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2 Week 2: Proof by Contradiction and Induction

2.1 Proofs By Contradiction

Suppose that we want to show that some given mathematical statement P is true. If
we can show that —P = 0, then by looking at the truth tables, or using the fact that
—P =0=—(—P) v 0= P, we conclude that P must be true.

In other words, suppose that P is false. From this assumption, if we deduce a state-
ment that contradicts some assumption we already made or some other known fact
(perhaps a triviality, definition, axiom, or theorem), then our initial assumption of =P
must have been false, or in other words that P is true. This technique is called proof
by contradiction.

In the case that, given a nice domain D, P is the quantified statement Vx € D :
(Pi(x) = Py(x)), then the method of proving by contradiction consists of verifying the
implication

—(VxeD: Pi(x) = Py(z)) = C,

for some contradiction C. Since

—(VzeD: Pi(x) = Py(z)) — JxeD:—(P(z) = Pa(x))
<= JreD: (Pi(x) A ~Py(x)),
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the proof of such a P typically starts by assuming the existence of a counterexample of
this P.

Let us summarize the above. When we prove by contradiction, we affirm a positive
statement by refuting its denial. We often inform the reader that we are employing this
strategy by stating something like Suppose that P is false or Assume, to the contrary,
that P is false. Let’s look at a few classic examples.

Example 2.1. Suppose we wish to show that there is no largest natural number. Assume
the contrary, that there is a largest number x € N. By definition, there is no n € N such
that n > x. However, x + 1 > z, and = + 1 € N. This is a contradiction, so there is no
largest natural number N. o

For the next two proofs, we will assume the following fact and and some additional
properties of primes. You will have the chance to prove many of these claims in this
week’s problem set.

Definition 2.2. A prime number is a natural number p > 1 such that if a € N and
a | p, then a = 1 or a = p. In other words, the only natural numbers dividing p are 1
and p.

Theorem 1 (Fundamental Theorem of Arithmetic (FTA))

Every positive integer n > 1 can be expressed as the product of primes; this
representation is unique, apart from the order in which the factors occur.

Example 2.3 (Euclid). There are infinitely many primes.

Proof. Let p1 = 2, po = 3, p3 = 5, ps = 7,... be the primes in ascending order, and
suppose there is a last prime, called p,,. Now consider the positive integer

P=pip2--pn+1.

Because P > 1, by FTA, P must be divisible by some prime p. Hence, p must equal
one of p1,p2,...,pn. Combining the divisibility relation p | pip2...p, with p | P, we
arrive at p | P — p1p2 ... pp; equivalently, p | 1. The only positive divisor of the integer
1 is 1 itself and, because p > 1, a contradiction arises. Hence, the number of primes is
infinite. O

Example 2.4 (Pythagoras). /2 is irrational.

Proof. Suppose, to the contrary, that /2 is a rational number, say /2 = a/b, where a
and b are coprime, i.e. ged(a,b) = 1. Squaring, we get a? = 2b%, so that b | a®. If b > 1,
the FTA guarantees the existence of a prime p such that p | b. It then follows that p | a?
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and that p | a;! hence ged(a,b) = p. We therefore arrive at a contradiction, unless b = 1.
But if this happens, then a? = 2, which is merely circular. Our supposition that /2 is
a rational number is untenable, and so 4/2 must be irrational. ]

Example 2.5 (Ramsey’s). Prove that out of a party of six people, there exists a group
of three mutual friends or a group of three mutual non-friends.

Proof. Suppose, for the sake of contradiction, that given any group of three people
among the six, there are no more than two friendships or two non-friendships. Let the
six people be Alice, Bob, Claire, Dash, Ella, and Frank. The possible relationships are
shown with dashed lines (Figure 2.1). Start with Alice. Suppose that Alice is friends
with at least three people, Bob, Claire, and Dash.

Let a friendship be denoted with a double line, and let a non-friendship be denoted
with a single line. If any pair of Bob, Claire, or Dash are friends, then they form a group
of 3 mutual friends with Alice, as shown in Figure 2.1.

If Bob, Claire, and Dash are all non-friends, then they form a group of 3 mutual
non-friends. In fact, without loss of generality, this same contradiction arises with any
combination of 4 people including Alice. Therefore, given any party of 6 people, there
exists a group of 3 mutual friends or a group of 3 mutual non-friends. O

Claire

Alice Bob

'We are using the fact that for a prime p, if p | ab, then p | a or p | b. This is an “obvious” result that
has no obvious proof. This result will be in the problem set for Week 3.
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Remark 2.6. Often, people may give a proof of contradiction of P = () by assuming
—(@) and proceed to give a proof of ), deriving a contradiction, without ever meaningfully
using the assumption —Q. This is just a direct proof, and will be shorter and easier to
read if it is phrased as such.

2.2 Proof by Induction
2.2.1 The Principle of Mathematical Induction

The last basic proof technique is mathematical induction. It is designed for proving
statements about the natural numbers.

Suppose we want to show some property P is true for all natural numbers 0,1,2,. ...
We can’t check that all of these numbers individually satisfy the property since there are
infinitely many of them. However, what we can show is that if n satisfies P, then n + 1
also satisfies P. Then, if we show that 0 satisfies P, then it follows so does 0 + 1 = 1,
and so does 1 + 1 = 2, and so on until all the natural numbers satisfy P.

Theorem 2 (Principle of Mathematical Induction)

Let P be a property pertaining to the natural numbers N. Suppose that
1. P(0) is true, and
2. for all n € N, if P(n) is true, then P(n + 1) is also true.

Then P(n) is true for all n € N.

Therefore, to prove a statement of the form Vn e N: P(n):
1. Prove P(0). This is called the base case.

2. Prove that Yn € N: P(n) = P(n + 1). This is called the induction step, and the
assumption that P(n) is true is called the induction hypothesis.

We often signify we will use induction by saying "we will proceed by induction on
n" or something similar. It helps to explicitly label "base case" or "induction step."

Example 2.7. Prove that for every natural number n,

n
D2i=204 2t 4 g =t o,
=0

Proof. We proceed by induction on n.
Base case: We have 20 =21 —1 = 1.
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Induction Step: Suppose > 20 = 2"+l 1. We will show /7 20 = 272 — 1.
Adding 2" to Z?:o 2!, we get

n+1 .
Z 21 :2n+1+2n+1_1 :2(27’L+1)_1 :277»-‘1-2_1‘ ]
=1

We can also induct starting from any natural number n. More precisely, if we proved
that P(k) were true for some k € N as a base case instead of P(0), then we can conclude
that P(n) is true for all n € N with n > k. The following example illustrates how this
works.

Example 2.8. For every natural number n > 5, 2" > n?.

Proof. We proceed by induction on n.
Base Case: For n = 5, we have 2" = 32 > 25 = n?2.
Induction Step: Let n > 5 be arbitrary, and assume 2" > n?. Then
2n+1 =9.9n
> 2n?
= n? +n?
> n? + bn since n = 5
—n?+2n+3n
>n?+2n+1=(n+1)> O

Example 2.9. For every real number x > —1 and every natural number n, (14+x)" > nx.

Proof. Let x > —1 be arbitrary. We will show by induction that (1 4+ z)" > 1 + nz. It
clearly follows that (1 + x)™ > nx.
Base case: if n = 0, then (1+2)" = (1+2)" =1=1+naz.
Induction step: suppose (1 + x)™ > 1 + nz. Then
(1+2)"" = (1 +2)(1 +z)"
> (1+2)(1+ nx)
=1+ 2z + nz + na?
=1+ (n+1)x

since nz? = 0. O

2.2.2 Strong Induction

Sometimes, it’s not enough to prove that a natural number has a certain property only
assuming the previous one does. We need something stronger, and need to assume all
smaller natural numbers have this property. This is called strong induction.
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Theorem 3 (Strong Induction)

Suppose P is a property pertaining to the natural numbers N. Suppose that for all
neN,

1. if P(k) is true for all natural numbers k < n, P(n) is true.

Then P(n) is true for all n € N.

Therefore, to prove a statement of the form Vn e N: P(n):

1. Prove that for all n € N, (Yk < n, P(k)) = P(n) is true. This means that we let
n be a natural number, assume P(k) is true for all £ < n, and then prove P(n).

Remark 2.10. Note that there is no “base case” described in the principle of strong
induction. In reality, it is still there, just hidden. This is because for n = 0, there are no
k < n, so the assumptions are vacuous and we must prove P(0) independently.

The two forms of induction are actually equivalent; see https://en.wikipedia.org/
wiki/Mathematical_induction#Complete_(strong)_induction for a quick discussion
of this. Every proof by ordinary induction can be converted into one by strong induction,
and vice versa, so you can’t actually prove anything “stronger;” it is just easier.

The following example we give of strong induction is an important first step in the
proof of FTA. You may wish to complete the proof yourself as an exercise.

Example 2.11. Every integer n > 1 is either prime or a product of primes.

Proof. We will show this by strong induction. Suppose n > 1 and suppose every integer
1 < k < n is either prime or a product of primes. If n is prime there is nothing to prove,
so suppose n is not prime. By the definition of primeness, this means there are numbers
a,b < n such that ab = n. Note that since a < n = ab, it follows b > 1 and similarly
a > 1. Then, by the inductive hypothesis, a and b are each either prime or a product of
primes. Since n = ab, n is a product of primes. ]

2.2.3 The Well-Ordering Principle

Induction implies a very important property of the natural numbers, known as the well-
ordering principle. To start, a definition:

Definition 2.12. Let S € N be a subset of the natural numbers. A minimal element of
S is an element x € S such that x <y for all y € S.

Theorem 4 (Well-Ordering Principle)

Every nonempty subset S € N has a minimal element.



https://en.wikipedia.org/wiki/Mathematical_induction#Complete_(strong)_induction
https://en.wikipedia.org/wiki/Mathematical_induction#Complete_(strong)_induction
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Proof. We will prove the contrapositive. Suppose S has no minimal element. We will
show that S = @ using a combination of contradiction and strong induction.

Let P(n) be the statement that n ¢ S. To show that S = @, it suffices to show that
P(n) is true for all n € N. Suppose n € N and assume that P(k) is true for all k < n,
i.e. that k ¢ S for all £ < n. We want to show that n ¢ S.

Suppose by contradiction that n € S. We claim that n is then a minimal element for
S, which is impossible. If y € S, then by the inductive hypothesis, y < n. Hence, y > n,
proving that n is a minimal element. O

The well-ordering principle, combined with an additional assumption, implies the
principle of mathematical induction—you may choose to prove this in the problem set.

Remark 2.13. The well-ordering principle is false for many familiar number systems.
For example, the well-ordering principle is false for Z; the subset Z is nonempty, but has
no minimal element. It is also false for R, for the same reason.

A more subtle example is the set [0, 1], the set of real numbers z € R with 0 < z < 1.
While [0, 1] has a minimal element, namely 0, it is not well-ordered. The subset (0,1) <
[0, 1], consisting of all the elements 0 < x < 1, is nonempty and has no minimal element!

2.3 The Peano Axioms

So far, we have been taking as a given the definitions of the natural numbers N, the
integers Z, the rationals @, the reals R, and the various operations +,-, —, /. But why
do these rules work at all? What do we really mean when we say that 2 + 2 = 47 How
are addition, multiplication, and exponentiation defined?

The answer is actually quite hard. One problem is that, while we are working with
the basic rules, we must not assume the things that we are already familiar with, but
have not proved. We cannot assume that a + b = b + a, for example. We will begin
by defining the natural numbers (for us, they include 0). From this, we may define
addition. Repeated addition gives us multiplication. Then, repeated multiplication gives
exponentiation.

What is addition? It is just the repeated process of incrementing, or counting forward.
Incrementing seems to be the fundamental operation; we learn to count starting from 0,
and then adding a number each to count up.

Thus, to define the natural numbers we start with two things: the zero number 0, and
the increment operation. We will use n++ to denote the successor of n (some denote it

succ(n) or S(n)).
Axioms 2.14 (The Peano Axioms).
1. 0 is a natural number.

2. If n is a natural number, then n++ is also a natural number.
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3. 0 is not the successor of any natural number, i.e. we have n++ # 0 for every
natural number n.

4. Different natural numbers must have different successors, i.e. if n, m are natural
numbers and n # m, then n++ # m++. Equivalently, if n++ = m++ then we
must have n = m.

5. (Principle of mathematical induction) Let P(n) be any property depending on a
natural number n. Suppose that P(0) is true, and suppose that whenever P(n) is
true, P(n++) is also true. Then P(n) is true for every natural number n.

Axioms 1-5 are called the Peano axioms for the natural numbers. There is an addi-
tional axiom, more properly belonging to set theory:

Axiom 2.15 (Infinity). There exists a set N, whose elements are called natural numbers,
as well as an object 0 in N, and a function ++ : N — N such that the Peano axioms

hold.

Thus we take it as an axiom of sets that there is an object that satisfies the Peano ax-
ioms. Elements of the natural numbers are of the form 0++, (0++)++, ((0++)++)++,
etc. As a matter of notation, we define 1 to be the number 0++, 2 to be (0++)++, and
SO on.

Remark 2.16. If you are interested in learning more about the foundations of mathe-
matics and formal proofs, we highly recommend the Natural Numbers Game, hosted at
https://www.ma.imperial.ac.uk/“buzzard/xena/natural_number_game/. In a game-
like environment you will prove many properties of the natural numbers and functions
in Lean, a formal theorem proving system.

2.4 Thinking about Proofs

We now have a few basic proof techniques under our belts: direct proof, proof by contra-
diction, proof by counterexample, proof of the contrapositive, and proof by induction. We
devote the remainder of today’s time to practicing applying these to various statements
and discussing how to think about proofs.

Example 2.17. Show that = € Z is even if and only if 22 is divisible by 4.

Proof. To prove the forward direction, let’s assume that = is even, so x = 2k for k € Z.
Then 22 = (2k)? = 4k?, so 4 divides z2.

That was easy; it was very straightforward to extract information about z? given
information about x. It would be nice if we could prove the other direction in a similar
manner.


https://www.ma.imperial.ac.uk/~buzzard/xena/natural_number_game/
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Luckily, we can, by proving the contrapositive of the other direction; that is, that z
odd = 22 not divisible by 4. We write x = 2k + 1 for k € Z. Then

22 = (2k+1)% = 4k% + 4k + 1.

This will clearly have a remainder of 1 when divided by 4, so this is not divisible by 4.
This shows that z? being divisible by 4 implies that z is even, so we have shown the
if-and-only-if statement. O

The moral here is that if proving one direction of an if-and-only-if statement is
particularly simple, you may have an easier time proving the contrapositive of the other
direction, as such a proof would likely be of a similar nature to the first direction.

Example 2.18. Can every n € N be written as the sum of two squares, that is, n =
a® + b? for a,b € Z? Prove or give a counterexample.

Let’s first think of how we would prove that this statement is true. Given an arbitrary
natural number n, we would need to exhibit two integers a and b, dependent on n. Since
n is arbitrary, we have very little information to use to cook up an a and b, so this
strategy is unlikely to work.

We could perhaps try induction, as this is a statement about all natural numbers.
However, even if n = a® + b2, then all we know is that n + 1 = a® + b> + 1, and there is
no guarantee that any of a? 4+ b, a? + 1, or b> + 1 are squares.

In general, it seems we do not have enough information about any random n to prove
this statement. This suggests that it is not true for all n, and we may need to know some
special properties about n to show it can be written as a sum of two squares. This tells
us to move to finding a counterexample.

Starting simple, 1 = 12 + 02 and 2 = 12 + 12, so those don’t work. However, we can
only write 3 as 142 or 340, and neither 2 nor 3 are squares. This gives a counterexample.

We now open the floor to the types of proofs and problems you would like to practice
thinking through.
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