Selected Papers
- Savin O., Valdinoci E., Regularity of nonlocal minimal cones in dimension 2. Preprint 2012. [.pdf]
- De Silva D., Savin O., $C^{2,\alpha}$ regularity of flat free boundaries for the thin one-phase problem. Preprint 2011, arXiv:1111.2513. Submitted. [.pdf]
- Le N.Q., Savin O., Boundary regularity for solutions to the linearized Monge-Ampere equations. Preprint 2011, arXiv:1109.5677. Submitted. [.pdf]
- Le N.Q., Savin O., Some minimization problems in the class of convex functions with prescribed determinant. Preprint 2011, arXiv:1109.5676. Submitted [.pdf]
- Savin O., Global $W^{2,p}$ estimates for the Monge-Ampere equations. Preprint 2010. [.pdf]
- Savin O., Pointwise $C^{2,\alpha}$ estimates at the boundary for the Monge-Ampere equations. Preprint 2010. [.pdf]
- Savin O., A localization property at the boundary for the Monge-Ampere equation. Preprint 2010. Submitted.[.pdf]
- Palatucci G., Savin O., Valdinoci E.,
Local and global minimizers for a
variational energy involving a fractional norm,
Preprint 2010, Submitted.[.pdf]
- Savin O., Valdinoci E., Density estimates for a variational model driven by the Gagliardo norm. Preprint 2010, Submitted.[.pdf]
- Savin O., Valdinoci E., $\Gamma$-convergence for nonlocal phase transitions. Preprint 2010, Submitted[.pdf]
- Savin O., A Liouville theorem for solutions to the linearized Monge-Ampere equation,
Discrete and Continuous Dynamical Systems,
Volume: 28, Number: 3, November 2010, 865 -- 873[.pdf]
- Savin O., Phase transitions, minimal surfaces, and a conjecture of de Giorgi. Current Developments in Mathematics, 2009[.pdf]
- Savin O., Minimal surfaces and minimizers of the Ginzburg-Landau energy. Contemporary mathematics (American Mathematical Society), v. 528, 2009[.pdf]
- Daskalopoulos P., Savin O., $C^{1,\alpha}$ regularity for parabolic Monge-Amp\'ere equations, To appear in Amer. Journal of Math. [.pdf]
- Caffarelli L., Roquejoffre J.M., Savin O., Non local minimal surfaces, Comm. Pure Appl. Math., {\bf 63} (2010), 1111--1144 [.pdf]
- De Silva D., Savin O., Minimizers of convex functionals arising in random surfaces, Duke Math. J., Volume 151, Number 3 (2010), 487-532[.pdf]
- Savin O., Valdinoci E., Elliptic PDEs with fibered
nonlinearities,Journal of Geometric Analysis, Volume 19, Number 2, 420-432 [.pdf]
-
Savin O., Wang C., Yu Y., Asymptotic behavior of
infinity harmonic functions near an isolated singularity, Int Math
Res Notices (2008) Vol. 2008 [.pdf]
- Savin O., Entire solutions to a class of fully
nonlinear elliptic equations .Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) Vol. VII (2008), 369--405[.pdf]
- Daskalopoulos P., Savin O., On Monge-Amp\'ere
equations with homogenous right hand side. Comm. on Pure and Applied Math.
Volume 62, Issue 5, 639--676 [.pdf]
- De Silva D., Savin O., Symmetry of global solutions
to a class of fully nonlinear elliptic equations in 2D. Indiana Univ. Math. J., 2009; 58 (1), 301--315[.pdf]
- Evans L. C., Savin O., $C^{1, \alpha}$ regularity
for infinity harmonic functions in two dimensions.Calc. of Variations and PDEs, 2008, Volume 32, Number 3, 325--347 [.pdf]
- Savin O., Small perturbation solutions for elliptic
equations, Comm. Partial Differential Equations, 32, 557--578,
2007. [.pdf]
- Evans L.C., Gangbo W., Savin O., Diffeomorphisms and
nonlinear
heat
flows, SIAM J. Math. Anal. 37 (2005), no. 3, 737--751. [.pdf]
- Savin O., $C^1$ regularity for infinity harmonic functions in
two
dimensions, Arch. Ration. Mech. Anal. 176 (2005), no. 3,
351-361. [.pdf]
- Savin O., The obstacle problem for Monge Ampere equation,
Calc. Var.
Partial Differential
Equations 22 (2005), no. 3, 303-320. [.pdf]
- Savin O., Phase transitions: Regularity of flat level sets,
Annals of Mathematics, January 2009 [.pdf]
|