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1 Week 1: Logic and Proof Strategies

1.1 Introduction

Roughly speaking, a proof is a sequence of mathematical statements P0, . . . , Pn such
that each Pi is either an assumption, i.e. some fact which is already known, or can be
derived from the previous statements via a logical rule. The goal of this workshop is to
introduce the basics of mathematical proof and to give you the opportunity to practice
proofwriting. In particular, we will:

• Become familiar with the conventions pertaining to the syntax of proofwriting,
including the language and notation common to all mathematical proofs.

• Learn common rules of inference and the role of logic in mathematical proofs.

• Practice identifying the assumptions inherent in any mathematical argument.

It is of utmost importance to practice the content we will introduce and to get
feedback on your work. Although some of you will already be familiar with the material
we’ll cover (especially those taking courses such as Honors Math, Modern Algebra I, or
Analysis I), you should still be able to extract a lot of value from the workshop.
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Here’s the outline of the coming weeks:

• Day 1. Logic and Proof Strategies: Direct Proof, Proof by Contrapositive, and
(Dis)Proof by Counterexample

• Day 2. Proof Strategies (cont.): Proof by Contradiction and the Principle of Math-
ematical Induction.

• Day 3. Set Theory: Sets, Relations, and Functions.

• Day 4. Analytic Reasoning: Limits, Continuity, and ϵ-δ Proofs

• Day 5. More on Set Theory: Equivalence Relations and Cardinality.

At the end of every week, we will provide you with a problem set pertaining to the
content of the lecture. Write solutions to a couple of problems and submit them for your
TAs for feedback. Don’t worry if you don’t finish them—the course is not graded, and
we will still give feedback on partial solutions.

1.2 Logic

1.2.1 Propositional calculus

Definition 1.1. A propositional statement is a statement that is either true or false.

Example 1.2. The statement P “ “all dogs have white fur” is false and the statement
Q “ “5 is an odd integer” is true.

Remark 1.3. Sometimes, the truth value of a propositional statement depends on a
variable. To express the dependence of a statement on a variable x, we will write P pxq.
If P depends on both x and y, we will write P px, yq, and so on. A propositional statement
which depends on one or more variables is also known as a predicate.

Example 1.4. The statement P pxq “ “x ě 5” is true or false according to the value
of x. The statement P px, yq “ “x` y “ 2” depends on both x and y. Similarly, the
statement Rpx, yq “ “x ě y” also depends on both x and y.

The rules of propositional logic decide whether an argument is valid. Consider the
following example.

• It is raining or snowing.

• It is not snowing.

• Therefore, it is raining.

If we let P be the statement that “it is raining,” and Q be the statement that “it is
snowing,” the argument can be written in symbolic form as follows:

2



Proof Workshop 1.2 Logic

• P or Q.

• Not Q.

• Therefore, P .

The statements “P or Q” and “not Q” are called the hypotheses of the argument, while
P is called the conclusion.

As the example above suggests, we can combine propositional statements to produce
new propositional statements via logical connectives like “and,” “or,” and “not.”

Definition 1.5.

1. Write P _Q to stand for the statement “P or Q”.

2. Write P ^Q to mean “P and Q”.

3. Write ␣P to mean “Not P ”. ␣P always has the opposite truth value of P .

Remark 1.6. The _ operator is an “inclusive or”. P _Q means that either P is true,
Q is true, or both are true.

Remark 1.7. The effect of these operations on truth values is catalogued by a so-called
truth table, shown in Table 1.

P Q ␣P P _Q P ^Q

T T F T T
T F F T F
F T T T F
F F T F F

Table 1: Some basic logical operations.

These logical operations obey the distributive law:

P ^ pQ_Rq “ pP ^Qq _ pP ^Rq

P _ pQ^Rq “ pP _Qq ^ pP _Rq

and De Morgan’s laws:

␣pP ^Qq “ ␣P _␣Q

␣pP _Qq “ ␣P ^␣Q

These identities can be derived by examining truth tables; examples are given in the
exercises.

Another way of combining two propositional statements is via a conditional.
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P Q P ñ Q

T T T
T F F
F T T
F F T

Table 2: Truth table of P ñ Q.

Definition 1.8. Let P,Q be propositional statements. The proposition “if P , then Q,”
denoted P ñ Q, has the truth table given in Table 2.

Example 1.9. The statement P pxq “ “If x is an even integer, then x2 is an even integer”
is true. The statement Q “ “If it rains on a Friday, then it must rain the Friday after that”
is false.

Remark 1.10. Note that if P is false, then “P ñ Q” is true. This is known as vacuous
truth.

Remark 1.11. If you check the truth tables (or better, if you really think it through),
you will see that P ñ Q has the same truth table as ␣P _Q. The intuition behind this
equivalence is that P forces Q to be true: Q can be true regardless of the value of P,
but if P is true, then Q must also be true for the statement to hold.

Definition 1.12.

1. If P ñ Q and Qñ P , then we say “P if and only if Q” and write P ðñ Q.

2. The converse of P ñ Q is the statement Qñ P .

3. The contrapositive of P ñ Q is the statement ␣Q ñ ␣P . Note that the con-
trapositive has the same truth table. Thus,

pP ñ Qq ðñ p␣Qñ ␣P q.

Definition 1.13. Two propositional statements are logically equivalent if one is true
if and only if the other is true.

Hence, a conditional and its contrapositive are logically equivalent.

1.2.2 Valid Arguments

We say that an argument is valid if, when reduced to symbolic form, the conclusion is
always true when the hypotheses are true. In other words, the argument is valid if the
conclusion can only be true if the hypotheses are true, “according to the rules of logic.”

Going back to our previous example, the argument
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• P _Q.

• ␣Q.

• Therefore, P .

is valid; if we look at the truth table, P _ Q “ 1 and ␣Q “ 1 means that the only
possibility for P is P “ 1. However, consider the following argument:

• x ě 5.

• 5 ě 3.

• Therefore, x ě 3.

While the conclusion of the argument is correct, the argument itself is not valid. Written
in symbolic form, we can write this argument as

• Rpx, 5q.

• Rp5, 3q.

• Therefore, Rpx, 3q.

From this, we see that the argument is missing a crucial hypothesis, that Rpx, 5q ^
Rp5, 3q ñ Rpx, 3q. In other words, we have implicitly assumed in the argument itself
that ě is transitive.

On the other hand, the following argument is totally valid, even though the conclusion
is absurd.

• Butterball ate a pig.

• If anything eats a pig, they become a pig.

• Therefore, Butterball became a pig.

It is very easy to make hidden assumptions which are not presented to you, on the
pretense that they are “obvious.” The purpose of familiarizing yourself with the rules of
propositional logic is to know, with certainty, when a particular argument is valid when
all of the assumptions given are laid out.

1.2.3 Quantifiers

There is another way in which we can create new propositional statements from old
which we have not yet introduced. This is done via quantifiers.

Definition 1.14. Let P pxq be a proposition depending on x.
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1. We say that Dx : P pxq is true if there exists some x such that P pxq is true.

2. We say that @x : P pxq is true if P pxq is true for all x.

D is called the existential quantifier and @ is called the universal quantifier.

Example 1.15. @x : x ě 2 is false, while Dx : x ě 2 is true.

Most of the time, we will preface an D or @ quantifiers as ranging over all x in a certain
set (which you can think of as just a collection of objects). For example, @x P N means
“for every natural number x,” whereas Dx P N means “there exists a natural number x.”

Example 1.16. The order of quantifiers matter. Consider the two statements below.
Which is true and which is false?

1. @x P Z : pDy P Z : p2x´ y “ 0qq

2. Dx P Z : p@y P Z : p2x´ y “ 0qq

Remark 1.17. Often, statements like Dx : P pxq are written DxP pxq, so statements with
mixed quantifiers are often written @xDyP px, yq. This is an abbreviation of @x : pDy :
P px, yqq.

The last logical rule we introduce has to do with negating quantifiers. Negating an
existential quantifier transforms it into a universal one, and vice versa:

␣pDx : P pxqq ðñ @x : ␣P pxq, ␣p@x : P pxqq ðñ Dx : ␣P pxq.

Example 1.18. Analyze the logical form of the following statement: “Nobody likes a
sore loser.” Using Lpx, yq to mean “x likes y” and Spxq to mean that “x is a sore loser,”
the statement can be interpreted as:

@x : ␣pDy : Spxq ^ Lpy, xqq “ @x@yp␣Spxq _ ␣Lpy, xqq,

or in words: “for all x, it is not true that there is a y such that x is a sore loser and
y likes x.” We can also think about this statement in this way: “for all y, if x is a sore
loser, then y does not like x.” In symbols:

@y : p@x : Spxq ñ ␣Lpy, xqq.

From the identity P ñ Q “ ␣P _Q, we see this is the same as

@y@xp␣Spxq _ ␣Lpy, xqq

which is the same as what we got earlier.
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1.3 Proof Strategies

1.3.1 Direct Proofs

Let’s begin proving things. A direct proof is a basic technique used to prove conditional
statements, i.e. statements of the form P ñ Q. Many mathematical statements are of
this form (although not all).

P ñ Q can only be false if P is true and Q is false. To prove this statement, then, we
only need to consider the case where P is true. A direct proof of P ñ Q thus proceeds
as follows:

• Suppose P .

• ¨ ¨ ¨

• Therefore, Q.

Before we start giving examples, let’s begin with a basic definition.

Definition 1.19. An integer n is even if there exists an integer k such that n “ 2k.
An integer n is odd if there exists an integer k such that n “ 2k ` 1.

Example 1.20. If x is an odd integer, then x2 is an odd integer.

Proof. Suppose x is odd. By definition, there exists an integer k such that x “ 2k ` 1.
Then x2 “ p2k` 1q2 “ 4k2 ` 2k` 1. Since 4k2 ` 2k` 1 “ 2p2k2 ` kq ` 1 and 2k2 ` k is
an integer, we have x2 “ 2k1 ` 1 for the integer k1 “ 2k2 ` k. Thus, by definition, x2 is
odd.

Remark 1.21. Generally, when mathematicians state theorems which are dependent
on some variable x, they mean to say that the theorem is true @x. Thus, to prove the
theorem “If x is an odd integer, then x2 is an odd integer,” we really have to prove the
propositional statement

@x : px is an odd integer ñ x2 is an odd integerq.

Thus, such a proof for @x : P pxq ñ Qpxq would start by choosing an arbitrary x which
satisfies P pxq, then proving that Qpxq is true.

Example 1.22. If x and y are odd integers, then xy is an odd integer.

Proof. Suppose x and y are odd integers. By definition, x “ 2k ` 1 and y “ 2k1 ` 1 for
some integers k, k1. Then xy “ p2k`1qp2k1`1q “ 4kk1`2k`2k1`1 “ 2p2kk1`k`k1q`1.
Because 2kk1`k`k1 is an integer, we have xy “ 2a`1 for the integer a “ 2kk1`k`k1.
Thus, by definition, xy is odd.

7



Proof Workshop 1.3 Proof Strategies

1.3.2 Proof by Contrapositive

Another common proof strategy is the proof by contrapositive. Suppose we want to
prove P ñ Q. As we noted above, this is equivalent to the statement ␣Qñ ␣P .

One way to be convinced of this is to remember that P ñ Q is the same as ␣P _Q.
If we rewrite ␣Qñ ␣P in this way, we get

␣Qñ ␣P ðñ ␣p␣Qq _ ␣P

ðñ Q_␣P

ðñ ␣P _Q

ðñ P ñ Q.

When giving a proof of the contrapositive, we often say “we will prove the contra-
positive” or say “assume ␣P ” to indicate we are doing so.

We often want to use the contrapositive when it is easier to work with the statement
␣Q than the statement P . We give a few examples below.

Example 1.23. If x2 ´ 6x` 5 is even, then x is odd.

Proof. Suppose x is not odd, so that it is even and x “ 2a for some integer a. Then

x2´6x`5 “ p2aq2´6p2aq`5 “ 4a2´12a`5 “ 4a2´12a`4`1 “ 2p2a2´6a`2q`1.

Therefore, x2 ´ 6x` 5 “ 2b` 1, where b “ 2a2 ´ 6a` 2. Thus x2 ´ 6x` 5 is not odd,
and so it must be even.

Remark 1.24. You may have noticed that we have made a hidden assumption, that
every integer is either odd or even. With our definition of even and odd, it is not obvious
that this is the case. You will have the opportunity to prove this in the problem sets
after we have discussed induction, but for now, we will just assume that it is true.

If we were to prove the above directly, we would begin by assuming x2 ´ 6x ` 5 is
even, so x2´6x`5 “ 2a. But then it is not clear where to proceed, since we would need
to isolate x from the quadratic equation. But with the contrapositive, the proof reduces
to a calculation.

Remember that when negating a statement you may need to use DeMorgan’s law.
First, a definition.

Definition 1.25. If a and b are integers with a ‰ 0, we say that a divides b, or that
b is divisible by a, if there exists an integer k such that b “ ka. In this case, we write
a | b.

Example 1.26. Suppose x, y P Z. If 5 ∤ xy, then 5 ∤ x and 5 ∤ y.
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Proof. Suppose it is not true that 5 ∤ x and 5 ∤ y. Then 5 | x or 5 | y. Suppose 5 | x.
Then x “ 5a for some integer a and then xy “ p5aqy and so 5 divides xy. Similarly if 5
divides y then y “ 5a for an integer a and then xy “ xp5aq and we see that 5 divides
xy.

Example 1.27. Suppose n ą 2. If n is prime, then n is odd.

Proof. This seems obvious, but without the contrapositive it is not at all clear how to
prove it directly. The contrapositive is, "for n ą 2, if n is not odd then it is not prime"
which is easy to prove. Indeed, if n is not odd then it is even and so 2 divides n, which
shows it is not prime.

1.3.3 Proof by Counterexample

Often times, mathematical statements will have the form @x: P pxq. If we want to disprove
this statement, this means that we want to negate it:

␣p@x : P pxqq ðñ Dx : ␣P pxq

and so it is sufficient to give a simple example of an x such that P pxq does not hold.
In formal proofwriting, however, it is not enough to merely supply an x for which P pxq
is non-truth; we must also justify why such an x is a valid counterexample, i.e. explain
why ␣P pxq is true.

Example 1.28. Assess the truth of the equality

1

x` y
“

1

x
`

1

y

for all x, y P R.

Proof. Choose x “ 2, y “ 3. Then

1

2` 3
“

1

5
‰

5

6
“

1

2
`

1

3
,

so the equality does not hold for all x, y P R.

Example 1.29 (Euler). Show whether or not it is true that for integers n, k ą 1, if the
sum of n many kth powers of positive integers is itself a kth power, then n is at least k;
that is:

ak1 ` ak2 ` . . .` akn “ bk ùñ n ě k, ai, n, k P Z

Proof. (Lander and Parkin, 1966.) It is false. Choose pa1, a2, a3, a4, bq “ p27, 84, 110, 113, 144q,
and check that

275 ` 845 ` 1105 ` 1335 “ 1445.

But 4 ă 5. ˝
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Example 1.30. Determine whether 22
n
` 1 is prime for all integers n ě 0.

Proof. (Euler) This is false. While 22
n
` 1 is prime for 0 ď n ď 4, Euler showed that for

n “ 5, 22n “ 232 ` 1 is composite.
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