Weak approximation for rationally connected varieties over function fields of curves -- Brendan Hassett

Let B be a smooth complex curve and X a variety smooth and proper over C(B). Graber-Harris-Starr have shown that if X is geometrically rationally connected then X(C(B)) is nonempty. Building on work of Kollár-Miyaoka-Mori and others, we show that X satisfies weak approximation at places of good reduction. We will also discuss what is known at places of bad reduction for special classes of varieties, like cubic surfaces. (joint with Yuri Tschinkel)

http://www.math.rice.edu/~hassett/papers.html