗1𝑖>len(𝜆))1≤𝑖≤𝑁
1≤𝑗≤𝑁−𝑟+1

is full rank} ⊂ 𝑆1.

Computing the number of possible first columns, then second columns, etc. of 𝐵 yields

#𝑆1 = (𝑝𝑁 − 1) · · · (𝑝𝑁 − 𝑝𝑁−𝑟) (7.4.11)

Since the condition

(𝑏𝑖,𝑗1𝑖>len(𝜆))1≤𝑖≤𝑁
1≤𝑗≤𝑁−𝑟+1

is full rank

is independent of the upper submatrix (𝑏𝑖,𝑗)1≤𝑖≤len(𝜆)
1≤𝑗≤𝑁−𝑟+1

, counting the number of possible

first, second, etc. columns we have

#𝑆2 = (𝑝𝑁 − 𝑝len(𝜆)) · · · (𝑝𝑁 − 𝑝len(𝜆)+𝑁−𝑟) (7.4.12)

Computing the RHS of (7.4.10) via (7.4.11) and (7.4.12) yields (7.4.9) and hence com-

pletes the proof.

For the proofs of Lemma 7.4.2 and Lemma 7.4.3 we will use the following auxiliary

computations over F𝑝.
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Lemma 7.4.6. For 0 ≤ 𝑟 ≤ 𝑘 ≤ 𝑛,

#{𝐵 ∈ Mat𝑛×𝑘(F𝑞) : rank(𝐵) = 𝑟} = 𝑞𝑟𝑛+𝑟𝑘−𝑟2 (𝑞−1; 𝑞−1)𝑛(𝑞
−1; 𝑞−1)𝑘

(𝑞−1; 𝑞−1)𝑟(𝑞−1; 𝑞−1)𝑛−𝑟(𝑞−1; 𝑞−1)𝑘−𝑟

.

(7.4.13)

Proof. The group GL𝑛(F𝑞)×GL𝑘(F𝑞) acts on Mat𝑛×𝑘(F𝑞) by (𝑥, 𝑦) ·𝐵 = 𝑥𝐵𝑦−1, and by

Smith normal form orbits are parametrized by their coranks. Letting 𝐵𝑟 ∈ Mat𝑛×𝑘(F𝑞)

be the matrix with 𝑖𝑖𝑡ℎ entry 1 for 1 ≤ 𝑖 ≤ 𝑟 and all other entries 0, we therefore have

LHS(7.4.13) =
#GL𝑛(F𝑞)×GL𝑘(F𝑞)

#Stab(𝐵𝑟)
. (7.4.14)

Explicitly,

#Stab(𝐵𝑟) =

⎧⎨⎩
⎛⎝⎛⎝𝑋 𝑌

0 𝑍

⎞⎠ ,

⎛⎝𝑋 0

𝑃 𝑄

⎞⎠⎞⎠ :
𝑋∈GL𝑟(F𝑞),𝑍∈GL𝑛−𝑟(F𝑞),𝑄∈GL𝑘−𝑟(F𝑞)
𝑃∈Mat(𝑘−𝑟)×𝑟(F𝑞),𝑌 ∈Mat𝑟×(𝑛−𝑟)(F𝑞)

⎫⎬⎭ ,

therefore

#Stab(𝐵𝑟) = (𝑞𝑟−1) · · · (𝑞𝑟−𝑞𝑟−1)𝑞𝑟(𝑛−𝑟)(𝑞𝑛−𝑟−1) · · · (𝑞𝑛−𝑟−𝑞𝑛−𝑟−1)𝑞𝑟(𝑘−𝑟)(𝑞𝑘−𝑟−1) · · · (𝑞𝑘−𝑟−𝑞𝑘−𝑟−1).

Combining this with

#GL𝑛(F𝑞)×GL𝑘(F𝑞) = (𝑞𝑛 − 1) · · · (𝑞𝑛 − 𝑞𝑛−1)(𝑞𝑘 − 1) · · · (𝑞𝑘 − 𝑞𝑘−1)

and (7.4.14) yields (7.4.13).

Lemma 7.4.7. Let 𝑑 and 𝑛 ≥ 𝑘 be three nonnegative integers, let 𝐵 ∈ Mat(𝑛+𝑑)×𝑘(F𝑞)

be a uniformly random full-rank matrix, and let 𝐵′ ∈ Mat𝑛×𝑘(F𝑞) be its lower 𝑛 × 𝑘

submatrix. Then for any 0 ≤ 𝑟 ≤ 𝑘,

Pr(rank(𝐵′) = 𝑟) = 𝑞−(𝑛−𝑟)(𝑘−𝑟)

⎡⎣ 𝑑

𝑘 − 𝑟

⎤⎦
𝑞−1

⎡⎣𝑛
𝑟

⎤⎦
𝑞−1⎡⎣𝑛+ 𝑑

𝑘

⎤⎦
𝑞−1

. (7.4.15)
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Proof. We first compute

#{𝐵 ∈ Mat(𝑛+𝑑)×𝑘(F𝑞) : rank(𝐵) = 𝑘, rank(𝐵′) = 𝑟}

where 𝐵′ is the truncated matrix as in the statement. The number of possible 𝐵′ is

computed in Lemma 7.4.6, so for each 𝐵′ we must count the number of 𝑑 × 𝑘 matrices

𝐵′′ such that ⎛⎝𝐵′′

𝐵′

⎞⎠ ∈ Mat(𝑛+𝑑)×𝑘(F𝑞)

is full rank. By change of basis, the number of such 𝐵′′ is the same for any 𝐵′ of rank 𝑟,

so without loss of generality take 𝐵′ = 𝐵𝑟 ∈ Mat𝑛×𝑘(F𝑞), the matrix with 𝑖𝑖𝑡ℎ entry 1 for

1 ≤ 𝑖 ≤ 𝑟 and all other entries 0. Then the first 𝑟 columns of 𝐵′′ may be anything, and

the last 𝑘 − 𝑟 columns must be linearly independent, so there are

𝑞𝑑𝑟(𝑞𝑑 − 1) · · · (𝑞𝑑 − 𝑞𝑘−𝑟−1) (7.4.16)

possibilities for 𝐵′. The result now follows by combining (7.4.16) with Lemma 7.4.6,

dividing by the number of full rank (𝑛+ 𝑑)× 𝑘 matrices, and cancelling terms.

Remark 43. We note that (7.4.15) is a 𝑞-analogue of the probability that a uniformly

random 𝑘-element subset 𝑆 ⊂ 𝐴 ⊔𝐵 has #𝑆 ∩𝐵 = 𝑟, when #𝐴 = 𝑑 and #𝐵 = 𝑛.

Lemma 7.4.8. Let 𝐴 ∈ GL𝑁(Z𝑝) be distributed by the Haar measure and 𝐴′ be an 𝑛×𝑚

submatrix with 𝑛 ≤ 𝑚 ≤ 𝑁 . Then

Pr(SN(𝐴′) = (1, 0, . . . , 0)) = 𝑡𝑚−𝑛+1 (𝑡; 𝑡)𝑁−𝑚(𝑡; 𝑡)𝑚(𝑡; 𝑡)𝑛(𝑡; 𝑡)𝑁−𝑛

(𝑡; 𝑡)1(𝑡; 𝑡)𝑁−𝑚−1(𝑡; 𝑡)𝑛−1(𝑡; 𝑡)𝑚−𝑛+1(𝑡; 𝑡)𝑁
.

Proof. Follows immediately by combining Theorem 1.3(1) and Proposition 2.9 of [VP21].

We note that Lemma 7.4.8 can also be established by a (longer) direct proof not going

through the general results of [VP21].
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Proof of Lemma 7.4.2. First write

Pr(𝜈𝑟 = 𝜇𝑟 + 1 and 𝜈𝑗 = 𝜇𝑗 for all 𝑗 > 𝑟)

= Pr(𝜈𝑟 = 𝜇𝑟 + 1 and 𝜈𝑗 = 𝜇𝑗 for all 𝑟 < 𝑗 < 𝑟 +𝑚|𝜈𝑗 = 𝜇𝑗 for all 𝑗 ≥ 𝑟 +𝑚)

× Pr(𝜈𝑗 = 𝜇𝑗 for all 𝑗 ≥ 𝑟 +𝑚).

(7.4.17)

The second term on the RHS is

Pr(𝜈𝑗 = 𝜇𝑗 for all 𝑗 ≥ 𝑟 +𝑚) =
𝑁∏︁

𝑗=𝑟+𝑚

1− 𝑡𝑗−len(𝜆)

1− 𝑡𝑗
(7.4.18)

by Lemma 7.4.1, so it suffices to compute the first term on the RHS of (7.4.17). By

Lemma 7.4.4,

𝑊 (𝐴) := (𝑎𝑖,𝑗)len(𝜆)+1≤𝑖≤𝑁
𝑟+𝑚≤𝑗≤𝑁

(7.4.19)

is full rank modulo 𝑝 if and only if 𝜈𝑗 = 𝜇𝑗 for all 𝑗 ≥ 𝑟 +𝑚. Therefore

Pr(𝜈𝑟 = 𝜇𝑟 + 1 and 𝜈𝑗 = 𝜇𝑗 for all 𝑟 < 𝑗 < 𝑟 +𝑚|𝜈𝑗 = 𝜇𝑗 for all 𝑗 ≥ 𝑟 +𝑚)

= Pr(𝜈𝑟 = 𝜇𝑟 + 1 and 𝜈𝑗 = 𝜇𝑗 for all 𝑟 < 𝑗 < 𝑟 +𝑚|𝑊 (𝐴) is full rank modulo 𝑝).

(7.4.20)

We claim that

RHS(7.4.20) = Pr(𝜈𝑟 = 𝜇𝑟 + 1 and 𝜈𝑗 = 𝜇𝑗 for all 𝑟 < 𝑗 < 𝑟 +𝑚|𝑊 (𝐴) = 𝐼) (7.4.21)

where

𝐼 =

⎛⎝0(𝑟+𝑚−len(𝜆)−1)×(𝑁−(𝑟+𝑚)+1)

𝐼𝑁−(𝑟+𝑚)+1

⎞⎠ . (7.4.22)

First note that any matrix 𝐻 ∈ Mat(𝑁−len(𝜆))×(𝑁−(𝑟+𝑚)+1)(Z𝑝) which is full-rank modulo

𝑝 is in the same GL𝑁−len(𝜆)(Z𝑝)-orbit as 𝐼 (here we use that len(𝜆) < 𝑟 and simply apply

the necessary row operations to 𝐻). This, together with the explicit description of the

Haar measure in Proposition 2.1.7, implies that

Law(𝐴|𝑊 (𝐴) is full rank modulo 𝑝) = Law(𝐵𝐴|𝑊 (𝐴) = 𝐼) (7.4.23)
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where

𝐵 =

⎛⎝𝐼 0

0 𝐵̃

⎞⎠ ∈

⎛⎝𝐼 0

0 GL𝑁−len(𝜆)(Z𝑝)

⎞⎠ (7.4.24)

and 𝐵̃ is Haar-distributed independent of 𝐴, because 𝐵 mixes 𝐼 to a matrix distributed

by the additive Haar measure conditioned on being full rank. By (7.4.23),

Law(SN(𝑝𝜆𝐴𝑝𝜇)|𝑊 (𝐴) is full rank modulo 𝑝) = Law(SN(𝑝𝜆𝐵𝐴𝑝𝜇)|𝑊 (𝐴) = 𝐼)

= Law(SN(𝐵𝑝𝜆𝐴𝑝𝜇)|𝑊 (𝐴) = 𝐼)

= Law(SN(𝑝𝜆𝐴𝑝𝜇)|𝑊 (𝐴) = 𝐼),

(7.4.25)

which shows (7.4.21).

For convenience define 𝐴 = (𝑎̃𝑖,𝑗)1≤𝑖,𝑗≤𝑁 to be a random element of GL𝑁(Z𝑝) dis-

tributed by the Haar measure conditioned on 𝑊 (𝐴) = 𝐼, so that

RHS(7.4.21) = Pr(SN(𝑝𝜆𝐴𝑝𝜇)𝑖 = 𝜇𝑖 + 1(𝑖 = 𝑟) for all 𝑟 ≤ 𝑖 ≤ 𝑁). (7.4.26)

For any deterministic matrix 𝑉 = (𝑣𝑖,𝑗)1≤𝑖,𝑗≤𝑁 with𝑊 (𝑉 ) = 𝐼, first note that SN(𝑝𝜆𝑉 𝑝𝜇)𝑖 =

𝜈𝑖 for all 𝑟 +𝑚 ≤ 𝑖 ≤ 𝑁 by Lemma 7.4.4 as before. We make the following additional

claims, which will be used for our upper and lower bounds:

(i) If

SN

(︂
(𝑣𝑖,𝑗)len(𝜆)+1≤𝑖≤𝑟+𝑚−1

𝑟≤𝑗≤𝑟+𝑚−1

)︂
= (1, 0, . . . , 0) (7.4.27)

then

SN(𝑝𝜆𝑉 𝑝𝜇)𝑖 = 𝜇𝑖 + 1(𝑖 = 𝑟) for all 𝑟 ≤ 𝑖 ≤ 𝑟 +𝑚− 1. (7.4.28)

(ii) If (7.4.28) holds, then

(𝑣𝑖,𝑗)len(𝜆)+1≤𝑖≤𝑟+𝑚−1
𝑟≤𝑗≤𝑟+𝑚−1

(mod 𝑝) has corank 1. (7.4.29)

Let us first show (i), so suppose (7.4.27) holds.

𝑝𝜆𝑉 𝑝𝜇 =

⎛⎜⎜⎜⎝
𝑝𝜆𝑀 (1) 𝑝𝜆𝑀 (2) 𝑝𝜆𝑀 (3)

𝑀 (4) 𝑀 (5) 0

𝑀 (6) 𝑀 (7) diag(𝑝𝜇𝑟+𝑚 , . . . , 𝑝𝜇𝑁 )

⎞⎟⎟⎟⎠ , (7.4.30)
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where𝑀 (𝑖) are the appropriate submatrices of 𝑉 𝑝𝜇 and SN(𝑀 (5)) = (1, 0[𝑚−1]). Here the

blocks of (7.4.30) in first, second and third column have widths 𝑟−1, 𝑚 and𝑁−(𝑟+𝑚)+1

respectively, and the blocks of the first, second, and third rows have heights len(𝜆),

𝑟+𝑚− len(𝜆)−1, and 𝑁 − (𝑟+𝑚)+1 respectively. Hence by further column operations

which subtract units times powers 𝑝(𝜇𝑖−𝜇ℓ), 1 ≤ 𝑖 ≤ 𝑟 +𝑚− 1, 𝑟 +𝑚 ≤ ℓ ≤ 𝑁 times the

ℓ𝑡ℎ column from the 𝑖𝑡ℎ column, we obtain⎛⎜⎜⎜⎝
𝑝𝜆 M̃

(1)
𝑝𝜆 M̃

(2)
𝑝𝜆𝑀 (3)

𝑀 (4) 𝑀 (5) 0

0 0 diag(𝑝𝜇𝑟+𝑚 , . . . , 𝑝𝜇𝑁 )

⎞⎟⎟⎟⎠ (7.4.31)

and because of the 𝑝(𝜇𝑖−𝜇ℓ) powers the matrices M̃
(1)
, M̃

(2)
still lie in Matlen(𝜆)×(𝑟−1)(Z𝑝) diag(𝑝

𝜇1 , . . . , 𝑝𝜇𝑟−1),

Matlen(𝜆)×𝑚(Z𝑝) diag(𝑝
𝜇𝑟 , . . . , 𝑝𝜇𝑟+𝑚−1) respectively. We clearly may further cancel to ob-

tain ⎛⎜⎜⎜⎝
𝑝𝜆 M̃

(1)
𝑝𝜆 M̃

(2)
0

𝑀 (4) 𝑀 (5) 0

0 0 diag(𝑝𝜇𝑟+𝑚 , . . . , 𝑝𝜇𝑁 )

⎞⎟⎟⎟⎠ . (7.4.32)

Note that since 𝜇𝑟 = . . . = 𝜇𝑟+𝑚−1,

𝑀 (5) = 𝑝𝜇𝑟𝑉 , (7.4.33)

where 𝑉 = (𝑣𝑖,𝑗)len(𝜆)+1≤𝑖≤𝑟+𝑚−1
𝑟≤𝑗≤𝑟+𝑚−1

is the matrix for which we have assumed SN(𝑉 ) =

(1, 0[𝑚− 1]). Hence

SN(𝑀 (5)) = (𝜇𝑟 + 1, 𝜇𝑟[𝑚− 1]). (7.4.34)

By Corollary 2.1.4 and (7.4.34),

𝑚∑︁
ℓ=1

SN

(︂
(𝑝𝜆𝑖+𝜇𝑗𝑣𝑖,𝑗)1≤𝑖≤𝑟+𝑚−1

𝑟≤𝑗≤𝑟+𝑚−1

)︂
ℓ

≤
𝑚∑︁
ℓ=1

SN(𝑀 (5))ℓ = 𝑚𝜇𝑟 + 1. (7.4.35)

Since the matrix (𝑝𝜆𝑖𝑣𝑖,𝑗)1≤𝑖≤𝑟+𝑚−1
𝑟≤𝑗≤𝑟+𝑚−1

is not full rank modulo 𝑝 by (7.4.27),

⃒⃒⃒⃒
SN

(︂
(𝑝𝜆𝑖𝑣𝑖,𝑗)1≤𝑖≤𝑟+𝑚−1

𝑟≤𝑗≤𝑟+𝑚−1

)︂⃒⃒⃒⃒
≥ 1, (7.4.36)
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hence by Proposition 2.1.5 we have

LHS(7.4.35) ≥ 𝑚𝜇𝑟 + 1, (7.4.37)

so in fact

LHS(7.4.35) = 𝑚𝜇𝑟 + 1. (7.4.38)

Since every entry of (𝑝𝜆𝑖+𝜇𝑗𝑣𝑖,𝑗)1≤𝑖≤𝑟+𝑚−1
𝑟≤𝑗≤𝑟+𝑚−1

is divisible by 𝑝𝜇𝑟 , each singular number is at

least 𝜇𝑟, and combining this with (7.4.38) yields

SN

(︂
(𝑝𝜆𝑖+𝜇𝑗𝑣𝑖,𝑗)1≤𝑖≤𝑟+𝑚−1

𝑟≤𝑗≤𝑟+𝑚−1

)︂
= (𝜇𝑟 + 1, 𝜇𝑟[𝑚− 1]). (7.4.39)

Since all entries in columns 1 through 𝑟 − 1 of (7.4.32) are divisible by 𝑝𝜇𝑟−1 , (7.4.39)

together with the equivalence of 𝑝𝜆𝑉 𝑝𝜇 with (7.4.32) imply (7.4.28). This shows (i).

Now we show (ii), so suppose 𝑉 is such that (7.4.28) holds. If (𝑣𝑖,𝑗)len(𝜆)+1≤𝑖≤𝑟+𝑚−1
𝑟≤𝑗≤𝑟+𝑚−1

(mod 𝑝) were full-rank, then (𝑣𝑖,𝑗)len(𝜆)+1≤𝑖≤𝑁
𝑟≤𝑗≤𝑁

(mod 𝑝) would be full rank since 𝑊 (𝑉 ) = 𝐼

is full-rank, and by Lemma 7.4.4 this would contradict the fact that SN(𝑝𝜆𝑉 𝑝𝜇)𝑟 = 𝜇𝑟+1.

Hence (𝑣𝑖,𝑗)len(𝜆)+1≤𝑖≤𝑟+𝑚−1
𝑟≤𝑗≤𝑟+𝑚−1

(mod 𝑝) has corank 𝑘 ≥ 1, and it similarly follows that

corank

(︂
(𝑣𝑖,𝑗)len(𝜆)+1≤𝑖≤𝑁

𝑟≤𝑗≤𝑁

(mod 𝑝)

)︂
= 𝑘 (7.4.40)

as well. Hence

SN

(︂
(𝑣𝑖,𝑗)len(𝜆)+1≤𝑖≤𝑁

𝑟≤𝑗≤𝑁

)︂
𝑟+𝑖

≥ 1 for 0 ≤ 𝑖 ≤ 𝑘 − 1. (7.4.41)

By Lemma 7.4.5, (7.4.41) implies that

𝑁∑︁
𝑖=𝑟

SN(𝑝𝜆𝑉 𝑝𝜇)𝑖 − 𝜇𝑖 ≥ 𝑘, (7.4.42)

which contradicts (7.4.28) unless 𝑘 = 1. Therefore 𝑘 = 1, proving (ii).
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Using (i) and (ii) for the lower and upper bounds respectively, we have

Pr

(︂
SN

(︂
(𝑎̃𝑖,𝑗)len(𝜆)<𝑖<𝑟+𝑚

𝑟≤𝑗<𝑟+𝑚

)︂
= (1, 0[𝑚− 1])

)︂
≤ Pr(𝜈𝑟 = 𝜇𝑟 + 1 and 𝜈𝑗 = 𝜇𝑗 for all 𝑟 < 𝑗 < 𝑟 +𝑚|𝑊 (𝐴) = 𝐼)

≤ Pr

(︂
corank

(︂
(𝑎̃𝑖,𝑗)len(𝜆)<𝑖<𝑟+𝑚

𝑟≤𝑗<𝑟+𝑚

(mod 𝑝)

)︂
= 1

)︂
.

(7.4.43)

By applying Lemma 7.4.7 with 𝑟 = 𝑚− 1, 𝑛 = 𝑟+𝑚− len(𝜆)− 1, 𝑑 = len(𝜆), 𝑘 = 𝑚, we

obtain

RHS(7.4.43) = 𝑡𝑟−len(𝜆)

⎡⎣len(𝜆)
1

⎤⎦
𝑡

⎡⎣𝑟 +𝑚− len(𝜆)− 1

𝑚− 1

⎤⎦
𝑡⎡⎣𝑟 +𝑚− 1

𝑚

⎤⎦
𝑡

= 𝑡𝑟−len(𝜆) (1− 𝑡len(𝜆))(1− 𝑡𝑚)

1− 𝑡

(𝑡; 𝑡)𝑟+𝑚−len(𝜆)−1(𝑡; 𝑡)𝑟−1

(𝑡; 𝑡)𝑟−len(𝜆)(𝑡; 𝑡)𝑟+𝑚−1

(7.4.44)

By applying Lemma 7.4.8 with 𝑟 +𝑚− 1, 𝑟 +𝑚− 1− len(𝜆),𝑚 substituted for 𝑁,𝑚, 𝑛

respectively,

LHS(7.4.43) = (𝑡𝑟−len(𝜆) − 𝑡𝑟)
1− 𝑡𝑚

1− 𝑡

(𝑡; 𝑡)𝑟−1(𝑡; 𝑡)𝑟+𝑚−len(𝜆)−1

(𝑡; 𝑡)𝑟+𝑚−1(𝑡; 𝑡)𝑟−len(𝜆)−1

. (7.4.45)

Hence

(𝑡𝑟−len(𝜆) − 𝑡𝑟)
1− 𝑡𝑚

1− 𝑡

(𝑡; 𝑡)𝑟−1(𝑡; 𝑡)𝑟+𝑚−len(𝜆)−1

(𝑡; 𝑡)𝑟+𝑚−1(𝑡; 𝑡)𝑟−len(𝜆)−1

≤ Pr(𝜈𝑟 = 𝜇𝑟 + 1 and 𝜈𝑗 = 𝜇𝑗 for all 𝑟 < 𝑗 < 𝑟 +𝑚|𝑊 (𝐴) = 𝐼)

≤ 𝑡𝑟−len(𝜆) (1− 𝑡len(𝜆))(1− 𝑡𝑚)

1− 𝑡

(𝑡; 𝑡)𝑟+𝑚−len(𝜆)−1(𝑡; 𝑡)𝑟−1

(𝑡; 𝑡)𝑟−len(𝜆)(𝑡; 𝑡)𝑟+𝑚−1

.

(7.4.46)

Combining the reduction (7.4.17) with the computation of (7.4.18) and the bound on the

conditional probability coming from combining (7.4.20), (7.4.21), and (7.4.46) completes

the proof.

Proof of Lemma 7.4.3. For any matrix 𝐵 = (𝑏𝑖,𝑗)1≤𝑖,𝑗≤𝑁 ∈ GL𝑁(Z𝑝), we define 𝐵′ =
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(︂
(𝑏𝑖,𝑗) len(𝜆)+1≤𝑖≤𝑁

𝑟≤𝑗≤𝑁

)︂
as before. By Lemma 7.4.5,

Pr

(︃
𝑁∑︁
𝑗=𝑟

𝜈𝑗 − 𝜇𝑗 ≥ 2

)︃
≤ 1− Pr(| SN(𝐴′)| ≤ 1). (7.4.47)

Since | SN(𝐴′)| = 0 if and only if 𝐴′ (mod 𝑝) is full rank, Lemma 7.4.7 yields that

Pr(| SN(𝐴′)| = 0) =
(𝑡; 𝑡)𝑟−1(𝑡; 𝑡)𝑁−len(𝜆)

(𝑡; 𝑡)𝑁(𝑡; 𝑡)𝑟−1−len(𝜆)

. (7.4.48)

By Lemma 7.4.8,

Pr(| SN(𝐴′)| = 1) =
(𝑡; 𝑡)𝑟−1(𝑡; 𝑡)𝑁−len(𝜆)

(𝑡; 𝑡)𝑁(𝑡; 𝑡)𝑟−len(𝜆)

(︂
𝑡𝑟−len(𝜆)(1− 𝑡𝑁−𝑟+1)

1− 𝑡len(𝜆)

1− 𝑡

)︂
. (7.4.49)

Combining (7.4.47) with (7.4.48) and (7.4.49) completes the proof.

7.5 Asymptotics of matrix product transition proba-

bilities

In this section, we use the nonasymptotic bounds of the previous section to establish

asymptotics for the matrix product process stated earlier as Lemma 7.3.1, Lemma 7.3.2,

and Lemma 7.3.3. The technical work of this section essentially amounts to computing

the relevant terms of bounds which were left as prelimit explicit formulas in the previous

section, with the additional complication of randomizing those bounds over the singular

numbers of one of the matrices; we also phrase everything in terms of truncated signatures

𝐹𝑑(𝜈), which was not done in the previous section.

Definition 62. In the proofs of Lemma 7.3.1, Lemma 7.3.2 and Lemma 7.3.3, we write

𝑜𝑢𝑛𝑖𝑓 (·) to indicate any quantity which is 𝑜(·) as 𝑁 → ∞ with constants uniform over all

𝜈(𝑁) ∈ 𝐹𝑑(Sig
+
𝑁) with (𝜈𝑁)′𝑘 ≥ 𝐿+ 𝑟𝑁 .

Proof of Lemma 7.3.1. To simplify notation, let

𝑗0 = 𝑗0(𝑁) := (𝜈(𝑁))′𝑘 + 1 = min{𝑖 : 𝜈(𝑁)
𝑟𝑁+𝑖 < 𝑑}. (7.5.1)
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By hypothesis, 𝑗0 ≥ 𝐿. By the equality case of Lemma 7.4.1, we have

Pr(𝐹𝑑(SN(𝐴
(𝑁) diag(𝑝𝜈

(𝑁)

))) = 𝐹𝑑(𝜈
(𝑁))| SN(𝐴(𝑁)) = ℓ)

= Pr(SN(𝐴(𝑁) diag(𝑝𝜈
(𝑁)

))𝑖 = 𝜈
(𝑁)
𝑖 for all 𝑗0 + 𝑟𝑁 ≤ 𝑖 ≤ 𝑁 | SN(𝐴(𝑁)) = ℓ)

=

⎧⎪⎨⎪⎩
∏︀𝑁

𝑗=𝑗0+𝑟𝑁
1−𝑡𝑗−ℓ

1−𝑡𝑗
0 ≤ ℓ < 𝑗0 + 𝑟𝑁

0 𝑗0 + 𝑟𝑁 ≤ ℓ

.

(7.5.2)

For notational convenience, here and in the rest of the proof we define the random variable

𝑋𝑁 := len(SN(𝐴(𝑁))). Taking an expectation over 𝑋𝑁 in (7.5.2) yields

Pr(𝐹𝑑(SN(𝐴
(𝑁)𝑈 diag(𝑝𝜈

(𝑁)

))) = 𝐹𝑑(𝜈
(𝑁))) = E

[︃
1(𝑋𝑁 < 𝑗0 + 𝑟𝑁)

𝑁∏︁
𝑗=𝑗0+𝑟𝑁

1− 𝑡𝑗−𝑋𝑁

1− 𝑡𝑗

]︃
.

(7.5.3)

Note that (7.5.3) depends on 𝜈(𝑁) only through 𝑗0, so to establish uniform asymptotics

over 𝜈(𝑁) we simply need them to be uniform over 𝑗0. To show Lemma 7.3.1, we therefore

must show

E

[︃
1(𝑋𝑁 < 𝑗0 + 𝑟𝑁)

𝑁∏︁
𝑗=𝑗0+𝑟𝑁

1− 𝑡𝑗−𝑋𝑁

1− 𝑡𝑗

]︃
= 1− 𝑡𝑗0 − 𝑡𝑁−𝑟𝑁+1

1− 𝑡
𝑐−1
𝑁 + 𝑜𝑢𝑛𝑖𝑓 (𝑐

−1
𝑁 ) (7.5.4)

(recall the notation 𝑜𝑢𝑛𝑖𝑓 from Definition 62 and the definition 𝑐𝑁 := (E[1(𝑋𝑁 ≤ 𝑟𝑁)𝑡
𝑟𝑁−𝑋𝑁−

𝑡𝑟𝑁 ])−1). Since

Pr(𝑋𝑁 ≥ 𝑗0 + 𝑟𝑁) ≤ Pr(𝑋𝑁 ≥ 𝐿+ 𝑟𝑁) = 𝑜𝑢𝑛𝑖𝑓 (𝑐
−1
𝑁 ) (7.5.5)

by hypothesis, we may write

E[1(𝑋𝑁 < 𝑗0 + 𝑟𝑁)(1− 𝑡𝑗0+𝑟𝑁 ) · · · (1− 𝑡𝑁)]

(1− 𝑡𝑗0+𝑟𝑁 ) · · · (1− 𝑡𝑁)
= 1 + 𝑜𝑢𝑛𝑖𝑓 (𝑐

−1
𝑁 ), (7.5.6)

and using this we rearrange (7.5.4) to obtain that it is equivalent to show

E[1(𝑋𝑁 < 𝑗0 + 𝑟𝑁)
(︀
(1− 𝑡𝑗0+𝑟𝑁 ) · · · (1− 𝑡𝑁)− (1− 𝑡𝑗0+𝑟𝑁−𝑋𝑁 ) · · · (1− 𝑡𝑁−𝑋𝑁 )

)︀
]

(1− 𝑡𝑗0+𝑟𝑁 ) · · · (1− 𝑡𝑁)

=
𝑡𝑗0 − 𝑡𝑁−𝑟𝑁+1

1− 𝑡
𝑐−1
𝑁 + 𝑜𝑢𝑛𝑖𝑓 (𝑐

−1
𝑁 ). (7.5.7)
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This is what we will show.

We write

E[1(𝑋𝑁 < 𝑗0 + 𝑟𝑁)((1− 𝑡𝑗0+𝑟𝑁 ) · · · (1− 𝑡𝑁)− (1− 𝑡𝑗0+𝑟𝑁−𝑋𝑁 ) · · · (1− 𝑡𝑁−𝑋𝑁 ))]

= E

⎡⎣1(𝑋𝑁 < 𝑗0 + 𝑟𝑁)

𝑁−𝑟𝑁−𝑗0+1∑︁
𝑗=0

(−1)𝑗

⎡⎣𝑁 − 𝑟𝑁 − 𝑗0 + 1

𝑗

⎤⎦
𝑡

𝑡(
𝑗
2)+𝑗(𝑗0+𝑟𝑁 )(1− 𝑡−𝑗𝑋𝑁 )

⎤⎦
(7.5.8)

by expanding both factors inside the expectation via the 𝑞-binomial theorem and con-

solidating term-by-term. Note that the 𝑗 = 0 term of (7.5.8) is 0. Since the summands

satisfy⃒⃒⃒⃒
⃒⃒(−1)𝑗

⎡⎣𝑁 − 𝑟𝑁 − 𝑗0 + 1

𝑗

⎤⎦
𝑡

𝑡(
𝑗
2)+𝑗(𝑗0+𝑟𝑁 )(1− 𝑡−𝑗𝑋𝑁 )

⃒⃒⃒⃒
⃒⃒ ≤

⎡⎣𝑁 − 𝑟𝑁 − 𝑗0 + 1

𝑗

⎤⎦
𝑡

𝑡(
𝑗
2)+𝑗(𝑗0+𝑟𝑁 )

(7.5.9)

because 𝑋𝑁 ≥ 0, and the right hand side of (7.5.9) is integrable, Fubini’s theorem implies

RHS(7.5.8) =
𝑁−𝑟𝑁−𝑗0+1∑︁

𝑗=1

(−1)𝑗+1

⎡⎣𝑁 − 𝑟𝑁 − 𝑗0 + 1

𝑗

⎤⎦
𝑡

𝑡(
𝑗
2)+𝑗(𝑗0+𝑟𝑁 )E[1(𝑋𝑁 < 𝑗0+𝑟𝑁)(1−𝑡−𝑗𝑋𝑁 )].

(7.5.10)

The contribution of the 𝑗 = 1 term of (7.5.10) to (7.5.7) is

1

(1− 𝑡𝑗0+𝑟𝑁 ) · · · (1− 𝑡𝑁)

𝑡𝑗0 − 𝑡𝑁−𝑟𝑁+1

1− 𝑡
𝑐−1
𝑁 = 𝑐−1

𝑁

(︂
𝑡𝑗0 − 𝑡𝑁−𝑟𝑁+1

1− 𝑡
+ 𝑜𝑢𝑛𝑖𝑓 (1)

)︂
(7.5.11)

where we use that 𝑟𝑁 → ∞ so (1 − 𝑡𝑗0+𝑟𝑁 ) · · · (1 − 𝑡𝑁) → 1. The asymptotic (7.5.11)

is uniform over 𝜈(𝑁) satisfying our hypotheses, since it depends on 𝜈(𝑁) only through 𝑗0,

and is uniform over 𝑗0 ≥ 𝐿.

Hence to prove (7.5.7) it now suffices to show

𝑁−𝑟𝑁−𝑗0+1∑︁
𝑗=2

(−1)𝑗

⎡⎣𝑁 − 𝑟𝑁 − 𝑗0 + 1

𝑗

⎤⎦
𝑡

𝑡(
𝑗
2)+𝑗(𝑗0+𝑟𝑁 )E[1(𝑋𝑁 < 𝑗0+𝑟𝑁)(1−𝑡−𝑗𝑋𝑁 )] = 𝑜𝑢𝑛𝑖𝑓 (𝑐

−1
𝑁 ),

(7.5.12)

where we have used the fact that (1− 𝑡𝑗0+𝑟𝑁 ) · · · (1− 𝑡𝑁) = 1 + 𝑜𝑢𝑛𝑖𝑓 (1) uniformly over

𝑗0 ≥ 𝐿 to remove the denominator of (7.5.7). We rewrite the asymptotic (7.5.12) which
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we wish to show as

−
𝑁−𝑟𝑁−𝑗0+1∑︁

𝑗=2

(−1)𝑗

⎡⎣𝑁 − 𝑟𝑁 − 𝑗0 + 1

𝑗

⎤⎦
𝑡

𝑡(
𝑗
2)+𝑗𝑗0E[1(𝑋𝑁 < 𝑗0 + 𝑟𝑁)(𝑡

𝑗(𝑟𝑁−𝑋𝑁 ) − 𝑡𝑗𝑟𝑁 )]

E[1(𝑋𝑁 ≤ 𝑟𝑁)(𝑡𝑟𝑁−𝑋𝑁 − 𝑡𝑟𝑁 )]
= 𝑜𝑢𝑛𝑖𝑓 (1).

(7.5.13)

To show (7.5.13), it suffices to show that for all 𝛿 > 0,

𝑡𝑗𝑗0
E[1(𝑋𝑁 < 𝑗0 + 𝑟𝑁)(𝑡

𝑗(𝑟𝑁−𝑋𝑁 ) − 𝑡𝑗𝑟𝑁 )]

E[1(𝑋𝑁 ≤ 𝑟𝑁)(𝑡𝑟𝑁−𝑋𝑁 − 𝑡𝑟𝑁 )]
< 𝛿 for all 𝑗 ≥ 2 (7.5.14)

for all 𝑁 sufficiently large independent of 𝑗. Since both numerator and denominator in

(7.5.14) are 0 when 𝑋𝑁 = 0, by clearing factors of Pr(𝑋𝑁 > 0) we have

𝑡𝑗𝑗0
E[1(𝑋𝑁 < 𝑗0 + 𝑟𝑁)(𝑡

𝑗(𝑟𝑁−𝑋𝑁 ) − 𝑡𝑗𝑟𝑁 )]

E[1(𝑋𝑁 ≤ 𝑟𝑁)(𝑡𝑟𝑁−𝑋𝑁 − 𝑡𝑟𝑁 )]
= 𝑡𝑗𝑗0

E[1(𝑋𝑁 < 𝑗0 + 𝑟𝑁)(𝑡
𝑗(𝑟𝑁−𝑋𝑁 ) − 𝑡𝑗𝑟𝑁 )|𝑋𝑁 > 0]

E[1(𝑋𝑁 ≤ 𝑟𝑁)(𝑡𝑟𝑁−𝑋𝑁 − 𝑡𝑟𝑁 )|𝑋𝑁 > 0]

≤ 𝑡𝑗𝑗0
E[1(𝑋̃𝑁 < 𝑗0 + 𝑟𝑁)𝑡

𝑗(𝑟𝑁−𝑋̃𝑁 )]

E[1(𝑋̃𝑁 ≤ 𝑟𝑁)(𝑡𝑟𝑁−𝑋̃𝑁 − 𝑡𝑟𝑁 )]
,

(7.5.15)

where to simplify notation we let 𝑋̃𝑁 be a random variable with

Law(𝑋̃𝑁) = Law(𝑋𝑁 |𝑋𝑁 > 0). (7.5.16)

For any 𝑏 ≥ 0,

RHS(7.5.15) ≤ 𝑡𝑗𝑗0
Pr(𝑟𝑁 + 𝑗0 − 𝑏 < 𝑋̃𝑁 < 𝑟𝑁 + 𝑗0)𝑡

−𝑗𝑗0

E[1(𝑋̃𝑁 ≤ 𝑟𝑁)(𝑡𝑟𝑁−𝑋̃𝑁 − 𝑡𝑟𝑁 )]

+ 𝑡𝑗𝑗0
E[1(𝑋̃𝑁 ≤ 𝑟𝑁 + 𝑗0 − 𝑏)𝑡𝑗(𝑟𝑁−𝑋̃𝑁 )]

E[1(𝑋̃𝑁 ≤ 𝑟𝑁)(𝑡𝑟𝑁−𝑋̃𝑁 − 𝑡𝑟𝑁 )]
. (7.5.17)

The first term in (7.5.17) is

Pr(𝑟𝑁 + 𝑗0 − 𝑏 < 𝑋̃𝑁 < 𝑟𝑁 + 𝑗0)

E[1(𝑋̃𝑁 ≤ 𝑟𝑁)(𝑡𝑟𝑁−𝑋̃𝑁 − 𝑡𝑟𝑁 )]
≤ Pr(𝑋̃𝑁 > 𝑟𝑁 + 𝐿− 𝑏)

E[1(𝑋̃𝑁 ≤ 𝑟𝑁)(𝑡𝑟𝑁−𝑋̃𝑁 − 𝑡𝑟𝑁 )]
, (7.5.18)

which by the hypothesis (7.2.1) is 𝑜𝑢𝑛𝑖𝑓 (1) (it is uniform over 𝑗0, since 𝑗0 does not appear).
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Note next that for any 𝑗 and any function 𝑓 : R → R with 𝑓([1, 𝑟𝑁 + 𝑗0 − 𝑏]) ⊂ [0, 1],

E[1(𝑋̃𝑁 ≤ 𝑟𝑁 + 𝑗0 − 𝑏)𝑓(𝑋̃𝑁)𝑡
𝑗(𝑟𝑁+𝑗0−𝑋̃𝑁 )]

≤ 𝑡(𝑗−1)𝑏E[1(𝑋̃𝑁 ≤ 𝑟𝑁 + 𝑗0 − 𝑏)𝑡𝑟𝑁+𝑗0−𝑋̃𝑁 ] (7.5.19)

because all nonzero terms come from values of 𝑋̃𝑁 with 𝑟𝑁 + 𝑗0 − 𝑋̃𝑁 ≥ 𝑏, and so

𝑡𝑗(𝑟𝑁+𝑗0−𝑋̃𝑁 ) ≤ 𝑡(𝑗−1)𝑏 · 𝑡𝑟𝑁+𝑗0−𝑋̃𝑁 with probability 1.

Applying (7.5.19) to the numerator and a trivial bound to the denominator of the

second term of (7.5.17) yields

E[1(𝑋̃𝑁 ≤ 𝑟𝑁 + 𝑗0 − 𝑏)𝑡𝑗(𝑟𝑁+𝑗0−𝑋̃𝑁 )]

E[1(𝑋̃𝑁 ≤ 𝑟𝑁)(𝑡𝑟𝑁−𝑋̃𝑁 − 𝑡𝑟𝑁 )]
≤ 𝑡(𝑗−1)𝑏E[1(𝑋̃𝑁 ≤ 𝑟𝑁 + 𝑗0 − 𝑏)𝑡𝑟𝑁+𝑗0−𝑋̃𝑁 ]

(1− 𝑡)E[1(𝑋̃𝑁 ≤ 𝑟𝑁)𝑡𝑟𝑁−𝑋̃𝑁 ]

≤ 𝑡(𝑗−1)𝑏

1− 𝑡
𝑡𝑗0 .

(7.5.20)

Hence for any 𝛿 > 0, by choosing 𝑏 so that 𝑡(𝑗−1)𝑏

1−𝑡
𝑡𝐿 < 𝛿/2, we have that (7.5.14) holds

for all 𝑁 large enough that the left hand side of (7.5.18) is < 𝛿/2. As we had previously

reduced to (7.5.14), this completes the proof.

We will prove Lemma 7.3.3 before Lemma 7.3.2 since the former is needed for the

latter.

Proof of Lemma 7.3.3. Let 𝑋̃𝑁 be a random variable with Law(𝑋̃𝑁) = Law(𝑋𝑁 |𝑋𝑁 > 0)

as before, so

E[1(𝑋̃𝑁 ≤ 𝑟𝑁)(𝑡
𝑟𝑁−𝑋̃𝑁 − 𝑡𝑟𝑁 )] =

𝑐−1
𝑁

Pr(𝑋𝑁 > 0)
(7.5.21)

(recalling that 𝑋𝑁 ≥ 0 always, and 𝑋𝑁 > 0 with positive probability by hypothesis).

Using the same notation 𝑗0 = 𝑗0(𝑁) defined in (7.5.1), for the proof it suffices to show

Pr

(︃
𝑁∑︁

𝑖=𝑗0+𝑟𝑁

SN(𝐴(𝑁) diag(𝑝𝜈
(𝑁)

))𝑖 − 𝜈
(𝑁)
𝑖 ≥ 2

⃒⃒⃒⃒
⃒𝑋𝑁 > 0

)︃
= 𝑜𝑢𝑛𝑖𝑓 (E[1(𝑋̃𝑁 ≤ 𝑟𝑁)(𝑡

𝑟𝑁−𝑋̃𝑁−𝑡𝑟𝑁 )]).

(7.5.22)

For each 0 < 𝑥 < 𝑟𝑁 + 𝑗0, by applying Lemma 7.4.3 with 𝑟 = 𝑗0+ 𝑟𝑁 , 𝜆 = SN(𝐴(𝑁)), and
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𝜇 = 𝜈(𝑁) in the notation of that result, we have

Pr

(︃
𝑁∑︁

𝑖=𝑗0+𝑟𝑁

SN(𝐴(𝑁) diag(𝑝𝜈
(𝑁)

))𝑖 − 𝜈
(𝑁)
𝑖 ≥ 2

⃒⃒⃒⃒
⃒𝑋𝑁 = 𝑥

)︃

≤
(︂
1− (𝑡; 𝑡)𝑗0+𝑟𝑁−1(𝑡; 𝑡)𝑁−𝑥

(𝑡; 𝑡)𝑁(𝑡; 𝑡)𝑗0+𝑟𝑁−𝑥

(︂
1− 𝑡𝑗0+𝑟𝑁−𝑥 + 𝑡𝑗0+𝑟𝑁−𝑥(1− 𝑡𝑁−𝑗0+𝑟𝑁+1)

1− 𝑡𝑥

1− 𝑡

)︂)︂
(7.5.23)

Fix an integer 𝑏 ≥ 1 independent of 𝑁 , and let 𝑁 be large enough so that 𝑟𝑁 + 𝑗0− 𝑏 > 0

holds (this holds for all sufficiently large 𝑁 since 𝑟𝑁 → ∞ and 𝑗0(𝑁) ≥ 𝐿). Then taking

a (conditional, given 𝑋𝑁 > 0) expectation of (7.5.23) when 0 < 𝑥 ≤ 𝑟𝑁 + 𝑗0 − 𝑏 and

naively bounding when 𝑥 > 𝑟𝑁 + 𝑗0 − 𝑏 yields

Pr

(︃
𝑁∑︁

𝑖=𝑗0+𝑟𝑁

SN(𝐴(𝑁) diag(𝑝𝜈
(𝑁)

))𝑖 − 𝜈
(𝑁)
𝑖 ≥ 2

⃒⃒⃒⃒
⃒𝑋𝑁 > 0

)︃

≤ Pr(𝑋̃𝑁 > 𝑟𝑁 + 𝑗0 − 𝑏) + E

[︃
1(𝑋̃𝑁 ≤ 𝑟𝑁 + 𝑗0 − 𝑏)

(︃
1−

(𝑡; 𝑡)𝑗0+𝑟𝑁−1(𝑡; 𝑡)𝑁−𝑋̃𝑁

(𝑡; 𝑡)𝑁(𝑡; 𝑡)𝑗0+𝑟𝑁−𝑋̃𝑁

×

(︃
1− 𝑡𝑗0+𝑟𝑁−𝑋̃𝑁 + 𝑡𝑗0+𝑟𝑁−𝑋̃𝑁 (1− 𝑡𝑁−𝑗0+𝑟𝑁+1)

1− 𝑡𝑋̃𝑁

1− 𝑡

)︃)︃]︃
.

(7.5.24)

We first rewrite the expression inside the expectation on the left of (7.5.24) (without the

indicator function) as

1−
(𝑡; 𝑡)𝑗0+𝑟𝑁−1(𝑡; 𝑡)𝑁−𝑋̃𝑁

(𝑡; 𝑡)𝑁(𝑡; 𝑡)𝑗0+𝑟𝑁−𝑋̃𝑁

(︃
1− 𝑡𝑗0+𝑟𝑁−𝑋̃𝑁 + 𝑡𝑗0+𝑟𝑁−𝑋̃𝑁 (1− 𝑡𝑁−𝑗0+𝑟𝑁+1)

1− 𝑡𝑋̃𝑁

1− 𝑡

)︃

=
(𝑡; 𝑡)𝑗0+𝑟𝑁−1

(𝑡; 𝑡)𝑗0+𝑟𝑁−𝑋̃𝑁

(︃
1− 𝑡𝑗0+𝑟𝑁∏︀𝑋̃𝑁−1

𝑖=0 (1− 𝑡𝑖 · 𝑡𝑗0+𝑟𝑁−𝑋̃𝑁+1)

− 1∏︀𝑋̃𝑁−1
𝑖=0 (1− 𝑡𝑖 · 𝑡𝑁−𝑋̃𝑁+1)

(︃
1− 𝑡𝑗0+𝑟𝑁−𝑋̃𝑁 + (𝑡𝑗0+𝑟𝑁−𝑋̃𝑁 − 𝑡𝑁−𝑋̃𝑁+1)

1− 𝑡𝑋̃𝑁

1− 𝑡

)︃)︃

=
(𝑡; 𝑡)𝑗0+𝑟𝑁−1

(𝑡; 𝑡)𝑗0+𝑟𝑁−𝑋̃𝑁

∞∑︁
ℓ=0

⎡⎣𝑋̃𝑁 − 1 + ℓ

ℓ

⎤⎦
𝑡

(︁
𝑡ℓ(𝑗0+𝑟𝑁−𝑋̃𝑁+1)(1− 𝑡𝑗0+𝑟𝑁 )

−𝑡ℓ(𝑁−𝑋̃𝑁+1)

(︃
1− 𝑡𝑗0+𝑟𝑁−𝑋̃𝑁 + (𝑡𝑗0+𝑟𝑁−𝑋̃𝑁 − 𝑡𝑁−𝑋̃𝑁+1)

1− 𝑡𝑋̃𝑁

1− 𝑡

)︃)︃
(7.5.25)
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where in the second equality, we have expanded both of the 1/(
∏︀

· · · ) terms into infinite

sums by the 𝑞-binomial theorem (here it is important that 𝑋̃𝑁 ∈ Z≥1) and then combined

the sums. We further split the sum to write

RHS(7.5.25) = 𝑆1 + 𝑆2 + 𝑆3, (7.5.26)

where we define

𝑆1 =
(𝑡; 𝑡)𝑗0+𝑟𝑁−1

(𝑡; 𝑡)𝑗0+𝑟𝑁−𝑋̃𝑁

(︃
1− 𝑡𝑗0+𝑟𝑁 − 1 + 𝑡𝑗0+𝑟𝑁−𝑋̃𝑁 − (𝑡𝑗0+𝑟𝑁−𝑋̃𝑁 − 𝑡𝑁−𝑋̃𝑁+1)

1− 𝑡𝑋̃𝑁

1− 𝑡

+

⎡⎣𝑋̃𝑁

1

⎤⎦
𝑡

(𝑡𝑗0+𝑟𝑁−𝑋̃𝑁+1 − 𝑡𝑁−𝑋̃𝑁+1)

⎞⎠ = 0 (7.5.27)

(the ℓ = 0 term in (7.5.25) together with a part of the ℓ = 1 term chosen so that they

exactly cancel),

𝑆2 =

(︃
−𝑡2(𝑗0+𝑟𝑁 )−𝑋̃𝑁+1 − 𝑡𝑁−𝑋̃𝑁+1

(︃
−𝑡𝑗0+𝑟𝑁−𝑋̃𝑁 + (𝑡𝑗0+𝑟𝑁−𝑋̃𝑁 − 𝑡𝑁−𝑋̃𝑁+1)

1− 𝑡𝑋̃𝑁

1− 𝑡

)︃)︃

× (𝑡; 𝑡)𝑗0+𝑟𝑁−1

(𝑡; 𝑡)𝑗0+𝑟𝑁−𝑋̃𝑁

⎡⎣𝑋̃𝑁

1

⎤⎦
𝑡

(7.5.28)

(the rest of the ℓ = 1 term), and

𝑆3 =
(𝑡; 𝑡)𝑗0+𝑟𝑁−1

(𝑡; 𝑡)𝑗0+𝑟𝑁−𝑋̃𝑁

∞∑︁
ℓ=2

⎡⎣𝑋̃𝑁 − 1 + ℓ

ℓ

⎤⎦
𝑡

(︂
𝑡ℓ(𝑗0+𝑟𝑁−𝑋̃𝑁 )(1− 𝑡𝑗0+𝑟𝑁 )

− 𝑡ℓ(𝑁−𝑋̃𝑁+1)

(︂
1− 𝑡𝑗0+𝑟𝑁−𝑋̃𝑁 + 𝑡𝑗0+𝑟𝑁−𝑋̃𝑁 (1− 𝑡𝑁−𝑗0−𝑟𝑁+1)

1− 𝑡𝑋̃𝑁

1− 𝑡

)︂)︂
(7.5.29)

(the rest of the sum, i.e. the ℓ ≥ 2 terms). We have observed that 𝑆1 = 0, and now argue

that 𝑆2 and 𝑆3 are small asymptotically. The 𝑡-Pochhammer prefactor

(𝑡; 𝑡)𝑗0+𝑟𝑁−1

(𝑡; 𝑡)𝑗0+𝑟𝑁−𝑋̃𝑁
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lies in [0, 1], and the summands making up 𝑆3 satisfy the bound

⃒⃒⃒⃒
⃒𝑡ℓ(𝑗0+𝑟𝑁−𝑋̃𝑁 )(1− 𝑡𝑗0+𝑟𝑁 )− 𝑡ℓ(𝑁−𝑋̃𝑁+1)

(︃
1− 𝑡𝑗0+𝑟𝑁−𝑋̃𝑁 + (𝑡𝑗0+𝑟𝑁−𝑋̃𝑁 − 𝑡𝑁−𝑋̃𝑁+1)

1− 𝑡𝑋̃𝑁

1− 𝑡

)︃⃒⃒⃒⃒
⃒

×

⎡⎣𝑋̃𝑁 − 1 + ℓ

ℓ

⎤⎦
𝑡

≤ 3

⎡⎣𝑋̃𝑁 − 1 + ℓ

ℓ

⎤⎦
𝑡

𝑡ℓ(𝑗0+𝑟𝑁−𝑋̃𝑁 ), (7.5.30)

hence

|𝑆3| ≤ 3
∞∑︁
ℓ=0

⎡⎣𝑋̃𝑁 − 1 + ℓ

ℓ

⎤⎦
𝑡

𝑡ℓ(𝑗0+𝑟𝑁−𝑋̃𝑁 )

= 3
1∏︀𝑋̃𝑁−1

𝑖=0 1− 𝑡𝑖 · 𝑡𝑗0+𝑟𝑁−𝑋̃𝑁

≤ 3

(𝑡; 𝑡)∞

(7.5.31)

for all 𝑋̃𝑁 < 𝑗0 + 𝑟𝑁 (using that 𝑁 +1 ≥ 𝑗0 + 𝑟𝑁). Similarly to (7.5.30), we may split 𝑆2

into three terms with a power of 𝑡 at least 2(𝑗0 + 𝑟𝑁 − 𝑋̃𝑁), yielding

|𝑆2| ≤
3

1− 𝑡

⎡⎣𝑋̃𝑁

1

⎤⎦
𝑡

𝑡2(𝑗0+𝑟𝑁−𝑋̃𝑁 ). (7.5.32)

Below we use shorthand

1𝑏 := 1(𝑋̃𝑁 ≤ 𝑟𝑁 + 𝑗0 − 𝑏) (7.5.33)

to minimize equation overflow. Multiplying (7.5.25) by 1𝑏, taking an expectation, and

applying Fubini’s theorem (the hypotheses of which we checked in (7.5.31)) to pull it

inside the sum yields

E

[︃
1𝑏 ×

(︃
1−

(𝑡; 𝑡)𝑗0+𝑟𝑁−1(𝑡; 𝑡)𝑁−𝑋̃𝑁

(𝑡; 𝑡)𝑁(𝑡; 𝑡)𝑗0+𝑟𝑁−𝑋̃𝑁

(︃
1− 𝑡𝑗0+𝑟𝑁 + 𝑡𝑗0+𝑟𝑁−𝑋̃𝑁 (1− 𝑡𝑁−𝑗0+𝑟𝑁+1)

1− 𝑡𝑋̃𝑁

1− 𝑡

)︃)︃]︃

= E[1𝑏𝑆2] +
∞∑︁
ℓ=2

E

⎡⎣1𝑏
(𝑡; 𝑡)𝑗0+𝑟𝑁−1

(𝑡; 𝑡)𝑗0+𝑟𝑁−𝑋̃𝑁

⎡⎣𝑋̃𝑁 − 1 + ℓ

ℓ

⎤⎦
𝑡

(︂
𝑡ℓ(𝑗0+𝑟𝑁−𝑋̃𝑁 )(1− 𝑡𝑗0+𝑟𝑁 )

− 𝑡ℓ(𝑁−𝑋̃𝑁+1)

(︂
1− 𝑡𝑗0+𝑟𝑁−𝑋̃𝑁 + (𝑡𝑗0+𝑟𝑁−𝑋̃𝑁 − 𝑡𝑁−𝑋̃𝑁+1)

1− 𝑡𝑋̃𝑁

1− 𝑡

)︂)︂]︃
,

(7.5.34)
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where we have also used that 𝑆1 = 0 to throw away those corresponding terms of the

sum. To argue that the remaining terms are small, we first note that by the first bound

in (7.5.31), the naive bound

⎡⎣𝑋̃𝑁 − 1 + ℓ

ℓ

⎤⎦
𝑡

≤ 1

(𝑡; 𝑡)∞
, (7.5.35)

the bound (7.5.32) on 𝑆2, the nonnegativity of the arguments of all expectations, we have

|RHS(7.5.34)| ≤ 3

(1− 𝑡)(𝑡; 𝑡)∞
E[1𝑏𝑡

2(𝑟𝑁+𝑗0−𝑋̃𝑁 )]

+
3

(1− 𝑡)(𝑡; 𝑡)∞

∞∑︁
ℓ=2

E[1𝑏𝑡
ℓ(𝑗0+𝑟𝑁−𝑋̃𝑁 )]. (7.5.36)

Applying (7.5.19) and collecting terms yields

RHS(7.5.36) ≤ E[1𝑏𝑡
𝑟𝑁+𝑗0−𝑋̃𝑁 ]

3

(1− 𝑡)(𝑡; 𝑡)∞

(︃
𝑡𝑏 +

∞∑︁
ℓ=2

𝑡(ℓ−1)𝑏

)︃
= 𝐶 ′𝑡𝑏E[1𝑏𝑡

𝑟𝑁+𝑗0−𝑋̃𝑁 ]

(7.5.37)

for an explicit constant 𝐶 ′ independent of 𝑏 and 𝑁 . If 𝑗0 − 𝑏 > 0 then (recalling the

shorthand 1𝑏 from (7.5.33)) we have

RHS(7.5.37) ≤ 𝐶 ′𝑡𝑏
(︁
𝑡𝐿E[1(𝑋̃𝑁 ≤ 𝑟𝑁)𝑡

𝑟𝑁−𝑋̃𝑁 ] + E[1(𝑟𝑁 < 𝑋̃𝑁 ≤ 𝑟𝑁 + 𝑗0 − 𝑏)𝑡𝑟𝑁+𝑗0−𝑋̃𝑁 ]
)︁

≤ 𝐶 ′𝑡𝑏
(︁
𝑡𝐿E[1(𝑋̃𝑁 ≤ 𝑟𝑁)𝑡

𝑟𝑁−𝑋̃𝑁 ] + 𝑡𝑏 Pr(𝑋̃𝑁 > 𝑟𝑁)
)︁
,

(7.5.38)

while if 𝑗0 − 𝑏 ≤ 0 then

RHS(7.5.37) ≤ 𝑡𝐿E[1(𝑋̃𝑁 ≤ 𝑟𝑁)𝑡
𝑟𝑁−𝑋̃𝑁 ], (7.5.39)

so the bound (7.5.38) actually holds independent of 𝑏 and 𝑗0 ≥ 𝐿. Since 𝑋̃𝑁 ≥ 1,

𝑡𝑟𝑁−𝑋̃𝑁 ≤ 1

1− 𝑡
(𝑡𝑟𝑁−𝑋̃𝑁 − 𝑡𝑟𝑁 ), (7.5.40)
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and combining with (7.5.38) yields

RHS(7.5.37) ≤ 𝐶 ′𝑡𝐿

1− 𝑡
𝑡𝑏E[1(𝑋̃𝑁 ≤ 𝑟𝑁)(𝑡

𝑟𝑁−𝑋̃𝑁 − 𝑡𝑟𝑁 )] + 𝐶 ′𝑡2𝑏 Pr(𝑋̃𝑁 > 𝑟𝑁). (7.5.41)

Substituting (7.5.41) into (7.5.24) and multiplying through by Pr(𝑋𝑁 > 0) to convert

the 𝑋̃𝑁 back to 𝑋𝑁 yields

Pr

(︃
𝑁∑︁

𝑖=𝑗0+𝑟𝑁

SN(𝐴(𝑁) diag(𝑝𝜈
(𝑁)

))𝑖 − 𝜈
(𝑁)
𝑖 ≥ 2

)︃

≤ Pr(𝑋𝑁 > 𝑟𝑁 + 𝑗0 − 𝑏) +
𝐶 ′𝑡𝐿

1− 𝑡
𝑡𝑏𝑐−1

𝑁 + 𝐶 ′𝑡2𝑏 Pr(𝑋̃𝑁 > 𝑟𝑁).

(7.5.42)

To show the right hand side is small, we let 𝑏 depend on 𝑁 as follows. Since

Pr(𝑋𝑁 > 𝑟𝑁 + 𝑗0 − 𝑏) ≤ Pr(𝑋𝑁 > 𝑟𝑁 + 𝐿− 𝑏) = 𝑜𝑢𝑛𝑖𝑓 (𝑐
−1
𝑁 ) (7.5.43)

for any fixed 𝑏, by a diagonalization argument there exists a slowly growing sequence

𝑏 = 𝑏(𝑁) not depending on 𝑗0 such that

Pr(𝑋𝑁 > 𝑟𝑁 + 𝑗0 − 𝑏(𝑁)) = 𝑜𝑢𝑛𝑖𝑓 (𝑐
−1
𝑁 ). (7.5.44)

Since (7.5.42) holds for any 𝑏 > 0, it holds with 𝑏 replaced by 𝑏(𝑁). Then the first term

on the right hand side is 𝑜𝑢𝑛𝑖𝑓 (𝑐−1
𝑁 ) by (7.5.44), the second term is 𝑜𝑢𝑛𝑖𝑓 (𝑐−1

𝑁 ) because

𝑏(𝑁) → ∞, and the third term is 𝑜𝑢𝑛𝑖𝑓 (𝑐−1
𝑁 ) as well by hypothesis. Hence

Pr

(︃
𝑁∑︁

𝑖=𝑗0+𝑟𝑁

SN(𝐴(𝑁) diag(𝑝𝜈
(𝑁)

))𝑖 − 𝜈
(𝑁)
𝑖 ≥ 2

)︃
= 𝑜𝑢𝑛𝑖𝑓 (𝑐

−1
𝑁 ), (7.5.45)

so we are done.

Proof of Lemma 7.3.2. First, since |𝜅(𝑁)/𝜈(𝑁)| = 1 we may rewrite

LHS(7.3.5) = Pr
(︁
SN(𝐴(𝑁) diag(𝑝𝜈

(𝑁)

))𝑖 = 𝜅
(𝑁)
𝑖 for all 𝑖 ≥ 𝑗 + 𝑟𝑁

)︁
−

Pr
(︁
SN(𝐴(𝑁) diag(𝑝𝜈

(𝑁)

))𝑖 = 𝜅
(𝑁)
𝑖 for all 𝑖 ≥ 𝑗 + 𝑟𝑁 , and |𝐹𝑑(SN(𝐴

(𝑁) diag(𝑝𝜈
(𝑁)

)))/𝜅(𝑁)| ≥ 2
)︁

(7.5.46)
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By trivially bounding the second term in (7.5.46) by

Pr(|𝐹𝑑(SN(𝐴
(𝑁) diag(𝑝𝜈

(𝑁)

)))/𝜅(𝑁)| ≥ 2) (7.5.47)

and applying Lemma 7.3.3, (7.5.46) yields

LHS(7.3.5) = Pr
(︁
SN(𝐴(𝑁) diag(𝑝𝜈

(𝑁)

))𝑖 = 𝜅
(𝑁)
𝑖 for all 𝑖 ≥ 𝑗 + 𝑟𝑁

)︁
+ 𝑜𝑢𝑛𝑖𝑓 (𝑐

−1
𝑁 ) (7.5.48)

uniformly over 𝜈(𝑁) as in the statement. For any integer 𝑏 ≥ max(0, 𝐿), we may therefore

write

LHS(7.3.5) = 𝑜𝑢𝑛𝑖𝑓 (𝑐
−1
𝑁 )

+ Pr
(︁
SN(𝐴(𝑁) diag(𝑝𝜈

(𝑁)

))𝑖 = 𝜅
(𝑁)
𝑖 for all 𝑖 ≥ 𝑗 + 𝑟𝑁 and 𝑋𝑁 > 𝑟𝑁 + 𝐿− 𝑏

)︁
+ Pr

(︁
SN(𝐴(𝑁) diag(𝑝𝜈

(𝑁)

))𝑖 = 𝜅
(𝑁)
𝑖 for all 𝑖 ≥ 𝑗 + 𝑟𝑁 and 𝑋𝑁 ≤ 𝑟𝑁 + 𝐿− 𝑏

)︁ (7.5.49)

For the first summand in (7.5.49) a naive bound gives

Pr
(︁
SN(𝐴(𝑁) diag(𝑝𝜈

(𝑁)

))𝑖 = 𝜅
(𝑁)
𝑖 for all 𝑖 ≥ 𝑗 + 𝑟𝑁 and 𝑋𝑁 > 𝑟𝑁 + 𝐿− 𝑏

)︁
≤ Pr(𝑋𝑁 > 𝑟𝑁 + 𝐿− 𝑏). (7.5.50)

Substituting this and applying Lemma 7.4.2 (with 𝑟 = 𝑟𝑁 + 𝐿, len(𝜆) = 𝑋𝑁) to the

second summand in (7.5.49), we obtain upper and lower bounds

E
[︂
(1− 𝑡𝑗+𝑟𝑁−𝑋𝑁 ) · 1(𝑋𝑁 ≤ 𝑟𝑁 + 𝐿− 𝑏)𝑡𝑗

1− 𝑡𝑚

1− 𝑡
(𝑡𝑟𝑁−𝑋𝑁 − 𝑡𝑟𝑁 )

(𝑡; 𝑡)𝑗+𝑟𝑁 (𝑡; 𝑡)𝑁−𝑋𝑁

(𝑡; 𝑡)𝑁(𝑡; 𝑡)𝑗+𝑟𝑁−𝑋𝑁

]︂
+ Pr(𝑋𝑁 > 𝑟𝑁 + 𝐿− 𝑏) + 𝑜𝑢𝑛𝑖𝑓 (𝑐

−1
𝑁 )

≤ LHS(7.3.5)

≤ E
[︂
1(𝑋𝑁 ≤ 𝑟𝑁 + 𝐿− 𝑏)𝑡𝑗

1− 𝑡𝑚

1− 𝑡
(𝑡𝑟𝑁−𝑋𝑁 − 𝑡𝑟𝑁 )

(𝑡; 𝑡)𝑗+𝑟𝑁 (𝑡; 𝑡)𝑁−𝑋𝑁

(𝑡; 𝑡)𝑁(𝑡; 𝑡)𝑗+𝑟𝑁−𝑋𝑁

]︂
+ Pr(𝑋𝑁 > 𝑟𝑁 + 𝐿− 𝑏) + 𝑜𝑢𝑛𝑖𝑓 (𝑐

−1
𝑁 )

(7.5.51)

for any 𝑏 > 0 (this condition is required since Lemma 7.4.2 only applies when 𝑋𝑁 <

𝑗 + 𝑟𝑁). We will show both bounds have the same asymptotic to obtain the asymptotic
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for (7.3.5). The difference between the two bounds in (7.5.51) is

E
[︂
1(𝑋𝑁 ≤ 𝑟𝑁 + 𝐿− 𝑏)

1− 𝑡𝑚

1− 𝑡
𝑡2(𝑗+𝑟𝑁−𝑋𝑁 )(1− 𝑡𝑋𝑁 )

(𝑡; 𝑡)𝑗+𝑟𝑁 (𝑡; 𝑡)𝑁−𝑋𝑁

(𝑡; 𝑡)𝑁(𝑡; 𝑡)𝑗+𝑟𝑁−𝑋𝑁

]︂
≤ 1

(1− 𝑡)(𝑡; 𝑡)∞
E[1(𝑋𝑁 ≤ 𝑟𝑁 + 𝐿− 𝑏)𝑡2(𝑗+𝑟𝑁−𝑋𝑁 )(1− 𝑡𝑋𝑁 )]

≤ 1

(1− 𝑡)(𝑡; 𝑡)∞
𝑡𝑗+𝑟𝑁−(𝑟𝑁+𝐿−𝑏)E[1(𝑋𝑁 ≤ 𝑟𝑁 + 𝐿− 𝑏)𝑡𝑗+𝑟𝑁−𝑋𝑁 (1− 𝑡𝑋𝑁 )]

≤ 1

(1− 𝑡)(𝑡; 𝑡)∞
𝑡𝑏+2𝑗−𝐿E[1(𝑋𝑁 ≤ 𝑟𝑁)(𝑡

𝑟𝑁−𝑋𝑁 − 𝑡𝑟𝑁 )]

≤ 1

(1− 𝑡)(𝑡; 𝑡)∞
𝑡𝑏+𝐿𝑐−1

𝑁

(7.5.52)

where we used (7.5.19) in the second bound, and the fact that 𝑏 ≥ 𝐿 and 𝑗 ≥ 𝐿 in the

penultimate and last bounds respectively. Plugging (7.5.52) into (7.5.51) yields

E
[︂
1(𝑋𝑁 ≤ 𝑟𝑁 + 𝐿− 𝑏)𝑡𝑗

1− 𝑡𝑚

1− 𝑡
(𝑡𝑟𝑁−𝑋𝑁 − 𝑡𝑟𝑁 )

(𝑡; 𝑡)𝑗+𝑟𝑁 (𝑡; 𝑡)𝑁−𝑋𝑁

(𝑡; 𝑡)𝑁(𝑡; 𝑡)𝑗+𝑟𝑁−𝑋𝑁

]︂
− 1

(1− 𝑡)(𝑡; 𝑡)∞
𝑡𝑏+𝐿𝑐−1

𝑁 + Pr(𝑋𝑁 > 𝑟𝑁 + 𝐿− 𝑏)

≤ Pr
(︁
SN(𝐴(𝑁) diag(𝑝𝜈

(𝑁)

))𝑖 = 𝜅
(𝑁)
𝑖 for all 𝑖 ≥ 𝑗

)︁
≤ E

[︂
1(𝑋𝑁 ≤ 𝑟𝑁 + 𝐿− 𝑏)𝑡𝑗

1− 𝑡𝑚

1− 𝑡
(𝑡𝑟𝑁−𝑋𝑁 − 𝑡𝑟𝑁 )

(𝑡; 𝑡)𝑗+𝑟𝑁 (𝑡; 𝑡)𝑁−𝑋𝑁

(𝑡; 𝑡)𝑁(𝑡; 𝑡)𝑗+𝑟𝑁−𝑋𝑁

]︂
+ Pr(𝑋𝑁 > 𝑟𝑁 + 𝐿− 𝑏).

(7.5.53)

We now wish to show that the E[· · · ] in the lower and upper bounds is uniformly asymp-

totic to 𝑐−1
𝑁 𝑡𝑗(1− 𝑡𝑚)/(1− 𝑡). Note that the 𝑞-Pochhammer quotient in (7.5.53) is

(𝑡; 𝑡)𝑗+𝑟𝑁 (𝑡; 𝑡)𝑁−𝑋𝑁

(𝑡; 𝑡)𝑁(𝑡; 𝑡)𝑗+𝑟𝑁−𝑋𝑁

=

𝑋𝑁∏︁
𝑖=1

1− 𝑡𝑗+𝑟𝑁−𝑋𝑁+𝑖

1− 𝑡𝑁−𝑋𝑁+𝑖
. (7.5.54)

For 𝑋𝑁 ≤ 𝑟𝑁 + 𝐿, the above is ≤ 1 since 𝑟𝑁 + 𝐿 ≤ 𝑗 + 𝑟𝑁 ≤ 𝑁 , and furthermore it is

decreasing function of 𝑋𝑁 ∈ [[𝑟𝑁 + 𝐿]]. Hence since 𝑏 ≥ 0 we have

0 ≤ 1(𝑋𝑁 ≤ 𝑟𝑁 + 𝐿− 𝑏)

(︃
1−

𝑋𝑁∏︁
𝑖=1

1− 𝑡𝑗+𝑟𝑁−𝑋𝑁+𝑖

1− 𝑡𝑁−𝑋𝑁+𝑖

)︃

≤ 1(𝑋𝑁 ≤ 𝑟𝑁 + 𝐿− 𝑏)

(︃
1−

𝑟𝑁+𝑗−𝑏∏︁
𝑖=1

1− 𝑡𝑏+𝑖

1− 𝑡𝑏+(𝑁−𝑟𝑁−𝑗)+𝑖

)︃
.

(7.5.55)
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A naive bound gives

1−
𝑟𝑁+𝑗−𝑏∏︁

𝑖=1

1− 𝑡𝑏+𝑖

1− 𝑡𝑏+(𝑁−𝑟𝑁−𝑗)+𝑖
≤ 1−

𝑟𝑁+𝑗−𝑏∏︁
𝑖=1

(1− 𝑡𝑏+𝑖) ≤ 1− (𝑡𝑏; 𝑡)∞ ≤ 𝐶𝑡𝑏. (7.5.56)

for some constant 𝐶 and all large 𝑏. Hence

0 ≤ 1(𝑋𝑁 ≤ 𝑟𝑁 + 𝐿− 𝑏)

(︂
1− (𝑡; 𝑡)𝑗+𝑟𝑁 (𝑡; 𝑡)𝑁−𝑋𝑁

(𝑡; 𝑡)𝑁(𝑡; 𝑡)𝑗+𝑟𝑁−𝑋𝑁

)︂
≤ 𝐶𝑡𝑏 (7.5.57)

Plugging in the formula for 𝑐−1
𝑁 and (7.5.57) yields the bound⃒⃒⃒⃒

E
[︂
1(𝑋𝑁 ≤ 𝑟𝑁 + 𝐿− 𝑏)𝑡𝑗

1− 𝑡𝑚

1− 𝑡
(𝑡𝑟𝑁−𝑋𝑁 − 𝑡𝑟𝑁 )

(𝑡; 𝑡)𝑗+𝑟𝑁 (𝑡; 𝑡)𝑁−𝑋𝑁

(𝑡; 𝑡)𝑁(𝑡; 𝑡)𝑗+𝑟𝑁−𝑋𝑁

− 𝑡𝑗
1− 𝑡𝑚

1− 𝑡
𝑐−1
𝑁

]︂⃒⃒⃒⃒
≤1− 𝑡𝑚

1− 𝑡
𝑡𝑗
⃒⃒⃒⃒
E
[︂
1(𝑋𝑁 ≤ 𝑟𝑁 + 𝐿− 𝑏)

(︂
1− (𝑡; 𝑡)𝑗+𝑟𝑁 (𝑡; 𝑡)𝑁−𝑋𝑁

(𝑡; 𝑡)𝑁(𝑡; 𝑡)𝑗+𝑟𝑁−𝑋𝑁

)︂
(𝑡𝑟𝑁−𝑋𝑁 − 𝑡𝑟𝑁 )

]︂⃒⃒⃒⃒
+

1− 𝑡𝑚

1− 𝑡
𝑡𝑗
⃒⃒
E
[︀
1(𝑟𝑁 + 𝐿− 𝑏 < 𝑋𝑁 ≤ 𝑟𝑁)(𝑡

𝑟𝑁−𝑋𝑁 − 𝑡𝑟𝑁 )
]︀⃒⃒

≤𝐶𝑡𝑏1− 𝑡𝑚

1− 𝑡
𝑡𝑗E
[︀
1(𝑋𝑁 ≤ 𝑟𝑁 + 𝐿− 𝑏)(𝑡𝑟𝑁−𝑋𝑁 − 𝑡𝑟𝑁 )

]︀
+

1− 𝑡𝑚

1− 𝑡
𝑡𝑗E
[︀
1(𝑟𝑁 + 𝐿− 𝑏 < 𝑋𝑁 ≤ 𝑟𝑁)(𝑡

𝑟𝑁−𝑋𝑁 − 𝑡𝑟𝑁 )
]︀

(7.5.58)

using that 𝑏 ≥ 𝐿 (otherwise the bounds in the last indicator function would be reversed).

Since 𝑟𝑁 + 𝐿− 𝑏 ≤ 𝑟𝑁 and the argument of the expectation is nonnegative,

E
[︀
1(𝑋𝑁 ≤ 𝑟𝑁 + 𝐿− 𝑏)(𝑡𝑟𝑁−𝑋𝑁 − 𝑡𝑟𝑁 )

]︀
≤ 𝑐−1

𝑁 . (7.5.59)

Furthermore,

E
[︀
1(𝑟𝑁 + 𝐿− 𝑏 < 𝑋𝑁 ≤ 𝑟𝑁)(𝑡

𝑟𝑁−𝑋𝑁 − 𝑡𝑟𝑁 )
]︀
≤ (1− 𝑡𝑟𝑁 ) Pr(𝑋𝑁 > 𝑟𝑁 +𝐿− 𝑏). (7.5.60)

We thus obtain

RHS(7.5.58) ≤ 𝐶
𝑡𝑏+𝑗

1− 𝑡
𝑐−1
𝑁 +

𝑡𝑗

1− 𝑡
Pr(𝑋𝑁 > 𝑟𝑁 + 𝐿− 𝑏). (7.5.61)

Finally, we let 𝑏 depend on 𝑁 as follows. Since

Pr(𝑋𝑁 > 𝑟𝑁 + 𝐿− 𝑏) = 𝑜𝑢𝑛𝑖𝑓 (𝑐
−1
𝑁 ) (7.5.62)
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for all 𝑏, by a diagonalization argument there exists a slowly growing sequence 𝑏 = 𝑏(𝑁)

such that

Pr(𝑋𝑁 > 𝑟𝑁 + 𝐿− 𝑏(𝑁)) = 𝑜𝑢𝑛𝑖𝑓 (𝑐
−1
𝑁 ) (7.5.63)

(the uniformity over 𝑗 is obvious here but we keep the 𝑜𝑢𝑛𝑖𝑓 notation anyway). Substitut-

ing (7.5.58), (7.5.61), and (7.5.63) to simplify the upper and lower bounds in our original

inequality (7.5.53) thus yields that the inequalities

𝑂𝑢𝑛𝑖𝑓 (𝑡
𝑏(𝑁)𝑐−1

𝑁 ) + 𝑜𝑢𝑛𝑖𝑓 (𝑐
−1
𝑁 ) +

1− 𝑡𝑚

1− 𝑡
𝑡𝑗𝑐−1

𝑁

≤ Pr
(︁
SN(𝐴(𝑁) diag(𝑝𝜈

(𝑁)

))𝑖 = 𝜅
(𝑁)
𝑖 for all 𝑖 ≥ 𝑗

)︁
≤ 𝑂𝑢𝑛𝑖𝑓 (𝑡

𝑏(𝑁)𝑐−1
𝑁 ) + 𝑜𝑢𝑛𝑖𝑓 (𝑐

−1
𝑁 ) +

1− 𝑡𝑚

1− 𝑡
𝑡𝑗𝑐−1

𝑁 ,

(7.5.64)

with implied constants which are uniform over all 𝑗 ≥ 𝐿, hold for all 𝑁 sufficiently large

that 𝑟𝑁 + 𝐿− 𝑏(𝑁) ≥ 0. Since 𝑏(𝑁) → ∞, this shows that

Pr
(︁
SN(𝐴(𝑁) diag(𝑝𝜈

(𝑁)

))𝑖 = 𝜅
(𝑁)
𝑖

)︁
=

1− 𝑡𝑚

1− 𝑡
𝑡𝑗𝑐−1

𝑁 + 𝑜𝑢𝑛𝑖𝑓 (𝑐
−1
𝑁 ). (7.5.65)
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Chapter 8

The 𝑝→ 1 limit

In Section 8.1 we introduce discrete-time Markovian dynamics on the boundary, and

prove that their continuous-time Poisson limit is equivalent to slowed 𝑡-TASEP. In Sec-

tion 8.2 we state a contour integral formula for observables of this process. We use these

in Section 8.3 to prove the law of large numbers Theorem 1.6.1 as 𝑡 → 1. In Section 8.4

we show Gaussian fluctuations, and the long-time simplification of covariances Proposi-

tion 8.4.2 which is half of Theorem 1.6.2. The probabilistic justification of this additional

limit via the SDEs in Theorem 1.6.2 is shown in Section 8.5. In Section 8.6 we prove the

bulk limit to the Gaussian process given in Theorem 1.6.3.

8.1 Between the slowed 𝑡-TASEP and Hall-Littlewood

processes

In this section we formally define slowed 𝑡-TASEP, and show in Theorem 8.1.1 that it is

equivalent (in the case of packed initial condition) to a Hall-Littlewood process with one

Plancherel specialization and one principal specialization 1, 𝑡, . . ..

Definition 63. Let

X := {(𝑥1, 𝑥2, . . .) ∈ ZN : 𝑥1 > 𝑥2 > · · · }

be the space of particle configurations on Z, where the 𝑥𝑖 is the position of the 𝑖𝑡ℎ particle
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from the right, and

X0 := {(𝑥1, 𝑥2, . . .) ∈ X : 𝑥𝑖 = −𝑖 for all sufficiently large 𝑖}.

We denote particle configurations (𝑥1, 𝑥2, . . .) by x, and if 𝑥𝑘−1 > 𝑥𝑘 + 1 we write x𝑘 :=

(𝑥1, . . . , 𝑥𝑘−1, 𝑥𝑘 + 1, 𝑥𝑘+1, . . .).

Definition 64. Slowed 𝑡-TASEP with initial condition x0 ∈ X is the continuous-time

stochastic process x𝑡(𝜏) = (𝑥1(𝜏), 𝑥2(𝜏), . . .) on X in which x𝑡(0) = x0 and the particles at

positions 𝑥𝑘, 𝑘 ≥ 1 each have independent Poisson clocks with rates 𝑡𝑥𝑘+𝑘(1− 𝑡𝑥𝑘−1−𝑥𝑘−1),

and jump to the right by 1 when they ring. Equivalently, it is defined by the Markov

generator

𝑑

𝑑𝜏

⃒⃒⃒⃒
𝜏=0

Pr(x𝑡(𝑇+𝜏) = y|x𝑡(𝑇 ) = x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑡𝑥𝑘+𝑘(1− 𝑡𝑥𝑘−1−𝑥𝑘−1) y = x𝑘 for some 𝑘 ∈ Z>0

−1 y = x

0 otherwise

.

(8.1.1)

We refer to the initial condition (−1,−2, . . .) as packed.

Recall the notation of the Plancherel/principal Hall-Littlewood process 𝜆(∞)(𝜏) from

Definition 47. For this section we write 𝜆(𝜏) = 𝜆(∞)(𝜏) to pare down notation.

Theorem 8.1.1. In the notations of Definition 47 and Definition 64,

x𝑡(𝜏) = (𝜆′𝑘((1− 𝑡)𝜏)− 𝑘)𝑘≥1

in (multi-time) distribution, where x𝑡(𝜏) is a slowed 𝑡-TASEP with packed initial condition

and parameter 𝑡.

Proof. Follows by comparing the generator of slowed 𝑡-TASEP in Definition 64 with that

of 𝜆(𝜏), computed in Lemma 6.2.2, and appealing to Proposition 6.2.1.
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8.2 A contour integral formula for 𝑡-moments

In this section we we prove contour integral formulas for certain 𝑡-moment observables of

this particle system, which will be the main tool in subsequent asymptotic results. We

again take 𝑡 ∈ (0, 1), and denote the Weyl denominator/Vandermonde determinant by

Δ(𝑧1, . . . , 𝑧𝑛) :=
∏︁

1≤𝑖<𝑗≤𝑛

(𝑧𝑖 − 𝑧𝑗).

Proposition 8.2.1. Let 𝜆(𝜏) be distributed as a Hall-Littlewood measure with specializa-

tions 1, 𝑡, . . . and 𝛾(𝜏), as defined in Chapter 2. Then for any positive integers 𝑟1, . . . , 𝑟𝑀 ,

E
[︁
𝑡−

∑︀𝑀
𝑚=1

∑︀𝑟𝑚
𝑗=1 𝜆

′
𝑗(𝜏)
]︁

=

(︃
𝑀∏︁

𝑚=1

(−1)(
𝑟𝑚
2 )

𝑟𝑚!(2𝜋𝑖)𝑟𝑚

)︃∮︁
· · ·
∮︁ 𝑀∏︁

𝑚=1

(︃
Δ(𝑧1,𝑚, . . . , 𝑧𝑟𝑚,𝑚)

2

𝑟𝑚∏︁
𝑠=1

𝑒𝜏𝑧𝑠,𝑚(1 + 𝑡−1𝑧−1
𝑠,𝑚)

𝑧𝑟𝑚𝑠,𝑚

)︃

×
∏︁

1≤𝛼<𝛽≤𝑀

∏︁
1≤𝑖≤𝑟𝛼
1≤𝑗≤𝑟𝛽

1− 𝑧𝑗,𝛽/𝑧𝑖,𝛼
1− 𝑡−1𝑧𝑗,𝛽/𝑧𝑖,𝛼

𝑑𝑧1,1 · · · 𝑑𝑧𝑟𝑀 ,𝑀 .

(8.2.1)

with all contours encircling 0 and satisfying

|𝑧𝑗,𝛽| < 𝑡|𝑧𝑖,𝛼| for all 1 ≤ 𝛼 < 𝛽 ≤𝑀, 1 ≤ 𝑖 ≤ 𝑟𝛼, 1 ≤ 𝑗 ≤ 𝑟𝛽

|𝑧𝑠,𝛼| < 𝑡−1 for all 1 ≤ 𝛼 ≤𝑀, 1 ≤ 𝑠 ≤ 𝑟𝛼.

Proof. First consider a partition 𝜇(𝐷, 𝜏) distributed as a Hall-Littlewood process with

alpha specializations 1, 𝑡, . . . and
(︀

𝜏
1−𝑡

1
𝐷

)︀
[𝐷], where again [𝐷] denotes 𝐷 copies of the

same specialization. We recall that this latter specialization is an approximation to

the Plancherel specialization 𝛾(𝜏) and converges to it as 𝐷 → ∞ by Lemma 2.2.7.
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Specializing [BM18, Thm. 2.12] to our case1 yields

E
[︁
𝑡−

∑︀𝑀
𝑚=1

∑︀𝑟𝑚
𝑗=1 𝜇(𝐷,𝜏)′𝑗

]︁
=

𝑀∏︁
𝑚=1

(−1)(
𝑟𝑚
2 )

𝑟𝑚!(2𝜋𝑖)𝑟𝑚

∮︁
· · ·
∮︁

𝑀∏︁
𝑚=1

(︃∏︀
1≤𝑖<𝑗≤𝑟𝑚

(𝑧𝑖,𝑚 − 𝑧𝑗,𝑚)
2

(𝑧1,𝑚 · · · 𝑧𝑟𝑚,𝑚)𝑟𝑚

𝑟𝑚∏︁
𝑠=1

(︃
𝐷∏︁
𝑗=1

1 + 𝑧𝑠,𝑚
𝜏

1−𝑡
1
𝐷

1 + 𝑡𝑧𝑠,𝑚
𝜏

1−𝑡
1
𝐷

)︃(︃∏︁
𝑖≥1

1 + 𝑧−1
𝑠,𝑚𝑡

𝑖−2

1 + 𝑧−1
𝑠,𝑚𝑡

𝑖−1

)︃)︃

·
∏︁

1≤𝛼<𝛽≤𝑀

∏︁
1≤𝑖≤𝑟𝛼
1≤𝑗≤𝑟𝛽

1− 𝑧𝑗,𝛽/𝑧𝑖,𝛼
1− 𝑡−1𝑧𝑗,𝛽/𝑧𝑖,𝛼

𝑑𝑧1,1 · · · 𝑑𝑧𝑟𝑀 ,𝑀

(8.2.2)

with all contours encircling 0 and

|𝑧𝑖,𝛼| < 𝑡|𝑧𝑗,𝛽| for all 1 ≤ 𝛼 < 𝛽 ≤𝑀, 1 ≤ 𝑖 ≤ 𝑟𝛼, 1 ≤ 𝑗 ≤ 𝑟𝛽

𝜏

1− 𝑡

1

𝐷
< |𝑧𝑠,𝛼| < 𝑡−1 for all 1 ≤ 𝛼 ≤𝑀, 1 ≤ 𝑠 ≤ 𝑟𝛼

provided such contours exist. We note that for any fixed 𝑡 ∈ (0, 1) and 𝜏 ≥ 0, such

contours exist for all 𝐷 sufficiently large. Picking a choice of contours, we have

lim
𝐷→∞

RHS(8.2.2) =
𝑀∏︁

𝑚=1

(−1)(
𝑟𝑚
2 )

𝑟𝑚!(2𝜋𝑖)𝑟𝑚

∮︁
· · ·
∮︁ 𝑀∏︁

𝑚=1

(︃
Δ(𝑧1,𝑚, . . . , 𝑧𝑟𝑚,𝑚)

2

𝑟𝑚∏︁
𝑠=1

(1 + 𝑡−1𝑧−1
𝑠,𝑚)𝑒

𝜏𝑧𝑠,𝑚

𝑧𝑟𝑚𝑠,𝑚

)︃

·
∏︁

1≤𝛼<𝛽≤𝑀

∏︁
1≤𝑖≤𝑟𝛼
1≤𝑗≤𝑟𝛽

1− 𝑧𝑗,𝛽/𝑧𝑖,𝛼
1− 𝑡−1𝑧𝑗,𝛽/𝑧𝑖,𝛼

𝑑𝑧1,1 · · · 𝑑𝑧𝑟𝑀 ,𝑀

(8.2.3)

where the limit commutes with the integral because the integrand remains bounded as

𝐷 → ∞ and the contours are compact.

It now suffices to show convergence of the left hand side of (8.2.2) to that of (8.2.1),

i.e. we must show

lim
𝐷→∞

1

Π
(︀
1, 𝑡, . . . ; 𝜏

1−𝑡
1
𝐷
[𝐷]
)︀∑︁

𝜆∈Y

𝑄𝜆(1, 𝑡, . . .)𝑃𝜆

(︂
𝜏

1− 𝑡

1

𝐷
[𝐷]

)︂
𝑡−

∑︀𝑀
𝑚=1

∑︀𝑟𝑚
𝑗=1 𝜆

′
𝑗

=
1

Π(1, 𝑡, . . . ; 𝛾(𝜏))

∑︁
𝜆∈Y

𝑄𝜆(1, 𝑡, . . .)𝑃𝜆(𝛾(𝜏))𝑡
−

∑︀𝑀
𝑚=1

∑︀𝑟𝑚
𝑗=1 𝜆

′
𝑗

(8.2.4)

1In the notation of [BM18, Thm. 2.12], we are taking 𝑁 =𝑀 , 𝑋1 =
(︁

𝜏
1−𝑡

1
𝐷

)︁
[𝐷], 𝑋2 = · · · = 𝑋𝑀 = 0

and 𝑌1 = · · · = 𝑌𝑀−1 = 0, 𝑌𝑀 = 1, 𝑡, . . .. Then the product over 1 ≤ 𝛼 ≤ 𝛽 ≤ 𝑀 in the fourth line of
(2.22) of [BM18] only gives nontrivial terms when 𝛼 = 1 or 𝛽 =𝑀 .
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It follows simply from the definition by (2.2.30) that

lim
𝐷→∞

1

Π
(︀
1, 𝑡, . . . ; 𝜏

1−𝑡
1
𝐷
[𝐷]
)︀ =

1

Π(1, 𝑡, . . . ; 𝛾(𝜏))
,

so it suffices to show that the sum on the LHS of (8.2.4) converges to the one on the RHS.

We may write the sum on the LHS (resp. RHS) as an integral of the function 𝑓𝐷(𝜆) =

𝑄𝜆(1, 𝑡, . . .)𝑃𝜆(
𝜏

1−𝑡
1
𝐷
[𝐷]) (resp. 𝑓(𝜆) = 𝑄𝜆(1, 𝑡, . . .)𝑃𝜆(𝛾(𝜏))) with respect to the measure

on the discrete set Y determined by meas({𝜆}) = 𝑡−
∑︀𝑀

𝑚=1

∑︀𝑟𝑚
𝑗=1 𝜆

′
𝑗 . By Lemma 2.2.7, 𝑓𝐷(𝜆)

converges monotonically from below to 𝑓(𝜆), hence the monotone convergence theorem

yields the desired convergence of sums, and (8.2.4) follows.

The limit 𝐷 → ∞ also makes the contour condition 𝜏
1−𝑡

1
𝐷
< |𝑧𝑠,𝛼| automatic, so

combining (8.2.3) and (8.2.4) completes the proof.

8.3 Law of large numbers

In this section we establish the law of large numbers for particle positions as 𝑡 → 1,

recalled below.

Theorem 1.6.1. Let (𝑥1(𝑠), 𝑥2(𝑠), . . .) , 𝑠 ∈ R≥0 be the particles of slowed 𝑡-TASEP with

𝑡 = 𝑒−𝜖. Then for any 𝜏 > 0 and 𝑘 ∈ Z>0,

𝜖 · 𝑥𝑘(𝜏/𝜖) → log

(︃
𝑘∑︁

𝑗=0

𝜏 𝑗

𝑗!

)︃
− log

(︃
𝑘−1∑︁
𝑗=0

𝜏 𝑗

𝑗!

)︃
in probability as 𝜖→ 0+.

We begin with a straightforward heuristic derivation by taking a continuum limit of

jump rates to obtain an ODE for particle positions, then give a rigorous proof using the

observables in Proposition 8.2.1.

First, we wish to see the scaling of 𝑡 = 𝑒−𝜖, space and time such that both the particle

positions and jump rates converge to nontrivial limits. The first particle 𝑥1(𝜏) jumps as a

rate-1 Poisson process as 𝑡→ 1, so for it to converge to a nontrivial limit, we should wait a

long time (take time to be ≈ 𝜏/𝜖) and rescale space by 𝜖, i.e. we should consider 𝜖𝑥1 (𝜏/𝜖).

For the first particle, the law of large numbers guarantees concentration, though arguing
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for the others would be slightly more involved; however, let us suppose

𝜖𝑥𝑘(𝜏/𝜖) → 𝑐𝑘(𝜏)

for some functions 𝑐1, 𝑐2, . . ..

Then we have convergence of jump rates

𝑡𝑥𝑘(𝜏/𝜖)+𝑘(1− 𝑡𝑥𝑘−1(𝜏/𝜖)−𝑥𝑘(𝜏/𝜖)−1) → 𝑒−𝑐𝑘(𝜏)(1− 𝑒𝑐𝑘−1(𝜏)−𝑐𝑘(𝜏)) = 𝑒−𝑐𝑘(𝜏) − 𝑒−𝑐𝑘−1(𝜏)

where when 𝑘 = 1 we take 𝑒−𝑐𝑘−1(𝜏) = 0. Because we are scaling time as 𝜖−1 and then

rescaling space by 𝜖, by concentration of Poisson variables we should have

lim
𝜖→0+

(jump rate of 𝑥𝑘(𝜏/𝜖)) =
𝑑𝑐𝑘(𝜏)

𝑑𝜏
.

Hence the functions 𝑐𝑘(𝜏) should satisfy

𝑑𝑐𝑘(𝜏)

𝑑𝜏
= 𝑒−𝑐𝑘(𝜏) − 𝑒−𝑐𝑘−1(𝜏) for all 𝑘 ≥ 1, (8.3.1)

where when 𝑘 = 1 we take 𝑐0 = ∞ so the second term on the RHS is not present. It is

easy to verify by inspection that the limits given in Theorem 1.6.1, namely

𝑐𝑘(𝜏) := log

(︃
𝑘∑︁

𝑗=0

𝜏 𝑗

𝑗!

)︃
− log

(︃
𝑘−1∑︁
𝑗=0

𝜏 𝑗

𝑗!

)︃
, (8.3.2)

satisfy (8.3.1), and furthermore have initial conditions 𝑐𝑘(0) = 0 as they should. This

concludes the heuristic derivation of Theorem 1.6.1, and we move on to the proof.

Proof of Theorem 1.6.1. We first claim that it suffices to show the same limit as in Theo-

rem 1.6.1 for the slightly different quantity 𝜖𝑥𝑘
(︀

𝜏
1−𝑒−𝜖

)︀
. Assuming this result and setting

𝜖 = − log(1− 𝜖) so that 𝜖 = 1− 𝑒−𝜖, we have

𝜖𝑥𝑘(𝜏/𝜖) =
(︀
1− 𝑒−𝜖

)︀
𝑥𝑘

(︂
𝜏

1− 𝑒−𝜖

)︂
=
(︀
𝜖+𝑂(𝜖2)

)︀
𝑥𝑘

(︂
𝜏

1− 𝑒−𝜖

)︂
,
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hence convergence in probability for 𝜖𝑥𝑘
(︀

𝜏
1−𝑒−𝜖

)︀
implies the same for 𝜖𝑥𝑘(𝜏/𝜖). Since

𝑥𝑘

(︂
𝜏

1− 𝑡

)︂
= 𝜆𝑘(𝜏)

′ − 𝑘 in distribution

by Theorem 8.1.1, it suffices to show that

𝜖𝜆𝑘(𝜏) → log

(︃
𝑘∑︁

𝑗=0

𝜏 𝑗

𝑗!

)︃
− log

(︃
𝑘−1∑︁
𝑗=0

𝜏 𝑗

𝑗!

)︃
in probability as 𝜖→ 0+. (8.3.3)

It therefore suffices to show the convergence of Laplace transforms

𝑒𝜖
∑︀𝑟

𝑗=1 𝜆𝑗(𝜏) →
𝑟∑︁

𝑗=0

𝜏 𝑗

𝑗!
in probability as 𝜖→ 0+ (8.3.4)

for each 𝑟, as then 𝜖
∑︀𝑟

𝑗=1 𝜆𝑗(𝜏) converges in probability, and taking differences yields

(8.3.3). Let 𝑌𝑟(𝑡) = 𝑒𝜖
∑︀𝑟

𝑗=1 𝜆𝑗(𝜏) (recall 𝑡 = 𝑒−𝜖). By Chebyshev’s inequality, to show

(8.3.4) it suffices to show

E[𝑌𝑟(𝑡)] →
𝑟∑︁

𝑗=0

𝜏 𝑗

𝑗!
(8.3.5)

and

Var(𝑌𝑟(𝑡)) → 0 (8.3.6)

as 𝜖→ 0+.

By Proposition 8.2.1,

E[𝑌𝑟(𝑡)] =
(−1)(

𝑟
2)

𝑟!(2𝜋i)𝑟

∮︁
· · ·
∮︁ ∏︁

1≤𝑖<𝑗≤𝑟

(𝑧𝑖 − 𝑧𝑗)
2

𝑟∏︁
𝑠=1

1 + 𝑡−1𝑧−1
𝑠

𝑧𝑟−1
𝑠

𝑒𝜏𝑧𝑠
𝑑𝑧𝑠
𝑧𝑠
, (8.3.7)

where all contours are circles around the origin of radius ≤ 1, and

E[𝑌𝑟(𝑡)2] =
1

(𝑟!)2(2𝜋i)2𝑟

∮︁
· · ·
∮︁ ∏︁

1≤𝑖,𝑗≤𝑟

1− 𝑧𝑗,2/𝑧𝑖,1
1− 𝑡−1𝑧𝑗,2/𝑧𝑖,1

·
2∏︁

ℓ=1

(︃ ∏︁
1≤𝑖<𝑗≤𝑟

(𝑧𝑖,ℓ − 𝑧𝑗,ℓ)
2

𝑟∏︁
𝑠=1

1 + 𝑡−1𝑧−1
𝑠,ℓ

𝑧𝑟−1
𝑠,ℓ

𝑒𝜏𝑧𝑠,ℓ
𝑑𝑧𝑠,ℓ
𝑧𝑠,ℓ

)︃ (8.3.8)

where we take the 𝑧𝑠,1 and 𝑧𝑠,2 contours to be circles of radii 1 and 𝑅 respectively, for some

0 < 𝑅 < 1 fixed independent of 𝜖 (for all 𝜖 sufficiently small that such contours satisfy
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the conditions in Proposition 8.2.1). It follows by combining two instances of (8.3.7) that

E[𝑌𝑟(𝑡)]2 =
1

(𝑟!)2(2𝜋i)2𝑟

∮︁
· · ·
∮︁ 2∏︁

ℓ=1

(︃ ∏︁
1≤𝑖<𝑗≤𝑟

(𝑧𝑖,ℓ − 𝑧𝑗,ℓ)
2

𝑟∏︁
𝑠=1

1 + 𝑡−1𝑧−1
𝑠,ℓ

𝑧𝑟−1
𝑠,ℓ

𝑒𝜏𝑧𝑠,ℓ
𝑑𝑧𝑠,ℓ
𝑧𝑠,ℓ

)︃

with the same contours as in (8.3.8), and combining with (8.3.8) yields

Var(𝑌𝑟(𝑡)) =
1

(𝑟!)2(2𝜋i)2𝑟

∮︁
· · ·
∮︁ (︃ ∏︁

1≤𝑖,𝑗≤𝑟

1− 𝑧𝑗,2/𝑧𝑖,1
1− 𝑡−1𝑧𝑗,2/𝑧𝑖,1

− 1

)︃

·
2∏︁

ℓ=1

(︃ ∏︁
1≤𝑖<𝑗≤𝑟

(𝑧𝑖,ℓ − 𝑧𝑗,ℓ)
2

𝑟∏︁
𝑠=1

1 + 𝑡−1𝑧−1
𝑠,ℓ

𝑧𝑟−1
𝑠,ℓ

𝑒𝜏𝑧𝑠,ℓ
𝑑𝑧𝑠,ℓ
𝑧𝑠,ℓ

)︃
.

(8.3.9)

The contours in (8.3.9) are compact and independent of 𝑡, and due to the

∏︁
1≤𝑖,𝑗≤𝑟

1− 𝑧𝑗,2/𝑧𝑖,1
1− 𝑡−1𝑧𝑗,2/𝑧𝑖,1

− 1

term the integrand converges to 0 as 𝑡 → 1, which yields (8.3.6). It remains to show

(8.3.5). Taking all contours in (8.3.7) to be the unit circle so 𝑧−1
𝑖 = 𝑧𝑖, by rewriting the

Weyl denominator

∏︁
1≤𝑖<𝑗≤𝑟

𝑧𝑖 − 𝑧𝑗 = (−1)(
𝑟
2)

(︃ ∏︁
1≤𝑖<𝑗≤𝑟

𝑧𝑖 − 𝑧𝑗

)︃
𝑟∏︁

𝑠=1

𝑧𝑟−1
𝑠

we have

E[𝑌𝑟(𝑡)] =
1

𝑟!(2𝜋i)𝑟

∮︁
· · ·
∮︁ ∏︁

1≤𝑖<𝑗≤𝑟

|𝑧𝑖 − 𝑧𝑗|2
𝑟∏︁

𝑠=1

(1 + 𝑡−1𝑧𝑠)𝑒
𝜏𝑧𝑠
𝑑𝑧𝑠
𝑧𝑠
. (8.3.10)

It is a classical fact, which follows from the Weyl character formula, Weyl integration for-

mula and character orthogonality (or from the generalization to Macdonald polynomials

in [Mac98a, Chapter VI.9]), that the Schur polynomials 𝑠𝜆(𝑧1, . . . , 𝑧𝑟) = 𝑃𝜆(𝑧1, . . . , 𝑧𝑟; 𝑡 =

0) are orthonormal with respect to the inner product

⟨𝑓, 𝑔⟩ = 1

𝑟!(2𝜋i)𝑟

∮︁
· · ·
∮︁ ∏︁

1≤𝑖<𝑗≤𝑟

|𝑧𝑖 − 𝑧𝑗|2𝑓(𝑧1, . . . , 𝑧𝑟)𝑔(𝑧1, . . . , 𝑧𝑟)
𝑟∏︁

𝑠=1

𝑑𝑧𝑠
𝑧𝑠

where the integrals are over the unit circle in C. Hence to compute (8.3.10) it suffices to
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expand 𝑒𝜏
∑︀𝑟

𝑠=1 𝑧𝑠 and
∏︀𝑟

𝑠=1(1 + 𝑡−1𝑧𝑠) in terms of the Schur polynomials. We have

𝑟∏︁
𝑠=1

(1 + 𝑡−1𝑧𝑠) =
𝑟∑︁

𝑘=0

𝑡−𝑘𝑒𝑘(𝑧1, . . . , 𝑧𝑟) (8.3.11)

where 𝑒𝑘(𝑧1, . . . , 𝑧𝑟) = 𝑠(1[𝑘])(𝑧1, . . . , 𝑧𝑟) is the elementary symmetric polynomial, and

𝑒𝜏
∑︀𝑟

𝑠=1 𝑧𝑠 =
∑︁
𝑗≥0

𝜏 𝑗

𝑗!
𝑒1(𝑧1, . . . , 𝑧𝑟)

𝑗. (8.3.12)

It follows from the classical Pieri rule for Schur functions, see for example [Mac98a], that

for 1 ≤ 𝑗 ≤ 𝑟

𝑒1(𝑧1, . . . , 𝑧𝑟)
𝑗 = 𝑠(1[𝑗])(𝑧1, . . . , 𝑧𝑟) + . . . (8.3.13)

when expanded in the basis of Schur functions, where the other terms on the RHS of

(8.3.13) are Schur functions 𝑠𝜆 where |𝜆| = 𝑗 and 𝜆 ̸= (1[𝑗]). We therefore have

⟨𝑒𝑘, 𝑒𝑗1⟩ = 𝛿𝑗,𝑘. (8.3.14)

Combining (8.3.11), (8.3.12) and (8.3.14) yields that

RHS(8.3.10) =
𝑟∑︁

𝑗=0

𝜏 𝑗

𝑗!
𝑡−𝑗.

Sending 𝑡 → 1 and tracing back the chain of equalities, this shows (8.3.5) and hence

completes the proof.

8.4 Gaussian fluctuations

In this section we move on from the law of large numbers to study the fluctuations

of the particle positions 𝑥𝑘(𝜏). Proposition 8.4.1 uses general machinery of [BG15] to

show Gaussian fluctuations for the particle positions 𝑥𝑘
(︀

𝜏
1−𝑡

)︀
and gives a formula for

their covariance, but the number of contour integrals in the formula grows with the

particle index, making it intractable asymptotically. Taking a further 𝜏 → ∞ limit, this

covariance converges (without rescaling) to an expression which can be simplified to a

double contour integral with the aid of orthogonal polynomial techniques similar to those
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used in [BCF18, §5.1].

Definition 65. Letting 𝑥𝑖 be the position of the 𝑖𝑡ℎ particle of slowed 𝑡-TASEP with

parameter 𝑡 = 𝑒−𝜖, we define 𝑋(𝑖,𝜖)
𝜏 by

𝑥𝑖

(︂
𝜏

1− 𝑡

)︂
= E

[︂
𝑥𝑖

(︂
𝜏

1− 𝑡

)︂]︂
+ 𝜖−1/2𝑋(𝑖,𝜖)

𝜏 .

Proposition 8.4.1. For any 𝑛 ∈ Z≥1, the random vector (𝑋
(1,𝜖)
𝜏 , . . . , 𝑋

(𝑛,𝜖)
𝜏 ) converges

in distribution as 𝜖 → 0+ to a mean 0 Gaussian random vector (𝑋
(1)
𝜏 , . . . , 𝑋

(𝑛)
𝜏 ). The

covariances of these Gaussian random vectors are determined by the formula

Cov(𝑋(1)
𝜏 + . . .+𝑋(𝑟)

𝜏 ;𝑋(1)
𝜏 + . . .+𝑋(𝑠)

𝜏 )

=

∮︁
𝑑𝑧2,1 · · ·

∮︁
𝑑𝑧2,𝑠

∮︁
𝑑𝑧1,1 · · ·

∮︁
𝑑𝑧1,𝑟

∑︁
1≤𝑖≤𝑟
1≤𝑗≤𝑠

𝑧2,𝑗
𝑧1,𝑖 − 𝑧2,𝑗

𝐹𝜏 (𝑧2,1, . . . , 𝑧2,𝑠)𝐹𝜏 (𝑧1,1, . . . , 𝑧1,𝑟)

(︂∮︁
𝑑𝑧2,1 · · ·

∮︁
𝑑𝑧2,𝑠𝐹𝜏 (𝑧2,1, . . . , 𝑧2,𝑠)

)︂(︂∮︁
𝑑𝑧1,1 · · ·

∮︁
𝑑𝑧1,𝑟𝐹𝜏 (𝑧1,1, . . . , 𝑧1,𝑟)

)︂ ,

(8.4.1)

for all 𝑟 ≥ 𝑠 ≥ 1, where

𝐹𝜏 (𝑧1, . . . , 𝑧𝑘) = Δ(𝑧1, . . . , 𝑧𝑘)
2

𝑘∏︁
𝑖=1

𝑒𝜏𝑧𝑖(1 + 𝑧𝑖)

𝑧𝑘+1
𝑖

(8.4.2)

and the contours are all positively oriented, encircle 0 and satisfy |𝑧2,𝑗| < |𝑧1,𝑖| for all

1 ≤ 𝑖 ≤ 𝑟, 1 ≤ 𝑗 ≤ 𝑠.

Remark 44. We note that the integrand in the formula for covariances (8.4.1) is not

symmetric in 𝑟, 𝑠, and in fact the formula is not valid if 𝑟 < 𝑠. The same is true of the

simplified formula (8.4.11) which will be derived from it below in Proposition 8.4.2.

Proof of Proposition 8.4.1. Since 𝑥𝑖
(︀

𝜏
1−𝑡

)︀
= 𝜆′𝑖(𝜏)− 𝑖,

𝑋(𝑖,𝜖)
𝜏 = 𝜖1/2 (𝜆′𝑖(𝜏)− E [𝜆′𝑖(𝜏)])

Clearly it suffices to show that the family of random variables (𝑋
(1,𝜖)
𝜏 + . . . + 𝑋

(𝑟,𝜖)
𝜏 )𝑟≥1

converge jointly to the Gaussian family (𝑋
(1)
𝜏 + . . . + 𝑋

(𝑟)
𝜏 )𝑟≥1. We will first show that
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another family of random variables

𝑉𝑟(𝜖, 𝜏) := 𝑡−(𝜆′
1(𝜏)+...+𝜆′

𝑟(𝜏)), 𝑟 ≥ 1

converges jointly to the Gaussian family (𝑋
(1)
𝜏 + . . .+𝑋

(𝑟)
𝜏 )𝑟≥1 after appropriate scaling,

and then argue this suffices.

Proposition 8.2.1 gives us contour integral formulas for all joint moments of these

random variables, so it is a matter of analyzing these integral formulas. We will use the

general Gaussianity lemma given as Lemma 4.2 of [BG15], which has a self-contained

presentation in Section 4.3 of the same paper.

Let

𝐶𝑟𝜖(𝑟𝛼, 𝜇̄𝑧𝛼; 𝑟𝛽, 𝜇̄𝑧𝛽) =
∏︁

1≤𝑖≤𝑟𝛼
1≤𝑗≤𝑟𝛽

1− 𝑧𝑗,𝛽/𝑧𝑖,𝛼
1− 𝑡−1𝑧𝑗,𝛽/𝑧𝑖,𝛼

(8.4.3)

F𝜖(𝑟𝑚, 𝜇̄𝑧𝑚) =
(−1)(

𝑟𝑚
2 )

𝑟𝑚!(2𝜋𝑖)𝑟𝑚
Δ(𝑧1,𝑚, . . . , 𝑧𝑟𝑚,𝑚)

2

𝑟𝑚∏︁
𝑠=1

1 + 𝑡−1𝑧−1
𝑠,𝑚

𝑧𝑟𝑚𝑠,𝑚
𝑒𝜏𝑧𝑠,𝑚 (8.4.4)

where 𝜇̄𝑧𝛼 is shorthand for the tuple of variables 𝑧1,𝛼, . . . , 𝑧𝑟𝛼,𝛼, so that Proposition 8.2.1

reads

E[𝑉𝑟1(𝜖, 𝜏) · · ·𝑉𝑟𝑚(𝜖, 𝜏)] =
∮︁

· · ·
∮︁ ∏︁

1≤𝛼<𝛽≤𝑘

𝐶𝑟𝜖(𝑟𝛼, 𝜇̄𝑧𝛼; 𝑟𝛽, 𝜇̄𝑧𝛽)
𝑘∏︁

𝑠=1

F𝜖(𝑟𝑚, 𝜇̄𝑧𝑚)𝑑𝜇̄𝑧𝑚.

(8.4.5)

We have

𝐶𝑟𝜖(𝑟𝛼, 𝜇̄𝑧𝛼; 𝑟𝛽, 𝜇̄𝑧𝛽) = 1 + 𝜖Cr𝜖(𝑟𝛼, 𝜇̄𝑧𝛼; 𝑟𝛽, 𝜇̄𝑧𝛽), (8.4.6)

and uniform convergence Cr𝜖 → Cr and F𝜖 → F along the contours of interest, where

Cr(𝑟𝛼, 𝜇̄𝑧𝛼; 𝑟𝛽, 𝜇̄𝑧𝛽) =
∑︁

1≤𝑖≤𝑟𝛼
1≤𝑗≤𝑟𝛽

𝑧𝑗,𝛽
𝑧𝑖,𝛼 − 𝑧𝑗,𝛽

(8.4.7)

F(𝑟𝛼, 𝜇̄𝑧𝛼) =
(−1)(

𝑟𝑚
2 )

𝑟𝑚!(2𝜋𝑖)𝑟𝑚
Δ(𝑧1,𝛼, . . . , 𝑧𝑟𝛼,𝛼)

2

𝑟𝛼∏︁
𝑠=1

𝑒𝜏𝑧𝑠,𝛼(1 + 𝑧𝑠,𝛼)

𝑧𝑟𝛼+1
𝑠,𝛼

. (8.4.8)
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By [BG15, Lemma 4.2]2, this implies that the random variables

𝑌𝑟(𝜖, 𝜏) :=
𝑉𝑟(𝜖, 𝜏)− E[𝑉𝑟(𝜖, 𝜏)]√

𝜖
(8.4.9)

converge jointly to the mean 0, jointly Gaussian family (𝑌𝑟(𝜏))𝑟≥1 having covariance

Cov(𝑌𝑟(𝜏);𝑌𝑠(𝜏))

=

∮︁
𝑑𝑧2,1 · · ·

∮︁
𝑑𝑧2,𝑠

∮︁
𝑑𝑧1,1 · · ·

∮︁
𝑑𝑧1,𝑟Cr(𝑟, 𝜇̄𝑧1; 𝑠, 𝜇̄𝑧2)F(𝑟, 𝜇̄𝑧1)F(𝑠, 𝜇̄𝑧2)(︂∮︁

𝑑𝑧2,1 · · ·
∮︁
𝑑𝑧2,𝑠F(𝑠, 𝜇̄𝑧2)

)︂(︂∮︁
𝑑𝑧1,1 · · ·

∮︁
𝑑𝑧1,𝑟F(𝑟, 𝜇̄𝑧1)

)︂ .
(8.4.10)

After cancelling the (−1)(
𝑟𝑚
2 )

𝑟𝑚!(2𝜋𝑖)𝑟𝑚
terms in the numerator and denominator this is exactly the

RHS of (8.4.1), hence we indeed have that (𝑌𝑟(𝜖, 𝜏))𝑟≥1 converges jointly to (𝑋
(1)
𝜏 + . . .+

𝑋
(𝑟)
𝜏 )𝑟≥1.

It remains to show that (𝑋
(1,𝜖)
𝜏 + . . . + 𝑋

(𝑟,𝜖)
𝜏 )𝑟≥1 also converges jointly to (𝑋

(1)
𝜏 +

. . . + 𝑋
(𝑟)
𝜏 )𝑟≥1. At a heuristic level this makes perfect sense by Taylor expanding the

exponential in

𝑉𝑟(𝜖, 𝜏) = 𝑒
𝜖
(︁
E[𝜆′

1(𝜏)+...+𝜆′
𝑟(𝜏)]+𝜖1/2

(︁
𝑋

(1,𝜖)
𝜏 +...+𝑋

(𝑟,𝜖)
𝜏

)︁)︁

in (8.4.9), as the leading-order nonconstant term is const · (𝑋(1,𝜖)
𝜏 + . . .+𝑋

(𝑟,𝜖)
𝜏 ) and the

others are small in 𝜖. To make this rigorous one uses (joint) tightness in 𝜖 of the random

variables 𝑌𝑟(𝜖, 𝜏) to show joint tightness of the random variables 𝑋(1,𝜖)
𝜏 +. . .+𝑋

(𝑟,𝜖)
𝜏 , which

are related by a simple transformation, and then argues using Prokhorov’s theorem, the

convergence of 𝑌𝑟(𝜖, 𝜏) and the previous Taylor expansion. The details are given in the

proof of Proposition 4.1 in [BCF18], where our 𝑌𝑟(𝜖, 𝜏) corresponds to their 𝑌 𝜖
𝑟 , the

analogue of the Gaussian convergence for 𝑌𝑟(𝜖, 𝜏) is Lemma 4.4 of [BCF18], and with

these two substitutions the proof carries over mutatis mutandis in our setting.

We note that for a family of random variables with an only slightly different integral

formula for covariances, the analogue of the above Gaussian convergence argument is

written in a self-contained manner in the proof of [BCF18, Proposition 4.1]. For a reader

wishing to understand all the details of the proof, this might be easier to read than the

proof in [BG15] of the general Gaussianity lemma used in our condensed version.

2In the notation of [BG15] one should take 𝜖 = 𝐿−1 and 𝛾 = 1.
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Returning to our setting, the formula in Proposition 8.4.1 simplifies greatly upon

taking another limit 𝜏 → ∞. As was argued in the introduction, and will be fleshed out

in the next section, this limit reflects convergence to stationarity of the original particle

system (with an additional time change).

Proposition 8.4.2. As 𝜏 → ∞, the random variables 𝑋(𝑖)
𝜏 converge in distribution to a

Gaussian random vector (𝜁𝑖)𝑖≥1, with covariances given by

Cov(𝜁𝑟; 𝜁𝑠) =
1

4𝜋2

∮︁
Γ0

∮︁
Γ0,𝑤

𝑤

𝑧 − 𝑤

𝑟!𝑠!

𝑧𝑟𝑤𝑠
𝑒𝑧+𝑤(1− 𝑧/𝑟)(1− 𝑤/𝑠)

𝑑𝑧

𝑧

𝑑𝑤

𝑤
(8.4.11)

for each 𝑟 ≥ 𝑠 ≥ 1.

Proof. First note that by symmetry of 𝐹𝜏 , we may replace

∑︁
1≤𝑖≤𝑟
1≤𝑗≤𝑠

𝑧𝑗,2
𝑧𝑖,1 − 𝑧𝑗,2

by

𝑟𝑠
𝑧1,2

𝑧1,1 − 𝑧1,2

in (8.4.1). Now, changing variables to 𝑧𝑖 = 𝜏𝑧𝑖,1, 𝑤𝑗 = 𝜏𝑧𝑗,2 and cancelling the factors of

𝜏 that appear, (8.4.1) becomes

Cov(𝑋(1)
𝜏 + . . .+𝑋(𝑟)

𝜏 ;𝑋(1)
𝜏 + . . .+𝑋(𝑠)

𝜏 )

= 𝑟𝑠

∮︁
· · ·
∮︁

𝑤1

𝑧1 − 𝑤1

Δ(𝜇̄𝑧)2
𝑟∏︁

𝑖=1

𝑒𝑧𝑖(1 + 𝑧𝑖/𝜏)

𝑧𝑟+1
𝑖

Δ(𝜇̄𝑤)2
𝑠∏︁

𝑗=1

𝑒𝑤𝑗(1 + 𝑤𝑗/𝜏)

𝑤𝑠+1
𝑗

𝑑𝜇̄𝑧𝑑𝜇̄𝑤(︃∮︁
· · ·
∮︁

Δ(𝜇̄𝑧)2
𝑟∏︁

𝑖=1

𝑒𝑧𝑖(1 + 𝑧𝑖/𝜏)

𝑧𝑟+1
𝑖

𝑑𝜇̄𝑧

)︃(︃∮︁
· · ·
∮︁

Δ(𝜇̄𝑤)2
𝑠∏︁

𝑗=1

𝑒𝑤𝑗(1 + 𝑤𝑗/𝜏)

𝑤𝑠+1
𝑗

𝑑𝜇̄𝑤

)︃ .
(8.4.12)

Since

Δ(𝑧1, . . . , 𝑧𝑟)
2

𝑟∏︁
𝑖=1

𝑒𝑧𝑖(1 + 𝑧𝑖/𝜏)

𝑧𝑟+1
𝑖

→ Δ(𝑧1, . . . , 𝑧𝑟)
2

𝑟∏︁
𝑖=1

𝑒𝑧𝑖

𝑧𝑟+1
𝑖

uniformly on the contours of integration, the RHS of (8.4.12) converges as 𝜏 → ∞ to

the same expression with the (1 + 𝑧𝑖/𝜏) and (1 + 𝑤𝑗/𝜏) factors removed. In particular,

because the 𝑋(𝑖)
𝜏 are Gaussian, this implies convergence in joint distributions 𝑋(𝑖)

𝜏 → 𝜁𝑖,
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where the 𝜁𝑖 form Gaussian random vectors with covariances given by

Cov(𝜁1 + . . .+ 𝜁𝑟; 𝜁1 + . . .+ 𝜁𝑠)

= 𝑟𝑠

∮︁
· · ·
∮︁

𝑤1

𝑧1 − 𝑤1

Δ(𝑧1, . . . , 𝑧𝑟)
2

𝑟∏︁
𝑖=1

𝑒𝑧𝑖

𝑧𝑟+1
𝑖

Δ(𝑤1, . . . , 𝑤𝑠)
2

𝑠∏︁
𝑗=1

𝑒𝑤𝑗

𝑤𝑠+1
𝑗

𝑑𝜇̄𝑧𝑑𝜇̄𝑤(︃∮︁
· · ·
∮︁

Δ(𝑧1, . . . , 𝑧𝑟)
2

𝑟∏︁
𝑖=1

𝑒𝑧𝑖

𝑧𝑟+1
𝑖

𝑑𝜇̄𝑧

)︃(︃∮︁
· · ·
∮︁

Δ(𝑤1, . . . , 𝑤𝑠)
2

𝑠∏︁
𝑗=1

𝑒𝑤𝑗

𝑤𝑠+1
𝑗

𝑑𝜇̄𝑤

)︃ .
(8.4.13)

Rewriting the above as

Cov(𝜁1 + . . .+ 𝜁𝑟; 𝜁1 + . . .+ 𝜁𝑠) =
1

(2𝜋𝑖)2

∮︁ ∮︁
𝑤1

𝑧1 − 𝑤1

𝜌𝑟(𝑧1)𝜌𝑠(𝑤1)𝑑𝑧1𝑑𝑤1 (8.4.14)

where

𝜌𝑟(𝑧1) =

𝑟 1
(2𝜋𝑖)𝑟−1

∮︁
· · ·
∮︁

Δ(𝑧1, . . . , 𝑧𝑟)
2

𝑟∏︁
𝑖=1

𝑒𝑧𝑖

𝑧𝑟+1
𝑖

𝑑𝑧2 · · · 𝑑𝑧𝑟

1
(2𝜋𝑖)𝑟

∮︁
· · ·
∮︁

Δ(𝑧1, . . . , 𝑧𝑟)
2

𝑟∏︁
𝑖=1

𝑒𝑧𝑖

𝑧𝑟+1
𝑖

𝑑𝑧1𝑑𝑧2 · · · 𝑑𝑧𝑟
, (8.4.15)

we recognize 𝜌𝑟(𝑧) as the 1-point correlation function of the orthogonal polynomial en-

semble on the contour Γ0 with weight Δ(𝑧1, . . . , 𝑧𝑟)
2
∏︀𝑟

𝑖=1
𝑒𝑧𝑖

𝑧𝑟+1
𝑖

.

Let 𝑝𝑛𝑘 be the (monic) orthogonal polynomial of degree 𝑘 with respect to the inner

product

⟨𝑓, 𝑔⟩𝑛 =
1

2𝜋𝑖

∮︁
𝑓(𝑧)𝑔(𝑧)

𝑒𝑧

𝑧𝑛
𝑑𝑧. (8.4.16)

Then by the classical theory of orthogonal polynomials, see e.g. [Dei99], one has

𝜌𝑟(𝑧) =
𝑒𝑧

𝑧𝑟+1

𝑟−1∑︁
𝑘=0

𝑝𝑟+1
𝑘 (𝑧)2⟨︀

𝑝𝑟+1
𝑘 , 𝑝𝑟+1

𝑘

⟩︀
𝑟+1

. (8.4.17)

This reduces the computation of (8.4.14) to understanding the orthogonal polynomials

𝑝𝑟+1
𝑘 . For the observation above that 𝜌𝑟(𝑧) is a 1-point correlation function we followed a

similar argument in [BCF18], and in fact our orthogonal polynomial ensemble is a special

case of the one in that paper. They prove3 the following explicit formulas by relating the

𝑝𝑛𝑘 to the classical Laguerre polynomials, for which similar explicit formulas are classically

3To be specific, one must specialize 𝑇 = 1 in the notation of [BCF18, Lemma 5.3] to arrive at Lemma
8.4.3.

310



known.

Lemma 8.4.3 ([BCF18, Lemma 5.3]). Let 𝑝𝑛𝑘 be as above. Then

𝑝𝑛𝑘(𝑧) =
𝑘!

(𝑛− 𝑘 − 1)!

𝑘∑︁
ℓ=0

(𝑛− 1− ℓ)!

(𝑘 − ℓ)!ℓ!
(−𝑧)ℓ = 1

(𝑛− 1− 𝑘)!

∫︁ ∞

0

(𝑦 − 𝑧)𝑘𝑦𝑛−1−𝑘𝑒−𝑦𝑑𝑦.

(8.4.18)

Furthermore

⟨𝑝𝑛𝑘 , 𝑝𝑛𝑘⟩𝑛 = (−1)𝑘
𝑘!

(𝑛− 𝑘 − 1)!
. (8.4.19)

We rewrite (8.4.17) as

𝜌𝑟(𝑧) =

(︃
𝑒𝑧

𝑧𝑟+1

𝑟∑︁
𝑘=0

𝑝𝑟+1
𝑘 (𝑧)2⟨︀

𝑝𝑟+1
𝑘 , 𝑝𝑟+1

𝑘

⟩︀
𝑟+1

)︃
− 𝑒𝑧

𝑧𝑟+1

𝑝𝑟+1
𝑟 (𝑧)2

⟨𝑝𝑟+1
𝑟 , 𝑝𝑟+1

𝑟 ⟩𝑟+1

(8.4.20)

and treat the two terms on the RHS separately. We first treat the sum on the RHS of

(8.4.20), which will end up not contributing at all. By Lemma 8.4.3,

𝑟∑︁
𝑘=0

𝑝𝑟+1
𝑘 (𝑧)2⟨︀

𝑝𝑟+1
𝑘 , 𝑝𝑟+1

𝑘

⟩︀
𝑟+1

=
𝑟∑︁

𝑘=0

(−1)𝑘

(𝑟 − 𝑘)!𝑘!

∫︁ ∞

0

(𝑦 − 𝑧)𝑘𝑦𝑟−𝑘𝑒−𝑦𝑑𝑦

∫︁ ∞

0

(𝑥− 𝑧)𝑘𝑥𝑟−𝑘𝑒−𝑦𝑑𝑥

=
1

𝑟!

∫︁ ∞

0

∫︁ ∞

0

𝑟∑︁
𝑘=0

(︂
𝑟

𝑘

)︂
(−(𝑦 − 𝑧)(𝑥− 𝑧))𝑘(𝑥𝑦)𝑟−𝑘𝑒−(𝑥+𝑦)𝑑𝑥𝑑𝑦

=
1

𝑟!

∫︁ ∞

0

∫︁ ∞

0

(︀
𝑧(𝑥+ 𝑦)− 𝑧2

)︀𝑟
𝑒−(𝑥+𝑦)𝑑𝑥𝑑𝑦

=
𝑧𝑟

𝑟!

∫︁ ∞

0

∫︁ 𝑢

0

(𝑢− 𝑧)𝑟𝑒−𝑢𝑑𝑢𝑑𝑦

=
𝑧𝑟

𝑟!
·
(︀
𝑒−𝑧((𝑟 + 1)! + 𝑟!𝑧) +𝑂(𝑧𝑟+1)

)︀
.

Hence
𝑒𝑧

𝑧𝑟+1

𝑟∑︁
𝑘=0

𝑝𝑟+1
𝑘 (𝑧)2⟨︀

𝑝𝑟+1
𝑘 , 𝑝𝑟+1

𝑘

⟩︀
𝑟+1

=
𝑟 + 1

𝑧
+ 1 +𝑂(𝑧𝑟). (8.4.21)

By (8.4.18),

𝑝𝑟+1
𝑟 (𝑧) = 𝑟!

𝑟∑︁
ℓ=0

(−𝑧)ℓ

ℓ!
= 𝑟!

(︀
𝑒−𝑧 − 𝑓𝑟+1(𝑧)

)︀
, (8.4.22)

where 𝑓𝑟+1(𝑧) :=
∑︀∞

ℓ=𝑟+1
(−𝑧)ℓ

ℓ!
is just the sum of terms of degree ≥ 𝑟 + 1 in the Taylor
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series for 𝑒−𝑧. Hence

(︀
𝑒−𝑧 − 𝑓𝑟+1(𝑧)

)︀2
= 𝑒−2𝑧 − 2𝑒−𝑧𝑓𝑟+1(𝑧) +𝑂(𝑧2𝑟+2)

= 𝑒−𝑧

(︃
∞∑︁
ℓ=0

(−1)1(ℓ≥𝑟+1) (−𝑧)ℓ

ℓ!
+𝑂(𝑧2𝑟+2)

)︃
, (8.4.23)

so
𝑒𝑧

𝑧𝑟+1

𝑝𝑟+1
𝑟 (𝑧)2

⟨𝑝𝑟+1
𝑟 , 𝑝𝑟+1

𝑟 ⟩𝑟+1

=
𝑟!

(−𝑧)𝑟+1

∞∑︁
ℓ=0

(−1)1(ℓ≥𝑟+1) (−𝑧)ℓ

ℓ!
+𝑂(𝑧𝑟+1). (8.4.24)

Substituting (8.4.21) and (8.4.24) into (8.4.20) yields

𝜌𝑟(𝑧) =
𝑟 + 1

𝑧
+ 1− 𝑟!

(−𝑧)𝑟+1

∞∑︁
ℓ=0

(−1)1(ℓ≥𝑟+1) (−𝑧)ℓ

ℓ!
+𝑂(𝑧𝑟). (8.4.25)

Recall that

Cov(𝜁1 + . . .+ 𝜁𝑟; 𝜁1 + . . .+ 𝜁𝑠) =
1

(2𝜋𝑖)2

∮︁
Γ0

∮︁
Γ0,𝑤

𝑤

𝑧 − 𝑤
𝜌𝑟(𝑧)𝜌𝑠(𝑤)𝑑𝑧𝑑𝑤. (8.4.26)

Since |𝑤| < |𝑧| in the region of integration we may expand 𝑤
𝑧−𝑤

=
∑︀∞

𝑛=1

(︀
𝑤
𝑧

)︀𝑛 in the

integrand, and then interpret the integral as the 1
𝑧𝑤

term of the resulting Laurent series

expansion for the integrand (this may be justified by applying the residue theorem first

to the 𝑧 integral, then the 𝑤 integral). Since 𝑛 is positive in the terms
(︀
𝑤
𝑧

)︀𝑛, this yields

that only the terms of 𝜌𝑠(𝑤) of degree ≤ −2 in 𝑤 contribute, and only the terms of 𝜌𝑟(𝑧)

of degree ≥ 0 contribute. The terms of degree ≤ −2 in 𝜌𝑠(𝑤) match those of 𝑠!
(−𝑤)𝑠+1 𝑒

−𝑤,

so we may substitute this for 𝜌𝑠(𝑤) in (8.4.26) without changing the integral. Because all

terms in the Laurent expansion for 𝜌𝑠(𝑤) have degree ≥ −(𝑠 + 1), we additionally have

that only the terms of 𝜌𝑟(𝑧) of degree ≤ 𝑠 − 1 contribute. Because 𝑟 ≥ 𝑠, we may thus

ignore the 𝑂(𝑧𝑟) terms in (8.4.25). The terms of degree 0 ≤ 𝑑 ≤ 𝑠 − 1 in the Laurent

expansion for 𝜌𝑟(𝑧) in (8.4.25) are the same as those in the Laurent series expansion of

− 𝑟!
(−𝑧)𝑟+1 𝑒

−𝑧 + 1. Therefore

Cov(𝜁1+. . .+𝜁𝑟; 𝜁1+. . .+𝜁𝑠) =
1

(2𝜋𝑖)2

∮︁
Γ0

∮︁
Γ0,𝑤

𝑤

𝑧 − 𝑤

𝑠!𝑒−𝑤

(−𝑤)𝑠+1

(︂
− 𝑟!

(−𝑧)𝑟+1
𝑒−𝑧 + 1

)︂
𝑑𝑧𝑑𝑤.

(8.4.27)

Denoting the RHS above by 𝐶(𝑟, 𝑠), we have Cov(𝜁𝑟; 𝜁𝑠) = 𝐶(𝑟, 𝑠) − 𝐶(𝑟 − 1, 𝑠) −
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𝐶(𝑟, 𝑠− 1) + 𝐶(𝑟 − 1, 𝑠− 1). Writing

𝐶(𝑟, 𝑠) =
1

(2𝜋𝑖)2

∮︁
Γ0

∮︁
Γ0,𝑤

𝑤

𝑧 − 𝑤

𝑠!

(−𝑤)𝑠+1
𝑒−𝑤

(︂
− 𝑟!

(−𝑧)𝑟+1
𝑒−𝑧

)︂
𝑑𝑧𝑑𝑤

+
1

(2𝜋𝑖)2

∮︁
Γ0

∮︁
Γ0,𝑤

𝑤

𝑧 − 𝑤

𝑠!

(−𝑤)𝑠+1
𝑒−𝑤𝑑𝑧𝑑𝑤, (8.4.28)

we see that the second integral on the RHS is independent of 𝑟, hence its contribution

cancels in 𝐶(𝑟, 𝑠)− 𝐶(𝑟 − 1, 𝑠)− 𝐶(𝑟, 𝑠− 1) + 𝐶(𝑟 − 1, 𝑠− 1). Thus

𝐶(𝑟, 𝑠)− 𝐶(𝑟 − 1, 𝑠)− 𝐶(𝑟, 𝑠− 1) + 𝐶(𝑟 − 1, 𝑠− 1) = − 1

(2𝜋𝑖)2

∮︁
Γ0

∮︁
Γ0,𝑤

𝑤

𝑧 − 𝑤
𝑒−𝑧−𝑤

(︂
𝑟!𝑠!

(−𝑧)𝑟+1(−𝑤)𝑠+1
− (𝑟 − 1)!𝑠!

(−𝑧)𝑟(−𝑤)𝑠+1
− 𝑟!(𝑠− 1)!

(−𝑧)𝑟+1(−𝑤)𝑠
+

(𝑟 − 1)!(𝑠− 1)!

(−𝑧)𝑟(−𝑤)𝑠

)︂
𝑑𝑧𝑑𝑤

=
1

4𝜋2

∮︁
Γ0

∮︁
Γ0,𝑤

𝑤

𝑧 − 𝑤

𝑟!𝑠!

(−𝑧)𝑟+1(−𝑤)𝑠+1
𝑒−𝑧−𝑤(1 + 𝑧/𝑟)(1 + 𝑤/𝑠)𝑑𝑧𝑑𝑤. (8.4.29)

Changing variables to −𝑧,−𝑤 yields (8.4.11), completing the proof.

8.5 Long-time SDEs and stationarity of fluctuations

In the limit 𝑡 = 𝑒−𝜖, time = 𝜏/(1 − 𝑡), we previously derived Gaussian fluctuations 𝑋(𝑘)
𝜏

for the particle positions, with explicit covariances which simplify in the large-time limit

𝜏 → ∞. In this section, we consider the probabilistic meaning of this limit. For particle

systems such as ours, one may rigorously show convergence of the multi-time fluctuations

to the solution of a system of SDEs as in [BCT17, Theorem 1], but we will instead give

a (simpler and more intuitive) formal derivation of such a system of SDEs which closely

follows that of [BCF18, Proposition 4.6]. After making a time change

𝑍
(𝑘)
𝑇 := 𝑋

(𝑘)

𝑒𝑇−1
,

this yields a system of SDEs for the 𝑍(𝑘)
𝑇 with time-dependent coefficients. As 𝑇 → ∞

these coefficients converge to nontrivial limits, yielding the system of SDEs

𝑑𝑍
(𝑘)
𝑇 =

(︁
(𝑘 − 1)𝑍

(𝑘−1)
𝑇 − 𝑘𝑍

(𝑘)
𝑇

)︁
𝑑𝑇 + 𝑑𝑊

(𝑘)
𝑇 𝑘 = 1, 2, . . . (8.5.1)
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Though the derivation of the SDEs satisfied by the 𝑋(𝑘)
𝜏 consisted of formal algebraic

manipulations and is certainly not a rigorous analytic proof, we will check rigorously

in Proposition 8.5.2 using contour integral formulas that the unique Gaussian stationary

distribution of the system (8.5.1) is in fact the single-time limit of the fluctuations derived

in the previous section.

We now proceed to the heuristic derivation of SDEs for 𝑋(𝑘)
𝜏 , 𝑘 = 1, 2, . . .. Because

each particle jumps according to an independent Poisson clock with rate depending only

on its position and that of the particle in front, the fluctuations should satisfy an SDE of

the form

𝑑𝑋(𝑘)
𝜏 = 𝑓(𝜏,𝑋(𝑘−1)

𝜏 , 𝑋(𝑘)
𝜏 )𝑑𝜏 + 𝑔(𝜏,𝑋(𝑘−1)

𝜏 , 𝑋(𝑘)
𝜏 )𝑑𝐵(𝑘)

𝜏 ,

and it remains to compute the drift and diffusion coefficients. To find the drift term

𝑓(𝜏,𝑋
(𝑘−1)
𝜏 , 𝑋

(𝑘)
𝜏 ), we take expectations of both sides to eliminate the diffusion part.

Hence we must compute the 𝜖→ 0 limit of the 𝑂(𝑑𝜏) term in

E
[︁
𝑋

(𝑘,𝜖)
𝜏+𝑑𝜏 −𝑋(𝑘,𝜖)

𝜏

]︁
= −𝜖−1/2(𝑐𝑘(𝜏 + 𝑑𝜏)− 𝑐𝑘(𝜏)) + 𝜖1/2E [𝜆′𝑘(𝜏 + 𝑑𝜏)− 𝜆′𝑘(𝜏)] , (8.5.2)

where 𝑐𝑘(𝜏) is the limit of 𝜖𝑥𝑘(𝜏/𝜖) given explicitly in (8.3.2). The jump rate of 𝜆′𝑘(𝜏) is

approximately constant on the interval 𝑑𝜏 , and equal to

1

1− 𝑡

(︁
𝑡𝜆

′
𝑘(𝜏) − 𝑡𝜆

′
𝑘−1(𝜏)

)︁
∼ 𝜖−1

(︁
𝑒−(𝑐𝑘(𝜏)+𝜖1/2𝑋

(𝑘,𝜖)
𝜏 ) − 𝑒−(𝑐𝑘−1(𝜏)+𝜖1/2𝑋

(𝑘−1,𝜖)
𝜏 )

)︁
as 𝜖→ 0

(8.5.3)

where to obtain the RHS we use that 1− 𝑡 ≈ 𝜖. Therefore

𝜖1/2E [𝜆′𝑘(𝜏 + 𝑑𝜏)− 𝜆′𝑘(𝜏)] ∼ 𝜖−1/2𝑑𝜏
(︁
𝑒−(𝑐𝑘(𝜏)+𝜖1/2𝑋

(𝑘,𝜖)
𝜏 ) − 𝑒−(𝑐𝑘−1(𝜏)+𝜖1/2𝑋

(𝑘−1,𝜖)
𝜏 )

)︁
∼ 𝜖−1/2𝑑𝜏

(︀
𝑒−𝑐𝑘(𝜏) − 𝑒−𝑐𝑘−1(𝜏)

)︀
−
(︀
𝑒−𝑐𝑘(𝜏)𝑋(𝑘,𝜖)

𝜏 − 𝑒−𝑐𝑘−1(𝜏)𝑋(𝑘−1,𝜖)
𝜏

)︀ (8.5.4)

as 𝜖→ 0. The other term on the RHS of (8.5.2) is

−𝜖−1/2(𝑐𝑘(𝜏 + 𝑑𝜏)− 𝑐𝑘(𝜏)) = −𝜖−1/2𝑐′𝑘(𝜏)𝑑𝜏 +𝑂(𝑑𝜏 2)

= −𝜖−1/2
(︀
𝑒−𝑐𝑘(𝜏) − 𝑒−𝑐𝑘−1(𝜏)

)︀
𝑑𝜏 +𝑂(𝑑𝜏 2)

(8.5.5)

by the differential equation (8.3.1). Combining (8.5.4) and (8.5.5) yields a term which
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converges as 𝜖→ 0, hence the drift coefficient is

𝑓(𝜏,𝑋(𝑘−1)
𝜏 , 𝑋(𝑘)

𝜏 ) = lim
𝜖→0

RHS(8.5.2) = −
(︀
𝑒−𝑐𝑘(𝜏)𝑋(𝑘)

𝜏 − 𝑒−𝑐𝑘−1(𝜏)𝑋(𝑘−1)
𝜏

)︀
. (8.5.6)

We now compute the diffusion coefficient, which is the 𝑂(𝑑𝜏) term in

Var(𝑋
(𝑘,𝜖)
𝜏+𝑑𝜏 −𝑋(𝑘,𝜖)

𝜏 ) = 𝜖Var(𝜆′𝑘(𝜏 + 𝑑𝜏)− 𝜆′𝑘(𝜏)). (8.5.7)

We approximate the jump rate to be constant as before, so that

𝜆′𝑘(𝜏 + 𝑑𝜏)− 𝜆′𝑘(𝜏)

is a Poisson random variable with parameter equal to the time step 𝑑𝜏 times its jump

rate approximated earlier in (8.5.3). Since variance of Pois(𝑟) is 𝑟,

RHS(8.5.7) =
(︀
𝑒−𝑐𝑘(𝜏) − 𝑒−𝑐𝑘−1(𝜏)

)︀
𝑑𝜏 + 𝑜(1). (8.5.8)

Hence

𝑔(𝜏,𝑋(𝑘−1)
𝜏 , 𝑋(𝑘)

𝜏 ) =
√︀
𝑒−𝑐𝑘(𝜏) − 𝑒−𝑐𝑘−1(𝜏). (8.5.9)

Combining (8.5.6) with (8.5.9), we have derived (again, at a heuristic level) that the

𝜖→ 0 limits 𝑋(𝑘)
𝜏 satisfy the system

𝑑𝑋(𝑘)
𝜏 = −

(︀
𝑒−𝑐𝑘(𝜏)𝑋(𝑘)

𝜏 − 𝑒−𝑐𝑘−1(𝜏)𝑋(𝑘−1)
𝜏

)︀
𝑑𝜏 +

√︀
𝑒−𝑐𝑘(𝜏) − 𝑒−𝑐𝑘−1(𝜏)𝑑𝐵(𝑘)

𝜏 𝑘 = 1, 2, . . .

(8.5.10)

where as before we take 𝑐0(𝜏) ≡ ∞ identically in the case 𝑘 = 1.

Exponentiating the explicit formula (8.3.2) for 𝑐𝑘(𝜏) yields

𝑒−𝑐𝑘(𝜏) =
1 + . . .+ 𝜏𝑘−1

(𝑘−1)!

1 + . . .+ 𝜏𝑘

𝑘!

. (8.5.11)

Naively taking the 𝜏 → ∞ limit of the diffusion coefficient in (8.5.10) yields 0, which

reflects the fact that particles’ jump rates go to 0 as their positions go to ∞ due to the

position-dependent slowing. However, the prelimit system also suggests a natural time

change to obtain time-independent diffusion rates. The jump rate of 𝜆′1 is 𝑡𝜆′
1 , so to make
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this jump rate independent of time one must speed up time by a factor of 𝑡−𝜆′
1—which,

note, depends on the random position of 𝜆′1. More precisely, if 𝑠 is the time variable in

the original particle system, then letting ℎ(𝑠) be the piecewise-linear random function

with ℎ′(𝑠) = 𝑡−𝜆′
1(ℎ(𝑠)), one has that 𝜆′1(ℎ(𝑠)) jumps according to a rate 1 Poisson process.

Hence its position is a Poisson random variable with mean 𝑠. Since it concentrates around

its mean at large 𝑠, we have ℎ′(𝑠) ≈ 𝑡−𝑠 and hence

ℎ(𝑠) ≈ 𝑡−𝑠

− log 𝑡

for large 𝑠. This suggests that the random time change by 𝑡−𝜆′
1 can be approximated at

large times by a deterministic exponential time change, so we make an exponential time

change 𝜏 = 𝑒𝑇 in the limit SDEs (8.5.10). For notational convenience let us instead shift

slightly and take 𝜏 = 𝑒𝑇 − 1 so that 𝑇 begins at 0. Setting 𝑍(𝑘)
𝑇 := 𝑋

(𝑘)

𝑒𝑇−1
in (8.5.10),

one has 𝑑𝜏 = 𝑒𝑇𝑑𝑇 and 𝑑𝐵
(𝑘)
𝑇 =

√
𝑒𝑇𝑑𝑊

(𝑘)
𝑇 for 𝑊 (𝑘)

𝑇 independent standard Brownian

motions, yielding

𝑑𝑍
(𝑘)
𝑇 = −

(︁
𝑒−𝑐𝑘(𝑒

𝑇−1)𝑍
(𝑘)
𝑇 − 𝑒−𝑐𝑘−1(𝑒

𝑇−1)𝑍
(𝑘−1)
𝑇

)︁
𝑒𝑇𝑑𝑇+

√︁
𝑒𝑇
(︀
𝑒−𝑐𝑘(𝑒𝑇−1) − 𝑒−𝑐𝑘−1(𝑒𝑇−1)

)︀
𝑑𝑊

(𝑘)
𝑇

(8.5.12)

Plugging in (8.5.11) we obtain

𝑑𝑍
(𝑘)
𝑇 =

(︁
−𝑘𝑍(𝑘)

𝑇 + (𝑘 − 1)𝑍
(𝑘−1)
𝑇 + 𝑜(1)

)︁
𝑑𝑇 + (1 + 𝑜(1))𝑑𝑊

(𝑘)
𝑇 𝑘 = 1, 2, . . .

which converges to (8.5.1). This mirrors the convergence of the covariances of particle

fluctuations without rescaling as 𝜏 → ∞, shown in Proposition 8.4.2, and the main result

of this section is that the SDEs (8.5.1) indeed have a stationary solution with the exact

covariances of Proposition 8.4.2.

We note also for concreteness that the SDE for 𝑍(1)
𝑇 is exactly that of an Ornstein-

Uhlenbeck process, and the mean-reversion reflects the fact that the jump rate of 𝜆′1 is

smaller when it is further ahead and larger when it is further behind. The dependence

of the drift term on 𝑍
(𝑘)
𝑇 , 𝑍

(𝑘−1)
𝑇 likewise reflects the prelimit dependence of a particle’s

jump rate on its own position and that of the particle in front.

Let us now proceed rigorously. We first check that it makes sense to speak of the

solution to (8.5.1).
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Lemma 8.5.1. Strong existence and uniqueness hold for the system of SDEs

𝑑𝑍
(𝑘)
𝑇 =

(︁
(𝑘 − 1)𝑍

(𝑘−1)
𝑇 − 𝑘𝑍

(𝑘)
𝑇

)︁
𝑑𝑇 + 𝑑𝑊

(𝑘)
𝑇 𝑇 ≥ 0, 𝑘 = 1, 2, . . .

stated earlier as (8.5.1).

Proof. Note that for each 𝑛 ≥ 1, the coefficients in the SDEs (8.5.1) for (𝑍
(𝑘)
𝑇 )1≤𝑘≤𝑛

depend only on (𝑍
(𝑘)
𝑇 )1≤𝑘≤𝑛, i.e. (𝑍

(1)
𝑇 , . . . , 𝑍

(𝑛)
𝑇 ) satisfies an SDE

𝑑𝑍
(𝑘)
𝑇 =

(︁
(𝑘 − 1)𝑍

(𝑘−1)
𝑇 − 𝑘𝑍

(𝑘)
𝑇

)︁
𝑑𝑇 + 𝑑𝑊

(𝑘)
𝑇 𝑘 = 1, . . . , 𝑛. (8.5.13)

in R𝑛 driven by noise (𝑊
(1)
𝑇 , . . . ,𝑊

(𝑛)
𝑇 ). We claim it suffices to prove strong existence

and uniqueness of (8.5.13) for each 𝑛, which we recall means that given (𝑍
(𝑘)
0 )1≤𝑘≤𝑛 and

a fixed Brownian motion (𝑊
(𝑘)
𝑇 )1≤𝑘≤𝑛, there is a process solving (8.5.1) which is unique

up to almost-everywhere equivalence. The claim holds because the resulting 𝑛-indexed

family of solutions is clearly consistent under forgetting the last coordinate 𝑍(𝑛)
𝑇 , hence

the consistent 𝑛-indexed family defines a solution (𝑍
(𝑘)
𝑇 )𝑘≥1 to the infinite system (8.5.1).

We now argue for fixed 𝑛 by applying off-the-shelf existence and uniqueness theorems.

To aid in matching notation, let

𝑏𝑘(𝑇, 𝜇̄𝑥) = (𝑘 − 1)𝑥𝑘−1 − 𝑘𝑥𝑘

𝜇̄𝑏(𝑇, 𝜇̄𝑥) = (𝑏1(𝑇, 𝜇̄𝑥), . . . , 𝑏𝑛(𝑇, 𝜇̄𝑥))

𝜎𝑖𝑗(𝑇, 𝜇̄𝑥) = 1(𝑖 = 𝑗)

for 𝑇 ≥ 0, 𝜇̄𝑥 ∈ R𝑛, so that (8.5.1) takes the form

𝑑𝑍
(𝑘)
𝑇 = 𝑏𝑘(𝑇, (𝑍

(1)
𝑇 , . . . , 𝑍

(𝑛)
𝑇 ))𝑑𝑇 +

𝑛∑︁
ℓ=1

𝜎𝑘ℓ(𝑇, (𝑍
(1)
𝑇 , . . . , 𝑍

(𝑛)
𝑇 ))𝑑𝑊

(ℓ)
𝑇 .

For strong uniqueness, by [KS14, Chapter 5.2, Theorem 2.5] it suffices4 to show the

Lipschitz property that there exists 𝐾 for which

||𝜇̄𝑏(𝑇, 𝜇̄𝑥)− 𝜇̄𝑏(𝑇, 𝜇̄𝑦)||+ ||𝜎(𝑇, 𝜇̄𝑥)− 𝜎(𝑇, 𝜇̄𝑦)|| ≤ 𝐾||𝜇̄𝑥− 𝜇̄𝑦||. (8.5.14)

4We here state stronger and easier-to-state hypotheses than in [KS14, Chapter 5.2, Theorem 2.5],
which suffice for our purposes.
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Here the norm is the standard Euclidean one, viewing 𝜎 as a vector in R𝑛2 . For strong

existence, by [KS14, Chapter 5.2, Theorem 2.9] it suffices to show (8.5.14) in addition to

||𝜇̄𝑏(𝑇, 𝜇̄𝑥)||2 + ||𝜎(𝑇, 𝜇̄𝑥)||2 ≤ 𝐾2(1 + ||𝜇̄𝑥||2). (8.5.15)

A crude bound shows

||𝜇̄𝑏(𝑇, 𝜇̄𝑥)||2 ≤ 4𝑛3||𝑥||2.

Take 𝐾2 = 4𝑛3. Since 𝜎 is constant and 𝜇̄𝑏(𝑇, 𝜇̄𝑥) is linear in 𝜇̄𝑥, (8.5.14) holds. Since

||𝜎(𝑇, 𝜇̄𝑥)||2 = 𝑛, (8.5.15) holds as well, completing the proof.

We now find that the explicit Gaussian vector derived in Proposition 8.4.2 describes

the stationary distribution of the above system of SDEs.

Proposition 8.5.2. Let (𝑍(1)
𝑇 , 𝑍

(2)
𝑇 , . . .) be the vector-valued stochastic process satisfying

the system of SDEs

𝑑𝑍
(𝑘)
𝑇 =

(︁
(𝑘 − 1)𝑍

(𝑘−1)
𝑇 − 𝑘𝑍

(𝑘)
𝑇

)︁
𝑑𝑇 + 𝑑𝑊

(𝑘)
𝑇 (8.5.16)

where 𝑊 (𝑘)
𝑇 are independent standard Brownian motions, with initial distribution (𝑍

(𝑘)
0 )𝑘≥1

given by a Gaussian vector with covariances

Cov(𝑍
(𝑟)
0 , 𝑍

(𝑠)
0 ) =

1

4𝜋2

∮︁
Γ0

∮︁
Γ0,𝑤

𝑤

𝑧 − 𝑤

𝑟!𝑠!

𝑧𝑟𝑤𝑠
𝑒𝑧+𝑤(1− 𝑧/𝑟)(1− 𝑤/𝑠)

𝑑𝑧

𝑧

𝑑𝑤

𝑤
.

Then (𝑍
(𝑘)
𝑇 )𝑘≥1 is stationary, i.e.

(𝑍
(𝑘)
𝑇0

)𝑘≥1 = (𝑍
(𝑘)
0 )𝑘≥1 (8.5.17)

in distribution, for any fixed time 𝑇0 > 0.

Remark 45. A natural further question is whether the finite-𝜏 SDEs (8.5.10) admit a

Gaussian solution with fixed-time covariances given by our finite-𝜏 formula in Proposi-

tion 8.4.1. This seems more difficult to address without the large-time simplification of

Proposition 8.4.2, and we have not attempted to pursue it in this work.

To prepare for the proof, we first give two computational lemmas, which will be proven

at the end of the section.
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Definition 66. For 𝑟, 𝑠 ∈ Z≥1, let

𝐷(𝑟, 𝑠) :=
1

4𝜋2

∮︁
Γ0

∮︁
Γ0,𝑤

𝑤

𝑧 − 𝑤

𝑟!𝑠!

𝑧𝑟𝑤𝑠
𝑒𝑧+𝑤(1− 𝑧/𝑟)(1− 𝑤/𝑠)

𝑑𝑧

𝑧

𝑑𝑤

𝑤
. (8.5.18)

By Proposition 8.4.2, when 𝑟 ≥ 𝑠 one has 𝐷(𝑟, 𝑠) = Cov(𝜁𝑟, 𝜁𝑠), but as noted in

Remark 44 this is not true when 𝑟 < 𝑠. This will be important in computations below.

Lemma 8.5.3. For any 𝑟 ≥ 𝑠 ≥ 1,

(𝑟 − 1)𝐷(𝑟 − 1, 𝑠) + (𝑠− 1)𝐷(𝑟, 𝑠− 1)− (𝑟 + 𝑠)𝐷(𝑟, 𝑠) = 0. (8.5.19)

Lemma 8.5.4. For any 𝑟 ≥ 2,

𝐷(𝑟 − 1, 𝑟)−𝐷(𝑟, 𝑟 − 1) =
1

𝑟 − 1
. (8.5.20)

Proof of Proposition 8.5.2. It suffices to show

(𝑍
(𝑘)
𝑇0

)1≤𝑘≤𝑛 = (𝑍
(𝑘)
0 )1≤𝑘≤𝑛 in distribution (8.5.21)

for each 𝑛 ≥ 1 and 𝑇0 > 0. First note that the solution (𝑍
(𝑘)
𝑇 )1≤𝑘≤𝑛 is a Gaussian process,

so its distribution at time 𝑇0 is determined by its covariance matrix, i.e. it suffices to

check

Cov
(︁
𝑍

(𝑟)
𝑇0
, 𝑍

(𝑠)
𝑇0

)︁
= Cov

(︁
𝑍

(𝑟)
0 , 𝑍

(𝑠)
0

)︁
(8.5.22)

for each 1 ≤ 𝑠 ≤ 𝑟. Let

𝐴𝑟,𝑠(𝑇 ) := Cov
(︁
𝑍

(𝑟)
𝑇 , 𝑍

(𝑠)
𝑇

)︁
for 𝑟, 𝑠 ≥ 1. It follows by applying Itô’s lemma that

𝑑

𝑑𝑇
𝐴𝑟,𝑠(𝑇 ) = 1(𝑟 = 𝑠) + (𝑟 − 1)𝐴𝑟−1,𝑠(𝑇 ) + (𝑠− 1)𝐴𝑟,𝑠−1(𝑇 )− (𝑟 + 𝑠)𝐴𝑟,𝑠(𝑇 ) (8.5.23)

(this computation can be done for quite general systems of SDEs, see [BCT17, (4.3)]).

Hence to check (8.5.22), it suffices to check that the RHS of (8.5.23) is 0 when the constant

solution

𝐴𝑟,𝑠(𝑇 ) = 𝐷(𝑟, 𝑠)
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is plugged in. When 𝑟 > 𝑠, this follows directly from Lemma 8.5.3. When 𝑟 = 𝑠, since

𝐴𝑟−1,𝑟 = 𝐴𝑟,𝑟−1 = 𝐷(𝑟, 𝑟 − 1)

we have

RHS(8.5.23) = 1+(𝑟−1)𝐷(𝑟−1, 𝑟)+(𝑟−1)𝐷(𝑟, 𝑟−1)−2𝑟𝐷(𝑟, 𝑟)+(𝑟−1)(𝐷(𝑟, 𝑟−1)−𝐷(𝑟−1, 𝑟))

which is 0 by Lemma 8.5.3 and Lemma 8.5.4. This completes the proof.

Proof of Lemma 8.5.3. We obtain that

1

(2𝜋𝑖)2

∮︁
𝛾0

∮︁
𝛾0,𝑤

𝑤

𝑧 − 𝑤
𝑒𝑧+𝑤𝑧−𝑎𝑤−𝑏𝑑𝑧

𝑧

𝑑𝑤

𝑤
=

1

(2𝜋𝑖)2

∮︁
𝛾0

∮︁
𝛾0,𝑤

𝑤

𝑧 − 𝑤

(𝑧 + 𝑤)𝑎+𝑏

(𝑎+ 𝑏)!
𝑧−𝑎𝑤−𝑏𝑑𝑧

𝑧

𝑑𝑤

𝑤
(8.5.24)

for 𝑎, 𝑏 ≥ 0, by expanding

𝑤

𝑧 − 𝑤
=
(︁𝑤
𝑧

)︁
+
(︁𝑤
𝑧

)︁2
+ . . .

(using that |𝑤| < |𝑧| along the contours) and taking the residue expansion of both sides.

Using (8.5.24) to convert the integral in (8.5.18) to one with integrand of the form

𝑤

𝑧 − 𝑤
(Laurent polynomial in 𝑧, 𝑤),

and combining the three integrals in (8.5.19) into a single double contour integral, it is

easily verified (by a computer) that the integrand is 0.

Proof of Lemma 8.5.4. One has

𝐷(𝑟 − 1, 𝑟)−𝐷(𝑟, 𝑟 − 1) =
1

4𝜋2

∮︁
𝛾0

∮︁
𝛾0,𝑤

𝑤

𝑧 − 𝑤
(𝑟 − 1)!(𝑟 − 2)!𝑒𝑧+𝑤

·
(︂

1

𝑧𝑟−1𝑤𝑟
(𝑟 − 1− 𝑧)(𝑟 − 𝑤) +

1

𝑧𝑟𝑤𝑟−1
(𝑟 − 𝑧)(𝑟 − 1− 𝑤)

)︂
𝑑𝑧

𝑧

𝑑𝑤

𝑤
.

Since

(︂
1

𝑧𝑟−1𝑤𝑟
(𝑟 − 1− 𝑧)(𝑟 − 𝑤) +

1

𝑧𝑟𝑤𝑟−1
(𝑟 − 𝑧)(𝑟 − 1− 𝑤)

)︂
=

1

𝑧𝑟𝑤𝑟
(𝑤−𝑧)((𝑟−𝑧)(𝑟−𝑤)−𝑟)
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which cancels the 1
𝑧−𝑤

in the integrand, the only poles in the integrand are at 𝑤 = 0 and

𝑧 = 0. The result (8.5.20) now follows by taking this residue.

Proof of Theorem 1.6.2. Uniqueness of the stationary solution to (1.6.2) was shown in

Lemma 8.5.1. In Proposition 8.4.2 we showed that the 𝑋(𝑖)
𝜏 converge to a jointly Gaussian

vector with the explicit covariances given in Theorem 1.6.2, which is the second half of the

theorem. In Proposition 8.5.2 we showed that this jointly Gaussian vector also describes

the unique stationary solution to (1.6.2), which accounts for the first half.

8.6 Bulk fluctuations

In this section, we gather the random variables 𝜁𝑖 into a single stochastic process, and

compute its covariance in Theorem 1.6.3 by analysis of the contour integral from Propo-

sition 8.4.2.

Definition 67. Let 𝑌𝑇 , 𝑇 ∈ R+ be the stochastic process for which 𝑌0 = 0, 𝑌𝑛 = 𝜁𝑛 for

all 𝑛 ∈ Z≥1 with 𝜁𝑛 as in Proposition 8.4.2, and

𝑌𝑛+𝛼 = (1− 𝛼)𝑌𝑛 + 𝛼𝑌𝑛+1

for 𝑛 ∈ Z≥1, 𝛼 ∈ (0, 1).

Finally, we recall the main result.

Theorem 1.6.3. The process

𝑅(𝑇 )
𝑠 := 𝑇 1/4𝑌𝑇+𝑠

√
𝑇

converges in finite-dimensional distributions as 𝑇 → ∞ to the unique stationary Gaussian

process 𝑅𝑠, 𝑠 ∈ R with covariances

Cov(𝑅𝑎, 𝑅𝑏) =

∫︁ ∞

0

𝑦2𝑒−𝑦2−|𝑏−𝑎|𝑦𝑑𝑦.

Proof. Before getting to the main computation, we must take care of some technical de-

tails. Firstly, we are justified in speaking of the unique Gaussian process with covariances
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as in the theorem statement, because a Gaussian process is determined by its (jointly

Gaussian) finite-dimensional distributions, and these Gaussian vectors are determined by

their covariances. 𝑅(𝑘)
𝑇 is a Gaussian process; when 𝑘 + 𝑇

√
𝑘 ∈ Z, 𝑅(𝑘)

𝑇 = 𝑘1/4𝜁𝑘+𝑇
√
𝑘 is

Gaussian, and for other values of 𝑇 𝑅
(𝑘)
𝑇 is a convex combination of Gaussians and hence

also Gaussian. Hence to show convergence of finite-dimensional distributions to 𝑅𝑇 , it

suffices to show convergence of pairwise covariances of 𝑅(𝑘)
𝑇 to those of 𝑅𝑇 , i.e. we must

show

Cov(𝑅(𝑘)
𝑎 , 𝑅

(𝑘)
𝑏 ) →

∫︁ ∞

0

𝑦2𝑒−𝑦2−|𝑏−𝑎|𝑦𝑑𝑦 as 𝑘 → ∞, (8.6.1)

where without loss of generality 𝑎 ≥ 𝑏.

Since 𝑅(𝑘)
𝑎 is in general a convex combination 𝑝(𝑎, 𝑘)𝜁𝑘+⌊𝑎

√
𝑘⌋ + (1 − 𝑝(𝑎, 𝑘))𝜁𝑘+⌈𝑎

√
𝑘⌉)

with some 𝑝(𝑎, 𝑘) ∈ [0, 1], and similarly for 𝑅(𝑘)
𝑏 , to show (8.6.1) it suffices to show

𝑘1/2Cov(𝜁𝑘+⌊𝑎
√
𝑘⌋, 𝜁𝑘+⌊𝑏

√
𝑘⌋) →

∫︁ ∞

0

𝑦2𝑒−𝑦2−|𝑏−𝑎|𝑦𝑑𝑦 as 𝑘 → ∞, (8.6.2)

along with the same convergence where one or both floor functions are replaced by ceiling

functions. We will show (8.6.2) by steepest-descent analysis of the integral formula for

covariances (8.4.11), and the versions with one or both floor functions replaced by ceilings

are exactly analogous.

Let 𝑟 = 𝑘 + ⌊𝑎
√
𝑘⌋, 𝑠 = 𝑘 + ⌊𝑏

√
𝑘⌋.

First change variables in (8.4.11) to 𝑧 = 𝑧/𝑟, 𝑤̃ = 𝑤/𝑠 to obtain

√
𝑘Cov(𝜁𝑟, 𝜁𝑠) =

1

4𝜋2

∮︁
Γ0

∮︁
Γ0, 𝑠𝑟 𝑤̃

√
𝑘

𝑠𝑤̃

𝑟𝑧 − 𝑠𝑤̃

𝑟!𝑠!

𝑟𝑟𝑠𝑠𝑧𝑟𝑤̃𝑠
𝑒𝑟𝑧+𝑠𝑤̃(1− 𝑧)(1− 𝑤̃)

𝑑𝑧

𝑧

𝑑𝑤̃

𝑤̃
(8.6.3)

Using Stirling’s approximation 𝑛! =
√
2𝜋𝑛(𝑛/𝑒)𝑛𝑒𝑜(1), the above equals

1

4𝜋2

∮︁
Γ0

∮︁
Γ0, 𝑠𝑟 𝑤̃

√
𝑘(2𝜋

√
𝑟𝑠)

𝑠𝑤̃

𝑟𝑧 − 𝑠𝑤̃
(1− 𝑧)(1− 𝑤̃)𝑒𝑟𝐹 (𝑧)+𝑠𝐹 (𝑤̃)+𝑜(1)𝑑𝑧

𝑧

𝑑𝑤̃

𝑤̃
, (8.6.4)

where here and henceforth 𝐹 (𝑧) = 𝑧 − log 𝑧 − 1. It is easy to check that 𝐹 (𝑧) has a

unique critical point at 𝑧 = 1 which is second-order, and our steepest descent will consist

of zooming in on this critical point.

For the contours Γ0 and Γ0, 𝑠
𝑟
𝑤̃ above, we will use the (counterclockwise-oriented)

contours 𝐶𝑧 = 𝐶𝑧(𝑘) and 𝐶𝑤̃ = 𝐶𝑤̃(𝑘) which are pictured in Figure 8-1 and which we
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now describe. First fix any 𝛿 with 1/3 < 𝛿 < 1/2. Let

𝐶𝑧 = {min(𝑥, 1) + 𝑖𝑦 : 𝑥2 + 𝑦2 = 1 + 𝑘−2𝛿} (8.6.5)

𝐶𝑤̃ = {min(𝑥, 1− 𝑘−1/2) + 𝑖𝑦 : 𝑥2 + 𝑦2 = (1− 𝑘−1/2)2 + 𝑘−2𝛿}. (8.6.6)

Each contour has two parts, one a subset of a circle and one a vertical line; call the

circular parts 𝐶 ′′
𝑧 , 𝐶

′′
𝑤̃ and the vertical parts 𝐶 ′

𝑧, 𝐶
′
𝑤̃.

1 2−1−2

1

2

−1

−2

C 00

~z

C 00

~w C 0

~zC 0

~w

Figure 8-1: The contours 𝐶𝑧 and 𝐶𝑤̃ (figure not to scale).

We first claim that only the integral with (𝑤̃, 𝑧) ∈ 𝐶 ′
𝑤̃×𝐶 ′

𝑧 contributes asymptotically,

i.e.

∮︁ ∮︁
(𝐶𝑤̃×𝐶𝑧)∖(𝐶′

𝑤̃×𝐶′
𝑧)

√
𝑘(2𝜋

√
𝑟𝑠)

𝑠𝑤̃

𝑟𝑧 − 𝑠𝑤̃
(1−𝑧)(1− 𝑤̃)𝑒𝑟𝐹 (𝑧)+𝑠𝐹 (𝑤̃)+𝑜(1)𝑑𝑧

𝑧

𝑑𝑤̃

𝑤̃
→ 0 (8.6.7)

as 𝑘 → ∞.

It is clear from the definition of the contours that the distance between them is

const ·𝑘−1/2 + 𝑜(𝑘−1/2). Since 𝑟 ≥ 𝑠, we therefore have

1

𝑟𝑧 − 𝑠𝑤̃
≤ const ·𝑘1/2/𝑠. (8.6.8)
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Hence ⃒⃒⃒⃒√
𝑘(2𝜋

√
𝑟𝑠)

𝑠𝑤̃

𝑟𝑧 − 𝑠𝑤̃

(1− 𝑧)(1− 𝑤̃)

𝑧𝑤̃

⃒⃒⃒⃒
≤ const · 𝑘2 (8.6.9)

for some constant, for all large enough 𝑘. We have

sup
𝑧∈𝐶′′

𝑧

Re(𝐹 (𝑧)) ≤ − log |𝑧| = − log
√︀

1 + 𝑘−2𝛿 = −1

2
𝑘−2𝛿 + 𝑜(𝑘−2𝛿)

and similarly

sup
𝑤̃∈𝐶′′

𝑤̃

Re𝐹 (𝑤̃) ≤ −1

2
𝑘−2𝛿 + 𝑜(𝑘−2𝛿).

Hence for such 𝑧 ∈ 𝐶 ′′
𝑧 and 𝑤̃ ∈ 𝐶 ′′

𝑤̃, we have Re(𝑟𝐹 (𝑧)),Re(𝑠𝐹 (𝑤̃)) ≤ −1
2
𝑘1−2𝛿+𝑜(𝑘1−2𝛿).

On the vertical segments 𝐶 ′
𝑧 and 𝐶 ′

𝑤̃, Re𝐹 is maximized at the unique real value, so

sup𝑧∈𝐶′
𝑧
Re𝐹 (𝑧) = 0 and

sup
𝑤̃∈𝐶′

𝑤̃

Re𝐹 (𝑤̃) = −𝑘−1/2 − log(1− 𝑘−1/2) = 𝑂(𝑘−1). (8.6.10)

Thus if 𝑧 ∈ 𝐶𝑧, 𝑤̃ ∈ 𝐶𝑤̃ and at least one of 𝑧 ∈ 𝐶 ′′
𝑧 or 𝑤̃ ∈ 𝐶 ′′

𝑤̃ holds,

𝑒𝑟𝐹 (𝑧)+𝑠𝐹 (𝑤̃) ≤ 𝑒−
1
2
𝑘1−2𝛿+𝑜(𝑘1−2𝛿). (8.6.11)

It follows that the integrand in (8.6.7) is bounded by

const ·𝑘2𝑒−
1
2
𝑘1−2𝛿+𝑜(𝑘1−2𝛿) (8.6.12)

uniformly in 𝑘 over the domain of integration (which, recall, also depends on 𝑘). Since

the lengths of the 𝑘-dependent contours 𝐶𝑧, 𝐶𝑤̃ are bounded over all 𝑘, and the above

bound converges to 0 since 1− 2𝛿 > 0, we have established (8.6.7).

Now we consider the remaining part of the integral,

1

2𝜋

∮︁
𝐶′

𝑤̃

∮︁
𝐶′

𝑧

√
𝑘𝑟𝑠

𝑠𝑤̃

𝑟𝑧 − 𝑠𝑤̃
(1− 𝑧)(1− 𝑤̃)𝑒𝑟𝐹 (𝑧)+𝑠𝐹 (𝑤̃)+𝑜(1)𝑑𝑧

𝑧

𝑑𝑤̃

𝑤̃
(8.6.13)

We have 𝐹 ′(𝑧) = 1 − 1/𝑧 and 𝐹 ′′(𝑧) = 1/𝑧2, so Taylor expanding about 1 we have

𝐹 (𝑧) = (𝑧 − 1)2/2 + 𝑂((𝑧 − 1)3). Since 𝐶 ′
𝑧 = {1 + 𝑖𝑦 : 𝑦 ∈ (−𝑘−𝛿, 𝑘−𝛿)}, for 𝑧 ∈ 𝐶 ′

𝑧 one

has |𝑧 − 1|3 < 𝑘−3𝛿, and similarly |𝑤̃ − 1|3 < 𝑘−3𝛿 for 𝑤̃ ∈ 𝐶 ′
𝑤̃. Because 𝛿 > 1/3, we have
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|𝐹 (𝑧)− (𝑧 − 1)2/2| = 𝑜(1) as 𝑘 → ∞ uniformly over 𝐶 ′
𝑧, and similarly for 𝑤̃.

Let us change variables in (8.6.13) to 𝑢, 𝑣, defined by 𝑧 = 1 + 𝑖𝑘−1/2𝑢 and 𝑤̃ = 1 −

𝑘−1/2+ 𝑖𝑘−1/2𝑣. The condition that 𝑧 ∈ 𝐶 ′
𝑧, 𝑤 ∈ 𝐶 ′

𝑤̃ translates to −𝑘1/2−𝛿 < 𝑢, 𝑣 < 𝑘1/2−𝛿,

and by the previous paragraph

𝐹 (𝑧) = − 1

2𝑘
𝑢2 + 𝑜𝑢(1)

𝐹 (𝑤̃) = − 1

2𝑘
(𝑣 + 𝑖)2 + 𝑜𝑣(1)

where the error terms depend on 𝑢 (resp. 𝑣) but are bounded uniformly on the domain

of integration. Thus we may write (8.6.13) as

1

2𝜋

∫︁
R

∫︁
R

1(|𝑢|, |𝑣| < 𝑘1/2−𝛿)
√
𝑘𝑟𝑠

𝑠(1 + 𝑘−1/2(−1 + 𝑖𝑣))

(
√
𝑘 + ⌊𝑎

√
𝑘⌋ − ⌊𝑏

√
𝑘⌋) +

√
𝑘𝑖𝑢−

√
𝑘𝑖𝑣 + 𝑜(

√
𝑘)

×
(︂
−𝑖 𝑢√

𝑘

)︂(︂
1− 𝑖𝑣√

𝑘

)︂
𝑒−𝑢2/2−(𝑣+𝑖)2/2+𝑜𝑢,𝑣(1)

𝑖𝑘−1/2𝑑𝑢

1 + 𝑖𝑢/
√
𝑘

𝑖𝑘−1/2𝑑𝑣

1 + 𝑘−1/2(−1 + 𝑖𝑣)

=
1

2𝜋

∫︁
R

∫︁
R

1(|𝑢|, |𝑣| < 𝑘1/2−𝛿)
𝑠
√
𝑘𝑟𝑠

𝑘5/2
1 + 𝑘−1/2(−1 + 𝑖𝑣)

1 + 𝑎− 𝑏+ 𝑖𝑢− 𝑖𝑣 + 𝑜(
√
𝑘)

× 𝑒−𝑢2/2−(𝑣+𝑖)2/2+𝑜𝑢,𝑣(1)
𝑢(𝑖+ 𝑣)

(1 + 𝑘−1/2(−1 + 𝑖𝑣))(1 + 𝑖𝑢/
√
𝑘)
𝑑𝑢𝑑𝑣

(8.6.14)

Recalling that 𝑟 and 𝑠 are 𝑘 + 𝑜(𝑘) and 𝑢, 𝑣 = 𝑜(𝑘1/2) in the domain of integration, we

see that the integrand in (8.6.14) converges to

1

1 + (𝑎− 𝑏) + 𝑖𝑢− 𝑖𝑣
𝑢(𝑣 + 𝑖)𝑒−𝑢2/2−(𝑣+𝑖)2/2𝑑𝑢𝑑𝑣 (8.6.15)

as 𝑘 → ∞, and furthermore that there exists a constant 𝐶 such that it is dominated by

the integrable function

𝐶1
(︀
|𝑢|, |𝑣| < 𝑘1/2−𝛿

)︀ 1

𝑐+ (𝑎− 𝑏) + 𝑖𝑢− 𝑖𝑣
𝑢(𝑣 + 𝑖𝑐)𝑒−𝑢2/2−(𝑣+𝑖)2/2 (8.6.16)

for all 𝑢, 𝑣 ∈ R and all large enough 𝑘. Hence by dominated convergence, (8.6.14)

converges to

1

2𝜋

∫︁
R

∫︁
R

1

1 + (𝑎− 𝑏) + 𝑖𝑢− 𝑖𝑣
𝑢(𝑣 + 𝑖)𝑒−𝑢2/2−(𝑣+𝑖)2/2𝑑𝑢𝑑𝑣. (8.6.17)
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Note that the convergence above would be exactly the same if ⌊𝑎
√
𝑘⌋ and/or ⌊𝑏

√
𝑘⌋ had

been replaced by ceiling functions, as mentioned earlier.

Using the identity
1

𝛼
=

∫︁ ∞

0

𝑒−𝑦𝛼𝑑𝑦 (8.6.18)

if Re(𝛼) > 0, since 1 + 𝑎− 𝑏 ≥ 1 the above integral is equal to

1

2𝜋

∫︁
R

∫︁
R

(︂∫︁ ∞

0

𝑒−𝑦(1+𝑎−𝑏+𝑖𝑢−𝑖𝑣)𝑑𝑦

)︂
𝑢(𝑣 + 𝑖)𝑒−𝑢2/2−(𝑣+𝑖)2/2𝑑𝑢𝑑𝑣 (8.6.19)

=
1

2𝜋

∫︁ ∞

0

𝑒−𝑦2−𝑦(𝑎−𝑏)

(︂∫︁
R
𝑒−

1
2
(𝑢2+2𝑖𝑦𝑢−𝑦2)𝑑𝑢

)︂(︂∫︁
R
𝑒−

1
2
((𝑣+𝑖)2−2𝑖𝑦(𝑣+𝑖)−𝑦2)𝑑𝑣

)︂
𝑑𝑦. (8.6.20)

Since ∫︁
R
𝑒−

1
2
(𝑢2+2𝑖𝑦𝑢−𝑦2)𝑑𝑢 = −

√
2𝜋𝑖𝑦

and ∫︁
R
𝑒−

1
2
((𝑣+𝑖)2−2𝑖𝑦(𝑣+𝑖)−𝑦2)𝑑𝑣 =

√
2𝜋𝑖𝑦

(for the latter we must shift contours from R to R − 𝑖 before evaluating the Gaussian

integral), we have that (8.6.19) is equal to

∫︁ ∞

0

𝑦2𝑒−𝑦2−𝑦(𝑎−𝑏)𝑑𝑦, (8.6.21)

completing the proof.
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