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0.1 Intro

This talk will introduce briefly classical integrable systems and then focus on the example
of the Toda lattice, together with its solitonic and periodic solutions. Then, following
[IKT12, ch.4 and ch. 6] the ultradiscretization of this classical system and its relation with
the box-ball system (BBS) cellular automaton will be discussed, with solitonic and periodic
solutions.

0.2 Integrable systems

A classical mechanical system is a state space M (possibly infinite dimensional, but let’s
assume 2n) that is a symplectic manifold (equivalently, Poisson manifold with bracket

{—,—}) together with a Hamiltonian function H : M — R. The Hamiltonian generates
time flow via equation (on coordinates p;, ¢;) given by
OH
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and H is preserved on orbits of this flow.
The system is called integrable if there are n — 1 other functions Ho, ..., H, (Hy = H)
such that {H;, H;} = 0, from which it follows that

1. The flows generated by the H; commute

2. The orbits generated by the flows through any point are Lagrangian submanifolds.



0.3 Toda lattice

The Toda lattice is a particular example of an integrable system, which is a model of a waves
in a discrete chain of particles with nearest neighbor interaction. There are innumerable
variations of the model with various boundary conditions or limits but we will primarily
focus on the case of N particles with displacements from their frozen positions w;(t) and
momenta p;(t) = u; for ¢t € R such that the Hamiltonian has the form

n n—1
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up to an additive constant (which is needed for infinite lattice size).
The flow generated by this is the equation
d2Uj

5 = U1 T _ g1 i=1,...n (0.1)

2d Toda The 1d Toda lattice hierarchy (like the KP hierarchy, KdV, ...) can be seen
as a special case of the 2d Toda lattice defined in [UT84], where each u; depends on 2
independent variables. There are many approaches to the 1d Toda equation but historically
the solitons relating to the box-ball system were actually written in [TNS99] down using the
reduction from the 2d Toda lattice 7-functions to 1d Toda solutions in [HIK88, Appendix
B| so this is the approach we will take.
The 2d Toda lattice of length n with coordinates u;(z,y),7 = 1,...,n is given by the
equation
d2u]'
dxdy

= Wit — Wit i=1,...n (0.2)

0.3.1 7-function

This section basically follows |[Oko00, Appendix A].

Infinite wedge, free fermions, boson-fermion correspondence Let V' be a vector
space with basis {..., —%, %, %, ...}. Let ATV be the half-infinite wedge space spanned by

'US:ﬂ/\Q/\...

with s; > s;4; for all ¢ where the set {s;} differs from Z<o — % by only a finite set. The
natural inner product on A2 V has {vs} as an orthonormal basis.
Define operators

1

with adjoint ¢} (—) = k—~—. These satisfy Clifford relations {1y, 11)3“} = 0.
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Combine these into series
i+ 1 * —j—1 &
W(z) =Y 2T, Wt (w) =) wI Ty
i€Z jez
Let H =),k :ppf : and C = >, : b} : where : ¢pe)} : first does the operation
which annihilates the vacuum 1 3
We have a direct sum decomposition into eigenspaces of C ATV = P, RFAy where
R shifts k to k+ 1 and Ag consists of vectors disagreeing from vy in only finitely many
places. A basis of Ay is indexed by partitions A = [A1,..., \g] so that vy = A — 1+ % A
Ay — 2+ % VANKICIEIN
The bosonic operators

Qp = Z wkfnwlz n ez

keZ+3

generate a Heisenberg algebra, with o = a_,,. Now given any sequence s = (s1, S2, . . .)
(usually an infinite number of variables) define

oo
I'y =exp (Z snain> .

n=1

When s = {2} := (2,2%/2,23/3,...) these are related to vertex operators, and in particular
we can invert the boson-fermion correpsondence using the formulas

(z) = 2CRD_ ({204 (—{1/2}) (0.3)
U (z) = R OT_(— (=)D ({1/2)). 0

Pliicker relations See [Miw+00] for an excellent exposition of this material. GL(V') acts
on A®/2V | where we omit the definition of GL(V). It’s image is cut out in Aut(A°/2V)
by the infinite-Grassmanian Pliicker relations

[A®A Y vreyi]=0. (0.5)

kEZ+3

We can now simultaneously construct the hierarchy of differential equations extending
the 2d Toda Lattice equation and also its solution. Let x1,xs, ... be a sequence of variables
extending x = x1 and let yq, 42, ... be a second with y = y1. These x;,y; for i > 1 will be
the 2d analogue of the“times” for the flows associated with the higher conserved energy
functions, i.e. the coordinates along the Lagrangians mentioned above.



Then define the 7-function to be the matrix coefficient
(2, y; A) 1= (vn [T (2) AT —(y) |vn). (0.6)

Then any other matrix coefficient of A = I'y (2)Al'_(y) € GL(V) can be obtained from
the partial derivatives of the 7,,(x,y; A). The Pliicker relations then give an infinite
number of PDEs satisfied by the 7,(z,y; A).

Specifically these include

9? Tt 1(T,Y)Tn-1(7, )
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Picking solutions only depending on ¢ = = + y recovers to 1d Toda equation.

Periodic solutions Associated to the spectrum of the Lax operator (in the Lax formal-
ism for the integrability and solutions of the 1d Toda equation) there is a hyperelliptic
curve

w2 = (Z — Eo) s (Z — E29+1).

Periodic solutions of the 1d Toda equation can be expressed in terms of this curve as
follows: Let zg € RY, 0 : RY — R the Riemann theta function associated to this curve and
let a,b € R, A, c € RY are constants depends on the curve only. Then [Bul+98| there are
periodic solutions of the form

0(zp — 2jA — 2tc)
(z0 —2(j — 1)A — 2tc)

uj(t) = ug — 2(tb + jlog(2a)) — log 7

0.4 Tropicalization and ultradiscretization

Discrete 1d Toda We convert the 1d Toda lattice equation from a differential equation
to a difference equation.
The resulting equation is



th.H = q§ + u);- — wﬁf% (0.7)
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and it’s easiest to see this gives the Toda lattice by going the other way: let
w} = §2eui+1(08)—u;(51) q§ =1+ du;(dt).
For example if T' = ngd, this becomes
i (T + 8) = duj(T) + §%ets+1 D -w (D)

which tends to the Toda lattice equation in the limit 6 — 0.

Molecule boundary condition Consider the boundary conditions on a length N + 1
Toda lattice given by ug(t) = +oo and uy(t) = —oo, which we interpret as boundary
conditions for a length N — 1 Toda lattice for the middle coordinates.

This reduces in the discretization to the conditions w§ = wf ; = 0.

Bilinear expression The 7-function also descends to a discrete bilinear equation which
encodes solutions to these equations, namely if 7! are sequences satisfying the bilinear
equation

t+1_t—1 _ (02, o t—1_t+1
T —(Tj) + 7T

and the boundary conditions for the molecule equation

then t+1 t+1
¢ ¢
t_ =175 Wl — Il
9 = T S
J'i—1 Jj'J

solve the discrete Toda molecule equation. Solutions to this can be written as Casoratian
(= difference Wronskian) determinants based on initial data.
0.4.1 Tropicalization

The tropicalization process is a certain limit of algebraic expressions sending things like
polynomials to piecewise linear equations involving addition and the min(—, —) function.



Specifically we can reduce subtraction-free rational functions based on the algebra
(R>0, +, x) in some variables a, b, c, . . . to expressions in the min-plus algebra (RU{co}, &, ®)
in the same number of variables A, B, C,.... This is accomplished by the substitution

Log, : a+— A := —€loga
followed by the limit ¢ — 0. Thus
Log,(a + b) = min(A, B), Log.(a x b) = A+ B.

In practice we apply the above rules to reduce subtraction-free rational functions to min-
plus expressions. E.g.

— min(0, 4;).

Tropicalization of Toda We now consider the tropicalization of discrete Toda (0.7)) -
. Because ((0.7]) contains a subtraction we need to rewrite.

Write (0.7) as

+1 ¢t t4+1
4 —WwW; =45 = w] 1
t qJ J 1
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Then our equations become
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which are subtraction-free. We can thus write down the tropicalization of these equations,
with Q§ associated to q§ and likewise for th . They are the equations

QM = min(W, ZQk ZQt“, j=1,...,N (0.9)
Wit =@y, +Wt+1 Qt“ j=1,...,N - 1. (0.10)



Because these equations are defined over Z U {oo} while a priori they are expected to be
only defined over R U {oo}, these equations are referred to as the ultradiscretization of the
Toda molecule equation rather than just their tropicalization.

0.5 Relation to BBS

Now consider the ;[; BBS with N solitons. Define quantities
. Q§ = the number of balls in the jth soliton at time ¢
. W]t = the number of empty boxes between solitons j and j + 1.

Then it is proven in [TNS99| that the equations describing the evolution of these quantities
is exactly equations and (0.10) of the ultradiscrete Toda molecule equation. As a
brief remark, the ultradiscretization of the discreke Lotka—Volterra equations also has a
description in terms of the BBS.

0.6 Tropical geometry, trop-pToda, periodic BBS

The reference for this section is [IKT12, Ch. 6] and the papers cited therein but we will
very breifly describe periodic solutions to a tropical version of the Toda lattice using the
tropical geometry of the spectral curve.

Just as we can reduce some rational functions to min-plus expressions we can sometimes
reduce an algebraic variety defined as the zero loci of algebraic expressions X = V(I) to
a tropical variety denoted Trop(X) which is the locus where Trop(f) is indifferentiable for
an expression Trop(f)(A, B,C,...) in the tropical semiring.

Very briefly, the N-periodic discrete Toda lattice has and ultradiscretization in variables

;-, W]t for j € Z/NZ, such that subject to the condition on the geometric-mean density of

solitons vazl wz- / qj- < 1 (which is preserved under time evolution) the time evolution has
the form

M .
3

|
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t+1 . t At .
T = min(W; . — 1min

t+1 _ t At
W™ =Qj +W; —Q;.

Assoicated to this system is a tropic spectral curve I'c depending on spectral data C
associated to conserved quantities and therefore the initial conditions. Subject to the
simplicity of the spectrum, the tropical spectral curve is smooth and the genus of I'¢ is
g = N — 1. Let Z be the g x g period matrix. Then define the tropical Riemann theta
function defined for Z € RY as

1
©(Z;=Z) = min(n - (iEn +7)).

nez9d



Then we have two facts concerning the solution to trop-pToda and its relation to the
periodic BBS. Given starting data such that the spectral data is simple, there are (explicit)
constants \, Zg,c € RY and C; and Cy such that if T = ©(Zo + t\ +cn) then the solution
to trop-pToda is

QL =T ,+TH —TH —Tt 4 ¢
Wy =T + Ty =Ty, =T + Co.

Further, up to a rotational shift in the location of the N solitions, this also gives the
solution to the periodic BBS.
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