A generalization of the Hori-Vafa conjecture -- Ionuţ Ciocan-Fontanine
A few years ago, Hori and Vafa conjectured that the Landau-Ginzburg model mirror to the nonlinear sigma-model on a Grassmannian can be obtained by "symmetrizing" the Landau-Ginzburg model mirror to a product of projective spaces. In particular, this conjecture predicts a precise relation between the J-functions (generating functions for certain genus zero Gromov-Witten invariants) of these varieties. This talk will describe joint work with Aaron Bertram and Bumsig Kim in which we argue that the appropriate general context for the above relationship is that of twisted GW invariants of abelian and nonabelian GIT quotients. As a concrete example, I will present a theorem giving closed formulas for the J-functions of all isotropic partial flag varieties of classical type.