Homework \#1

MATH 2030 Summer A 2021
Due: May 6, 2021

Problem 1

For each of the following ordinary differential equations
(i)

$$
\frac{d y}{d t}=-\frac{t}{y}
$$

(ii)

$$
\frac{d y}{d t}=t-2 y
$$

do the following: a) Plot a sketch of the slope field for the differential equation. b) On the same plot, draw three different integral curves for different initial conditions.

Problem 2

For each of the following differential equations, answer the following questions: a) What is the order of the equation? b) Is the equation linear or nonlinear? c) Is the equation autonomous?
(i) $\frac{d y}{d t}+\sin (t) y^{2}=0$
(ii) $\frac{d^{3} y}{d t^{3}}+10 \frac{d^{2} y}{d t^{2}}-3 y=0$
(iii) $\frac{d^{2} y}{d t^{2}}+y^{3} \frac{d y}{d t}+\cos (y)=0$.

Problem 3

(i) The equation

$$
\frac{d P}{d t}=r P\left(1-\frac{P}{K}\right)
$$

is the logistic equation, which is a simple model for population growth, describing the dynamics over time t of a population P with growth rate r and carrying capacity K.

Verify that

$$
P(t)=\frac{K P_{0} e^{r t}}{K+P_{0}\left(e^{r t}-1\right)}
$$

is the general solution to this equation.
(ii) a) Verify that the differential equation

$$
y^{\prime}=\cos (t) y
$$

has general solution $y(t)=c \exp (\sin (t))$ for a constant c. b) More generally, verify that the differential equation $y^{\prime}=a(t) y$ has general solution $y(t)=c \exp \left(\int a(t) d t\right)$ where $\int a(t) d t$ refers to any antiderivative of $a(t)$.

Problem 4

Find the general solution of the following differential equations (you may leave your answer as an implicit solution)
(i) $y^{\prime}(t)=4 t^{2} y^{3}$
(ii) $y^{\prime}(x)=\frac{e^{-x}}{y+e^{y}}$
(iii) $y^{\prime}(t)=t e^{4 t}$.

Problem 5

Solve the following IVPs. You may leave your solution as an implicit equation.
(i) $y^{\prime}=-t / y, \quad y(0)=5$
(ii) $y^{\prime}=t^{2} y, \quad y(0)=1$. (Hint: you can use problem 3)(ii) part b).

Problem 6

Newtonian mechanics is widely understood to be a deterministic description of physics. Mathematically this is related to the uniqueness part of the existence/uniqueness theorem for ODEs, where the ODE form of Newton's second law for an object of mass m moving in direction y subject to a force F is

$$
\frac{d^{2} y}{d t^{2}}=\frac{F}{m}
$$

There is a description of an object sitting on top of a pointy (discontinuous) hill called Norton's dome which subjects an object to a force tangent to the dome
equal to $F=m \sqrt{|y|}$ where y is the distance from the tip of the dome. a) Find constants c_{0} and α such that for any time t_{M} the differential equation

$$
\frac{d^{2} y}{d t^{2}}=\sqrt{|y|}
$$

has continuous, twice differentiable solution

$$
y(t)= \begin{cases}0, & 0 \leq t \leq t_{M} \\ c_{0}\left(t-t_{M}\right)^{\alpha}, & t \geq t_{M}\end{cases}
$$

b) Why does this not violate the existence and uniqueness theorem, despite the fact that the IVP $y(0)=0, y^{\prime}(0)=0$ has infinitely many solutions, one for each $t_{M} \geq 0$?

Figure 1: Norton's dome, with distance along the dome $y(t)$, such that it's height is $2 / 3 g y^{3 / 2}$ where g is the acceleration due to gravity.

