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0.1 Intro

This talk will introduce briefly classical integrable systems and then focus on the example
of the Toda lattice, together with its solitonic and periodic solutions. Then, following
[IKT12, ch.4 and ch. 6] the ultradiscretization of this classical system and its relation with
the box-ball system (BBS) cellular automaton will be discussed, with solitonic and periodic
solutions.

0.2 Integrable systems

A classical mechanical system is a state space M (possibly infinite dimensional, but let’s
assume 2n) that is a symplectic manifold (equivalently, Poisson manifold with bracket
{−,−}) together with a Hamiltonian function H : M → R. The Hamiltonian generates
time flow via equation (on coordinates pi, qi) given by

q̇i =
∂H

∂pi
= {qi, H}

ṗi = −∂H
∂qi

= {pi, H}

and H is preserved on orbits of this flow.
The system is called integrable if there are n− 1 other functions H2, . . . ,Hn (H1 = H)

such that {Hi, Hj} = 0, from which it follows that

1. The flows generated by the Hi commute

2. The orbits generated by the flows through any point are Lagrangian submanifolds.
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0.3 Toda lattice

The Toda lattice is a particular example of an integrable system, which is a model of a waves
in a discrete chain of particles with nearest neighbor interaction. There are innumerable
variations of the model with various boundary conditions or limits but we will primarily
focus on the case of N particles with displacements from their frozen positions ui(t) and
momenta pi(t) = u̇i for t ∈ R such that the Hamiltonian has the form

H =
1

2

n∑
i=1

p2i +
n−1∑
j=1

e2(uj(t)−uj+1(t))

up to an additive constant (which is needed for infinite lattice size).
The flow generated by this is the equation

d2uj
dt2

= euj+1−uj − euj−uj−1 , i = 1, . . . n (0.1)

2d Toda The 1d Toda lattice hierarchy (like the KP hierarchy, KdV, ...) can be seen
as a special case of the 2d Toda lattice defined in [UT84], where each ui depends on 2
independent variables. There are many approaches to the 1d Toda equation but historically
the solitons relating to the box-ball system were actually written in [TNS99] down using the
reduction from the 2d Toda lattice τ -functions to 1d Toda solutions in [HIK88, Appendix
B] so this is the approach we will take.

The 2d Toda lattice of length n with coordinates ui(x, y), i = 1, . . . , n is given by the
equation

d2uj
dxdy

= euj+1−uj − euj−uj−1 , i = 1, . . . n (0.2)

0.3.1 τ-function

This section basically follows [Oko00, Appendix A].

Infinite wedge, free fermions, boson-fermion correspondence Let V be a vector
space with basis {...,−1

2 ,
1
2 ,

3
2 , . . .}. Let Λ

∞
2 V be the half-infinite wedge space spanned by

vS = s1 ∧ s2 ∧ · · ·

with si > si+1 for all i where the set {si} differs from Z≤0 − 1
2 by only a finite set. The

natural inner product on Λ
∞
2 V has {vS} as an orthonormal basis.

Define operators

ψk(−) = k ∧ −, k ∈ Z +
1

2

with adjoint ψ∗k(−) = k¬−. These satisfy Clifford relations {ψk, ψ∗j } = δjk.
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Combine these into series

ψ(z) =
∑
i∈Z

zi+
1
2ψi, ψ∗(w) =

∑
j∈Z

w−j−
1
2ψ∗j .

Let H =
∑

k k : ψkψ
∗
k : and C =

∑
k : ψkψ

∗
k : where : ψkψ

∗
k : first does the operation

which annihilates the vacuum

v∅ = −1

2
∧ −3

2
∧ . . .

We have a direct sum decomposition into eigenspaces of C Λ
∞
2 V =

⊕
k R

kΛ0 where
R shifts k to k + 1 and Λ0 consists of vectors disagreeing from v∅ in only finitely many
places. A basis of Λ0 is indexed by partitions λ = [λ1, . . . , λk] so that vλ = λ1 − 1 + 1

2 ∧
λ2 − 2 + 1

2 ∧ · · · .
The bosonic operators

αn =
∑

k∈Z+ 1
2

ψk−nψ
∗
k, n ∈ Z

generate a Heisenberg algebra, with α∗n = α−n. Now given any sequence s = (s1, s2, . . .)
(usually an infinite number of variables) define

Γ± = exp

( ∞∑
n=1

snα±n

)
.

When s = {z} := (z, z2/2, z3/3, . . .) these are related to vertex operators, and in particular
we can invert the boson-fermion correpsondence using the formulas

ψ(z) = zCRΓ−({z})Γ+(−{1/z}) (0.3)

ψ∗(z) = R−1z−CΓ−(−{z})Γ+({1/z}). (0.4)

Plücker relations See [Miw+00] for an excellent exposition of this material. GL(V ) acts
on Λ∞/2V , where we omit the definition of GL(V ). It’s image is cut out in Aut(Λ∞/2V )
by the infinite-Grassmanian Plücker relations

[A⊗A,
∑

k∈Z+ 1
2

ψk ⊗ ψ∗k] = 0. (0.5)

We can now simultaneously construct the hierarchy of differential equations extending
the 2d Toda Lattice equation and also its solution. Let x1, x2, . . . be a sequence of variables
extending x = x1 and let y1, y2, . . . be a second with y = y1. These xi, yi for i > 1 will be
the 2d analogue of the“times” for the flows associated with the higher conserved energy
functions, i.e. the coordinates along the Lagrangians mentioned above.
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Then define the τ -function to be the matrix coefficient

τn(x, y;A) := 〈vn|Γ+(x)AΓ−(y)|vn〉. (0.6)

Then any other matrix coefficient of Ã = Γ+(x)AΓ−(y) ∈ GL(V ) can be obtained from
the partial derivatives of the τn(x, y;A). The Plücker relations (0.5) then give an infinite
number of PDEs satisfied by the τn(x, y;A).

Specifically these include

∂2

∂x∂y
(log τn(x, y)) =

τn+1(x, y)τn−1(x, y)

τn(x, y)2
.

Writing

un(x, y) = log
τn+1

τn
recovers

d2uj
dxdy

=
τn+2τn
τ2n+1

− τn+1τn−1
τ2n

= euj+1−uj − euj−uj−1 .

Picking solutions only depending on t = x+ y recovers to 1d Toda equation.

Periodic solutions Associated to the spectrum of the Lax operator (in the Lax formal-
ism for the integrability and solutions of the 1d Toda equation) there is a hyperelliptic
curve

w2 = (z − E0) · · · (z − E2g+1).

Periodic solutions of the 1d Toda equation can be expressed in terms of this curve as
follows: Let z0 ∈ Rg, θ : Rg → R the Riemann theta function associated to this curve and
let a, b ∈ R,A, c ∈ Rg are constants depends on the curve only. Then [Bul+98] there are
periodic solutions of the form

uj(t) = u0 − 2(tb+ j log(2a))− log
θ(z0 − 2jA− 2tc)

θ(z0− 2(j − 1)A− 2tc)
.

0.4 Tropicalization and ultradiscretization

Discrete 1d Toda We convert the 1d Toda lattice equation from a differential equation
to a difference equation.

The resulting equation is
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qt+1
j = qtj + wtj − wt+1

j−1 (0.7)

wt+1
j =

qtj+1w
t
j

qt+1
j

. (0.8)

and it’s easiest to see this gives the Toda lattice by going the other way: let

wtj = δ2euj+1(δt)−uj(δt), qtj = 1 + δu̇j(δt).

For example if T = n0δ, this becomes

δu̇j(T + δ) = δu̇j(T ) + δ2euj+1(T )−uj(T )

which tends to the Toda lattice equation in the limit δ → 0.

Molecule boundary condition Consider the boundary conditions on a length N + 1
Toda lattice given by u0(t) = +∞ and uN (t) = −∞, which we interpret as boundary
conditions for a length N − 1 Toda lattice for the middle coordinates.

This reduces in the discretization to the conditions wt0 = wtN+1 = 0.

Bilinear expression The τ -function also descends to a discrete bilinear equation which
encodes solutions to these equations, namely if τ tn are sequences satisfying the bilinear
equation

τ t+1
j τ t−1j = (τ tj )

2 + τ t−1j+1τ
t+1
j−1

and the boundary conditions for the molecule equation

τ∗−1 = τ∗N+1 = 0

then

qtj =
τ tj−1τ

t+1
j

τ tjτ
t+1
j−1

, wtj =
τ tj+1τ

t+1
j−1

τ tjτ
t+1
j

solve the discrete Toda molecule equation. Solutions to this can be written as Casoratian
(= difference Wronskian) determinants based on initial data.

0.4.1 Tropicalization

The tropicalization process is a certain limit of algebraic expressions sending things like
polynomials to piecewise linear equations involving addition and the min(−,−) function.
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Specifically we can reduce subtraction-free rational functions based on the algebra
(R>0,+,×) in some variables a, b, c, . . . to expressions in the min-plus algebra (R∪{∞},⊕,�)
in the same number of variables A,B,C, . . .. This is accomplished by the substitution

Logε : a 7→ A := −ε log a

followed by the limit ε→ 0. Thus

Logε(a+ b) = min(A,B), Logε(a× b) = A+B.

In practice we apply the above rules to reduce subtraction-free rational functions to min-
plus expressions. E.g.

n∏
i=1

1 + qi
1 + ai

7→
n∑
i=1

min(0, Qi)−min(0, Ai).

Tropicalization of Toda We now consider the tropicalization of discrete Toda (0.7) -
(0.8). Because (0.7) contains a subtraction we need to rewrite.

Write (0.7) as

qt+1
j − wtj = qtj − wt+1

j−1

= qtj −
qtjw

t
j−1

qt+1
j−1

=
qtj

qt+1
j−1

(qt+1
j−1 − w

t
j−1)

=

j∏
k=2

qtk
qt+1
k−1

(qt1 + 0).

Then our equations become

qt+1
j =

∏j
k=1 q

t
k∏j−1

k=1 q
t+1
k

+ wtj

wt+1
j =

qtj+1w
t+1
j−1

qt+1
j

which are subtraction-free. We can thus write down the tropicalization of these equations,
with Qtj associated to qtj and likewise for W t

j . They are the equations

Qt+1
j = min(W t

j ,

j∑
k=1

Qtk −
j−1∑
k=1

Qt+1
k ), j = 1, . . . , N (0.9)

W t+1
j = Qtj+1 +W t+1

j−1 −Q
t+1
j , j = 1, . . . , N − 1. (0.10)
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Because these equations are defined over Z ∪ {∞} while a priori they are expected to be
only defined over R∪ {∞}, these equations are referred to as the ultradiscretization of the
Toda molecule equation rather than just their tropicalization.

0.5 Relation to BBS

Now consider the ŝl2 BBS with N solitons. Define quantities

� Qtj = the number of balls in the jth soliton at time t

� W t
j = the number of empty boxes between solitons j and j + 1.

Then it is proven in [TNS99] that the equations describing the evolution of these quantities
is exactly equations (0.9) and (0.10) of the ultradiscrete Toda molecule equation. As a
brief remark, the ultradiscretization of the discreke Lotka–Volterra equations also has a
description in terms of the BBS.

0.6 Tropical geometry, trop-pToda, periodic BBS

The reference for this section is [IKT12, Ch. 6] and the papers cited therein but we will
very breifly describe periodic solutions to a tropical version of the Toda lattice using the
tropical geometry of the spectral curve.

Just as we can reduce some rational functions to min-plus expressions we can sometimes
reduce an algebraic variety defined as the zero loci of algebraic expressions X = V (I) to
a tropical variety denoted Trop(X) which is the locus where Trop(f) is indifferentiable for
an expression Trop(f)(A,B,C, . . .) in the tropical semiring.

Very briefly, the N -periodic discrete Toda lattice has and ultradiscretization in variables
Qtj ,W

t
j for j ∈ Z/NZ, such that subject to the condition on the geometric-mean density of

solitons
∏N
j=1w

t
j/q

t
j < 1 (which is preserved under time evolution) the time evolution has

the form

Qt+1
j = min(W t

j , Q
t
j − min

0≤k<N
(
k∑
`=1

W t
j−` −Qtj−`))

W t+1
j = Qtj+1 +W t

j −Qt+1
j .

Assoicated to this system is a tropic spectral curve ΓC depending on spectral data C
associated to conserved quantities and therefore the initial conditions. Subject to the
simplicity of the spectrum, the tropical spectral curve is smooth and the genus of ΓC is
g = N − 1. Let Ξ be the g × g period matrix. Then define the tropical Riemann theta
function defined for Z ∈ Rg as

Θ(Z; Ξ) = min
n∈Zg

(n · (1

2
Ξn + Z)).
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Then we have two facts concerning the solution to trop-pToda and its relation to the
periodic BBS. Given starting data such that the spectral data is simple, there are (explicit)
constants λ,Z0, c ∈ Rg and C1 and C2 such that if T tn = Θ(Z0 + tλ+ cn) then the solution
to trop-pToda is

Qtn = T tn−1 + T t+1
n − T t+1

n−1 − T
t
n + C1

W t
n = T t+1

n−1 + T tn+1 − T tn − T t+1
n + C2.

Further, up to a rotational shift in the location of the N solitions, this also gives the
solution to the periodic BBS.
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