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5 Week 5: More Set Theory

5.1 Equivalence Relations

In Week 3, we mentioned that there are three relations which are ubiquitous in math-
ematics: equivalence relations, partial orders, and functions. We discussed functions in
Week 3; today, we discuss equivalence relations.

Equivalence relations axiomize relations which “behave like “,” with different types
of equivalence relations capturing the ways in which two objects can be “similar but not
necessarily equal to” each other.

Definition 5.1. An equivalence relation on a set X is a relation R Ď XˆX satisfying
the following three properties:

1. (Reflexivity) For all x P X, xRx.

2. (Symmetry) For all x, y P X, xRy implies yRx.

3. (Transitivity) For all x, y, z P X, if xRy and yRz, then xRz.

Remark 5.2. Equivalence relations are typically denoted by symbols like „ or –. In
other words, if px, yq P „, we write x „ y. The three axioms above then become:

1. x „ x;

2. x „ y ñ y „ x;
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Proof Workshop 5.2 Equivalence Classes

3. px „ yq ^ py „ zq ñ x „ z.

Remark 5.3. An equivalence relation cannot be defined between two different sets; in
other words, there is no such thing as an equivalence relation from X to Y where X ‰ Y .

Example 5.4.

1. The usual “equals” relation is an equivalence relation on any set X. In other words,
the relation ∆ Ď X ˆ X defined by px, yq P ∆ iff x “ y is an equvialence relation.

2. For an integer k ą 0, define a relation Rk Ď N ˆ N as follows: we say that
pm,nq P Rk if and only if k | pm´nq, i.e. m´n is divisible by k. This is the same
as saying that m and n have the same remainder when divided by k. Then Rk is
an equivalence relation.

3. Let T be the set of all triangles in the plane R2. Define a relation R Ď T ˆ T by
setting p∆1,∆2q P R if and only if ∆1 is similar to ∆2. Then R is an equivalence
relation.

4. Let X “ t0, 1, 2, 3u. Define a relation R Ď X ˆ X by setting

R “ tpx, yq P X ˆ X : x, y P t0, 1u or x, y P t2, 3uu.

Then R is an equivalence relation.

5. The relation R Ď R ˆ R defined by

R “ tpx, yq P R ˆ R : |x ´ y| ă 1u

is not an equivalence relation. It fails to satisfy one of the three axioms (which
one?).

6. Let X be the set of all humans. The relation on X defined by A „ B iff A is an
ancestor of B is not an equivalence relation, because it is not symmetric, although
it is both reflexive and transitive.

7. The relation R Ď NˆN defined by R “ tp0, 0qu (in other words, x „ y if and only
if x “ y “ 0) is not an equivalence relation. While it is symmetric and transitive,
it is not reflexive.

5.2 Equivalence Classes

One way to think about equivalence relations is that they describe a “classification” of
the elements of a set into different types. For example, consider the equivalence relation
on triangles given by △1 „ △2 if and only if they are similar. Two triangles are similar
if and only if they have the same three angles.
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Another way of thinking about this is as follows: given three angles α, β, γ which
add up to 180˝, let’s look at the set Tα,β,γ of all triangles which have these three angles.
Every triangle lies in such a set, and any two triangles in this set are similar; on the
other hand, for a different set of angles α1, β1, γ1, a triangle in Tα1,β1,γ1 is never similar to
another triangle in Tα,β,γ . Hence, the equivalence relation „ describes a “classification
of triangles according to angles.” We can make this more general as follows.

Definition 5.5. Let X be a set and „ an equivalence relation on X. For an element
x P X, we define the equivalence class of x, denoted rxs, to be the set

rxs :“ ty P X : y „ xu.

An element y P rxs is called a representative of the equivalence class rxs.

Proposition 5.6. Let X be a set and „ an equivalence relation on X. For elements
x, y P X, we have rxs “ rys if and only if x „ y. If rxs ‰ rys, then they are disjoint i.e.
rxs X rys “ ∅.

Proof. Let’s begin with the first statement. Assume that rxs “ rys. By reflexivity, x P rxs.
Since rxs “ rys, this means that x P rys. By definition, this implies x „ y.

Conversely, suppose that x „ y and let z P rxs. By definition, z „ x. Since x „ y,
we have by transitivity that z „ y and hence z P rys by definition. Thus, we have just
proven that for all x, y P X, x „ y implies rxs Ď rys. Now, x „ y also implies y „ x
by symmetry. Repeating the same argument as before with y interchanged with x, we
conclude that rys Ď rxs and hence rxs “ rys.

For the second statement, we prove the contrapositive. Suppose that rxs X rys ‰ ∅,
so that z P rxs X rys. We need to show that rxs “ rys. Assume that x1 P rxs. By
definition, x1 „ x. By definition, z „ x. By symmetry and transitivity, this implies
x1 „ z. Since z „ y by definition, we have by transitivity that x1 „ y and hence
rxs Ď rys. Interchanging the roles of x and y in the above proof gives us rys Ď rxs as
well, so rxs “ rys.

Remark 5.7. The argument we made for the second half of the first statement and for
the last statement are examples of an “argument by symmetry.” In the example above,
the proof of the second half of the first statement “effectively” established the following:
for all x, y P X, x „ y ñ rxs Ď rys. Since x „ y is equivalent to y „ x by symmetry,
this means that we have also proven that for all x, y P X, y „ x ñ rxs Ď rys. Hence,
interchanging the variables x and y tells us that for all x, y P X, x „ y ñ rys Ď rxs.

Definition 5.8. Let X be a set with an equivalence relation „. We define the set of
equvialence classes of X under „ to be the set

X{„:“ trxs : x P Xu.
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Example 5.9. Let n ą 0 be an integer, and let –n be the equivalence relation on Z
defined by x „ y iff n | px ´ yq i.e. x and y have the same remainder upon division by
n. Then Z{–n is often denoted Z{nZ and called the integers modulo n. Elements of
Z{nZ are sets of the form rxs where x is an integer, and rxs “ rys when x and y have
the same remainder upon division by n. When n “ 5, for example, r1s is an element of
Z{5Z with r1s “ r6s “ r11s.

Remark 5.10. In essence, an equivalence relation defines a “partition” on a set X,
which is a formalization of what it means to “split the elements of a set into different
categories.” In the exercises, you will have the opportunity to show that every partition
defines an equivalence relation, and that every equivalence relation defines a partition
via X{„.

Sometimes, we would like to be able to define a function on a set of equivalence
classes. As a natural example, let’s say we wanted to compute the square of the element
r3s in Z{5Z. I would like to be able to define r3s2 “ r9s. However, in Z{5Z, we have
r3s “ r8s, so another reasonable definition is r3s2 “ r8s2 “ r64s. In other words, in order
for this function to be well-defined i.e. not give two different output for the same input,
it cannot depend on the choice of representative for the particular equivalence class. An
example of a “function” which is not well-defined on Z{5Z is f : Z{5Z Ñ Z defined by
fprxsq “ x ´ 1, since fpr3sq “ 2 ‰ 7 “ fpr8sq even though r3s “ r8s.

Proposition 5.11. Let X be a set with an equivalence relation „ and let Y be another
set. Let q : X Ñ X{„ be the function defined by fpxq “ rxs. If f : X Ñ Y is a function
which satisfies the property that

x „ y ùñ fpxq “ fpyq,

then there is a unique function f̃ : X{„Ñ Y such that f “ f̃ ˝ q.

X Y

X{„

f

q f̃

Proof. The condition that f “ f̃ ˝ q is equivalent to saying that for all x P X, we have
fpxq “ pf̃ ˝ qqpxq “ f̃prxsq. Thus, once we show that for a function f satisfying the
properties stated above, f̃ is well-defined, i.e. the relation f̃ Ď X{„ ˆY given by

f̃ “ tpS, yq P X{„ ˆY : there is a representative x P S with fpxq “ y

is indeed a function, we are done, since this function is then unique.
Thus, we have to show that if pS, yq, pS, y1q P f̃ , then y “ y1. Indeed, this means

that there is x P S such that fpxq “ y and x1 P S such that fpx1q “ y1. Now, since
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S P X{„, we have S “ rzs for some z P X. Since x P rxs X rzs, rxs X rzs is nonempty and
hence we have by Proposition 5.6 that rxs “ rzs “ S. Similarly, since x1 P rx1s X rzs, we
have rx1s “ rzs “ S. Thus, rxs “ S “ rx1s. By Proposition 5.6 again, this implies that
x „ x1. Hence, fpxq “ fpx1q by assumption, which means that y “ fpxq “ fpx1q “ y1 as
desired.

Remark 5.12. You can think about the property x „ y ñ fpxq “ fpyq as “f cannot
distinguish “ from „.” Thus, to specify a function on X{„ is to specify a function on
X which cannot distinguish “ from „.

Example 5.13. Let f : Z Ñ Z{nZ be the function defined by fpxq “ rx2s, and let
n ą 0 be an integer. If x –n y, i.e. n | px ´ yq, then x2 ´ y2 “ px ´ yqpx ` yq is also
divisible by n. In other words, x2 –n y2, so rx2s “ ry2s. Hence, by the proposition above,
the function f̃ : Z{nZ Ñ Z{nZ which sends f̃prxsq “ rx2s is well-defined.

5.3 Cardinality

We will briefly discuss cardinality and compute the cardinality of some sets. Cardinality
is the measure of the size of a set according to its number of elements. Rather than
trying to make sense of what it means to count the number of elements in a set on
a metamathematical level, however, it is easiest to interpret cardinality as a kind of
“equivalence relation on all sets.”

Recall the definition of a bijection as a function f : S Ñ T which is both injective
and bijective. We proved before that this is equivalent to having an inverse g : T Ñ S.
A bijection between S and T essentially gives us a one-to-one correspondence between
the elements of S and the elements of T . In particular, this means that S and T have
the “same number of elements.”

Definition 5.14. Let S and T be two sets. We say that S and T have the same cardi-
nality if there exists a bijection f : S Ñ T . In this case, we write |S| “ |T |.

Example 5.15. The sets t0, 1u and t1, 2u have the same cardinality, because the map
f : t0, 1u Ñ t1, 2u sending 0 ÞÑ 1 and 1 ÞÑ 2 is a bijection. On the other hand, t0u and
t0, 1u do not have the same cardinality, since no function f : t0u Ñ t0, 1u is surjective.

Example 5.16. Let p, q P N be two natural numbers. The sets tn P N : n ě pu and
tn P N : n ě qu have the same cardinality; in particular, this means that the sets
t0, 1, 2, . . .u has the “same number of elements” as t5, 6, 7, . . .u, even though the latter is
a strict subset of the former!

Proof. If p “ q, then the two sets are the same, so they obviously have the same cardi-
nality. Suppose then that p ă q. The function

f : tn P N : n ě pu Ñ tn P N : n ě qu
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sending fpnq “ n ` pq ´ pq is a bijection, since it has an inverse g defined by gpnq “

n´ pq ´ pq. If p ą q, we can just interchange the roles of p and q in the above proof.

Proposition 5.17. Let X,Y, Z be sets.

1. |X| “ |X|.

2. If |X| “ |Y |, then |Y | “ |X|.

3. If |X| “ |Y | and |Y | “ |Z|, then |X| “ |Z|.

Proof.

1. The function idX : X Ñ X is a bijection, since it has an inverse, namely itself.
Hence, |X| “ |X|.

2. Suppose |X| “ |Y |. Then there is a bijection f : X Ñ Y . Hence, f has an inverse
g : Y Ñ X. g is also a bijection, since g has an inverse, namely f . Thus, |Y | “ |X|.

3. Suppose |X| “ |Y | and |Y | “ |Z|, so there exist bijections f : X Ñ Y and
g : Y Ñ Z. We claim that g ˝ f : X Ñ Z is a bijection.

First, g ˝ f is injective. Suppose x, y P X such that gpfpxqq “ gpfpyqq. Since g is
injective, fpxq “ fpyq. Since f is injective, x “ y.

Second, g ˝ f is surjective. Let z P Z. Since g is surjective, there exists y P Y such
that gpyq “ z. Since f is surjective, there exists x P X such that fpxq “ y. Hence,
gpfpxqq “ gpyq “ z, so g ˝ f is surjective.

Remark 5.18. The proposition above almost says that “has equal cardinality” is an
equivalence relation on all sets. We have to be careful here; as we have defined them,
equivalence relations can only exist on sets, and there is no set of all sets! However, the
analogy is very helpful; you can think of every set as lying in an equivalence class of sets
which have the same cardinality.

5.4 Finite Sets

What does it mean for a set to have 2 elements, or 5 elements? The next definition
makes this precise.

Definition 5.19. For each n P N, define rns to be the set

rns “ tk P N : k ă nu “ t0, 1, . . . , n ´ 1u.

We say that a set X has cardinality n, or has n elements, if |X| “ |rns|. We then
write |X| “ n.

6



Proof Workshop 5.4 Finite Sets

Example 5.20. The set ∅ has cardinality 0, while the set t0u “ r1s has cardinality 1.
In general, each rns has cardinality n.

Example 5.21. The set t2, 6, 7, 3u has cardinality 4, since the function f : r4s Ñ

t2, 6, 7, 3u sending 0 ÞÑ 2, 1 ÞÑ 6, 2 ÞÑ 7, and 3 ÞÑ 3 is a bijection.

Proposition 5.22. If X is a set with both cardinality m and cardinality n, where
m,n P N, then m “ n.

Proof. Do not be confused by the statement of this proposition—it is not trivial! We
have defined a set X as having cardinality m if there is a bijection rms Ñ X. But what if
there were also a bijection rns Ñ X, where n ‰ m? Then X would have both cardinalitiy
m and n! This proposition ensures that this is impossible.

We will prove the result by induction on m. If m “ 0, then X is empty; the empty
set can only have cardinality 0. Suppose now that we have proven the result for m, and
X is a set with cardinality m ` 1 and n. Then by the above argument, we must also
have n ą 0. We will use the following lemma (which we will leave as an exercise):

If X is a set which has cardinality n ą 0 and x P X is any element, then
Xztxu has cardinality n ´ 1.

Let x P X be any element. Then Xztxu has cardinality m and n´ 1, whence m “ n´ 1
by the induction hypothesis. Hence, m ` 1 “ n and we are done.

Definition 5.23. A set X is finite if it has cardinality n for some n P N. Otherwise,
we say that X is infinite.

We will conclude with some results which may seem “obvious,” but require formal
proof (often by induction) to justify rigorously.

Proposition 5.24. Let X be a finite set and S Ď X. Then S is also a finite set, and
|S| ď |X|.

Proof. We will use induction on the cardinality n of X. For n “ 0, we have X “ ∅, and
the only subset of ∅ is ∅, which is trivially finite and of cardinality 0 ď 0.

Now suppose the result is proven for all finite sets with cardinality n, and suppose
|X| “ n ` 1. Choose any x P X. If x R S, then S Ď Xztxu. We know that Xztxu with
cardinality n, so by the induction hypothesis, S is finite and |S| ď |Xztxu| “ n ´ 1.

If x P S, then Sztxu Ď Xztxu, so by the induction hypothesis, Sztxu with cardinality
k P N. Let f : rks Ñ Sztxu be a bijection.

We claim that the function f 1 : rk ` 1s Ñ S defined by f 1piq “ fpiq when i ă k,
f 1pkq “ x is a bijection. First, we claim it is injective. Suppose that f 1piq “ f 1pjq. If
i “ k, then we must have j “ k, since otherwise f 1pjq “ fpjq P Sztxu while f 1piq “ x,
which is impossible.
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If i ă k, then we cannot have j “ k for the same reasoning above, so j ă k as well.
But then f 1piq “ fpiq and f 1pjq “ fpjq. Since f is injective, this implies i “ j.

Next, we claim that f 1 is surjective. Indeed, if s P Sztxu, then there exists i P rks

such that fpiq “ s, and hence f 1piq “ s. Otherwise, if s “ x, then f 1pkq “ s.

Remark 5.25. As a consequence of this result and the lemma above, if S Ĺ X, then
|S| ă |X| (do you see why?).

Proposition 5.26. N is infinite.

Proof. We will use the lemma below, that every finite subset of N is bounded. Suppose
by contradiction that N is finite, so that there exists a bijection f : rns Ñ N. Then N is a
subset of N which is finite, so N must be bounded, i.e. there exists some b P N such that
for all x P N, b ě x. In particular, this implies b ě b ` 1, which is a contradiction.

Lemma 5.27. Every finite subset of N is bounded; i.e. if S Ď N is finite, there exists a
b P N such that for all x P S, b ě x.

Proof. Let S Ď N be a finite subset of cardinality n. We will prove the statement by
induction on n. If n “ 0, then any b P N is an upper bound for S, thus proving the base
case.

Now suppose that the result is true for some n P N and that |S| “ n ` 1. Let x P S
be arbitrary. Then Sztxu Ď N has cardinality n, so Sztxu has an upper bound b P N. If
b ě x, then b is an upper bound for S. Otherwise, if x ą b, then x is an upper bound
for S. In any case, S has an upper bound, completing the proof.

In the exercises, you will have the opportunity to compute the cardinality of unions,
cartesian products, and Hom-sets.
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