
Introduction to Hecke algebras and Affine Hecke algebras

1. Motivation (Hecke algebras in nature)
.

• Definition
A Coxeter system (W, S) is a group and a finite set S C W such that W = ( S l R )

,
where the set of relations is :

• S2 = 1 HsES
"

quadratic
"

• Sts .
. .

= tst. . . t V-s.ES
" braid "

II Te

Example : W -

- Weyl group , S= simple reflections

The Hecke algebra associated to (Wis) is the unital associative algebra H = HCW) over 21h
, v
- 'I generated

by the symbols 1 Ss : s ESS such that

• 85 = ( v " - v) Ss +1 "

quadratic
"

← (Ss - v -' / (Ss tr ) -- O
• SsSe . - - = St Ss . . .

"

braid
"

= my

Note that specializing to r -- I one gets the group algebra QEW]

Butwhy?

• Braid groups

The Braid group is the group generated by Its : se S9 subject only to the braid relations
. By

Type A : tf
w

Representations of the braid group that factor through W have pts)'=1 .

Consider representations that satisfy the deformed cftsl't plfltsltr us Ytsl? (q' ' - f) qts) the
scale

(many choices for a presentation , all isom .)

• Number theory

(G
,
K) ⇒ HCGKK) = ( Kxk) - invariant continuous functions G → E of compact support .

t t
unimodvkr

, locally closed subsp
compact top group Algebra structure : convolution (u ,

v ) m fgulglvlgixldg
Example : G -

- GHQ) , K = GL.CZ) wa HCGKK) = ring of Hecke operators on modular forms

( hence
" Hecke: although it was lwahori who introduced them)



• Finite groups
Consider a finite group G > B , and an irrep 4 of H .

Now how does Ind ,{(y ) decompose?
"

Uni potent principal series reps
"

End (Ind:Y) will contain information leg. , irep ⇐ dim -- A ) .

Clearly : I irreps in Indie I I irreps of
"

HCG ,Bill
"

f .

More precisely :B

B B

End (Ind:X -

- Hom (Ind:X,
Ind:4) = Hom ( Res :Ind EY , Y ) = TO Hom ( Ind

,
Des
, g 48 ,

Y)
B)GIB

Setting 4=1, Indian = Bg ← CBM ) - invariant functions G → ¢
B

End (Ind,} 1) ← (BxB) - invariant functions G → a

Note that the algebra structure is again given by convolution : (u * v) Cx) = IT, ⇐ alglvcg-' x )

Groups of lie type : G les. Gluten) ) , B Bord m's HCGB
,
D= Hflw)fg=µ,

Another heuristic for why HC GlenCfg) , B , 1) - deforms Sn :

# flags in FI-- H ordered basis in AI = off:/ . III. at :
. .

. ¥7, = g-NCE't. . .tn) Gi-' t .. - th :
. .

- in
y)

If f- 1 , this is n !
,
and since Glnftglo freely + trans memo

"

Glnltfn) = Sn
"

. ,

" B = A
"

,

"

H (Gluten)
,
1,1) = Sn

"

.

• Quantum
groups

classical Schor - Weyl duality : glue Vor g Sr wa I glnineps in V
"

f I Sr - ineps in Vail ( partitions of r )
(actions centralize each other)

Quantum Schur - Weyl duality : Uqfglnl E VI
'

SH Isn ) nm idem

( g- deformed actions)

• Kathdan - Lustig theory
Two Icu, v

-J - bases :

• Standard : I f× : x EW I ( Here we take a reduced expression * = si. . . .sn and define Sx = Ss
,
: . . - Ssn

• Kazhdan - Lustig : I b× : xewg characterized by ,
r
bi = bx ( Kt involution : If § = & + (V -V") extended multiplicative,
\
bx= Sx t § , hyx Sy for some hyxe r 21M "degree bound

"

let t be dominant
, MCH : -

- Ucntxo G
,

Lil ) : = simple module of h.w.cl . The KL conjecture says :
ay)

[My .o) : L(x.off hyx fun .

• link invariants

Traces on H ma Alexander
,
Jones polys

• Categorical actions : Hecke category E Oo

• Modder rep theory : Hlf Hype A) decomposition matrices ileitis decamp matrices of Su in char
p .



2. Representation theory of H for W finite.

What does H -mod
.

look like ? Spoiler : just like W -mod
.

However
,
we can specialize q to any element of E' , and the

representation categories will be different.
Let z EG"

.
We will denote Hz '

- = ZHE'¥z , ④zq±yH .

First question : for what values of z is Hz ss ?

Def :(Trace form) : If A is a f.dime. K - algebra, denote ↳ : A→ A
.

Then the trace form is C
, ) : AXA → K

, lay) -- Tr (Lxlyl .
at xa

Ravi. The trace can be defined for Hecke algebras even if they are not f.dial .

Prep : A is ss ⇒ C , ) is nondegenerate

Proof :
⇒) Nondegeneracy can be checked by passing to E

.

Now A # IT is a product of matrix algebras over IT
.
These are simple and hence contain no

double - sided ideals
,

in particular the radical of the form restricted to each is O
.

⇒ Recall A Artinian⇒ JIA) -- largest nilpotent right ideal .
Now if je JCA) , ja is nilpotent for all a EA .

Pass to K , upper triangulate the action of ja n. Tr Cja) = O ta ⇒ jeradcc.tl . .

Let R -- KIF'S .
Assure A is an R- algebra , finite as an R -module . For f E K

"

,
denote Af = A q Rhq- g, .

Prep : If Aj is ss
,
then A is ss.

Proof: The discriminant of the trace form on A is Dlg) , so if Dttygy ¥0 , D# to .

Ger : The generic Hecke algebra is semisimple .

Def; The specialization to get is GIWI
,

which is semisimple .

Moreover
,
we have the following stronger result :

Theorem fits
' Deformation than) : If Hz

,
He are semisimple , then Hz E Ha, abstractly .

Prod: By the previous proposition , the discriminant on H is nonzero
,
so H ④ ETH is a product of matrix algebras over EGI, of

dimensions n. . . . . . na ,
" the numerical invariants

"

.
It suffices to show the numerical invariants for Hz are the same i n , . . . ,nr. .

( so that HE H ④ EH fg=EH④EtI¥- Hz' ) Gmt)

Adjoin formal variables Xw for WEN and consider Het, ④ GGT (xw :XEw) ,
in order to write a

"

generic element
"

a = § xwsw .
let PA)

be its char poly , say PHI -- IT Pitt)
"

in Gtf) It, xwiwtw) is the decamp into irreds .

Since Hast ④ Gtf Kw : WEW) = IMnil Eq) Cxw : wew)) , it has a basis IEijlh for each entry in each summand
.

So write a = §, yij Eij for yiej E ICHI lxw :WEW)
.

The change of basis matrix has entries in Gtf) so EGI Cxw :wew)-- ETH ( yije ) .

In this basis
,

PHI-- te del (t id - yij )
"

Now specialize yijl so that the del Ct id - yij ) are ironed and distinct
.
Then Pelt! det t - id - yij ) and ee = he = deg Pelt) .



Now consider the generic element a = Zxwfw E Hz % Clcxwiwtw) . By the same argument, since He is ss , its char poly , Peteyget ,
has its irreducible factors appearing with multiplicity = degree .

Since he = deg Petty
g.⇒

,
the Petty, must be irred and distinct

.

Hence the ne are

the numerical invariants for He too
. is

Conclusion : Hz for generic z is isomorphic to QIW] .

When exactly ? Whenever z Et I D.G) = 09 .
This amounts to : Hz is ss . ill z

'""

Ew El
"
to

.

For type A , this amounts to : Hz is ss . ill order (z) > n or if n >, 3 , E-O also works
.



3
. Affine Hecke algebras and their representations
Reference for 2nd half : MIT - Northeastern 2017 DAHAEHA seminar notes

.

Definition : not quite HCW, S) for W affine, but close
.

Motivation :

• Deductive p-adic groups

Example : G-- Gln (Qp) , IEGLIXp) ⇒ GCIIGII) = H (way , f
-

- p) .

"

lwahori spherical algebra
"

lwahori subgroup
• K- theory
G complex ss simply connected lie group , N

-

- nilpotent cone , f-→N Springer resolution ,
Z Fgf

"

Steinberg variety
"

Then Kt ( Z ) = 21 [Wall]
'

and K"
* ( Z ) = Hay

• First step to understand Cherednik algebras

Immediate problem : Tits ' deformation argument fails . Pep theory of specializations becomes much more involved
.

(For the Wl
'

I use a single reference : MacDonald
,
AHA and orthogonal polynomials ) .

Affine stuff
finite irreducible reduced system R C V

.

Here V has an inner product C
, I .

Embed V C V ④ ES
,
with SIV

.

Then the associated affine root system is Ra : = hatred : ne 214 C F
.

8 : V → e

x ↳ I

Writing a = f÷, , we have Q :-- I.pika root lattice Q: -- Ieng coral lattice .

• O O

⑧

•
• ! 0

•
a

•
•
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•
•
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f
•
o
•

• -00 b
g

•
•

G
g
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•
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.

o

.

•

•

°

@

• 0 A •

R pi

• O @

Then W= ( Sa : a E R)
,
W
"
= ( Sa : a c- Ra )

.

Q

For v E V
,

denote th) : V→ V
.

Then th la) = a - ( v. a) s
.

X↳ Xtv

Then Hoi) Q W" and Wa -- W x -110)
.

"

affine Weyl group
"



Zero locos of R : Zero locos of Rv :

Weyl chambers

• walls • o alcoves

affine walls
• -• →

• a o 9

Consider the
"

fundamental alcove
"

.

This is an n - simplex with ntn walls given by affine walls corresponding to some ao , a. . . . . , an ER
"

.

These are the simple affine roots . Note ai -- ai
.

Fact : if o C- Rt is the highest root, ao -- - Ees
.

So = Sg - f

A-= Sa
,

= s
,

{ = Sa
,

Notice that W
"
: -- W x TCF) (dominant co weights) also acts on R

"

: text (a) = a - Cia! S .

This admits a length function extending that of Wa and W
.
Note that R: -- hue W

"
: has-04=1we W

"
: wA= As

is a finite group .

→ ÷÷
.

We have D= PYQ' (Dynkin diagram automorphisms) and Nae =
,

r x W
"

Note that r E A war @affine simple roots , so
if tr lait = aj , Tr Siri's Sj , hence the semidirect product .

Braidgroups
The Braid group of a Coxeter system is the group generated by Hwi- w EW f

,
subject only to the braid relation .

The braid relation is equivalent to : Tw Tw ' = Tww, whenever llwwll = llwltllw') .

Define the affine braid group Baas that of Cwa
,
I)

,
and the extended affine braid group Bae as that of ( W" , I )

(with its length function)

Bae has two important subgroups .

•The elements It with IT ER form a subgroup of Bae isom to SL Colors)
, and Bae = CxBa, where if Tr Cail -- aj , Tlr Tilts' = Tj .

I

• For KEPI
, define Y ' = Taxi

, for µ
- re Pu

, define Y "
- r

= YMY'T
"

.

These generate a copy of Pv.



Proposition : Tn . . .
- ,
Tn

, Y
"

: ht Pu generate Bae as a group
(notice the absence of To )

If (hail -- O then Ti Y
"

= Y
'

Ti

( tail = 1 then Ti Y
"
= Yi Ti

-sit ( y ' = Ti y sitTi )

(idea : reduce to X E PI and use properties of the length function )

The previous proposition leads to a presentation of Bae reminiscent of Nae = Water) :

Bae = CT. . . . .tn, y '' I : i.si , Ya! >

We can finally state :

Definition (AHA) : The affine Hecke algebra H (Wael is the quotient of the group algebra of B
"

by the Hecke relations : (Ti - f) (Tito
'') - O

How do the Ti and Y
" interact in H (Wael ?

lemma : Ti Y" - ysi" Ti = ( g - g
-y Ysi
y
- air
- A

Prof : A calculation shows that if this holds for Y " and Y "
,

then it holds for Y
- t and Y

""
.

So two cases to check :

• ( t.at
.

-

-
O ⇒ this says Ti Y

"
= Y

"
Ti

.

• (hail = I ⇒ this says Ti Y " - Y si
""Ti = (g - f'D Y

''

" (Pnp )

I. Y ' - TTY " = Ti Y ' - (Ti't f -f) Y
"

as desired D

We have given two presentations of Bae : Coxeter ( Bae -- R* Ba) and Bernstein ( Bae-- GTi , Y ' l - -- 7) .

This implies the following .

Prep :
. Hlwae) E SLA H (Wa)

, therefore I Tw : we Wael is a E- basis for H (Wael
.

• The subalgebra generated by Ti ( including o) is isom to Hfwa, S )
Ti (not including ol ' '

H (W ,
S )

Q : Basis for the second presentation ?

Fact : as E - v. s . , H (W
,
S) ④ GYM Is H (W")

,
so ITw Y " : w EW

,
X EP

"

l is another basis
.

¢

X ④ y l- xy
This map allows us to construct many representations of HlWael : for E a rep of H (W, S), IndE.= Hlwae) Iw ,

E

As a GYF-module ,
Ind E = GYM ④ E

.

In particular , if E- E by specializing f- I , we get GYP
'

" Polynomial representation
"

Now the last lemma implies that Tl acts by Isi t Ce - E
')

. ,
in 64"

Remarks : . One can modify this action to p : Ti t, Isi t Ce - E')
,

now acting on
.

GHB (group algebra of the weight lattice)
Tr m Tr

This is called Cherednik 's basic representation
. Both of these representations are faithful .

'

• In fact DAHAS can be defined as the 2-parameters G.T) subalgebra of Endecott) gen by Xtpfw) HEP , w EW
") .



We finish by computing the center of the AHA
.

Thoen : 2-CHIWael) = (gyp)
w

.

Prof : 2) Easy : if f- fall c- (ay
")w

, Tif - f Ti = 0 (since Ti Y
"
-Ys
""
Ti = ( g - g

-'I YH by our lemma)
.

Since QYP
"

is commutative and the Ti and the y
' generate , f E 2-( Hfwae))

.

Y
- d"
- t

E) By the lemma
, if f EGYPT Tif - sift. = g (4) E GYP?

If f is central
, (f - sift I = ga) E? I

= Sif .

So it offices to see that f EQY
Pv

. Now under the polynomial representation QYPV
, f commutes with all Laurent polynomials,

hence its image is a Laurent polynomial . But the polynomial representation is faithful so f e Gyi. D


