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3 Week 3: Set Theory

3.1 Sets

There are a few reasons for introducing set theory. First, set theory is the most commonly
accepted foundation for mathematics, and the language of sets is ubiquitous. We have
already used the term in the last few weeks. Secondly, set theory serves as a a rich
playing field for proofs which do not rely on much prior knowledge. Third, set theory
is intimately related to logic (although we will not be able to delve into their formal
similarities, some of the exercises hint at their connection).

Definition 3.1. A set is a collection of objects.

We indicate that an object is a set by writing two brackets tu with something in the
middle.

Example 3.2.

1. The set consisting of the numbers 1, 2, and 3 is a set, written t1, 2, 3u.

2. The set of all students in the class is a set.

3. The set of all integers is a set, denoted Z.

4. The set of all real numbers is a set, denoted R.

Definition 3.3. The objects contained in a set are called its elements. If an object x
is an element of a set S, we write x P S. Conversely, if an object x is not an element of
a set S, we write x R S.

1



Proof Workshop 3.1 Sets

Example 3.4. We write 1 P t1, 2, 3u, 2 P t1, 2, 3u, and 3 P t1, 2, 3u.

We say that two sets are equal if they have precisely the same elements. In symbols,

X “ Y ðñ @x : px P X ô x P Y q.

This is why people often say that a set cannot contain multiple elements; the sets t1, 2, 3u

and t1, 2, 2, 3u are equal.
There is one particular set which shows up throughout mathematics and deserves its

own name.

Definition 3.5. The empty set, written H is the set with no elements.

Beyond saying what a set contains, we also have a way of comparing what two sets
contain.

Definition 3.6. Suppose we have two sets S and T . If all of the elements of S are
contained in T , we say S is a subset of T , and write S Ă T or S Ď T . In symbols,

S Ď T ðñ @x : ppx P Sq ñ px P T qq .

If S Ă T and S ‰ T , we call S a strict subset of T , and write S Ĺ T .

As with elements, if S is not a subset of T , we write S Ć T .

Example 3.7.

1. We have t1, 2u Ă t1, 2, 3u.

2. We also have t1, 2, 3u Ă Z.

3. For any set S, we have ∅ Ă S (why?).

Sometimes, we wish to define a subset S of a set T which consists of precisely the
elements x which satisfy a property P . We write

S “ tx P T : P pxqu.

This is called set builder notation.1 Because S consists of all the elements of T which
satisfy P pxq, we can think of S defined in this way as the “truth set” of P in T .

Example 3.8. The set of even integers can be written as

tn P Z : n is evenu.

1Sometimes, when we want to consider all objects which satisy a property P , we write tx : P pxqu

for this set. However, for technical reasons, this set may not actually exist! Consequently, this notation
should mostly be avoided.
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Remark 3.9. Up until now, we have largely been writing quantifiers with no specified
set in mind. We will (for the most part) stop doing this now that we have introduced
sets, because this is technically bad practice for the same reason that we do not specify
all objects which satisfy a certain property. Thus, to notate statements like “for all odd
integers x,” we will say

@x P tn P Z : pDk P Z : n “ 2k ` 1qu

instead of
@x : x P tn P Z : pDk P Z : n “ 2k ` 1qu

In the same way that there are the addition and multiplication operations that we
do on numbers, there are two key operations we can do on sets.

Definition 3.10. Let S and T be sets.

• The union of S and T , written S YT , is the set of all elements contained in either
S or T (in set builder notation, S Y T “ tx : px P Sq _ px P T qu).

• The intersection of S and T , written S X T , is the set of all elements contained
in both S and T (in set builder notation, S X T “ tx : px P Sq ^ px P T qu).

• The difference between two sets S and T , written SzT , is the set of all elements
in S not contained in T (in set builder notation, SzT “ tx P S : x R T u.

You can think of unions as the “or” of sets, intersections as the “and” of sets, and
difference as the “not.”

Remark 3.11. Union and intersection are commutative, which means that SYT “ TYS
and S X T “ T X S. Set difference, on the other hand, is not: usually, SzT ‰ T zS.

Here is an example of a proof using sets.

Proposition 3.12. For any sets A,B, and C, we have

A X pB Y Cq “ pA X Bq Y pB Y Cq.

This is an analogue of the distributive law.

Proof. For notational convenience, write E “ AX pB YCq and F “ pAXBq Y pAXCq.
Suppose x P E. Then x P A and x P B Y C, which means x P B or x P C (and possibly
both). Then either x P A X B or x P A X C, so x P F . It follows that E Ă F .

Now suppose x P F . Then x P A X B or x P A X C. Then we must have x P A, and
either x P B or x P C. Thus x P E, so F Ă E. Since E Ă F and F Ă E, we know that
E “ F .
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The above argument is called a double containment argument, and illustrates the
general approach of showing that two sets A and B are equal by showing that A Ă B
and B Ă A. We can use this method, combined with de Morgan’s laws, to show all the
usual properties of unions and intersections which we would expect (for example, that
S Y T “ T Y S, A Y pB X Cq “ pA Y Bq X pA Y Cq, etc.). Examples are given in the
exercises.

3.2 Relations

Given a set T and a propositional statement depending on one variable x, we can form
the “truth subset” S “ tx P T : P pxqu, consisting of all the elements x P S such that
P pxq is true. What about propositional statements consisting of multiple variables? The
corresponding set-theoretic notion is known as a relation.

Definition 3.13. Let X,Y be two sets. A relation from X to Y is a subset R Ď XˆY ,
i.e. some collection of ordered pairs px, yq P X ˆ Y . If R is a relation from X to Y , we
will write xRy if px, yq P R.

Example 3.14.

1. Let X “ Y “ thumans on earthu. Then

R “ tpx, yq P X ˆ Y : x is related to yu

is a relation.

2. Let X “ Y . Then R “ tpx, yq P X ˆ X : x “ yu is a relation, consisting of the
“diagonal” of the set X ˆ X.

3. Let X “ Y “ R. Then R “ tpx, yq P R ˆ R : x ď yu is a relation.

4. Let X “ Nzt0u and Y “ N. Then

R “ tpa, bq P X ˆ Y : a | bu

is a relation. In other words, we have aRb if and only if a | b. R contains p1, nq for
any natural number n. It also contains the elements p2, 4q, p2, 6q, p3, 9q, but not
p5, 2q.

5. Let X “ t1, 2, 3u and Y “ t△, Òu. Then the subset

R “ tp1,△q, p2,△q, p3,△q, p2, Òqu

is a relation from X to Y .

There are many types of relations which appear in mathematics. There are three,
however, which are most commonly seen: equivalence relations, partial orders, and func-
tions. For the rest of this lecture, we will focus on functions.
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3.3 Functions

Functions are commonly defined as follows:

Definition 3.15. A function f from a set S to a set T is a rule which assigns every
element of S to a single element of T .

In other words, a function takes in an input from a set S and spits out an output in
the set T . Practically, this is how one should always think of a function. However, we
can give a more rigorous definition of a function using relations.

Definition 3.16. A function from a set S to a set T is a relation f Ď S ˆ T which
satisfies the following property: for each x P S, there exists a unique y P T such that
xfy. We write f : S Ñ T ; if xfy, we write fpxq “ y.

The relation-based definition above is how we can make precise the idea that “f
assigns each element of x some element in Y .” In this case, x and y are “related” if y is
the element which is assigned to x.

If f : S Ñ T is a function, we call S the domain of f and T the co-domain of f .

Remark 3.17. The condition defining a function is also known as the “vertical line
test.” This is because the graph of some function f : R Ñ R always satisfies the following
property: any vertical line passing through the page intersects the graph at precisely one
point.

Remark 3.18. If we have a function f : S Ñ T, then f is defined on every element of
S, and it can assign any given element of S to no more than one element of T. That is,
f assigns each element of S to exactly one element of T.

For example, the function f : Rě0 Ñ R sending a real number x ě 0 to “the” real
number y satisfying y2 “ x is not a function, since for most values of x, there are two
such y. The same rule, however, does define a function f : Rě0 Ñ Rě0, since each
nonnegative real number has exactly one nonnegative square root.

More precisely, what we are saying is that the relation f Ď Rě0 ˆ R defined by
f “ tpx, yq P Rě0 ˆ R : y2 “ xu is not a function, since when x “ 1, we have both
p1, 1q P f and p1,´1q P f , violating the vertical line test. On the other hand, the
relation f Ď Rě0 ˆ Rě0 defined by f “ tpx, yq P Rě0 ˆ Rě0 : y

2 “ xu is a function.

Both perspectives of a function are helpful. The first is intuitive and provides a quick
way to define and give examples of functions; however, it is technically not rigorous.
On the other hand, the second is rigorous and helpful for giving formal proofs about
functions, but it is less intuitive. We will switch between them when it is convenient.

Example 3.19.

1. We can define familiar functions f, g : R Ñ R by setting fpxq “ x2 or gpxq “

sinpxq. In terms of relations, we are defining f “ tpx, yq P R ˆ R : y “ x2u and
g “ tpx, yq P R ˆ R : y “ sinpxqu.
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2. We could also define a function h : Rě0 Ñ R given by hpxq “ x2, where Rě0

denotes the set of real numbers greater than or equal to 0. Although f and h
satisfy the same “formula,” they are different functions, as they have different
domains.

3. Not every function needs to be written as a numerical “formula.” For instance, we
could define a function r : t1, 2, 3u Ñ tcow, pigu as follows:

x rpxq

1 cow
2 pig
3 cow

In other words, r is the relation

r “ tp1, cowq, p2, pigq, p3, cowqu.

4. With the same sets as the example above, the relation

r “ tp1, cowq, p1, pigq, p2, pigq, p3, cowqu

is not a function. This is because it fails the vertical line test. Similarly, the relation

r “ tp1, cowq, p2, pigqu

is not a function, since it doesn’t assign a value to 3.

5. What is a function ∅ Ñ X? What about a function X Ñ ∅?

Definition 3.20. We say that two functions f, g : X Ñ Y are equal if they define the
same subset of X ˆ Y , i.e. they are the same relation.

Proposition 3.21. Two functions f, g : X Ñ Y are equal if and only if fpxq “ gpxq for
all x P X.

Proof. We have defined a function as a subset f Ď X ˆ Y satisfying the condition that
for all x P X, there is a unique element y P Y such that px, yq P f ; when px, yq P f , we
write y “ fpxq. We need to show that two functions f, g Ď X ˆ Y are equal if and only
if fpxq “ gpxq for all x.

Assume first that f, g Ď X ˆ Y are equal. We need to show that fpxq “ gpxq for all
x P X. Suppose x P X. By definition, px, fpxqq P f . Thus, px, fpxqq P g. By definition,
this implies fpxq “ gpxq.

Conversely, suppose fpxq “ gpxq for all x P X. Suppose px, yq P f . Then by defi-
nition, y “ fpxq. Since fpxq “ gpxq, this implies px, gpxqq P f . But by definition, we
have px, gpxqq P g. Hence, px, yq P g. This implies f Ď g. Similarly for the other direc-
tion, suppose px, yq P g. Then by definition, y “ gpxq. Since fpxq “ gpxq, this implies
px, fpxqq P g. But by definition, px, fpxqq P f , so this implies px, yq P f . We have shown
that g Ď f , so we conclude that f “ g.
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Remark 3.22. We can only say that two functions are equal if they have the same
domain and codomain!

Remark 3.23. The proposition above basically says that a function is entirely deter-
mined by “the rule which assigns elements,” which justifies the first, nonrigorous defini-
tion. Thus, we can always specify a function on a set on a set X by specifying a formula
fpxq for each x P X, provided that the formula is “well-defined,” i.e. there is one and
only one way to interpret fpxq.

Example 3.24.

1. The function f : R Ñ R defined by fpxq “ x and g : R Ñ R defined by gpxq “

p1 ` x2q{p1 ` x2q ´ 1 ` x are equal, because gpxq “ p1 ` x2q{p1 ` x2q ´ 1 ` x “

1 ´ 1 ` x “ x “ fpxq for all x P R.

2. The function f : t1u Ñ R defined by fpxq “ x ´ 1 and g : t1u Ñ R defined
by gpxq “ log x are equal, because for all x P t1u, we have x “ 1, and hence
fpxq “ x ´ 1 “ 0 “ log x “ gpxq.

3. Any two functions ∅ Ñ X are equal to each other (why?).

In other words, a function is determined purely by its domain, codomain, and how
it assigns elements of its domain to elements of its codomain, not how we label it.

Definition 3.25. For any set X, the function f : X Ñ X defined by setting fpxq “ x
for every x P X is called the identity function on X, and is written idX . In terms of
relations, idX is the relation

idX “ tpx, yq P X ˆ X : y “ xu.

The case of f and h in Example 3.19 highlights another important attribute of
functions.

Definition 3.26. Let f : S Ñ T and A Ď S. The restriction of f to A, written f |A
or f |A, is a function f |A : A Ñ T given by the same rule as f , but with domain A. In
terms of relations, f |A is the relation

f |A “ f X pA ˆ T q.

Example 3.27. The functions f : R Ñ R and h : Rě0 Ñ R given by fpxq “ hpxq “ x2

from Example 3.19 are an example of a restriction: in particular, h “ f |Rě0
.

Sometimes, when we want a function to be defined by multiple “formulas,” we write
it piecewise; for instance, the function r from Example 3.19 can be rewritten as

rpxq “

#

cow x “ 1 _ x “ 3

pig x “ 2
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or in terms of relations,

r “ tpx, yq : py “ cow ^ px “ 1 _ x “ 3qq _ py “ pig ^ x “ 2qu.

Definition 3.28. Let f : X Ñ Y and g : Y Ñ Z be functions. We define the compo-
sition of f and g, denoted g ˝ f , to be the function defined by

pg ˝ fqpxq “ gpfpxqq

for all x P X. In terms of relations, g ˝ f : X Ñ Z is the relation defined by

g ˝ f “ tpx, zq P X ˆ Z : z “ gpfpxqqu.

Example 3.29. If f : R Ñ R and g : R Ñ R are defined by

fpxq “

#

x ` 1 x ď ´1
x2`3
x`1 x ą ´1

, gpxq “ 5x ` 2,

then gpfpxqq is given by the formula

gpfpxqq “

#

5px ` 1q ` 2 x ď ´1

5
´

x2`3
x`1

¯

` 2 x ą ´1
“

#

5x ` 7 x ď ´1
5x2`2x`17

x`1 x ą ´1

Definition 3.30. Let f : S Ñ T . We say f is injective if whenever fpx1q “ fpx2q,
we have x1 “ x2. Equivalently (via contrapositive), f is injective if x1 ‰ x2 implies
fpx1q ‰ fpx2q. This condition is also known as the “horizontal line test.”

Definition 3.31. Let f : S Ñ T . We say f is surjective if for every y P T , there exists
an x P S such that fpxq “ y.

Definition 3.32. If f : S Ñ T is both injective and surjective, we say it is a bijection
between S and T .

Remark 3.33. An other words, an injective function is one where every element in
the codomain is hit at most once (but possibly not at all). A surjective function is one
where every element in the codomain is hit at least once (but possibly multiple times).
A bijective function is one where every element in the codomain is hit once, and exactly
once.

Remark 3.34. One way to think about bijections is that a bijection describes when two
sets S and T are “the same.” A bijection f : S Ñ T is essentially a rule which relabels
the elements of S as elements of T , and the labeling scheme is a perfect one-to-one
correspondence.
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Example 3.35. The function h : Rě0 Ñ R given in Example 3.19 as hpxq “ x2 is an
example of an injection but not a surjection, since negative numbers don’t have real
square roots. Note that the function f : R Ñ R given by fpxq “ x2 is not an injection
(nor a surjection), since ´x and x map to the same element x2. However, the function
h : Rě0 Ñ Rě0 given by hpxq “ x2 is both injective and surjective, hence bijective. This
exhibits the need to consider the domain and codomain as part of the data of a function.

Example 3.36. An example of a surjective function which is not injective is f : R Ñ R
given by fpxq “ x3 ´ x.

Example 3.37. The function f : R Ñ R given by fpxq “ x3 is a bijection.

Example 3.38. For any set X, idX is a bijection.

We will give an equivalent formulation of what it means for a function to be bijective.

Definition 3.39. We say a function f : X Ñ Y has an inverse if there exists some
function g : Y Ñ X such that gpfpxqq “ x and fpgpyqq “ y for any x P X and y P Y . In
other words, g ˝ f “ idX and f ˝ g “ idY . We write g “ f´1 if this is the case.

Proposition 3.40. f : X Ñ Y is a bijection if and only if it has an inverse.

Proof. Suppose first that f has an inverse g : Y Ñ X. We wish to show that f is
bijective. To show that f is injective, suppose x, y P X are such that fpxq “ fpyq. Then
gpfpxqq “ gpfpyqq. Since gpfpxqq “ x for all x P X, we have x “ y. Therefore, f is
injective. To show that f is surjective, suppose y P Y . We need to find some x P X such
that fpxq “ y. Take x “ gpyq. Then fpxq “ fpgpyqq “ y, as desired.

Conversely, suppose f is bijective. We need to construct a function g : Y Ñ X such
that fpgpyqq “ y and gpfpxqq “ x for all x P X and y P Y . Let g : Y Ñ X be the
relation defined by

g “ tpy, xq P Y ˆ X : px, yq P fu.

We need to show that (i) g satsifies the vertical line test, and (ii) g is an inverse of
f . First, suppose y P Y . We need to show that there is a unique x P X such that
py, xq P g. Since f is surjective, there is an element x P X such that fpxq “ y. Then
px, yq “ px, fpxqq P f , so that py, xq P g. If x1 is another element such that py, x1q P g,
then by definition, px, yq and px1, yq are both in f . This means that fpxq “ y “ fpx1q.
Since f is injective, this means that x “ x1, so that the element is unique.

Now we show that g is an inverse. For all x P X, we have by definition that px, fpxqq P

f , so that pfpxq, xq P g. This means that gpfpxqq “ x. On the other hand, we have
py, gpyqq P g for all y P Y by definition, so that pgpyq, yq P f . This means that fpgpyqq “ y
for all y P Y .

More interesting examples of functions and bijections are given in the exercises.
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Remark 3.41. In order to show that a function f : S Ñ T is a bijection, one can either
show that f is both injective and surjective, or one can prove that f has an inverse by
constructing a function g : T Ñ S and verifying that gpfpxqq “ x and fpgpyqq “ y for
all x P S and y P T .

As is the case with logic, unions and intersections are not the only way to construct
new sets from old sets. We can, for example, look at sets of sets or sets of functions.
Given a function f : X Ñ Y , we can also look at images and preimages of subsets. Some
of these constructions will be detailed in the exercises.

Definition 3.42. Let X,Y be sets. We define the powerset of X to be the set of
all subsets of X, denoted PX. We also denote the set of all functions X Ñ Y by
HompX,Y q or Y X .

You will have the opportunity to explore the properties of these constructions in the
exercises.
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