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Today, I am going to explain how a large class of interesting problems are
related to the rational degeneration of DAHA. Most of these problems have
nondegenerate analogues, which are more complicated to state but still very
interesting. I hope introducing all these small interesting classes of problems
in a fairly classical setting will help ground us going forwards in the seminar.

1. A classical example

Consider the rational Calogero-Moser Hamiltonian for two particles with
coordinates x and y interacting on a line with an inverse-squared potential,

H = ∂2x + ∂2y − c(c+ 1)
1

(x− y)2

It is easy to explicitly show this Hamiltonian is completely integrable.
Write

Dx(g) = ∂x +
g

x− y
(1− Pxy)

Dy(g) = ∂y +
g

y − x
(1− Pxy)

Claim. Dx, Dy commute.

Proof. By explicit computation.
�

Acting on functions symmetric in x and y,

H1 = Dx(g) +Dy(g) = ∂x + ∂y

H2 = Dx(g)2 +Dy(g)2 = ∂2X + ∂2y + 2g
∂x − ∂y
x− y

...because the operator (1− Pxy) vanishes on such functions.

Claim. H1, H2 commute.

Proof. By expanding their definitions and using that the Dx, Dy commute.
�

Now let

H̃1 = (x− y)gH1(x− y)−g

H̃2 = (x− y)gH2(x− y)−g

1
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We can compute

H̃2 = ∂2x + ∂2y − 2g(g − 1)
1

(x− y)2

is our original Calogero-Moser Hamiltonian.

Corollary 1. The two-particle Calogero-Moser Hamiltonian is completely
integrable (which just means that there is an operator which commutes with
the Hamiltonian).

Remark. One may show that the spectral problem

H1J(x, y) = (mx +my)J(x, y)

H2J(x, y) = (m2
x +m2

y)J(x, y)

Has solutions

J (g)
mxmy

(x, y) = e(mx+my)(x+y)/2((mx −my)(x− y))1/2−gIg−1/2((mx −my)(x− y)/2)

Where Iν(z) is the modified Bessel function of the first kind. Therefore,
understanding eigenfunctions of the Calogero-Moser system is a generalisa-
tion of the classical theory of Bessel functions.

If you are not familiar with Bessel functions, the way they most classically
arise is the following: attempt to solve Laplace’s equation in three dimen-
sions, by separation of variables in spherical coordinates. Then the radial
solutions, up to some prefactors, are Bessel functions. This is a shadow of
a more general relation involving symmetric spaces.

2. General Calogero-Moser Hamiltonians

Definition. Let V a finite dimensional complex vector space. A complex
reflection s ∈ GL(V ) is a semisimple element conjugate to the diagonal
matrix diag(λs, 1, . . . , 1) for λ 6= 1.

If V has an inner product, a real reflection s ∈ O(V ) is a semisimple
element conjugate to diag(−1, 1, . . . , 1).

In what follows, I’d like to note that pretty much every statement “works”
for complex reflections. But I will only discuss the case of real reflections.

Many formulas which are given in terms of just c(s) in the real reflection

case will be given in terms of 2c(s)
1−λs in the complex case. They reduce since

λs = −1 in the real reflection case.

Setup. Let h be a finite dimensional complex vector space with inner prod-
uct (•, •). Let W ⊂ O(h) a finite group generated by a set of real reflections
S ⊂W .
W acts on S by conjugation; let c : S → C be a conjugation-invariant

function.
Let αs ∈ h? be an eigenvector so sαs = −αs.
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Definition. The quantum Olshanetsky-Perelomov Hamiltonian is

H = ∆−
∑
s∈S

c(s)(c(s) + 1)(αs, αs)

α2
s

I will now explain the tools needed to show complete integrability of the
above Hamiltonian.

Definition. Let a ∈ h. Define the Dunkl operator to be

Da(c) := ∂a −
∑
s∈S

c(s)αs(a)

αs
(1− s)

Claim. The Dunkl operators commute amongst themselves.

Definition. If B is a differential operator, let m(B) be the differential op-
erator restricted to act on W -invariant functions.

Definition. The algebra C[h]W is free. Let P0, P1, . . . , Pr be its homoge-
neous generators.

Pick an orthonormal basis yi of h.
Let Li = m(Pi(Dyi , . . . , Dyr)).

Claim. L1 = ∆−
∑

s
cs(αs,αs)

αs
∂α∨

s
.

Further, Let δ(c)(x) =
∏
s αs(x)c(s). Then

HO−P = δ(c)−1 ◦ L1 ◦ δ(c)

Corollary 2. The Olshanetsky-Perelomov quantum system is completely
integrable.

Remark. Let’s explain how to reduce this to our classical example. Con-
sider S2 ⊂ GL(C2), acting by permuting coordinates. Then there is a unique
generating reflection, Pxy. The equation Pxyα = −α is solved by the vector
(1,−1). So for instance,

Dx(c) = ∂x −
∑
s

cα(e1)

α
(1− Pxy) = ∂x −

c

x− y
(1− Pxy)

The algebra C[x, y]S2 = C[x + y, x2 + y2]. Therefore P0 = x + y, P1 =
x2 + y2.

Remark. This is not the unique A1 example of a Dunkl operator. If we
represent A1 as Z/2Z acting on just C, with sf(x) = f(−x), there is a
unique Dunkl operator,

Dx = ∂x −
c

x
(1− s)

So it’s really important to work in the generality of real reflection groups,
and not just root systems.
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3. The Rational Cherednik algebra

We have proposed an understanding of the Olshanetsky-Perelomov Hamil-
tonian in terms of Dunkl operators.

If we want to understand the common eigenfunctions of the Li we have
defined, a good start is to understand how the operators Li act on polyno-
mial functions and power series, which can be reduced to understanding the
commutators of Dunkl operators.

Claim. Fix x ∈ h?. Then

[Da, x] = (a, x)−
∑
s∈S

c(s)(a, αs)(x, α
∨
s )s

Definition. We can view c : S → C as an element in CW . Using this view-
point, let Dunkl be the subalgebra in CW nDifferentialOperators(hreg)
generated by the Dunkl operators Da and coordinates x ∈ h?.

They satisfy the relations

[x, x′] = 0

[Da, Da′ ] = 0

[Da, x] = (a, x)−
∑
s∈S

c(s)(a, αs)(x, α
∨
s )s

Here hreg refers to the subset so αs(x) 6= 0 – i.e. the subspace on which
all the Dunkl operators are nonsingular.

This algebra has a natural filtration inherited fromDifferentialOperators(hreg),
by order of differential operators. We can take the associated Rees algebra,
A = ⊕∞n=0F

nA, of direct sums of filtered pieces.

Claim. The Rees algebra of Dunkl is the quotient of CW nTensor(T ?h)[~]
by the relations

[x, x′] = 0 ∀x, x′ ∈ h?

[y, y′] = 0 y, y′ ∈ h

[y, x] = ~(y, x)−
∑
s∈S

c(s)(y, αs)(x, α
∨
s )s

Call this Hc.

Proof. Since the graded version ofDa(c) is ~(a, •)−
∑

s
c(s)αs(a)

αs
(1−s). Work-

ing out the commutation relations, what changes is only the term coming
from ∂a. �

Definition. Call Hc the rational Cherednik algebra, or the degenerate
DAHA.
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Example. In type A1, corresponding to h = C,W = Z/2Z, we have the
algebra generated by s, x, y, with relations

s2 = 1

sx = −xs
sy = −ys

[y, x] = t− 2cs

Where here we have set t = ~(x, y).

Remark. It is useful to write down a basis for the rational Cherednik al-
gebra. Let yi be a basis of h, and xi be the dual basis of h?. Then the
elements yi, xi, si form a basis. Note that the elements si could be indexed
by a different set from the yi, xi. In terms of these elements,

[yi, xj ] = ~δij −
∑
s∈S

cs(yi, αs)(x, α
∨
s )s

= ~δij −
∑
s∈S

2cs(yi, αs(yj , αs)

(αs, αs)
s

Example. Write W = Sn, acting on h = Cn. Then there is only one
reflection-invariant function c : Sn → C, so c is just a number. An eigenvec-
tor αij of the transposition sij is yi − yj .

The only nonzero αk` with nonzero dot product with both yi, yj for i 6= j
is αij itself. Hence

[yi, xj ] =
2c

2
sij = csij

Likewise,

[yi, xi] = t− c
∑
j 6=i

2(yi, αij)(yi, αij)

2
sij = t− c

∑
j 6=i

sij

Note that signs cancel since (−1)2 = 1.

Further study of rational DAHA is very interesting, and proceeds largely
via the theory of D-modules. One may sheafify the rational Cherednik al-
gebra over hreg/W , basically declaring that Hc(U) has sections polynomials
and Dunkl operators over U .

The study of rational DAHA basically also proceeds unchanged for com-
plex reflection groups, as mentioned above.

4. Solving the O-P Hamiltonian

Suppose now that we could solve the equation

xαΨ = DαΨ

This equation depends on operators sα and xα. Therefore, in the most
general setting, Ψ is a function taking values in some representation of the
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algebra generated by the sα, xα. This algebra is the degenerate affine Hecke
algebra.

Recall. The degenerate affine Hecke algebra is the associative algebra
generated by CW and x1, . . . , xn with relations

[xi, xj ] = 0

[si, xj ] = 0, i 6= j

sixi = k + xisi −
n∑
j=1

(α∨i , αj)xjsi

So, suppose for some function Ψ valued in a representation V of the
degenerate affine Hecke algebra, we have an equality

xαΨ = DαΨ

That would imply

p(x1, . . . , xn)Ψ = p(D1, . . . , Dn)Ψ

Since Dunkl operators commute. If we knew also that

(1) p(x1, . . . , xn) = p(λ1, . . . , λn) in V , for and reflection-invariant poly-

nomial and some fixed ~λ;
(2) There exists a linear map tr : V → C which is reflection-invariant

We could solve the O-P Hamiltonian as follows. By property 1), Pi(λ1, . . . , λn)Ψ =
LiΨ. These are representation-valued functions: taking tr, we get

Pi(λ1, . . . , λn)tr(Ψ) = Li(Ψ)

To be a solution of the Olshanetsky-Perelomov Hamiltonian. We conclude

Claim. In the above setting, the map tr defines a map from solutions of
the system xαΨ = DαΨ to eigenfunctions of the Olshanetsky-Perelomov
Hamiltonian.

Remark. The equation xαΨ = DαΨ is almost the KZ equation after con-
jugation by δ(c). See the next set of lecture notes for a precise relation to
the KZ equation.

Why have we defined Dunkl operators so that we need to conjugate them
to get HO−P ? The reason is that, in the form we’ve chosen for Dunkl
operators, they have direct q-analogues, whilst in the conjugate form they
do not.

Remark. The map defined above is actually an isomorphism, for a large
class of modules Vλ. The easiest way to show this is to show a more gen-
eral result in the setting of the trigonometric degeneration, where the mon-
odromy can be more explicitly calculated.
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5. Basics of the representation theory of the rational
Cherednik algebra

Hopefully the above was motivating to consider the representation theory
of the rational Cherednik algebra. Henceforth set ~ = 1.

Remark. Just like DAHA, the rational Cherednik algebra has a symmetris-
ing element

e = |W |−1
∑
w∈W

w

The nonunital subalgebra

eHce

is called the spherical subalgebra of Hc.
Notice that the Olshanetsky-Perelomov hamiltonians live in the spherical

subalgebra, for instance.

Claim. The elements

h =
1

2

∑
i

{xi, yi}

E = −1

2

∑
i

x2i

F =
1

2

∑
i

y2i

Form an sl2-triple.
Hence, there is a natural grading with raising/lowering operators on any

module M .

Proof. For once, let’s do a computation. Observe we have

[h.xj ] =
∑
i

[xiyi + yixi, xj ] =
∑
i

xi[yi, xj ] + [yi, xj ]xi

=
1

2

∑
i

xi(δij +
∑ 2(yi, αs)(yj , αs)

(αs, αs)
s) + (δij +

∑ 2(yi, αs)(yj , αs)

(αs, αs)
s)xi

The two second terms cancel since all s in the sum anticommute with xi.
So We are left with

1

2

∑
i

2xiδij = xj

So we conclude

[h, xj ] = xj
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Therefore,

[h,E] = −1

2

∑
j

[h, x2j ] = −1

2

∑
j

xj [h, xj ] + [h, xj ]xj = −1

2

∑
j

2x2j = −E

�

This sl2-triple inside the rational Cherednik algebra is a relic of the
SL(2,Z)-symmetry of DAHA that Henry mentioned last time.

Remark. The rational Cherednik algebra also has a PBW decomposition,
given by an isomorphism

CW nC[h⊕ h?][~]→ gr(Hc)

Our PBW theorem implies a triangular decomposition Hc = Sh?⊗CW ⊗
Sh. Whenever we have a triangular decomposition like this, we can de-
fine an associated category O, and totally formally from such a triangular
decomposition one can prove a lot of properties for O.

Definition. The category Oc(W, h) is the category of modules over the
rational Cherednik algebra which are finitely generated over Sh? and are
locally finite under Sh.

Claim. There is a decomposition O = ⊕λ∈h?/WOλ, where Oλ is the sub-
category of modules M so

∀v ∈M, ∀p ∈ ShW ,∃N : (p− λ(p))Nv = 0

Here h?/W = Specm(Sh)W .

Proof. By local finiteness under Sh, and checking that for x ∈ h?,

(p− λ(p))N+1xv = (N + 1)(∂xp)(p− λ(p))Nv

�

6. How is this algebra a degeneration?

Recall that DAHA contains elements Y ν∨ , for all ν∨ the cocharacter lat-
tice Hom(C×, T ).

The rational degeneration amounts to replacing the cocharacter lat-
tice Hom(C×, T ) with Hom(C×, Lie(T )), and also the character lattice
Hom(T,C×) with Hom(Lie(T ),C×).

Basically, this means we should differentiate all relations.
But we need to do it in a slightly careful way. Nonetheless, let me be a

little sketchy in the following example, for speed.
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Example. Consider A1 DAHA. It has relations

TXT = X−1

T−1Y T−1 = Y −1

Y −1X−1Y XT 2 = q

(T − t)(T + t−1) = 0

In the first step, we differentiate only along the cocharacter lattice. So
we set X to be constant, set Y|0 = id, (δY )|0 = y, and differentiate T only
in relations containing Y , setting T|0 = s, (δT )|0 = c, t = 0, δq|0 = 1, q|0 = 0.

Our relations now read

sXs = X−1

s2 = 1

−cs+ sys− cs = δ(T−1Y T−1) = δ(Y −1) = −y
=⇒ sy + ys = 2c

−ys2 +X−1yX = 1− 2cs

The algebra generated by these elements is called the trigonometric
degeneration of A1 DAHA, alternatively the trigonometric Cherednik
algebra of type A1. A further differentiation in X results in the rational
Cherednik algebra of type A1.


