Homework \#2

MATH 2030 Summer A 2021
Due: May 10, 2021

Problem 1

For each of the following differential equations, find all equilibrium points and classify them as stable, unstable, or semistable. The find the requested asymptotic limit for a solution to the equation satisfying an initial condition. You do not have to solve any of the equations to solve this problem.
(i) $\frac{d y}{d t}=y(y-1)(y-3)$; Find $\lim _{t \rightarrow \infty} y(t)$ if $y(0)=2$.
(ii) $\frac{d y}{d t}=e^{y}(y-2)^{2}$; Find $\lim _{t \rightarrow \infty} y(t)$ if $y(0)=3$.
(iii) $\frac{d y}{d t}=\cos (y)$; Find $\lim _{t \rightarrow \infty} y(t)$ if $y(0)=\pi / 2$.

Problem 2

Determine whether each of the following vector fields $\mathbf{v}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given in components by

$$
\mathbf{v}(x, y)=\left(v_{1}(x, y), v_{2}(x, y)\right)
$$

is conservative, and if so find its scalar potential.
(i) $\mathbf{v}(x, y)=\left(3 x^{2}+y^{2}, 2 x y+3 y^{2}\right)$
(ii) $\mathbf{v}(x, y)=\left(\log \left(x^{2}+y^{2}\right), \log \left(x^{2}+y^{2}\right)\right), \quad x>0, y>0$.

Problem 3

Find a value b such that the following equation is exact, and find its solution

$$
\left(y e^{2 x y}+x\right)+b x e^{2 x y} y^{\prime}=0
$$

Problem 4

(i) Consider the equation

$$
x^{2} y^{3}+x\left(1+y^{2}\right) y^{\prime}=0
$$

. Show that it is not exact, but becomes exact after multiplying by the integrating factor $\mu(x, y)=1 /\left(x y^{3}\right)$. Then solve the equation.

Problem 5

Solve the following initial value problems
(i) $\frac{d y}{d t}+2 t y=\sin (t) e^{-t^{2}}, y(0)=1$
(i) $\frac{d y}{d t}+\frac{y}{t}=\frac{1}{\sqrt{1-t^{2}}}$ for $0<t<1, y(1 / \sqrt{2})=0$.

