
SPHERE PACKING LECTURE

ALEX BLUMENTHAL

Abstract. What is the most space-efficient way to stack spheres in three-dimensional
space? Although the answer is obvious, a rigorous proof has eluded mathematicians for
centuries, having only recently been found by Hales in 1998, who used an immense com-
puterized proof-by-exhaustion. The more general problem of packing (n-1)-spheres into
n-dimensional Euclidean (or other) space is still only poorly understood, in spite of many
the striking connections linking this problem to other areas of mathematics. In this talk, we
shall explore these connections, discuss some of the methods used to prove sphere packing
density bounds, and review some of the results that are known about sphere packings in
high dimensions.
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1. Statement of the Problem

A sphere packing Ω ⊂ Rn is the union of a set of solid n-balls of a fixed (arbitrary) radius,
where we require that the balls only ’kiss’ or intersect at the boundary. It is clear that a
sphere packing in Rn is specified by the locations of the centers of the spheres, i.e. a discrete
subset P ⊂ Rn such that for any x, y ∈ P , we have |x−y| ≥ 2r for some fixed positive r > 0,
the largest radius such that spheres of radius r placed at the points of P intersect only on
their boundaries.

To define the ”density” for an arbitrary sphere packing, it is natural to first consider
packings that exhibit some sort of periodicity condition.

Definition 1. A lattice in Rn is the infinite discrete subset of Rn generated by integral linear
combinations of some linearly-independent set {v1, · · · , vn} ⊂ Rn.
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We call a packing P a lattice packing if P = Λ is a lattice. More important is the general
notion of a periodic packing, which is any packing obtained from finitely many translations
of a lattice Λ.

Suppose a periodic packing Ω is obtained from N translations of a lattice Λ. Then, we
define the density ∆(P) to be

∆(P) =
Nωnr

n

| det Λ|
where we identify Λ with the n×n matrix whose columns are the basis vectors {v1, · · · , vn},
ωn is the volume of a unit Sn−1 in Rn and r > 0 is the radius of the packing. Often it is
more convenient to work with the center density δ(P) defined from

δ(P) = ∆(P)/ωn =
N

| det Λ|
We can generalize this to a definition of density for a packing without any periodic struc-

ture: let p ∈ Rn and denote by B(r, p) ⊂ R3 the ball of radius r > 0 about p. Then for an
arbitrary packing Ω,P we define

∆(P) = sup
p∈Rn

lim sup
r→∞

Vol(Ω ∩B(p, r))

Vol(B(p, r))

It is known that when the limit exists, it exists and is equal for all p ∈ Rn. Otherwise, the
density defined above is referred to as the upper density.

It is not clear a priori that we lose generality by considering only lattice sphere packings.
In fact, the crystallographer Barlow showed how to construct an uncountable family of sphere
packings in R3 whose density is that of the cannonball packing, the densest (and unique)
lattice packing known, due to Thue (Zong).

On the other hand, it is known (Groemer) that there exist optimally (upper) dense sphere
packings for which the limit defining ∆ exists uniformly for all p ∈ Rn. This seems to justify
using the upper density to characterize the global density of a packing.

We define the density bound ∆ to be

∆ = sup
Packings P

∆(P)

where the supremum is over all sphere packings P .
One reduction we can use: for the purposes of bounding ∆, it is sufficient to consider

periodic packings, since (Cohn-Elkies, 2003) ∆ is obtained as the limit of a sequence of
densities of periodic packings.

2. History of the Sphere Packing Problem

The following is a brief timeline of the significant developments in the sphere packing
problem.

• 1611 - Kepler conjectures that the most space-efficient way of packing spheres into
R3 is the cannonball, Kepler or face-centered cubic packing, formed by repeating the
tetrahedral cell throughout R3.
• 1773 - By studying extremal quadratic forms, Lagrange was able to deduce that the

hexagonal packing is optimal among lattice packings of S2.
• 1831 - Gauss uses similar methods to deduce that the cannonball packing is the

densest among lattice packings of spheres.



SPHERE PACKING LECTURE 3

• 1900 - Hilbert makes the Kepler Conjecture the third part of his 18th problem.
• 1953 - Toth suggests a method of proving the Kepler conjecture by checking a finite

number of cases, i.e. proof-by-exhaustion.
• 1940 - 1960 - In his groundbreaking work on formal communication theory, Shannon

discovers the connection between designing codes to optimize error-free information
transfer rates in a Gaussian white noise band-limited channel and finding the densest
sphere packings.
• 1993 - Hsiang announces he has proven the Kepler conjecture using the program of

Toth and a computer; later the proof is discovered to contain errors.
• 1997 - Hales fulfills the program of Toth and announces his proof of the Kepler

conjecture. A panel of mathematicians (including Toth himself) later asserts they
are ”99% certain” that the proof is correct, as it is impossible to check all 3-GB of
computations required by hand.

3. Applications of the Problem to Computer Science

There are two applications of the sphere packing problem to this field.

3.1. Design of Codes for Band-limited Gaussian white noise Channels. Let T > 0
be a fixed length of time corresponding to the length of a signal transmission.

Definition 2. A signal is a continuous map f : [0, T ]→ R such that the frequencies of the

signal in f do not surpass a fixed ’limit’ W . Precisely, the Fourier transform f̂ has compact
support contained in [−W,W ] ⊂ R. A code is a finite collection of signals {f1, · · · , fM}.

We shall adopt the convention of writing f : R→ R by extending f by the zero function
to the rest of R.

The channel is the physical conduit through which signals are sent from one computer (the
source) to another (the destination). Digital data from the Source is encoded using some
finite set of signals, the code. This can be thought of as a is a symbolic alphabet for the two
computers to communicate with via the channel. A simple example of such an alphabet is
{0, 1}, the binary code.

The Shannon-Nyquist Sampling Theorem asserts that a bandlimited signal f is uniquely
characterized by a finite set of its samples

S(f) = {f(0), f(
1

2W
), · · · , f(

n− 1

2W
)}

where n = 2TW . It is natural to identify S(f) as a vector in Rn.
Indeed, we have the ability to reconstruct f entirely from S(f) by the Cardinal Series:

f(t) =
∑
k∈Z

f(
k

2W
)
sin 2πW (t− k/2W )

2πW (t− k/2W )

The function in the summand is called ’sinc’ by the electrical engineers, and satisfies the
orthogonality relation∫

t∈R

sin 2πW (t− k/2W )

2πW (t− k/2W )

sin 2πW (t− l/2W )

2πW (t− l/2W )
dt =

δkl
2W

We see that a code for a band-limited channel amounts to a finite subset of Rn. Really,
Rn is a configuration space for the data received at the end of the channel by the decoder,
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which samples the signal, plots it in this configuration space and determines which letter
best ’fits’ the signal being uttered in the channel.

We say that the channel has Gaussian white noise when we model the noise (unintentional
signals arising from the environment) in the channel modeled by n random variables (i.e. a
random vector) in Gaussian distribution with mean zero and variance σ2, one each indicating
the components of the vector Y corresponding to the noise’s signal.

Suppose the source sends a signal f through the channel corresponding to the point F ∈
Rn, and in doing so incurs the Gaussian white noise signal represented by the point Y ∈ Rn.
Then the received signal is F + Y , and an error may occur in the data transmission if and
only if the resulting message F + Y happens to be closer to another signal F ′ 6= F in the
code.

Naive intuition would suggest separating the Rn positions of the signals as much as pos-
sible. However, consider the average power

P =
1

T

∫ T

0

|f(t)|2dt

exerted in delivering the signal. We see that by the orthogonality relation,

F · F = |F |2 =
∑
k∈Z

(
f(

k

2W
)

)2

= 2W

∫ T

0

|f(t)|2dt = 2WTP = nP

Thus, the more we separate the signals F , the more power is exerted and the less efficient
the code! An ’optimal’ choice of channel code must somehow balance these two competing
effects.

Recall that each of the components Yj of Y is a Gaussian random variable, and so P(−2σ ≤
Yj ≤ 2σ) is close to one, so that we conclude

P(Y · Y = |Y |2 ≤ 4nσ2)

is very close to one. So, to make sure that two signals F,G ∈ Rn are not mistaken for
one-another with high probability, we see that sufficient to separate them by a distance

d = 4
√
nσ2

since we are then guaranteed almost surely that |Y | < d. Geometrically, this means that we
want to consider designing codes as a kind of sphere-packing problem: we’re insulating the
points F,G with balls of radius r = d/2.

Suddenly, the problem of how to design a code for a band-limited channel is equivalent
to the problem of packing spheres of radius r = d/2 = 2

√
nσ2 such that all the centers lie

within
√
nP of the origin.

Already, there are modems on the market with codes designed from the lattice E8 ⊂ R8,
which is conjectured (and most certainly is, although there is no formal proof) to be the
densest packing in R8.

3.2. Design of Optimal Quantizers. When apparatus obtains some kind of empirical or
real-world datum which is then converted into a digital datum, the quantizer is the device
that selects the digital representative of the analogue input datum.

Suppose that x ∈ Rn is an analogue datum to be converted to a digital one. The quantizer
is an algorithm which selects some point p on a fixed discrete lattice P ⊂ Rn that most
accurately reflects the actual value of x, i.e. x has been quantized to p ∈ P . All commercial
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quantizers are implemented with n = 1, but it is known that higher-dimensional quantizers
are theoretically more accurate (on average).

A natural question is to ask for the statistics of a particular quantizer algorithm as a
function of P . For instance, what is the expectation of the second moment (the variance) of
the error incurred by quantizing?

We need the notion of a Voronoi Cell in Rn: Given some lattice or discrete subset P , the
Voronoi Cell V (p) at a point p ∈ P is the set

V (p) = {x ∈ Rn | |x− q| ≥ |x− p| ∀q ∈ Λ}
It is known that for any P ,

Rn −
⋃
p∈P

V (p)

is a set of zero measure.
One useful statistic is the normalized mean squared error per symbol,

G(Λ) =
1

n
| det Λ|−

n+2
n

∫
V (0)

x · x dx

which quantifies how ’accurate’ a generic quantization is. Interestingly,

G(E8) =
929

12960
= 0.0716821 . . .

is a far better quantizer according to this measure than is Z3, the cube packing, for which
G(Z3) = 1

12
= 0.08333 . . ..

The problem of designing an efficient quantizer for dimensions n ≥ 1 has led to the result
that for low dimensions, the best (most efficient at minimizing the possible error of the
digitalization) quantizing lattices are the duals of the densest sphere packing lattices, where
we recall that for a lattice Λ ⊂ Rn, its dual is defined to be

Λ∗ = {x | 〈x, y〉 ∈ Z ∀y ∈ Λ} ⊂ Rn

where 〈, 〉 is the Euclidean inner product.

4. Generating Upper Bounds on the Optimal Density

It is clear that a lower bound on the optimal density of sphere packings in Rn, or any space
for that matter, can be found by constructively proving the density of a concrete packing
∆(P). The situation is trickier with an upper bound on ∆; in this section we’ll discuss one
method for generating upper bounds on the density of sphere packings.

4.1. The Cohn-Elkies Upper Bound Theorem. Let f : Rn → R be a ’radial’ function,
i.e. f is constant on balls of constant radius centered at the origin. We write f(r) for the
common value of f on the ball of radius r.

Then, either by averaging over the rotation group O(n) or by using the radial Laplacian
operator for Rn, it is possible to derive a so-called ’radial’ fourier transform,

f̂(t) = 2π|t|−α
∞∫

0

f(r)Jα(2πr|t|)rn/2dr

where α = n/2− 1 and Jα denotes the Bessel function of order α.
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In addition, we shall assume that f and f̂ are of decay sufficient for the Poisson Summation
Formula to hold, i.e. for all v ∈ Rn,∑

x∈Λ

f(x+ v) =
1

|Λ|
∑
t∈Λ∗

e−2πi〈v,t〉f̂(t)

where Λ is any lattice, as defined earlier, and Λ∗ represents the dual lattice. We shall now
sketch a proof of the following:

Theorem 4.1. Suppose that a function f : Rn → R is radial, is not identically zero, and
satisfies

• f(r) ≤ 0 when r ≥ 1

• f̂(t) ≥ 0 for all t ∈ R
Then the center density δ of any n-dimensional sphere packing satisfies

δ ≤ f(0)

2nf̂(0)

Proof. It suffices to consider only periodic packings P with lattice Λ and translation vectors
{v1, · · · , vN}. Then recall that the center density is

δ(P) =
N

2n|Λ|

Without loss, select the scale of Λ so that spheres have radius R = 1/2. From Poisson
Summation, we have

∑
1≤j,k≤N

∑
x∈Λ

f(x+ vj − vk) =
1

|Λ|
∑
t∈Λ∗

f̂(t)
∑

1≤j,k≤N

e−2πi〈vj−vk,t〉 =
1

|Λ|
∑
t∈Λ∗

f̂(t)

∣∣∣∣∣ ∑
1≤j≤N

e2πi〈vj ,t〉

∣∣∣∣∣
2

Each term in the sum on the RHS over Λ∗ is positive, and so the whole is bounded from
below by the t = 0 term f̂(0)N2/|Λ|.

For the LHS, we see that |x+vj−vk| < 1 iff x = 0 and j = k, so that from the hypotheses
these are the only positive terms arising in the left hand sum. Therefore we obtain the upper
bound Nf(0). Collecting these bounds and recalling the definition of ∆(P) and δ(P), we
have obtained the conclusion of the theorem. �

4.2. Results for Packings in Rn. Cohn-Elkies were able to use the upper-bound theorem
to re-derive the second-best known bounds for sphere packing densities at high dimensions,
due to Levenshtein:

∆ ≤
jnn/2

(n/2)!24n

where jt is the first positive root of the Bessel function Jt.
Using linear programming methods, they were able to compute the best-known upper

bounds on the densities of packings in 8 and 24 dimensions. These are known to be sharp,
since in these dimensions there are already two beautiful lattices, E8 and the Leech lattice,
which are all but certainly the optimal packing lattices in their respective dimensions, and
which nearly match the Cohn-Elkies upper bound.
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5. Generalizing the Problem to Hyperbolic Space

Let X be a metric space, equipped with a metric d : X × X → R≥0. It is a natural
generalization of the sphere packing problem in Rn to consider the same question of ”spheres”
defined to be the loci

{y ∈ X | d(x, y) = R}
for some x ∈ X, the ”center”, and a fixed R > 0.

5.1. The Radial Hyperbolic Fourier Transform and Upper Bounds for the Op-
timal Density. Let X = Hn be n-dimensional hyperbolic space. The radial laplacian in
this space, an operator acting on functions of the hyperbolic radius r (hereafter called the
’spatial parameter’), is given by

Lu =
∂2u

∂r2
+ (n− 1) coth r

∂u

∂r

where u = u(r) is used to denote the common value of a radial function u : Hn → C on
hyperbolic balls of radius r ∈ R+. We have the eigenvalue problem

Lu = −
(
(
n− 1

2
)2 + t2

)
u

The parameter t is called the ’spectral parameter.’ We can treat this as a self-adjoint
Sturm-Liouville ODE in the spatial parameter, and with the initial conditions u(0) = 1 and
u′(0) = 0, we have specified a unique solution which we shall denote u = xn(r, t).

The functions xn(r, t) are the even eigenfunctions of the laplacian, and define the radial
hyperbolic fourier transform. It is here that we stop considering even n, since there are no
closed forms for the eigenfunctions x2k, but there are for x2k+1. The first few are

x1(r, t) = cos rt

x3(r, t) =
sin rt

t sinh r
and subsequent eigenfunctions can be determined from the simple raising operator relation

xn+2(r, t) =
−n

(t2 + (n−1
2

)2) sinh r

∂

∂r
xn(r, t)

Recall that the case n = 1 corresponds to the cosine Fourier transform on R+, so for brevity
I’ll only display the H3 transform and its inversion:

f̂3(t) = F3[f ](t) =

∫
R≥0

f(r)x3(r, t) sinh2 r dr

f(r) = F−1
3 [f̂3](r) =

1

π

∫
R

f̂3(t)x3(r, t)t2dt

In a derivation completely analogous to that of Cohn-Elkies, Kerzhner was able to prove the
extension of their theorem to the hyperbolic situation.

Theorem 5.1. Let f : Hn → C be radial, and fix R > 0. Suppose that

• f̂(t) ≥ 0 for all t
• f(r) ≤ 0 for all r ≥ R
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Then the density of all periodic packings of Hn of radius R obeys the bound

∆ ≤

R/2∫
0

sinhn−1 r dr · f(0)

f̂(n−1
2
i)

Notice that unlike in the Euclidean case, the ’scale’ R of the spheres is very much impor-
tant.

5.2. Results in H2 and H3. We were able to derive a few results concerning sphere packings
for small R in low dimensions.

For n = 3 and small radius, Kerzhner was able to prove that for asymptotically small radius
R, the optimal density of sphere packings comes arbitrarily close to the packing density of
the Kepler packing, verifying that ’locally’ (small radius) one recovers the Euclidean packing
structure.

For R = 1, n = 3, we were able to prove bounds using a few different functions. One of
our functions was basically a generalization of an example used in the paper of Cohn-Elkies:

fG(r) = (1− r2

R2
)

(
Γ2(x)

Γ(x− yr)Γ(x+ yr)

)2
r

sinh r
e−αr

2

To determine that this function was positive-definite (has positive H3- transform) we made
use of the analogue of the ’convolution theorem’ in R1:

(5.1) F3[fg](t) =
1

π

∫
R

t− u
t

f̂3(t− u)ĝ1(u)du

This was used to show that the possible negative values of the transform f̂G occur inside a
finite interval; a short numerical computation completed the proof. The bound we obtained
was close to ∆ ≤ 0.8369.

Among our other ideas at this scale were two functions: one of them was an extension of
another idea used in Cohn-Elkies paper, and involved a calculus of variations argument to
optimize the bound obtained over a class of functions satisfying a certain constraint, but the
bound obtained was strictly weaker than this one. We also used another function with the
heat kernel in H3,

r

sinh r
e−αr

2

multiplied against a many-termed polynomial. The bounds obtained however were not quite
as rigorous, since the problem of determining the positivity of a real polynomial is in general
intractable.

We were dismayed to learn that it is possible to prove a Sobolev-type inequality on the
weight space with weight function w = w(t) = t2 which implies

Lemma 5.1. There exists a finite R > 0 such that for any function of the form f(r) =
(R2 − r2)g2(r) which is positive-definite in H3, the bound obtained on the sphere packing
density is trivial.
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5.3. Bounds for Hn. Using the function

fX(r) =
x2
n+2(r, bR)

sinh2R− sinh2 r

where bR is the first positive real root of the nonlinear equation xn+2(R, bR) = 0, we were
able to compute the asymptotic (n→∞) bound

∆ ≤
2Pn(bR)

R/2∫
0

sinhn−1 r dr

(n− 2)!!2bR

where Pn(t) := t(t2 + 1)(t2 + 4)(· · · )(t2 + (n−1
2

)2) and n!! denotes the rising factorial (e.g.
5!! = 5 · 3 · 1). This bound is valid in any odd dimension, and gives nontrivial bounds only
for very small radii R. However, notice that the bound relies on an estimate of the roots of
the eigenfunction to the laplacian, so that these bounds could be seen as an analogue of the
Levenshtein bounds in Hn. To make this a concrete bound, we employ the estimate

bR ≤
π(n+ 1)

2R
which is obtained from elementary estimates on the locations of the roots and a simple
observation regarding the raising operator mentioned above.


