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1. What is a spin chain?

In quantum mechanics, every electron has a spin, which lives in the spin
1/2 representation of SU(2).

This is a vector ~v ∈ C2, equipped with a natural action of three matrices,
σx, σy, σz, which have commutation relations

[σi, σj ] = εijkσk

where the ε denotes the totally antisymmetric tensor on three indices.
All the matrices σi have eigenvalues ±1. We view the eigenstates of σz

as being of ’definite spin up in the z-plane’, and ’definite spin down in the
z-plane’. Of course, a general vector will not be of definite spin in any
direction. But our geometrical picture of states as living in the x-y-z plane
is justified, because normalised states in C2 form CP1, which is isomorphic
to S2.

Spin is important because, for instance, an electron acquires energy de-
pendent on its spin in a magnetic field B,

Energy ∝ ~σ · ~B

When we say spin chain, what we mean is a collection of electrons along
a 1D line which

• Cannot move in space;
• Have spin states state ∈

⊗
spinsC2 evolving in time according to an

’interaction Hamiltonian’, a matrix in End(
⊗

spinsC2), by the rule

state→ e−iHtstate

• Interact at ’short range’, typically modelled by only interacting with
their nearest neighbours

Example. XXZ model.
Fix a chain of N spins in a line,

States = ⊗Ni=1C2

1
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Then define an operator

HXXZ : States→ States

HXXZ = −
N∑
n=1

σxnσ
x
n+1 + σynσ

y
n+1 + ∆σznσ

z
n+1

Here, when we write σxnσ
x
n+1, we mean the operator 1⊗ . . . 1⊗σx⊗σx⊗ 1⊗

· · · ⊗ 1. That all of these terms are nontrivial only along two adjacent spins
satisfies the short-range condition above.

We want to solve the eigenvalue problem for this operator, and see how

it depends on the parameter ∆. Here σji is the j-th Pauli matrix operating

on the i-th tensor factor, where σjN+1 = σj1 should the chain be periodic.
Eventually, we want to understand this problem in the limit N →∞.

2. Basic observations

First, observe that
∑

i σ
z
i commutes with the Hamiltonian, since∑

j,k,i

[σji , σ
k
i σ

k
i+1] + [σji , σ

k
i−1σ

k
i ] =

∑
j,k,i,`

εjk`σ`iσ
k
i+1 + εjk`σki−1σ

`
i

=
∑
ijk`

εjk`(σ`iσ
k
i+1 + σki σ

`
i+1)

A symmetric term contracted with the Levi-Civita tensor is zero.
If ∆ = 1, the Hamiltonian HXXZ has an ’enhanced symmetry’ group

SL(2,C) since we can rotate along the Bloch sphere x, y, z without changing
the Hamiltonian. Similar story at ∆ = −1.

Therefore, we expect roughly that there should be different behaviour in
the regions

• ∆ < −1
• −1 < ∆ < 1
• 1 < ∆

With very special, ’critical’ behaviour at the points ∆ = ±1.
Deep into the ∆ < −1 phase, for instance, we may assume |∆| >> 1 and

then

HXXZ/|∆| ∼
∑
i

σzi σ
z
i+1

so we get something Ising-like. Similar for ∆ > 1. But what we really want
to focus on is the middle region where the dynamics are the most interesting,

−1 < ∆ < 1
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3. Our game-plan

We will solve this HXXZ by the following rough means: we will find a
function whose value is a rank-four tensor R(λ) with nice properties so that

d

dλ
Ri,i+1(λ)λ=0 = Hi,i+1

Then nice properties of R(λ) will imply algebraic structure about HXXZ

and its solutions. We will find

R(λ) =


1 0 0 0

0 sinh(2iη)
sinh(λ+2iη)

sinh(λ)
sinh(λ+2iη) 0

0 sinh(λ)
sinh(λ+2iη)

sinh(2iη)
sinh(λ+2iη) 0

0 0 0 1


here written as a 4× 4 matrix for readability rather than the more natural
2 × 2 × 2 × 2 rank-four tensor. Here ∆ = cos(2η). I imagine this matrix
looks quite mysterious, and we’ll talk about how one could write it down,
but first we’ll talk about what we can do with it.

From R, we will find a related matrix t(λ) so that ∂λlog(t(λ)) = H, and
so that [t(λ), t(ν)] = 0 for all λ, ν. Then since the family t is diagonalisable,
we can differentiate the eigenvalue equation and find

t(λ) |v〉 = τ(λ) |v〉

=⇒ H(λ) |v〉 =
τ ′(λ)

τ(λ)
|v〉

So, solving the eigenvalue problem for the family t would solve the eigenvalue
problem for the Hamiltonian. This strategy might make it sound like we are
just making things very complicated for ourselves, but we’ll find that this
gameplan is very general and effective.

Physically, this matrix R will come from a classical statistical model re-
lated to HXXZ , but I will omit discussing this for conciseness, and instead
just pull R from thin air.

4. Algebraic structure of R

4.1. Graphical setup. We can view a matrix M as a rank-two tensor

graphically via the following notation:
i jM

Similarly, we can draw a rank-four tensor R like

i j

k

l

R
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We will require that the tensor R discussed previously satisfies the Yang-
Baxter equation, which means the equality of the two following pictures:

R(u;v)

R(l;v)

R(l;u)

=

R(u;v)

R(l;v)

R(l;u)

We imagine that R(u, v) swaps the order of u, v arrows:

u

v

In this sense, the Yang-Baxter equation declares that all ways to swap v, u, l
to l, u, v are equivalent.

Given such a rank-four tensor R, we associate an algebra of tensors T
satisfying the RTT relation:

T(l)

T(u)

R(l;u)

=

T(u)

T(l)

R(l;u)

Here the thick line upwards denotes an auxiliary tensorial index.

Example. Fix a constant parameter κ0. Then R(u, κ0), twisted so that
its upper-left and bottom-right indices are treated as auxiliary, satisfies the
RTT relation, by the Yang-Baxter relation.

In fact, we can chain copies of R together in strings this way and pull
them through one-by-one, so chains like this also are tensors satisfying the
RTT relation.

Definition. Given a tensor T (u) so associated in this fashion, we let t(u)
denote the matrix formed by tracing over all physical indices. Then the
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equality

T(l)

T(u)

=

T(l)

T(u)

R(l;u) R−1(l;u)

followed by passing through the tensors T implies that

[t(u), t(l)] = 0

So, all the t(u) are simultaneously diagonalisable, as we hoped for earlier.
Note that explicitly, in terms of the R we have been working with, the matrix
t can be represented as

R(u;v)

4.2. Solving for eigenstates. Writing

T (λ) =

(
A(λ) B(λ)
C(λ) D(λ)

)
as a matrix of matrices in the basis of physical states, and assuming the
existence of a state

A(λ) |Ω〉 = a(λ) |Ω〉
D(λ) |Ω〉 = d(λ) |Ω〉

C(λ) |Ω〉 = 0

We want to produce eigenstates of t(λ) = A(λ) +D(λ).
The way we try to do is is by treating B like a raising operator. We try

B(λ) |Ω〉

And see what happens when we act by A,D on it. Our key tool to find
relations will be the RTT relations, which will tell us

〈i|R12(µ, ν)T1(µ)T2(ν)|j〉 = 〈i|T1(ν)T2(µ)R12(µ, ν)|j〉
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Where we take matrix elements with respect to the physical indices. With
an eye to future generalisation, assuming only that

R(µ, ν) =


1 0 0 0
0 b(µ, ν) c(µ, ν) 0
0 c(µ, ν) b(µ, ν) 0
0 0 0 1


To be very explicit, set i = 0, 0 = j. We find

〈00|RTT |00〉
= 〈00|R12(µ, ν)|00〉 〈00|T1(µ)T2(ν)|00〉

= A(µ)A(ν)

whilst the other way around, we get A(ν)A(µ).
We find relations like

B(µ)B(ν) = B(ν)B(µ)

A(µ)B(ν) =
B(ν)A(µ)− b(ν, µ)B(µ)A(ν)

c(ν, µ)

D(µ)B(ν) =
B(ν)D(µ)− b(µ, ν)B(µ)D(ν)

c(µ, ν)

Therefore,

A(µ)B(ν) |Ω〉 =
1

c(ν, µ)
[B(ν)A(µ) |Ω〉 − b(ν, µ)B(µ)A(ν) |Ω〉]

=
a(µ)

c(ν, µ)
B(ν) |Ω〉 − a(ν)b(ν, µ)

c(ν, µ)
B(µ) |Ω〉

D(µ)B(ν) |Ω〉 =
d(µ)

c(µ, ν)
B(ν) |Ω〉 − d(ν)b(µ, ν)

c(µ, ν)
B(µ) |Ω〉

=⇒ t(µ)B(ν) |Ω〉 = [
a(µ)

c(ν, µ)
+

d(µ)

c(µ, ν)
]B(ν) |Ω〉 − [

a(ν)b(ν, µ)

c(ν, µ)
+
d(ν)b(µ, ν)

c(µ, ν)
]B(µ) |Ω〉

Under the further assumption that

b(ν, µ)

c(ν, µ)
= −b(µ, ν)

c(µ, ν)

True in our case, a reflection of the more abstract property of crossing sym-
metry

i

j

i

j

k

l
R(u;v)

=

i

j

-j

i

-l

k

R(−q−1v;u)

where above −j denotes the value NOT (j), and ∆ = q+q−1

2
We find that the second term cancels if and only if

a(ν) = d(ν)
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For a fixed ν. We find in general that

Claim.

B(ν1) . . . B(νn) |Ω〉

is an eigenstate of t(µ) if and only if for all j ∈ 1, . . . , n

d(νj)

a(νj)
=

n∏
i=1,i 6=j

c(µj , µi)

c(µi, µj)

In this case, the eigenvalue of t(µ) is

a(µ)

n∏
j=1

1

c(νj , µ)
+ d(µ)

n∏
j=1

1

c(µ, νj)

This is what we mean by the Bethe ansatz : starting from a ’pseudovac-
uum’, as above, we can rapidly produce very many eigenstates, with an
explicit formula for their eigenvalues.

So for instance in our XXZ model discussion above, consider the state

|Ω〉 = |↑〉 ⊗ · · · ⊗ |↑〉

Where σz |↑〉 = |↑〉 is the state of definite spin in the up-z direction. Then
writing out matrices, we have on individual spins

A(µ) ⇐⇒ T 0
0 (µ) =

(
1 0
0 c(µ)

)
B(µ) ⇐⇒ T 1

0 =

(
0 0

b(µ) 0

)
C(µ) ⇐⇒ T 1

0 =

(
0 b(µ)
0 0

)
D(µ) ⇐⇒ T 1

1 =

(
c(µ) 0

0 1

)
Here the ⇐⇒ means ’corresponds to’, roughly, but of course e.g. if we
build our states out of two particles, we have B(µ) =

∑
T 0
i T

i
1.

To be explicit about this, what we’re doing to get e.g. is evaluating R
at physical in-index 0 and out-index 0. So A has matrix elements Aij =
〈j0|A|0i〉; i.e. A00 = 1, A01 = 0, A10 = 0, A11(µ) = 〈10|A|01〉 = c(µ, κ0).

When we write c(µ), we are explicitly suppressing the second entry κ0 on
which c depends. It turns out that in our case c(µ, ν) = c(µ − ν) and it
makes sense to choose κ0 = 0.

Hence,

A(µ) |Ω〉 = |Ω〉
D(µ) |Ω〉 = c(µ)L |Ω〉

C(µ) |Ω〉 = 0
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As desired. Notice that the operator B creates down-spins. L here is the
length of the chain.

Explicitly substituting in the a, b, c for the XXZ spin chain, we find
equations (where L is the length of the chain)

(
cosh(νj − iπ/2)

cosh(νj + 2iη − iπ/2)
)L =

n∏
i=1,j 6=i

sinh(νj − νi − 2iη)

sinh(νj − νi + 2iη)

With energy

2

n∑
j=1

sin(2η)2

cos(2η) + cosh(2νj + iη − iπ/2)

Having such a clean expression for the energy and wavefunction of a very
general class of states is incredibly powerful. Of course, there are a few
immediate problems. First, it is not clear from this description what the
ground state (state of lowest energy) might be, though you can probably
compute it easily enough. The second problem is that it is not clear at all
whether you can get every eigenstate via this procedure. Third, it is not
clear how we take the limit as the chain goes to infinity: the energy we have
computed miraculously does not depend on L, nor does the algebraic form
of our eigenstates, but the eigenvalue of D(µ) does, and so do the Bethe
equations themselves. We will not really discuss these problems in further
detail.

The idea, by the way, to prove that all eigenvectors are accounted for is
to just count the number of distinct eigenstates you can get from the Bethe
ansatz in the limit as L is large, and realise it’s all the eigenstates.

5. Abstract symmetry of the Bethe ansatz equations

Instead, we will begin to take a representation-theoretic view on the prob-
lem. Rather than consider T (z) as a function, we will consider it as a formal
power series. But there is a wrinkle: the trigonometric functions in terms
of which solutions are written have a lot of poles. It’s not sufficient to take
their expansion around zero only.

Definition. The quantum loop algebra for sl2, Uq ŝl2 is the algebra of op-
erators occuring in the z = 0 and z =∞ expansions of T (z), for a tensor T
solving the RTT relation above and the crossing relation, and one additional
relation.

The fact that we need the z = 0 and z = ∞ expansions adds a little
bit of complication to the story, and so we are going to move from the
trigonometric case to the rational case by fixing ∆ = 1. Then, whilst T (u)
previously had a one-dimensional lattice of poles and so we could not only
look at the z = ∞ expansion, it now has only one pole and we need only
look at the z =∞ coefficients.
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We will henceforth move to the XXX spin chain, whose algebraic struc-
ture is governed by

Definition. The Yangian, Y gl2, is the algebra of the expansion around
z =∞ of matrix elements of T (z) subject to the RTT relation

R(u− v)T1(u)T2(v) = T2(v)T1(u)R(u− v)

Where R = 1− Pu−1 is the permutation matrix.
The Yangian Y sl2 has the additional relation

1 = qdetT (u) = t22(u− 1)t11(u)− t21(u− 1)t12(u)

The coproduct sends Tij(u)→
∑

k Tik(u)Tkj(u)

This motivates us to study how the Yangian transforms eigenstates of
HXXX . It turns out we will want level one representations, where only
the order zero and one terms act nontrivially.

At this level, we can identify generators 1, σ0a, σ
1
a, with coproduct

∆(1) = 1⊗ 1

∆(σ0a) = σ0a ⊗ 1 + 1⊗ σ0a
∆(σ1a) = σ1a ⊗ 1 + 1⊗ σ1a + ~εabcσbσc

Here ~ can be thought of as just a formal degree-counting parameter.
We can act on states of HXXX via taking the coproduct. We find

∆L−1(σ0a) =
L∑
k=1

σak

apologies for the awful notation, and

∆L−1(σ1a) =
L∑
k=1

σa,1k + ~εabc
∑
k>l=1

JbkJ
c
`

Setting σa,1k to act trivially, since HXXX is manifestly symmetric under sl2,
the generators of the first type commute with the Hamiltonian obviously.
But generators of the second type do not commute with the Hamiltonian;
they telescope and leave boundary terms on the starting and ending sites.

So the Yangian is not a symmetry of HXXX for finite spin chains, nor for
periodic ones; only in the ’infinite’ limit, where no boundary terms exist,
can it be considered as a symmetry.


