Homework \#3

MATH 2030 Summer A 2021
Due: May 14, 2021

Problem 1

For each of the following equations: a) Write the general complex solution, with complex coefficients. Clearly state that your coefficients are complex numbers, e.g. write $d \in \mathbb{C}$ for the coefficient d. b) Write the general real solution, with real coefficients. Clearly state that your coefficients are real numbers, e.g. write $d \in \mathbb{R}$ for the coefficient d. c) Calculate the Wronskian of a fundamental set of real-valued soltuions. Conclude that your solution is the general solution to the equation.
(i) $y^{\prime \prime}+5 y^{\prime}+6 y=0$.
(ii) $y^{\prime \prime}+y^{\prime}+2 y=0$.
(iii) $y^{\prime \prime \prime}+5 y^{\prime \prime}+17 y^{\prime}+13 y=0$.

Problem 2

The Euler equation is the 2 nd order ODE

$$
t^{2} \frac{d^{2} y}{d t^{2}}+\alpha t \frac{d y}{d t}+\beta y=0, t>0
$$

for real constants $\alpha, \beta \in \mathbb{R}$. This does not have constant coefficients but can be transformed into a constant coefficient equation via the change of variables $x=\log (t)$. The method of change of variables frequently allows you to convert a more challenging problem into a simpler one.
(i) Let $x=\log (t)$. Calculate $d^{2} y / d t^{2}$ in terms of x and $d^{2} y / d x^{2}$, and calculate $d y / d t$ in terms of x and $d y / d x$.
(ii) Show that the Euler equation can be rewritten in the form

$$
\frac{d^{2} y}{d x^{2}}+\gamma \frac{d y}{d x}+\delta y=0
$$

which has constant coefficients, where $\gamma, \delta \in \mathbb{R}$ are real constants. Find expressions for γ and δ in terms of α and β.
(iii) Use the previous parts of the problem to solve the following IVP for a (real-valued) funtion $y(t), t>0$:

$$
t^{2} y^{\prime \prime}(t)+7 t y^{\prime}(t)+10 y(t)=0, \quad y(1)=0, y^{\prime}(1)=1
$$

Make sure your answer is written in terms of the variable t.

Problem 3

Using the method of undetermined coefficients, find the general solution to the following ODE. (You may use your answer to Problem 1).

$$
y^{\prime \prime}+y^{\prime}+2 y=\cos (2 t)+t^{2}
$$

Problem 4

Consider the IVP

$$
y^{\prime \prime}-4 y^{\prime}+4 y=0, \quad y(0)=1, y^{\prime}(0)=y_{0}^{\prime} .
$$

(i) Show that

$$
\lim _{t \rightarrow \infty} y(t)= \begin{cases}+\infty & \text { if } y_{0}^{\prime} \geq 2 \\ -\infty & \text { if } y_{0}^{\prime}<2\end{cases}
$$

(ii) Now we will consider the problem where we slightly deform the y^{\prime} coefficient of the equation to obtain the IVP

$$
y^{\prime \prime}+(-4+\epsilon) y^{\prime}+4 y=0, \quad y(0)=1, y^{\prime}(0)=y_{0}^{\prime}
$$

Show that if $\epsilon>0$ is arbitrarily small then

$$
\lim _{t \rightarrow \infty} y(t)
$$

does not exist for any value of y_{0}^{\prime}.
It may be instructive to also consider the cases $\epsilon<0$ and other values of y_{0}.

Problem 5

For the following matrices A calculate a) The eigenvalues and eigenvectors of A. b) The inverse A^{-1} of the matrix.
(i)

$$
A=\left(\begin{array}{cc}
5 & -1 \\
3 & 1
\end{array}\right)
$$

(ii)

$$
A=\left(\begin{array}{ccc}
1 & 0 & 0 \\
2 & 1 & -2 \\
3 & 2 & 1
\end{array}\right)
$$

