Irrationality problems -- Alena Pirutka, December 2, 2016
Let X be a projective algebraic variety, the set of solutions of a system of homogeneous polynomial equations. Several classical notions describe how "unconstrained" the solutions are, i.e., how close X is to projective space: there are notions of rational, unirational and stably rational varieties. Over the field of complex numbers, these notions coincide in dimensions one and two, but diverge in higher dimensions. In the last years, many new classes of non-stably rational varieties were found, using a specialization technique introduced by C. Voisin. This method was also used to prove that rationality is not a deformation invariant in smooth projective families of complex varieties. This is joint work with B. Hassett and Y. Tschinkel. In the first part of my talk I will describe some classical examples as well as the recent examples obtained by the specialization method. I will give more details on this method in the second part of my talk.