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Topological Data Analysis

I prefer to express myself metaphorically. Let me stress: metaphorically,
not symbolically. A symbol contains within itself a definite meaning,
certain intellectual formula, while metaphor is an image. An image
possessing the same distinguishing features as the world it represents.

Andrei Tarkovsky

A central dogma of topological data analysis is that data sets have shape and that
describing this shape can help explain the process generating the data. As we
have outlined in the preceding chapter, from this perspective clustering techniques
extract “zero dimensional” information about connected components of the data
set. One of the central goals of topological data analysis is to use the methods of
algebraic topology to extract higher dimensional information about the shape of
the data set. For example, if we suppose that the data is sampled from a mani-
fold, a candidate goal might be to recover the homology of that manifold. More
realistically, we might simply wish to recover qualitative descriptors of the data set
that are robust to perturbation and capture higher dimensional information, without
necessarily postulating that there is such a clean underlying geometric description.
That is, we would like to set up a pipeline

{data} →
{

simplicial
complexes

}
→

{
algebraic
invariants

}
.

To apply algebraic topology to discrete data, two major issues need to be tackled.
First, we need a way to transform a discrete set of points into a richer topological
space in order to have interesting topological invariants to compute. Second, the
feature scale of the data must be accounted for; namely, we need to determine the
relationship between the size of meaningful geometric features of the data and
the distances between the sampled points. This second question is particularly
interesting, since a priori the feature scale is often unknown. In this chapter, we
explain approaches to these problems, with a primary focus on persistent homology
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2 Topological Data Analysis 123

and related constructions. The basic idea is to collect information for all feature
scales at once. Persistent homology originated in the work of Frosini [187], and
was independently rediscovered by Robins [433] and Edelsbrunner, Letscher, and
Zomorodian [154]; in Section 2.11 at the end of the chapter we provide more
comprehensive references for the interested reader.

2.1 Simplicial Complexes Associated to Data

A basic and widely applicable model for the kind of data that arises in practice
is a finite metric space; this is simply a metric space (X, ∂X) with finitely many
points. A natural geometric example of a finite metric space is a collection of points
{x0, x1, . . . , xk} ⊂ Rn equipped with the induced Euclidean metric ∂Rn . A natural
biological example of a finite metric space is a collection of gene expression vectors
in R20000, with the distance between v1 and v2 computed by the Pearson correlation
(recall Example 1.2.6).

Recall from Example 1.3.7 that any metric space (X, ∂X) has a natural topology
where the basic open sets are the balls Bε(x) = {z ∈ X | ∂X(z, x) < ε} for all
ε > 0. As a consequence, a first thought might be to simply regard a finite metric
space (X, ∂X) as a topological space directly. Unfortunately, such a space is not very
interesting – the topology is trivial, in the sense that it is discrete.

● Every point is both open and closed.
● There are no continuous maps γ : [0, 1]→ X other than the constant maps. (See

Figure 2.1.)
● All homological invariants except π0 and H0 (which just count the number of

points in X) are trivial.

In order to leverage the tools of algebraic topology to study finite metric spaces,
we need a different idea for assigning a topological space to (X, ∂X). To figure out
what to do, it is useful to think about the toy model in which the sampled data X
was generated by drawing from some probability distribution on a nice geometric

Figure 2.1 The only continuous maps from [0, 1] to a discrete topological space
are constant at a point.
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object embedded in Rn (e.g., a compact smooth manifold). In this case, it is clear
that we need to somehow “fill in the gaps” between the samples. If we have a rough
sense of the average distance between points that are supposed to be connected,
there is an evident construction: just take the union of balls around the points.

Definition 2.1.1 (Union of balls). Let X ⊂ Rn be a finite subspace and fix ε ≥ 0.
The union of balls is the union ⋃

x∈X

Bε(x) ⊂ Rn.

However, from a practical perspective, the union of balls is not ideal; it is not
evidently algorithmically tractable, and it requires that (X, ∂X) arise as a subspace
of Rn. To fix the first problem, we would like to produce an abstract simplicial
complex that encodes the information of the union of balls. We can adapt this
construction to the discrete setting by regarding the ε-balls around a finite set X
as a cover. That is, the idea is to associate a k-simplex to a set of k points whose
ε-neighborhoods intersect.

Definition 2.1.2 (Čech complex). Let X ⊂ Rn be a finite subspace and fix ε > 0.
The Čech complex Cε(X, ∂X) is the abstract simplicial complex with

1. vertices the points of X, and
2. a k-simplex [v0, v1, . . . , vk] when a set of points {v0, v1, . . . , vk} ⊂ X satisfies⋂

i

Bε(vi) � ∅.

In fact, the Čech complex (Figure 2.2) is a special case of a standard construction
from algebraic topology that associates a simplicial complex to a cover of a space.
Recall from Definition 1.3.15 that an open cover {Ui} of a space X is a collection
of open sets such that ∪iUi = X. Given a cover {Ui} of X, we define the nerve of
the cover as follows.

Figure 2.2 The Čech complex is a combinatorial approximation to the union of
balls.
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Definition 2.1.3. The nerve N({Ui}) of a cover {Ui} of X is the simplicial complex
with

1. vertices corresponding to the sets {Ui}, and
2. a k-simplex [ j0, j1, . . . , jk] when the intersection

U j0 ∩ U j1 ∩ U j2 ∩ . . . ∩ U jk � ∅.

The interest of this construction is the following classical result about the rela-
tionship of the geometric realization (recall Definition 1.8.8 and Lemma 1.8.20) of
this nerve to X; see e.g., [307, §15.4.3] for further discussion and a proof.

Theorem 2.1.4. Let X be a topological space. Let {Ui} be an open cover of X
such that all non-empty finite intersections

U j1 ∩ U j2 ∩ . . . ∩ U jk

are contractible (homotopy equivalent to a point). Then the geometric realization
|N({Ui})| is homotopy equivalent to X.

As a corollary, we obtain the following result comparing the geometric realiza-
tion of the Čech complex to the geometric Čech nerve.

Proposition 2.1.5. Let X ⊂ Rn be a finite subspace and fix ε > 0. There exists a
homeomorphism ⋃

x∈X

Bε(x) � |Cε(X, ∂X)|

between the union of balls and the geometric realization of the Čech complex.

The Čech complex provides a procedure for assigning a simplicial complex to
a finite metric space embedded in Rn. However, in order to construct the Čech
complex we need to be able to decide whether the intersection of ε-balls is non-
empty. This is a non-trivial enterprise in high dimensions. Moreover, we do not
wish to assume that the data points are embedded in Euclidean space at all!

To see how to proceed, it is helpful to recall our discussion of path components
and single-linkage clustering for a metric space from Section 1.3. Here, for a finite
metric space (X, ∂X) and fixed ε > 0, we defined a graph G = (V, E) with

1. vertices the points of X, and
2. edges (xi, x j) for each pair of points xi and x j such that ∂X(xi, x j) ≤ ε.

Recalling that a graph is a one dimensional simplicial complex, we use a mild
elaboration of this construction to define a simplicial complex associated to an
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arbitrary finite metric space (X, ∂X). The Vietoris-Rips complex is the maximal
simplicial complex determined by the vertices and 1-simplices specified by the
graph G.

Definition 2.1.6 (Vietoris-Rips complex). Let (X, ∂X) be a finite metric space and
fix ε > 0. The Vietoris-Rips complex VRε(X, ∂X) is the abstract simplicial complex
with

1. vertices the points of X, and
2. a k-simplex [v0, v1, . . . , vk] when

∂X(vi, v j) ≤ 2ε for all 0 ≤ i, j ≤ k.

For a point cloud in Rn, the Vietoris-Rips complex and the Čech complex can be
different; for instance, notice that there is a difference between the Čech complex
in Figure 2.2 and the Vietoris-Rips complex in Figure 2.3, which are generated
by the same underlying metric space. The next example highlights the kind of
phenomenon that leads to such differences.

Example 2.1.7. Consider the finite metric space X = {(0, 0), (1, 0), ( 1
2 ,
√

3
2 )} ⊂ R2. These

points are the vertices of an equilateral triangle with side length 1. Choose an ε in the open

interval ( 1
2 ,
√

3
3 ), i.e., 1

2 < ε <
√

3
3 . (For concreteness,

√
3

3 ≈ 0.577.)

1. The Vietoris-Rips complex VRε(X, ∂X) has three vertices (one for each point of X),
three 1-simplices (connecting the points), and therefore has a single 2-simplex filling in
the triangle.

2. In contrast, the Čech complex Cε(X, ∂X) has three vertices (one for each point of X) and
three 1-simplices (connecting the points), but does not have the 2-simplex spanned by
all the points since there is no point in the intersection of the balls of radius ε.

(See Figure 2.4 for a corresponding picture.)

The use of the Čech complex is justified by the Nerve Lemma (Theorem 2.1.4);
there is no analogous result for the Vietoris-Rips complex. However, despite the

Figure 2.3 The Vietoris-Rips complex is completely determined by its 1-skeleton.
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Figure 2.4 The Vietoris-Rips complex (on the left) is completely determined
by its 1-skeleton, whereas the Čech complex (on the right) can potentially omit
higher simplices.

fact that they are sometimes different, there is a close relationship between the
Vietoris-Rips and Čech complexes.

Lemma 2.1.8. Let X ⊂ Rn be a finite subspace and fix ε > 0. There are natural
simplicial inclusions

Cε(X, ∂X) ⊆ VRε(X, ∂X) ⊆ C2ε(X, ∂X).

An essential property of the constructions of the Čech complex and the Vietoris-
Rips complex is that they are functorial. To be precise, these constructions are
functorial in both X and ε. (In the following discussion, we focus on the Vietoris-
Rips complex; the properties of the Čech complex are analogous.) For ε < ε′ and
any metric space (X, ∂X), there is an induced simplicial map

VRε(X, ∂X)→ VRε′(X, ∂X),

since increasing the scale parameter adds more simplices.
Next, recall that a map f : X → Y between metric spaces (X, ∂X) and (Y, ∂Y) is

Lipschitz continuous with constant k if ∂Y( f (x1), f (x2)) ≤ k∂X(x1, x2). Given a Lip-
schitz map f : X → Y with Lipschitz constant k, there is an induced simplicial map

f : VRε(X, ∂X)→ VRkε(Y, ∂Y)

for any ε. Summarizing, we have the following theorem.

Theorem 2.1.9. The construction VRε(−) specifies a functor from the category of
finite metric spaces and Lipschitz maps with constant 1 to Simp. The construction
VR(−)(X, ∂X) specifies a functor from R to Simp.

This means that when we vary the scale ε, there is a map between the associ-
ated complexes for a given data set (X, ∂X). And if we change a data set (X, ∂X)
to produce a new data set (Y, ∂Y) related via a Lipschitz map, there is a map con-
necting the associated complexes. For example, if we add some data points, so that
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Y = X ∪ A and the metric on Y restricts to ∂X on X ⊂ Y , then there is a map
VRε(X, ∂X)→ VRε(Y, ∂Y).

We now turn to the question of when these constructions can recover information
about the underlying geometric structure of the process that generated the data.

Question 2.1.10. Let (X, ∂X) be a finite metric space consisting of samples from
a topological space A. When is |VRε(X, ∂X)| or |Cε(X, ∂X)| homotopy equivalent
to A?

2.2 The Niyogi-Smale-Weinberger Theorem

In order to make sense of this question, we need to develop a precise model for
sampling from a topological space A. We will introduce a definition of geometric
sampling and study Question 2.1.10 in Chapter 3. However, to illustrate some of the
geometric principles that motivate TDA, in this section we will explain an answer
to the question in a very restricted context. Specifically, we describe a minimal
sanity check: we explain the Niyogi-Smale-Weinberger result that given a finite
metric space (X, ∂X) consisting of sufficiently many points sampled “uniformly”
from a compact Riemannian manifold M ⊂ Rn, with high probability there is
an isomorphism

H∗

⎛⎜⎜⎜⎜⎜⎝⋃
x∈M

Bε(x)

⎞⎟⎟⎟⎟⎟⎠ � H∗(M)

for some suitable choice of ε.
Going forward, we assume that we are given a compact manifold M ⊂ Rn that

has a Riemannian structure. Recall from Section 1.11 that roughly speaking, this
means that at each point of the manifold we can equip the tangent space with an
inner product, and these inner products vary smoothly as we move on the manifold.
As a consequence, M has a metric and there is a natural notion of volume of sub-
spaces of M. In particular, there is a natural notion of what it means to sample from
such a manifold, as the manifold is equipped with a probability measure called the
volume measure.

We want to estimate how many sampled points are necessary to estimate the
homology with high probability. When sampling from the volume measure on a
Riemannian manifold, it is straightforward to figure out how many points to sample
so that with probability > κ (for any fixed κ) we get an ε-net. Therefore, we can
reduce the problem to trying to understand when a finite ε-net X ⊂ M has the
property that for some ε′,

H∗(|Cε′(X, ∂X)|) � H∗(M).
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When such an isomorphism occurs depends on the size of the smallest geometric
features of the manifold. That is, we need to figure out how close together points
need to be in order for little balls around them to capture the structure of the man-
ifold. For a manifold M embedded in Rn, there are two distinct but interacting
factors that control how small ε has to be in order for the geometric nerve to have
the correct topology. We need to worry about the intrinsic curvature of the manifold,
and how “twisted” the embedding into Rn is. See Figure 2.5 for some examples of
possible embeddings of familiar geometric objects into Euclidean space.

Consider the case of S 1 embedded in R2. In order for the Čech nerve of an ε-net
to have the right homotopy type, we must be able to choose an ε′ such that

1. ε′ is large enough to cause points of the net around the circle to be connected
by 1-simplices, but

2. ε′ is small enough so that points across the circle are not connected by “cross-
cutting” 1-simplices.

The relationship between the scale ε and ranges of suitable values for ε′ is con-
trolled in part by the underlying topology of the circle – sufficiently large values
for ε′ will always result in 1-simplices that connect points across the circle. On the
other hand, for very twisty embeddings, we will need to choose an ε′ that is smaller
than the size of the twists.

We think of these considerations as packaged into a quantity we refer to as the
feature scale of the manifold. A very nice way to encode the feature scale of the
manifold is to use an invariant called the condition number. (This is sometimes
also referred to as the reach or feature size.) Any manifold embedded in Rn can

Figure 2.5 The difficulty in reconstructing a geometric object can come from both
the intrinsic curvature and the twistiness of the embedding in Rn.

Figure 2.6 A tubular neighborhood is formed by expanding a manifold along the
normal directions (perpendicular to its surface).
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Self-intersection

Figure 2.7 As the tubular neighborhood of a curve expands, eventually it self-
intersects at the narrowest “pinch.”

be thickened out to a tubular neighborhood of radius r; this is what one gets by
extending out along the normal at any point. (See Figure 2.6 for some examples.)

The condition number is the minimum radius at which a tubular neighborhood
of a manifold self-intersects; clearly, this can happen either because the manifold
itself has small features (e.g., small holes) or because the embedding twists the
manifold around on itself. (See Figure 2.7 for an example.)

The following theorem, due to Niyogi, Smale, and Weinberger [384], now
provides a concrete result guaranteeing correct estimation of the homology.

Theorem 2.2.1. Let M be a compact submanifold of Rn with condition number
τ and let {x1, . . . , xk} be a set of points drawn from M according to the volume
measure. Fix 0 < ε < τ

2 . Then if

k > β1

(
log(β2) + log

(
1
δ

))
,

there is a homotopy equivalence ⋃
z∈{x1,...,xk}

Bε(z) � M

between the union of balls and M (and in particular the homology groups coincide)
with probability > 1 − δ.

Here

β1 =
vol(M)

cosn(θ1)vol(Bn
ε
4
)

and

β2 =
vol(M)

cosn(θ2)vol(Bn
ε
8
)
,

where θ1 = arcsin
(
ε

8τ

)
, θ2 = arcsin

(
ε

16τ

)
, and vol(Bn

r ) denotes the volume of the
n-dimensional ball of radius r.
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Remark 2.2.2. Using different techniques, one can also prove an analogous result
directly for the Vietoris-Rips complex [3, 315].

To get a sense for what this means, it is helpful to do an explicit example.

Example 2.2.3. The condition number of a sphere is simply its radius. So for example,
for the unit circle S 1 ⊂ R2, the condition number τ is 1. Choosing δ = 0.01 and ε = 1

4 , we
compute that

cos2
(
arcsin

(
1
32

))
≈ 1 and cos2

(
arcsin

(
1
64

))
≈ 1

and so

β1 =
2π

π( 1
16 )2

= 512

and

β2 =
2π

π( 1
32 )2

= 2048,

which means that we need at least

512(7.6 + 4.6) ≈ 6260

samples.

Example 2.2.4. The condition number of a torus is the minimum of r1 and r2−r1
2 , where

r1 and r2 are the radii of the inner and outer bounding circles. We can repeat a similar
computation as above, using the fact that the volume (surface area) of the torus is (r2

2−r2
1)π2;

once again, we end up with a number of points in the thousands for reasonable values of δ
and ε.

These examples frame the application of Theorem 2.2.1 in high relief. On the one
hand, this result is of critical theoretical importance, and it provides a vital consis-
tency check for combinatorial approaches to estimating the homology of manifolds
from finite data. On the other hand, the explicit bounds are useless – in practice it
is difficult or impossible to estimate the condition number (although see [1]) and
moreover a result of 3000 points to estimate the homology of a standard circle in
R2 is clearly much too large. (To be sure, a direct argument can be used to obtain
a much tighter bound.) In applications, we will be much more concerned about the
stability of the result in the face of sampling variation and noise.

Remark 2.2.5. Theorem 2.2.1 is a statement about approximating the homotopy
type of a manifold via finite sampling. One might wonder how many samples are
required to estimate the homeomorphism type of M. Unfortunately, even in this
very restricted setting, the problem turns out to be hopeless. Assume that M is
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embedded in Rn and the condition number is a fixed constant. Then when the
dimension of M is larger than 2, the number of samples required to identify the
homeomorphism type is exponential in diam(M)n; see [533, §2.2] for a discussion.
These concerns are relevant when studying single cell data; see Chapter 7.

2.3 Persistent Homology

The Niyogi-Smale-Weinberger theorem (Theorem 2.2.1) shows that in principle it
is possible to accurately recover topological invariants of geometric objects from
discrete samples. We interpret the theorem to suggest that it is reasonable to hope
that in very general settings, when the distance between the samples is smaller
than some feature scale, we can recover topological invariants of the underlying
geometric object.

However, there is a key problem: the feature scale of the underlying object is
usually unknowable a priori. That is, given (X, ∂X) from M, how can we choose
ε so that the topological invariants of |VRε(X, ∂X)| recover information about the
topological invariants of M? Moreover, choosing a single ε is problematic – for
one thing, there might be distinct feature scales at which we can recover meaningful
information, for instance if the data has regions of varying size. Another issue is
that the topological invariants of |VRε(X, ∂X)| are very unstable; small amounts of
noise or sampling variation can cause large changes in the Vietoris-Rips complex
and its homology. That is, at any given scale some features might not be stable with
respect to noise or change of scale.

The guiding viewpoint that underlies topological data analysis is that we should
simultaneously look at multiple feature scales; stable homological features that
exist for a range of values of ε are likely to reflect the underlying signal, and this
approach allows us to capture multiscale information. A naive approach to imple-
menting this idea would simply be to vary ε and compute a collection of associated
invariants.

1. Choose a topological invariant, e.g., the homology group H2(−;Fp).
2. Select a range [εmin, εmax], εmin < εmax. This interval reflects the smallest and

largest feature scales that we will consider; a maximal choice would be to set
εmin = 0 and εmax = diam(X).

3. Choose values {ε1, ε2, . . . , εm} ⊂ [εmin, εmax]. An easy way to do this is simply
to consider the equally spaced values

εi = εmin + i
(
εmax − εmin

m

)
,

but it might make sense to bunch the values around regions of interest, if we
have domain knowledge about interesting feature scales.
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4. Compute the collection of vector spaces

{H2(|VRε1(X, ∂X)|),H2(|VRε2(X, ∂X)|), . . . ,H2(|VRεm(X, ∂X)|)}.
5. Compare these abelian groups; for example, make a graph of the ranks of the

free parts. If these are all non-zero and all the same, it suggests that there are
stable topological features of M at the feature scales in the interval [εmin, εmax].
If there is a subinterval [a, b] ⊂ [εmin, εmax] on which the ranks are the same,
we might conclude that there are stable topological features at those ranges of
scales. (Of course, there is no guarantee that we are not seeing different features
at the different scales; this procedure does not really help us match topological
features across scales.)

For an example of how this might work, consider the situation depicted in
Figure 2.8. When ε is smaller than the distance between points, the Vietoris-Rips

A

B C

D E

F G

Figure 2.8 As ε increases, more and more simplices appear in the Vietoris-Rips
complex.
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complex only has 0-simplices. As ε increases, we first see 1-simplices appear that
eventually connect the right hand circle. Then the left hand circle also appears.
Finally, the circles are “filled in” by simplices crossing the circles when ε is large
enough.

A first question is how to systematically choose the values {εi}. Ideally, we will
track places where VRε(X, ∂X) changes. Since X is finite, there are only finitely
many values {εi} at which the simplicial complex VRε(X, ∂X) changes. We can see
this because for ε > diam(X) the Vietoris-Rips complex has all 2|X| simplices and
as ε increases simplices are added but never removed.

Lemma 2.3.1. Let (X, ∂X) be a finite metric space. Then there exist at most finitely
many values {εi} where VRεi(X, ∂X) changes, i.e., such that for all sufficiently
small δ, ⎧⎪⎪⎨⎪⎪⎩VRε(X, ∂X) = Z ε ∈ [εi − δ, εi)

VRε(X, ∂X) = Z′ ε ∈ [εi, εi + δ]

and Z � Z′.

Therefore, we should choose {εi} to lie at these “inflection points” (and there is
an upper bound on how many values we need to consider).

However, the most critical step is the last one; we need to find a systematic
way to compare the various {H2(VRεi(X, ∂X))}. The key insight of persistence is
that since VR(−)(X, ∂X) is functorial in ε, for ε < ε′ we have a map of simplicial
complexes

VRε(X, ∂X)→ VRε′(X, ∂X),

and for a collection ε1 < ε2 < . . . < εm we obtain a sequence of simplicial maps

VRε1 (X, ∂X)→ VRε2 (X, ∂X)→ . . .→ VRεm(X, ∂X).

Since Hk is also a functor, applying Hk we obtain induced maps of abelian groups
or vector spaces

Hk(VRε(X, ∂X))→ Hk(VRε′(X, ∂X))

and

Hk(VRε1 (X, ∂X))→ Hk(VRε2 (X, ∂X))→ . . .→ Hk(VRεm(X, ∂X)).

More concisely, we can package this data as follows.

Definition 2.3.2. Given a fixed finite metric space (X, ∂X), the Vietoris-Rips
complex induces a functor

VR(−)(X, ∂X) : R→ Simp
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from R (regarded as the category associated to a partially ordered set) to the cate-
gory of simplicial complexes. Composition with the kth homology group functor
gives rise to a functor

Hk(VR(−)(X, ∂X)) : R→ Ab.

It is useful to organize the resulting functors themselves into categories.

Definition 2.3.3. Let C be a category. The category of filtered systems of C is the
category of functors F : R→ C with morphisms given by natural transformations.

Clearly, any filtered system of simplicial complexes produces a filtered system of
abelian groups or vector spaces. There are a variety of sources of filtered complexes
that are relevant in topological data analysis, but for expositional clarity, we will
focus on the Vietoris-Rips complex for the remainder of this discussion.

Example 2.3.4.

1. The Vietoris-Rips complex and Čech complex produce natural examples of filtered sys-
tems of simplicial complexes from the data of a finite metric space where we allow the
scale ε to vary.

2. Motivated by the perspective of Morse theory, we assume the underlying data is a sim-
plicial complex X along with a function h : X → R. There is now an induced filtered
system of simplicial complexes induced by the inverse images {h−1((−∞,−])}. That is,
for b > a, it is clear that h−1((−∞, a]) is a subcomplex of h−1((−∞, b]).

Remark 2.3.5. Note that the “Morse theoretic” perspective can be regarded as
a generalization of the finite metric space approach, as follows. Given a compact
subset K ⊆ Rn, define the distance function

∂K(z) = inf
k∈K

∂Rn(k, z).

Then for a finite set of points X = {x1, . . . , xn} ⊆ Rn, the filtered system of Čech
complexes associated to the level sets of ∂X is isomorphic to the filtered simplicial
complex {C∗(X, ∂X)}.

The functor Hk(VR(−)(X, ∂X)) provides a means of addressing our problem about
comparisons between the homology of the complexes as ε varies:

1. an element γ ∈ Hk(VRεi(X, ∂X)) is a k-dimensional feature at scale εi, and
2. we can determine the significance and stability of γ by finding the maximum

j > i such that the image of γ under the group homomorphism

θi j : Hk(VRεi(X, ∂X))→ Hk(VRε j(X, ∂X))

is non-zero.
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Roughly speaking, an element γ ∈ Hk(VRεi(X, ∂X)) represents a k-dimensional
hole in the geometric realization of the Vietoris-Rips complex at εi. If γ does not
exist for ε′ < εi, we think of this feature as being “born” at εi. When θi j(γ) = 0, it
means that the hole has been filled in by a collection of simplices with boundary
γ. This suggests that it makes sense to try to figure out the “lifespan” of a partic-
ular element in homology, i.e., when it first appears and when it vanishes. More
precisely, for a filtered simplicial complex X•, an element γ ∈ Hk(Xi; F) is

1. born at i if it is not in the image of Hk(Xi−q; F)→ Hk(Xi; F) for any q > 0, and
2. dies at � > i if it becomes zero in Hk(X�; F) or its image in Hk(X�; F) coincides

with the image of another class that was born earlier.

Thus, we can think of the information contained in the filtered system of vector
spaces as a series of elements with intervals representing their lifetime. Precisely,
the persistent homology of a finite metric space can be described via a “barcode,”
a collection of intervals. Each interval represents the lifespan of a homological
feature. (See Figure 2.9 for a simple representative example.)

Definition 2.3.6. A barcode is a multiset of non-empty intervals of the form either
[x, y) ⊂ R or [x,∞). (A multiset is a generalization of a set where repeated elements
are allowed, e.g., {1,1,2}.)

To be precise about the connection between persistent homology and barcodes,
we require some finiteness hypotheses that always hold in practice, since we only
have finitely many data points. We fix a field F for the remainder of this section.

Definition 2.3.7. A filtered simplicial complex is tame if the homology groups
Hi(−; F) are always of finite rank and change at only a finite number of indices.

By Lemma 2.3.1, the filtered complexes produced by applying the Vietoris-Rips
complex construction to a finite metric space are always tame.

A B

α β

Figure 2.9 In (A), we have an idealized Vietoris-Rips filtration: when ε = α, the
circle appears, and when ε = β, the circle is filled in. In (B), the barcode has a
single bar (representing a Z in homology) that appears at α and vanishes at β; this
is the homology of the circle, for as long as it lasts.
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Lemma 2.3.8. Let X : R → Simp be a tame filtered simplicial complex. The
filtered vector space produced as Hi(X(−);F) has the property that

1. each vector space Hi(X(ε); F) is of finite rank and
2. there exists N such that Hi(X(ε1); F) → Hi(X(ε2); F) is an isomorphism for
ε2 > ε1 > N.

We say such a filtered vector space is of finite type.

Remark 2.3.9. A filtered vector space of finite type can be regarded as indexed
on Z, where the integral indices correspond to values in R where the homol-
ogy changes.

The key classification result of Zomorodian and Carlsson [551] is then the fol-
lowing.

Theorem 2.3.10. Let F be a field. There is a bijection between the set of finite
barcodes and the set of isomorphism classes of filtered F-vector spaces of finite
type.

The basic idea of this classification is quite simple; we define interval modules,
which are filtered systems Iab of F-vector spaces {Vi} where for i ∈ [a, b], Vi = F,
and all the maps F → F are the identity (and the others are necessarily zero).
Then any filtered system of F-vector spaces is a direct sum of interval modules; the
interval modules correspond to the bars in the barcode representing the lifetime of
particular elements in homology.

Theorem 2.3.10 tells us that all of the information in the filtered system of vector
spaces can be encoded as barcodes. It is often useful to think of a barcode as a
collection of points in R2, specified by the endpoints of the intervals. Such a set
is referred to as a persistence diagram, and often it is regarded as containing the
entire diagonal (consisting of size zero bars).

In conclusion, we have the “persistent homology pipeline”⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
finite
metric
spaces

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭→
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

filtered
simplicial
complexes

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭→
{

barcodes / persistence
diagrams

}
.

We now turn to some examples of the use of barcodes to describe shape. When
k = 0, the persistent homology is describing a standard hierarchical clustering
construction.

Example 2.3.11. Recall from Theorem 1.10.10 that for a simplicial complex X, H0(X)
is computing the free abelian group on the components. In the case of VRε(X, ∂X) for a



138 Part I Topological Data Analysis

finite metric space (X, ∂X), H0(VRε(X, ∂X)) computes the single-linkage clustering at scale
ε of (X, ∂X).

When considering the persistent homology, observe that each cluster at time p+ i can be
thought of as resulting from the merger of clusters at i. This is clearly closely related to the
information encoded in the hierarchical clustering dendrogram associated to single-linkage
clustering. (See Figure 2.10 for comparison of the barcode and dendrogram for a synthetic
data set.)

In Figure 2.11, we see an idealized situation involving sampling from an object
in R2. In practice, however, the barcodes are often not so easy to interpret. Even
for geometrically simple situations, complications can arise. In Figure 2.12, we
illustrate how the barcode can change due to perturbation of the data by considering
a sequence of nested circles.

In Figure 2.13, persistent homology of genomic sequence data generated by coa-
lescent simulation is shown. As explained in Section 5.7, this is a way of modeling
evolutionary phenomena. Typically, one fits phylogenetic trees to the finite metric
space of sequences; here, we compute the persistent homology instead. Comput-
ing the first persistent homology group detects when “non-tree-like” events are
occurring, i.e., when there is genetic recombination. Another example of this kind
of application of persistent homology in studying recombination rates in the evo-
lution of bacteria is discussed in Section 5.6.3; see Figure 2.14. In both of these
applications, increased recombination can be detected by a large number of bars in
the PH1 barcode.

0
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15 20 25

Figure 2.10 For the data set on the left, both the dendrogram and the zeroth
persistent homology barcode capture how clusters merge as ε increases.
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A B C

D E F

Simplicial
complexes

Persistent 
homology
“barcode”

A B C D E F

Filtration scale

Dim. 0

Dim. 1

G Small loop in B
Large loop in D, E b1= 2

Figure 2.11 The points in panel A form a circle, with a horizontal gap separat-
ing upper and lower points. Panels A-F show the Vietoris-Rips filtration on these
points as ε increases. Panel G shows the barcode. PH0 (dimension 0) shows clus-
tering of the data at different scales; each horizontal bar in the barcode is a cluster.
In panel A (filtration scale 0), no points are connected; each is its own cluster
(represented as 17 horizontal bars). As the scale increases, points in the simpli-
cial complex connect, represented in the barcode as termination of a bar. There
are two distinct clusters through panels B and C and one cluster in panels D, E,
and F. PH1 (dimension 1) shows loops in the data at different scales. Each bar
in this part of the barcode identifies a different loop. There are two loops in this
data: a short-lived loop in the top-right of the simplicial complex at scale B, and
a long-lived loop appearing in panel D and persisting through panel E – this loop
is represented as the long bar in the dimension 1 barcode. Robust features of the
data set are captured in the barcode: the data clusters into two groups (two dimen-
sion 0 bars through scale C), and forms a loop (one long dimension 1 bar). The
persistent first Betti number (b1) is the total number of dimension 1 bars; here it
is equal to 2.

In Section 8.3, we discuss an application of persistent homology to study the
physical structure of DNA. Modeling DNA as a sequence of repeated units that
have prescribed interaction points, persistent homology can be used to extract
information about loops in the strands from a similarity matrix encoding the contact
of sites with other sites. (See Figure 2.15.)
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Figure 2.12 With two disjoint circles, we expect to see a barcode with two long bars, one significantly longer than the other to reflect the
difference in radius. But when the circles are nested, the bars are nearly the same length as the inner circle interferes with the outer circle.
Moreover, little loops connecting the two circles generate a lot of short bars. When the circles intersect non-trivially, we see an extra bar
representing the loop formed by the intersection. And finally when the circles are disjoint and separated, we see the expected two bars, one
longer and one shorter, corresponding to each circle.
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Figure 2.13 Two representations of the persistent homology of data from an
evolutionary simulation; see Section 5.7 for discussion. On the left, a barcode
diagram. On the right, a persistence diagram. Rather than identifying specific
bars with geometric features, in this case the count of the bars conveys important
information about the underlying process.

(a) Klebsiella pneumoniae (b) Salmonella enterica

Figure 2.14 Barcode diagrams reflect different scales of genomic exchange in K.
pneumoniae and S. enterica. Source: [161].

There are algorithms to compute the barcodes with running time cubic in the
number of simplices. See Section 2.7 and Appendix A for discussion of the
computational aspects of computing persistent homology.

2.4 Stability of Persistent Homology under Perturbation

In order to use topological invariants to describe data, it is essential that small
perturbations of the data give rise to small changes in the resulting invariants.
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H0

H1

A B

Figure 2.15 DNA can be simulated as a long polymer consisting of a large
number of monomeric units interacting at specific places. Here, we show the
data of a 50 Mb polymer with 10 fixed loops at random positions in the
genome consisting of 1000 monomeric units. (A) The average of 5000 simu-
lations allows us to construct a contact map. (B) Using persistent homology
in a similarity matrix derived from the contact map one can clearly iden-
tify the ten loops as ten long bars in dimension one persistent classes.
Source: [163].

One of the very useful aspects of persistent homology is that the set of bar-
codes forms a metric space; the distance between barcodes allows us to be precise
about measuring changes in the output of topological data analysis. For the input,
it turns out to be very useful to adopt a metric on the space of finite metric
spaces, the Gromov-Hausdorff distance. These metric space structures make it pos-
sible to prove stability theorems that relate perturbation of the input data in the
Gromov-Hausdorff metric to perturbation of the output barcodes in the barcode
metric [105, 117].

These stability results are the most important theorems in the subject. In order
to understand what they really say, we need to explain

1. what it means for two finite metric spaces to be close in the Gromov-Hausdorff
metric, and

2. what it means for two barcodes to be close in the barcode metric.

Definition 2.4.1. Let A and B be non-empty subsets of a metric space (X, ∂X).
Then we define the Hausdorff distance between A and B to be

dH(A, B) = max

(
sup
a∈A

inf
b∈B

∂X(a, b), sup
b∈B

inf
a∈A

∂X(a, b)

)
.

It is sometimes convenient to consider the equivalent formulation of the
Hausdorff distance as
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Figure 2.16 The Hausdorff distance is determined by the point in A with the
largest distance to the closest point in B (and vice versa).

B c AεA c BεB c AεA c Bε

Figure 2.17 The Hausdorff distance can be computed by considering the smallest
ε fattening of each set that contains the other.

dH(A, B) = inf
ε>0
{B ⊆ Aε , A ⊆ Bε},

where Aε and Bε denotes the sets of all points within distance ε of A and B,
respectively (see Figures 2.16, 2.17).

Example 2.4.2.

1. Let A ⊂ X and suppose that B is generated from A by perturbing each point a ∈ A by at
most ε; i.e., the points of B are in bijection with those of A and (denoting the bijection by
θ) we have ∂X(a, θ(a)) ≤ ε. For instance, consider A = {[0, 0, 0], [1, 2, 3], [−1, 0, 5]} ⊂
R3 and B = {[ε, 0, 0], [1, 2 + ε, 3], [−1, 0, 5 − ε]}. Then dH(A, B) ≤ ε.

2. The Hausdorff distance is heavily influenced by the single most extreme point; given
A ⊂ X, let A′ = A ∪ {x}. Then dH(A, A′) = mina∈A ∂X(x, a).

Lemma 2.4.3. The Hausdorff distance imposes a metric on the set of non-empty
subsets of a metric space (X, ∂X).

However, we cannot in general assume that the metric spaces we consider are
given as subsets of a common ambient metric space. A key insight of Gromov is to
circumvent this issue by considering the infimum of the Hausdorff distance over all
isometric embeddings of the two metric spaces into a larger ambient metric space.
Here an isometric embedding
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φ : (X, ∂X)→ (Y, ∂Y)

is an injective map X → Y such that

∂X(x1, x2) = ∂Y(φ(x1), φ(x2)).

That is, an isometric embedding identifies X with a submetric space of Y .

Definition 2.4.4. Let (X1, ∂X1) and (X2, ∂X2 ) be compact metric spaces. The
Gromov-Hausdorff distance between X1 and X2 is defined to be

dGH((X1, ∂X1), (X2, ∂X2)) = inf
θ1 : X1→Z
θ2 : X2→Z

dH(X1, X2).

Here θ1 and θ2 are isometric embeddings of (X1, ∂X1 ) and (X2, ∂X2) in (Z, ∂Z) respec-
tively (see Figure 2.18 for an example); the infimum is taken over all such (Z, ∂Z)
and embeddings θ1 and θ2.

We will say that two metric spaces are isometric if there exists an isomorphism
f : X → Y that preserves all distances. This clearly defines an equivalence relation
on the set of metric spaces.

Theorem 2.4.5. The Gromov-Hausdorff distance is a metric on the set of isometry
classes of compact metric spaces.

Figure 2.18 The Gromov-Hausdorff distance is computed by minimizing over
all embeddings; here, the embedding on the right has a much smaller Hausdorff
distance between the two image sets than the embedding on the left.
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As defined above, it is hard to see how one might ever compute the Gromov-
Hausdorff distance in practice. For this purpose, an alternative formulation is
useful; it is also conceptually helpful in understanding what dGH is measuring. Let
R be a correspondence between X1 and X2, i.e., a subset of X1 × X2 such that
there exists a tuple with first coordinate x for each x ∈ X1 and a tuple with second
coordinate y for each y ∈ X2.

The Gromov-Hausdorff distance can now be described by the formula

dGH((X1, ∂X1 ), (X2, ∂X2 )) = inf
R⊆X1×X2

1
2

⎛⎜⎜⎜⎜⎝ sup
(x,x′)∈R,(y,y′)∈R

|∂X1(x, y) − ∂X2(x′, y′)|
⎞⎟⎟⎟⎟⎠ .

Roughly speaking, the Gromov-Hausdorff distance measures the maximum distor-
tion in the best matching between the two metric spaces.

Example 2.4.6.

1. Suppose that X′ is an ε-net in X (recall that this means that for each x ∈ X, there exists
a point x′ ∈ X′ such that ∂X(x, x′) < ε). Then dGH((X′, ∂X), (X, ∂X)) < ε.

2. Let (X, ∂X) be a metric space and suppose that (X′, ∂X′ ) is formed by adding a sin-
gle point {z} to X such that ∂X′(z, x) = κ > diam(X) for any x ∈ X. (That is, we
are adding a single point to X which is “far away” from the rest of the points.) Then
dGH((X, ∂X), (X′, ∂X′)) > κ

2 .
3. Suppose that (X, ∂X) and (Y, ∂Y ) are isometric metric spaces. Then dGH((X, ∂X),

(Y, ∂Y )) = 0.

There is an interesting body of work on the topology induced on the set of
isometry classes of compact metric spaces by dGH . For our purposes, one thing
to observe is that any compact metric space can be approximated as the Gromov-
Hausdorff limit of finite metric spaces. (See Figure 2.19 for an example of this kind
of convergence.)

Lemma 2.4.7. Given a compact metric space (X, ∂X), let {Xn} denote a sequence
of finite 1

n -nets in X. Then

lim
n→∞ dGH((X, ∂X), (Xn, ∂X)) = 0.

The Gromov-Hausdorff distance is a suitable means for capturing perturbations
of data sets that involve bounded changes in each point, and therefore for measur-
ing the impact of certain kinds of noise. On the other hand, Example 2.4.6 makes
it clear that arbitrary changes in a constant number of points can cause arbitrary
changes in the Gromov-Hausdorff distance. We will return to a discussion of this
phenomenon in Chapter 3; see Section 3.4 in particular.
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1 2 3

4 5

Figure 2.19 Samples of points that lie on a circle converge to the circle in the
Gromov-Hausdorff distance as the sampling density increases.

We now turn to the description of various metrics on the set of barcodes. We
begin with the bottleneck distance. Given two intervals [a1, b1) and [a2, b2), define

d∞([a1, b1), [a2, b2)) = max(|a1 − a2|, |b1 − b2|).
We extend d∞ to include ∅ by defining

d∞([a, b), ∅) = |b − a|
2

.

Now given two barcodes B1 and B2, we define a matching between B1 and B2

as follows. Without loss of generality, assume that |B1| < |B2|. Then a matching is
specified by a bijection φ : A1 → A2, where A1 is a multi-subset of B1 and A2 is a
multi-subset of B2. We formally add ∅ to B1 and B2, and we regard the elements of
B1 \ A1 and B2 \ A2 as matched with ∅.

Definition 2.4.8. Let B1 and B2 be barcodes. The bottleneck distance is defined
to be

dB(B1, B2) = inf
φ

sup
Z∈B1

d∞(Z, φ(Z)),

where φ varies over all matchings between B1 and B2 and the supremum is taken
over bars in B1.

Roughly speaking, the bottleneck distance measures the worst discrepancy in
the best matching between the two barcodes. Note that two barcodes which are a
distance ε apart in the bottleneck distance could differ in an essentially arbitrary
number of short bars of length less than ε

2 . Put another way, two barcodes are close
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Figure 2.20 The bottleneck distance on barcodes is computed by matching long
bars. Figure from experiment performed by Elena Kandror, Abbas Rizvi, and Tom
Maniatis at Columbia University, with permission.

Figure 2.21 The bottleneck distance when expressed in terms of persistence dia-
grams is computed by matching nearby points and assigning points close to the
diagonal to the nearest diagonal point.

in the bottleneck distance if after ignoring “short” bars, the endpoints of matching
“long” bars are close (see Figures 2.20 and 2.21 for examples.)

There are other sensible metrics on the space of barcodes, most notably including
mass transportation (Wasserstein) metrics. Since it will be convenient for later use,
we will also introduce the Wasserstein metric here.

Definition 2.4.9. Let B1 and B2 be barcodes. For p > 0, the p-Wasserstein
distance is defined to be

dWp(B1, B2) =

⎛⎜⎜⎜⎜⎜⎜⎝inf
φ

∑
Z∈B1

d∞(Z, φ(Z))p

⎞⎟⎟⎟⎟⎟⎟⎠
1
p

.

We can now state the stability theorem for persistent homology, arguably the
most important theorem in the subject [117]. (See Figure 2.22 for an illustration.)

Theorem 2.4.10. Let (X, ∂X) and (Y, ∂Y) be finite metric spaces. Then for all k ≥ 0,

dB(PHk(VR(X, ∂X)),PHk(VR(Y, ∂Y))) ≤ dGH((X, ∂X), (Y, ∂Y)).
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Figure 2.22 The two samples are close together in the Gromov-Hausdorff dis-
tance; although at various ε the homology groups are different, the barcodes are
close together.

Remark 2.4.11. Analogous results hold when using the Čech complex or using
the Wasserstein metric.

There are versions of the stability theorem expressed in terms of the “Morse fil-
tration” approach to persistent homology as well. The set of functions { f : X → R}
can be endowed with a metric specified as

d∞( f , g) = sup
x∈X
| f (x) − g(x)|.

We say that a function f : X → R is admissible if Hk( f −1(−∞, t];F) is finite rank
for all t ∈ R.

Theorem 2.4.12. Let X be a topological space. Let f , g : X → R be admissible
functions. Then for all k ≥ 0,

dB(PHk(X, f ), PHk(X, g)) ≤ d∞( f , g).

Using the observation of Remark 2.3.5 and the relationship between the Čech
and Vietoris-Rips complex, we can regard Theorem 2.4.12 as a generalization of
Theorem 2.4.10.

Remark 2.4.13. Theorems 2.4.10 and 2.4.12 are incarnations of an algebraic
stability theorem, which says that for persistence modules that are κ-interleaved
(which is a precise way of expressing the notion of being approximately
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isomorphic), the resulting barcodes are within κ in the bottleneck metric [42, 107].
This formulation of the stability theorem allows us to substantially weaken the
hypotheses necessary to apply it and also extends its reach.

2.5 Zigzag Persistence

Persistent homology is defined in situations where we have a filtered system of
complexes. As we have described above, these filtrations typically arise by varying
a scale parameter of some sort. Sometimes, however, we might not expect to have a
filtration but rather some kind of more general diagram. That is, a natural question
that arises is whether other “filtration shapes” could be used as input. We now
discuss an answer to the following specific form of this question [91].

Question 2.5.1. Does a construction like persistent homology make sense when
considering “filtrations” in which not all the arrows go in the same direction?

This more general kind of diagram can easily arise in practice. For example,
suppose we consider many sets of samples Xi from each fixed metric space (X, ∂X).
We then can form the sequence

where the maps are the obvious inclusions (Figure 2.23).
Applying the composite of Hk(−; F) and the Vietoris-Rips complex functor

(for some fixed ε) to this sequence yields a corresponding diagram of F-vector
spaces

In order to study these sorts of “filtrations” more carefully, we need to develop
some notation for describing the pattern of arrows. To do this, we consider zigzag
diagrams of shape S , where S is a string on the alphabet L,R.

Figure 2.23 We get a natural zigzag by taking unions of samples.
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Definition 2.5.2. A zigzag diagram (or zigzag module) of shape S is defined to
be a sequence of linear transformations between F-vector spaces:

where each map fi has its direction specified by the ith letter of the string S . (This
is also referred to as a zigzag module.)

The definition of a zigzag diagram is a strict generalization of the notion of
a filtration. When the shape S is RRRRRRRRR . . .R or LLLLLLL . . . L, a zigzag
diagram is simply a filtered F-module.

Example 2.5.3.

1. Let S = RRR. Then a zigzag diagram of shape S is a diagram

M1 → M2 → M3 ← M4

of vector spaces.
2. Let S = RLRLRL. Then a zigzag diagram of shape S is a diagram

M1 → M2 ← M3 → M4 ← M5 → M6 ← M7

of vector spaces.

In the original setting for persistent homology, it was intuitively clear that the
“lifespan” of a homological feature was an interesting topological invariant associ-
ated to a filtration. When working with zigzag diagrams, the corresponding idea is
that of a homological feature that is “consistent” across the zigzag. For example, if
we are considering a zigzag of shape RL,

then a zigzag feature should represent a collection of elements m1 ∈ M1,m2 ∈
M2,m3 ∈ M3 consistent in the sense that f1(m1) = m2 = f2(m3). In the context of
the sampling example we started with, a zigzag feature should represent some kind
of geometric property that is stable across different samples.

To work with this notion, one would again hope for an analogue of Theo-
rem 2.3.10 that allows us to characterize homological invariants of zigzag diagrams
in terms of some kind of numerical invariant like barcodes. We now switch to using
the zigzag module terminology.

Definition 2.5.4. A zigzag submodule N of a zigzag module M of shape S is a
zigzag module of shape S such that each Ni is a subspace of Mi and the maps are
determined by the restrictions of the fi.
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Example 2.5.5. Let F = R, and suppose we are given the zigzag module

where the first map is x �→ (x, 0) and the second map is x �→ (0, x). Then there is a zigzag
submodule

where the R in the middle comes from the first coordinate of R2; the maps are now x �→ x
and x �→ 0.

We say that a zigzag submodule M is decomposable if it can be written as the
direct sum of non-trivial submodules {Nj} (recall Definition 1.6.40); otherwise, we
say it is indecomposable.

Lemma 2.5.6. Any zigzag module M of shape S can be written as a direct sum
of indecomposables in a way that is unique up to permutation.

Indecomposable zigzag modules have a very constrained form.

Definition 2.5.7. An interval zigzag module of shape S is a zigzag module

where for fixed a ≤ b, ⎧⎪⎪⎨⎪⎪⎩Xi = F, 1 ≤ a ≤ i ≤ b ≤ k

Xi = 0, otherwise

and the maps between the F are the identity map, and the zero map otherwise.

We can now state the main theorem that gives rise to zigzag barcodes.

Theorem 2.5.8. The indecomposable zigzag modules are precisely the interval
zigzag modules.

As a consequence, we can obtain a barcode multiset which is referred to as
the zigzag persistence, and tends to be represented the same way as persistence
barcodes (Figure 2.24).

In Section 5.4.3, zigzag persistence is used to study HIV in tissue samples taken
from central nervous system (CNS) and non-CNS regions. See Figure 2.25 for an
indication of the data.
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Figure 2.24 The bars represent features that persist across zigzags.

Patient CX

Patient GA

CNS Non-CNSCombined

Figure 2.25 Phylogenetic networks of HIV-1 gp120 sequences obtained from
Patients CX and GA. Each node represents one sequence; larger nodes show
sequences that were sampled multiple times. Blue nodes were sampled from the
CNS; red nodes were sampled from elsewhere in the body. The position of each
node is determined by the first two principal components (computed via MDS)
of genetic distance (Hamming distance). The network backbone (thin gray edges)
is a minimum spanning tree, and the thick red and blue edges are generators of
cycles identified by persistent homology. Red cycles denote putative recombina-
tion events that involve sequences sampled fully outside the CNS; blue cycles
denote events that involve some sequences from the CNS.

We now discuss a basic zigzag that arises from metric data. In what follows, let
(X, ∂X) be a finite metric space, and choose an ordering for the points – we will
denote the ordering as
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X = {x1, x2, x3, . . .}.
Let Xk denote the subset of X consisting of the first k points in the ordering, i.e.,

X1 = {x1}, X2 = {x1, x2}, X3 = {x1, x2, x3},
and so on. We can then define a series of distinguished scales εi = dH(Xk, X). Notice
that εi ≥ εi+1; Xi+1 will always be at least as close to X as Xi in the Hausdorff
distance.

Definition 2.5.9. Choose real numbers α > β > 0. The Rips zigzag consists of
the zigzag module specified by the diagram of simplicial complexes

Notice that the constituent complexes in this zigzag have size controlled by the
limits α and β; it was originally proposed by Morozov for the purpose of computa-
tional efficiency. Work of Oudot and Sheehy [393] provides theoretical validation
for the use of this zigzag, showing that when X ⊆ Rn is close in Hausdorff distance
to a well-behaved compact subset Y ⊆ Rn, then there are long zigzag intervals in
the Rips zigzag that permit recovery of the homology of X for suitable α and β. (As
with Theorem 2.2.1, the actual numerical bounds extracted from these results are
much larger than needed in practice.)

Finally, given the central importance of the stability theorem for persistent
homology, one would hope for something similar in the context of zigzag per-
sistence. In [91], stability results were proved in the context of a particular
construction of zigzags from finite metric spaces, the level set zigzag diagram. In
general, the specific form of stability results depends on the particulars of the pro-
cess of constructing the zigzag. Nonetheless, theoretical considerations [67] show
that essentially any reasonable procedure for producing zigzag modules will have
some kind of stability theorem.

2.6 Multidimensional Persistence

The underlying idea of persistence, namely that a sensible way to cope with uncer-
tainty about parameter settings is simply to aggregate information as the parameter
changes, is a powerful and general one. But why limit ourselves to just the feature
scale? There are often many parameters which we might like to apply persistence
to: for example, in the motivating example for zigzag persistence, it would make
sense to vary both the samples and the feature scale ε. And in many probabilistic
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settings we want to simultaneously vary a density parameter as well as ε. In this
section we discuss two approaches to considering persistence in multiple directions.
First, we explain a systematic framework for multidimensional persistence. Then
we discuss a closely related idea, the persistent homology transform.

2.6.1 Multidimensional Persistence

In many situations, it is natural to consider multiple filtrations on a data set; e.g., for
a finite metric space (X, ∂X) one filtration will come from the distance scale param-
eter and another from an additional property of the data. A key motivating example
arises when the density of the data is not uniform: it often makes sense to consider
one filtration direction generated by the distance scale and another generated by
density.

Provided that these filtrations interact in a natural way, we can define multidi-
mensional persistent homology as a generalization of the definition of persistent
homology given above. Specifically, we regard Rn as a partially ordered set and
hence a category by setting {a1, . . . , an} ≤ {b1, . . . , bn} when each ai ≤ bi.

Definition 2.6.1. A multifiltered system of simplicial complexes is a functor from
Rn to simplicial complexes. A multifiltered vector space is a functor from Rn to
F-vector spaces.

Explicitly, for n = 2, a multifiltered complex {Xα,β} is specified by a commutative
diagram

for any x1, x2 ∈ [a, c] and y1, y2 ∈ [b, d].

Example 2.6.2. Suppose we have a finite metric space (X, ∂X) and a codensity function
γ : X → R, where γ is small at higher density points and large at sparse points. For example,
γ could be a normalized count of the distance to the kth-nearest neighbor. (Here k is a
parameter that has to be chosen.) Then we define a functor

R × R→ Simp

via the formula

(ε, δ) �→ VRε(γ
−1(−∞, δ]).

Given any multifiltered complex, by passing to homology, we obtain a multi-
filtered vector space, the multidimensional persistent homology. There is again
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a structure theorem for multifiltered vector spaces, but in contrast to the one
dimensional case, the irreducible objects are not easily described. As a con-
sequence, there is no tractable analogue of the barcode in this context which
completely describes the isomorphism type of the multifiltered vector space, and
so no easy summarization of the results of computing multidimensional persistent
homology.

A number of possible solutions to this problem have been proposed: even though
there is no complete invariant, there are many interesting invariants which capture
partial information that are relevant to data analysis.

1. Zomorodian and Carlsson proposed the rank invariant: this is the numerical
invariant obtained by taking the ranks of the maps in the filtration [92].

2. Lesnick and Wright studied in detail the “fibered barcode,” a version of the rank
invariant (introduced under a different name in [99]), which is the collection
of invariants obtained by choosing lines through the filtrations and computing
the one dimensional persistence in that direction [325]. They have developed a
tool, Rivet [324], that supports exploratory data analysis in this context, display-
ing the rank invariant as well as the bigraded Betti numbers. See Figures 2.26
and 2.27 for examples.

2.6.2 The Persistent Homology Transform

In the general spirit of persistence, one approach to choosing lines through the
filtration is to consider the collection of all of them at once. We now discuss
an implementation of this idea in the restricted context of surfaces embedded in
Euclidean space.

Beyond difficulties in computing persistent homology, as we discuss in detail in
Chapter 3, it can be difficult to interpret the results of persistent homology computa-
tions even for data embedded in comparatively low-dimensional Euclidean spaces
Rn for n > 3. One approach to this issue is to restrict attention to spaces embedded
in R2 or R3; such examples arise when considering surfaces, for instance. In the
setting of cancer genomics, motivating examples arise from the imaging of tumors,
as we discuss in a bit more detail in Section 3.8.

When working in R2 or R3, filtrations generated by a height function seem par-
ticularly useful. However, one issue with filtrations generated by height functions
is that they depend on a choice of orientation – along which direction do we mea-
sure height? Just as the basic idea of persistence is to consider all scales at once,
a simple approach is to consider all possible orientations at once. We now explain
a direct approach to considering a kind of multidimensional persistence in this
setting [510].
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Figure 2.27 Multidimensional persistence for the HIV data set. From Mon-
ica Nicolau, Arnold J. Levine, Gunnar Carlsson, Proceedings of the National
Academy of Sciences Apr 2011, 108 (17), 7265–7270. Reprinted with Permission
from Proceedings of the National Academy of Sciences.

Suppose that our data is presented as a finite simplicial complex M embedded
in Rd. For each direction, represented by a point v ∈ S d−1, we define a filtration of
M as

M(v)ε = {x ∈ M | x · v ≤ ε}.
We can now consider summarizing M by considering the persistent homology of
each of these filtrations in aggregate. Specifically, we have the following definition.

Definition 2.6.3. The persistent homology transform of M ⊆ Rd is the function

PHT: S d−1 → Bd

specified by the assignment

v �→ [PH0(M(v)•), PH1(M(v)•), . . . ,PHd(M(v)•)].

The main theorem of [510] shows that in dimensions 2 and 3, we can use the
collection of persistent homologies here to uniquely characterize the input object.

Theorem 2.6.4. Let d = 2 or d = 3. Then PHT specifies an injective function
from the set of finite simplicial complexes M ⊂ Rd to the set of functions from
S d−1 toBd.
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2.7 Efficient Computation of Persistent Homology

In order for topological data analysis to be useful in practice, it must be pos-
sible to efficiently compute invariants like PH of real data sets. For example,
one reason for the ubiquity of linear regression, PCA, and clustering in data
analysis is the ease of computation, even for large data sets. Moreover, since
many applications of TDA are in the context of exploratory data analysis, it is
important that repeatedly recomputing with different parameters be feasible. In
this section, we give an overview of the source of computational difficulty in
applying TDA; Appendix A has a more detailed discussion of specific software
packages.

As a baseline for comparison, we note the following.

1. Computing the single-linkage clustering dendrogram for a finite metric space
(X, ∂X) where |X| = n can be done in time proportional to n log n.

2. Similarly, Mapper (described in Section 2.8) can also be computed very
efficiently.

Persistent homology is another matter. As is evident from the discussion of the
computation of homology, persistent homology cannot be computed much more
efficiently than matrix multiplication on matrices with dimensions given by the
number of simplices – and for non-sparse matrices, practical algorithms for matrix
multiplication are roughly cubic.

To compute persistent homology, we proceed as follows. Suppose that we have a
filtered simplicial complex X. We choose a total ordering of the simplices of X that
is compatible with the filtration on X; i.e., σ < τ if σ appears in a lower filtration
than τ. (The order of simplices within a given filtration level is arbitrary.) Let n
denote the number of simplices of X. We now form the n × n matrix D defined by
the formula

Di, j =

⎧⎪⎪⎨⎪⎪⎩1, if σi is a codimension 1 face of σ j

0, otherwise.

We now define low( j) to be the row number of the last 1 in column j; we set
low( j) = 0 if column j consists only of zero entries. We will say that the matrix D
is reduced if low( j1) � low( j2) for j1 � j2. The following algorithm reduces the
matrix D:

for j = 1 to n

while there exists k < j such that low(k) = low(j) != 0:

add column k to column j
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The algorithm clearly terminates, since each step decreases low in a given col-
umn. We can extract the persistence diagram from the reduced form of D by
observing that the pairs ( j, low( j)) specify persistence intervals.

The serious issue that arises here is the dependence of the running time on the
number of simplices. For example, for the Vietoris-Rips complex (or the Čech
complex), this can be a problem when the feature scale ε approaches the maximum
distance between any pair of points in the data set.

Lemma 2.7.1. Let (X, ∂X) be a finite metric space, and choose ε > diam(X), i.e.,

∀x, y ∈ X, ε > ∂X(x, y).

Then VRε(X, ∂X) has 2|X| simplices.

The inexorable conclusion of Lemma 2.7.1 is that in order to efficiently com-
pute persistent homology, it will be necessary to control the number of simplices.
One way to do this is to only work with low-dimensional homology; state of the
art implementations (see Appendix A) can handle thousands of points when com-
putation is limited to H1. A general approach to this problem is simply to study
the Vietoris-Rips complex over a range [0, εmax] that ensures a tractable number
of simplices at εmax. Another technique is to take many subsamples from (X, ∂X)
such that each subsample results in tractable persistent homology computations,
and then combine the persistent homology of the subsamples in some way to esti-
mate the persistent homology of X. This idea is part of the motivation for zigzag
persistence, notably the Rips zigzag of Definition 2.5.9. Because zigzag persistence
can be used in contexts where we control the size of the maximal complex, modern
implementations can be used on data sets with thousands of points. Moreover, tech-
niques for combining such subsamples in a systematic way along with methods for
understanding error and variability in the results lead us naturally into the domain
of statistical methods; we explore this in detail in the next chapter.

Another possibility is to construct a smaller complex. An early approach to this
is the weak witness (or weak Delaunay) complex [458]. The idea is to choose as
vertices a set of landmarks but use all of the data points to determine the complex.

Definition 2.7.2. Let (X, ∂X) be a finite metric space. Consider a set of points

A = {x0, x1, . . . , xk} ⊂ X.

Then a point w ∈ X is a weak witness for A if ∂X(w, xi) ≤ ∂X(z, xi) for all i and
z ∈ X − A.
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Roughly speaking, the witness complex will only include simplices for which
weak witnesses exist.

Definition 2.7.3. Let L ⊂ X be a subset of the finite metric space (X, ∂X).
The witness complex is the simplicial complex specified by the rule that a sim-
plex [x0, x1, . . . , xk] for xi ∈ L is in the complex if all subsimplices admit weak
witnesses.

In practice, the landmarks are often picked randomly or using an algorithm to
maximize dispersion (Figure 2.28).

Although very attractive from the perspective of efficiency, the witness complex
has problematic theoretical properties:

1. There do not appear to be good stability theorems for the witness complex,
2. the dependence on choice of landmarks is not well understood [105], and
3. the witness complex can fail to reconstruct the homotopy type even in simple

examples [215].

In light of these issues, we believe that the only way to extract information from
witness complexes is by using the statistical techniques outlined in the next chapter.

For points embedded inRn, other “small” complexes come from consideration of
the Voronoi tesselation of Rn. For example, the Delaunay complex is the simplicial
complex obtained as the nerve of the cover of Rn given by the sets Ux for x ∈ X,
where

Ux = {z ∈ Rn | ∂X(x, z) ≤ ∂X(x′, z) ∀x′ ∈ X}.
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Figure 2.28 The landmark points give rise to concise simplicial circles that
capture the topology of the data.
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In low dimensions, the Delaunay complex can be computed very efficiently and
faithfully recovers the homotopy type of X, although the dependence on the ambi-
ent dimension is exponential in general. A variant of this is called the α-complex,
which again can be computed efficiently in low dimensions. (Both of these com-
plexes can be computed for data sets consisting of thousands of points via state the
art packages.)

As another example, using techniques from the theoretical computer science lit-
erature about approximation of metric spaces, the paper [455] explores how to build
a hierarchical collection of approximations to suitable finite metric spaces such
that for any given accuracy the computation time is linear in the number of points
X. Here, suitable means that the metric space has constant doubling dimension,
which is a measure of how the volume of balls changes as the radius changes. Note
however that metric spaces with doubling dimension d admit low distortion embed-
dings into Rd; from a practical perspective, it is not clear when these complexes are
useful.

2.8 Multiscale Clustering: Mapper

For very large data sets, the techniques of topological data analysis described above
can be computationally infeasible. For example, the number of simplices in the
Vietoris-Rips complex can grow too rapidly for computation of higher (persistent)
homology to be practical. (See Section 2.7 and Section 3.4 for various ways to
address this problem.) Another issue is that the output of persistent homology can
be hard to interpret for large high-dimensional data sets. An approach to answering
these questions when handling very large data sets is to consider integration of
ideas of persistence with clustering.

In this section, we describe a method for multiscale clustering: this is the Mapper
algorithm of Singh, Mémoli, and Carlsson [462]. Roughly speaking, the idea of
Mapper is to define a function on the data set, for example a measure of local
density, and then perform clustering at different ranges of values of this function
and keep track of how the clusters change as these ranges vary.

The basic framework assumes the data is presented as a finite metric space
(X, ∂X) and we choose

● a filter function f : X → Rn, and
● a cover C = {Uα} of the range of f in Rn; typically this cover is taken to be a

collection of overlapping closed boxes. In the case of n = 1, a typical cover is a
collection of closed intervals.

We now proceed as follows. This algorithm amounts to a discretization of the
Reeb graph (see Section 1.12) at each scale.



162 Part I Topological Data Analysis

1. Cluster each inverse image f −1(Uα) ⊆ X, regarded as a metric subspace of X,
for all Uα ∈ C; denote by Cα,i the ith cluster. (Any clustering algorithm can
be used that takes as input only the interpoint distances and does not require
specification of the number of clusters; single-linkage clustering is a standard
choice.)

2. Form a graph where the vertices are given by the clusters Cα,i as α and i vary
and there is an edge between Cα,i and Cα′, j when

Cα,i ∩Cα′, j � ∅ (clusters overlap).

3. Finally, we assign a color to each vertex in the graph corresponding to a
particular cluster Cα,i according to the average value of f on x ∈ Cα,i.

The results are of course dependent on the choice of filter function and the cover;
this algorithm is well adapted to the methodology of exploratory data analysis,
where we are trying to understand the data without an explicit hypothesized model
to describe it. For the cover, it is standard to try successive refinements of the range
of f , sometimes equally spaced, but often with increased resolution in areas where
we expect more interesting behavior to occur. Standard filter functions include den-
sity measures and eccentricity measures; these depend on the data, and we will see
in the examples and applications many different useful choices of filter function.

Example 2.8.1.

1. Let (X, ∂X) be any finite metric space, f : X → R an arbitrary function, and C =
{(−∞,∞)}. Then the output of Mapper is simply the graph consisting of a point for
each cluster of (X, ∂X), no edges, and the clusters colored with the average value of f
on the cluster. (See Figure 2.29 for an example.)

2. Let (X, ∂X) be any finite metric space, f : X → R an arbitrary function, and C =
{[0, 1], [2, 3]}. Writing

X[0,1] = f −1([0, 1]) and X[2,3] = f −1([2, 3])

the output of Mapper is the union of a collection of vertices for the clusters of X[0,1]

and a collection of vertices for the clusters of X[2,3]. Again, there are no edges, since the
cover does not overlap, and the colors represent the average values of f on the cluster
corresponding to the vertex.

3. Now consider the previous example, but modify the cover to be C = {[0, 1], [0.5, 3]}. In
this case, there are potentially edges between the vertices for clusters that overlap.

4. Consider points sampled densely from a unit circle in R2, let f : X → R be the function
(x, y) �→ x that takes a point to its x-coordinate, and take C to be a series of overlapping
subsets of [−1, 1]. (Specifically, we take ten intervals which overlap by 25% on each
side.) Then the Mapper graph recovers the circle; see Figure 2.29.
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Figure 2.29 Top: The filter function is a projection onto the x-axis and there are 10
overlapping charts; the Mapper graph recovers the topology of the circle. Bottom:
When there is a single chart that covers the domain, Mapper just returns the results
of clustering, colored by the filter function (in this case, distance from the mean
of the data). From Abbas H. Rizvi et al., Nature Biotechnology 35, 551–560 (270).
c© 2017 Nature. Reprinted with Permission from Springer Nature.

In practice, Mapper has turned out to be very useful for identifying clinically sig-
nificant subsets of the data that are hard to find with traditional clustering methods.
It has also been an effective way to represent the structure of the data set across fea-
ture scales. To give a sense of what this means, we illustrate with some examples
of the use of Mapper on real data.

Example 2.8.2. An early and celebrated example of the application of Mapper was
work on a breast cancer data set, by Nicolau, Levine, and Carlsson [383]. The data here is
presented as a finite metric space comprising vectors of expression data in Rn. Expression-
based classification of tumors is a well-studied problem and has been the subject of a vast
number of papers (e.g., see [236, 512]); clustering is the standard technique here. However,
there is reason to worry about the efficacy of basic clustering techniques: for example,
different tumors activate or suppress pathways with varying strengths, and there is widely
variable infiltration of healthy cells into tumor samples. As a consequence, one expects
clinically significant features to appear at varying scales.
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The analysis used samples from 295 breast cancers as well as additional samples from
normal breast tissue; see Figure 2.30. The original expression vectors were in R24479, but
a preprocessing step projected them into R262.

● The distance metric was given by the correlation between (projected) expression vectors.
● The filter function used was a measure taking values in R of the deviation of the

expression of the tumor samples relative to normal controls.
● The cover was overlapping intervals in R.

In the Mapper graph, the samples divide into two branches. The lower right branch itself
has a subbranch (referred to as c-MYB+ tumors), which are some of the most distinct from
normal and are characterized by high expression of genes including c-MYB, ER, DNALI1
and C9ORF116. Interestingly, all patients with c-MYB+ tumors had very good survival
and no metastasis. These tumors do not correspond to any previously known breast cancer
subtype; the grouping seems to be invisible to classical clustering methods – for example,
hierarchical clustering fails to identify this particular subset of tumors (see bottom left of
Figure 2.30). We will study this example in detail in Section 6.7.

Example 2.8.3. Another interesting application of Mapper is to the study of the dif-
ferentiation process from murine embryonic stem cells to motor neurons. The process is
demonstrated in Figure 2.31; over time, undifferentiated embryonic cells become differen-
tiated motor neurons when retinoic acid and sonic hedgehog (a differentiation-promoting
protein) are applied.

The data generated corresponds to RNA expression profiles from roughly 2000 single
cells.

● The distance metric was provided by correlation between expression vectors.
● The filter function used was multidimensional scaling (MDS) projection into R2; as we

review in Section 4.2, this is a procedure for embedding an arbitrary metric space in a
lower dimensional Euclidean space.

● The cover was overlapping rectangles in R2.

As can be seen in Figure 2.32, the Mapper diagram neatly identifies various regions char-
acterized by their state in the differentiation process; in contrast, conventional clustering
directly applied to the raw metric data does not produce clusters that encode information
about the progress of differentiation. We will study this example in Section 7.3.

One potential concern for applications is the fact that the Mapper algorithm is not
stable in the sense that we have described for persistent homology. For one thing,
choice of parameters for the clustering algorithm can lead to unstable results; for
example, when hierarchical clustering is used, the results are very sensitive to the
choice of cutoff parameter. Worse, it is possible to construct examples of metric
spaces (X, ∂X) and a cover C such that two very similar filter functions give rise to
very different results.
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Day 2 Day 6 Day 3 Day 4 Day 5 

Figure 2.31 Over time, embryonic stem cells differentiate into distinct cell types.
These pictures capture the in vitro differentiation of mouse embryonic stem cells
into motor neurons over the course of a week. Embryonic stem cells are marked in
red, and fully differentiated neurons in green. Figure from experiment performed
by Elena Kandror, Abbas Rizvi and Tom Maniatis at Columbia University.
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Figure 2.32 The different regions in the Mapper graph nicely line up with
different points along the differentiation timeline. Source: [431].

Effectively, the issue is that a mismatch between the scale of change in the data
and the width of the overlap of inverse images can give rise to dramatic changes
in the Mapper graph in response to small shifts in filter function or cover. (See
Figure 2.33 for a representative example of this phenomenon.)

There are various different approaches to handling this instability in practice.
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δ ∋ δ ∋

Figure 2.33 Small perturbation of the data relative to the cover can lead to large
changes in the Mapper graph.

1. As we discuss in Section 3.9 below, various approaches motivated by standard
considerations in statistics give us tools to establish confidence in the robustness
of Mapper output.

2. Another possibility is to reintroduce persistence in the cover direction: the idea
is to consider a tower of successive refinements of covers. With a suitable metric
on such towers of covers, one can prove a stability theorem in this context [143].

The notion of refinement of covers also gives rise to a way to make precise
the connection between Mapper and the Reeb graph. Specifically, consider the
sequence of covers Cε consisting of all intervals of size ε. Then as ε → 0, the
resulting Mapper graph converges to the Reeb graph [366].

2.9 Towards Persistent Algebraic Topology

In this chapter, we have focused primarily on ways of associating homological
invariants to data sets; our focus reflects the majority of existing work on topolog-
ical data analysis. From a pragmatic perspective, this choice of emphasis is very
natural. Homology groups are distinguished in part by being computable; as we
have seen, given a topological space presented as the geometric realization of a
simplicial complex, there is an efficient algorithm for computing its homology.

In contrast, computing homotopy groups is an intractable problem. Comput-
ing the homotopy groups of spheres is a basic and unsolved problem in algebraic
topology. From an algorithmic standpoint, we have the following hardness results.

1. Even for a finite complex X, π1(X) is uncomputable in general. (This problem is
equivalent to solving the “word problem” in groups, which asks for an algorithm
to determine whether two expressions in a generators and relations presentation
of a group are equal.)

2. For simply connected finite complexes X and fixed k, computing πk(X) can be
done in time polynomial in the number of simplices of X [85], although the
complexity is completely infeasible for realistic use.
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3. If k is allowed as part of the input (i.e., not fixed at the outset), even computing
the ranks of πk(X) is a #P-complete problem [14] (and therefore likely to be
exponential, provided that current beliefs about computational complexity are
true).

Notwithstanding, one can define and study persistent homotopy groups. This
is an interesting endeavor for several reasons. For one thing, it is possible to use
partial computations of such persistent homotopy groups to distinguish topological
features of data [59]. From a theoretical perspective, consideration of persistent
homotopy groups leads to efforts to understand persistent algebraic topology.

In classical algebraic topology, homology groups are homotopy invariants and
thus capture information about the homotopy type of the space. In fact, a version
of Whitehead’s theorem (Theorem 1.6.31) shows that a map f : X → Y between
simply connected CW complexes that is an isomorphism on homology groups is
a homotopy equivalence. There are corresponding questions about the relationship
between persistent homology and some kind of persistent homotopy equivalence.

1. What is the right notion of persistent homotopy equivalence and persistent weak
equivalence? Is there an analogue of the Whitehead theorem (Theorem 1.6.31)?

2. Can we axiomatically characterize persistent homology in an analogous fashion
to the way we can axiomatically characterize ordinary homology?

3. How should we think about the stability theorem (Theorem 2.4.10) in these
terms?

Although it is not totally clear what candidate answers for these questions might
look like, the stability theorem and the importance of the metric structure on bar-
codes suggests that what we are seeing is the outline of some kind of “approximate
algebraic topology.” See [58] for the beginnings of foundations for such a theory.

2.10 Summary

● We may assign mathematical structure to a data set by viewing the points of the
set as points in a suitable metric space (X, ∂X).

● This chapter focuses on two ways to assign a simplicial complex to a finite met-
ric space (X, ∂X). For a given ε > 0, we have the Čech complex Cε(X, ∂X)
(see Definition 2.1.2) and the Vietoris-Rips complex VRε(X, ∂X) (see Defini-
tion 2.1.6). These complexes are functorial in ε.

● Given a finite metric space (X, ∂X) uniformly sampled from a compact Rieman-
nian manifold M, the Niyogi-Smale-Weinberger Theorem (see Theorem 2.2.1)
shows that it is possible to recover topological invariants of the underlying
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geometric object M, provided the distance between sampled points is smaller
than some feature scale.

● The feature scale of data is unknown a priori. The idea of persistent homology is
to keep track of how homological features change as the scale parameter varies.

● To investigate persistence, we examine filtered systems of simplicial complexes
(see Definition 2.3.3), which arise via the functoriality of VRε(X, ∂X) in ε.

● In order to use topological invariants to describe data, we must guarantee that
small perturbations in the data correspond to commensurately small changes in
the resulting invariants. To measure the size of these changes in the data, we
use the Gromov-Hausdorff distance (see Definition 2.4.4). To measure changes
in the barcodes, we use the bottleneck distance (see Definition 2.4.8). The sta-
bility theorem for persistent homology (Theorem 2.4.10) bounds the size of
changes in barcodes by the size of changes in the data.

● Zigzag persistence is the study of persistent homology considering filtrations of
different shapes where the arrows have different orientations. This approach may
be helpful in controlling the number of simplices, allowing efficient computation
of persistent homology.

● In some cases, a single data set may give rise to multiple filtrations. For example,
we might filter by both scale and density. This is the focus of multidimensional
persistence.

● The Mapper algorithm is a method for multiscale clustering that has been effec-
tively applied to identify clinically significant information in data sets that
traditional clustering may miss. Mapper performs clustering at different scales,
keeping track of changes in the clusters as the scale varies.

2.11 Suggestions for Further Reading

Topological data analysis is a young field, and for many aspects of it the original
papers remain the best reference. However, there have been a number of excellent
introductory articles, ranging from brief treatments (e.g., [193, 326, 535]) to more
comprehensive (and technical) overview articles [90, 103, 156, 157]. There are also
now a number of good books [111, 155, 194, 392, 550], with slightly different areas
of emphasis.


