Homework \#8

MATH 2030 Summer A 2021
Due: June 14, 2021

Problem 1

Calculate the inverse laplace transform of the following functions
i) $Y(s)=\frac{e^{-2 s}(2 s+2)}{s^{2}+2 s+5}$.
ii) $Y(s)=\frac{8 s^{2}-4 s+12}{s^{3}+4 s}$.
iii) $Y(s)=\frac{1}{(s+1)^{2}\left(s^{2}+4\right)}$. For this problem, write your answer using the convolution theorem.

Problem 2

For the following initial value problems, find the impulse response of the system and use this to write the general solution to the IVP as an integral.
i) $y^{\prime \prime}+9 y=\cos (t) ; \quad y(0)=y^{\prime}(0)=0$.
ii) $y^{\prime \prime}+m y^{\prime}+k y=g(t) ; \quad y(0)=0, y^{\prime}(0)=0$ assuming $k>0, m \geq 0, m<$ $2 \sqrt{k}$. (Recall the related question on the midterm exam).
iii) $y^{(4)}+5 y^{\prime \prime}+4 y=g(t) ; \quad y(0)=y^{\prime}(0)=y^{\prime \prime}(0)=y^{\prime \prime \prime}(0)=0$.

Problem 3

Prove the following facts about convolution.
i) $f * g=g * f$.
ii) $f *(g * h)=(f * g) * h$.
iii) $\delta * f=f$.

Problem 4

The result in Homework \#7, Problem 6 about the Laplace transform of $J_{\nu}(x)$ is true whenever $\nu>-1$. Use this to show that for any $\nu \in[0,1)$ we have

$$
\left(J_{\nu} * J_{-\nu}\right)(x)=\sin (x)
$$

Problem 5

Use the Laplace transform to solve the following inhomogeneous system of ODEs with discontinuous forcing function.

$$
\binom{y_{1}(t)}{y_{2}(t)}^{\prime}=\left(\begin{array}{cc}
1 & -3 \\
3 & 1
\end{array}\right)\binom{y_{1}(t)}{y_{2}(t)}+u_{2}(t)\binom{1}{-2} ; \quad \vec{y}(0)=\binom{1}{0}
$$

