Homework \#6

MATH 2030 Summer A 2021
Due: May 31, 2021

Problem 1

Find all critical points of the nonlinear system

$$
\left\{\begin{array}{ll}
\frac{d x_{1}}{d t} & =x_{1} x_{2}+12 \\
\frac{d x_{2}}{d t} & =x_{1}^{2}+x_{2}^{2}-25
\end{array} .\right.
$$

a) Determine whether each is a node, spiral, saddle, cycle, source, sink, or degenerate node and b) classify each as stable or unstable.

Problem 2

Consider the system, (the 2d Lotka-Volterra equations)

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=x(\alpha-\beta y) \\
\frac{d y}{d t}=y(-\gamma+\delta x)
\end{array}, \quad x, y \geq 0\right.
$$

which describes predator prey dynamics. Here $\alpha, \beta, \gamma, \delta>0$ are real parameters, x is the prey population and y is the predator population (hence $x \geq 0, y \geq 0$).
i) For the specific choices $\alpha=3 / 2, \beta=1 / 2, \delta=1, \gamma=1 / 2$ find all critical points of the system in the quadrant $x \geq 0, y \geq 0$ and classify them as in Problem 1. If the point lies on the boundary of the quadrant, classify it as if the equation made sense for all x and y.
ii) Use what you calculated in part i) to plot the phase plane of the system with trajectories.

Problem 3

The equation

$$
y^{\prime \prime}-2 x y^{\prime}+\lambda y=0
$$

where λ is a constant, and x is defined for $-\infty<x<\infty$ is known as the Hermite equation.
i) Write a recurrence relation for the coefficients of a series solution to this equation.
ii) Find two particular solutions to the equation and calculate the first four terms. Write your answers as

$$
y_{1}(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+O\left(x^{4}\right)
$$

and similarly for $y_{2}(x)$. Evaluate the Wronskian at a chosen x_{0} to determine this is a fundamental set of solutions.
iii) Observe that if λ is a nonnegative even integer, then one or the other of the series solutions terminates and becomes a polynomial. Find the polynomial solutions for $\lambda=0,2,4,6,8$ and 10 . Each polynomial is determined only up to a multiplicative constant.
iv) The Hermite polynomial $H_{n}(x)$ is defined as the polynomial solution of the Hermite equation with $\lambda=2 n$ for which the coefficient of x_{n} is 2^{n}. Find $H_{0}(x), H_{1}(x), \ldots, H_{5}(x)$.

Problem 4

Consider the Bessel equation of order zero

$$
x^{2} y^{\prime \prime}+x y^{\prime}+x^{2} y=0 .
$$

i) Find a regular singular point of this equation for a finite value of x and find the roots of the indicial equation at that point.
ii) Show that one series solution for this equation is

$$
J_{0}(x)=1+\sum_{n=1}^{\infty} \frac{(-1)^{n} x^{2 n}}{2^{2 n}(n!)^{2}}
$$

and that this series converges for all x. This function is known as the Bessel function of the first kind of order 0 .

