Deligne-Lusztig varieties

Introduction

We begin by setting some notation:

 G^F is our finite group of Lie type, being the fixed points under Frobenius of some (connected) linear algebraic group G.

Let *B* be a fixed Borel subgroup of *G*, with a maximal torus *T*. These pairs are mutually conjugate, meaning if there is some other Borel *B'* which cotnains a maximal torus *T'*, then there exists $g \in G$ such that $gBg^{-1} = B'$ and $gTg^{-1} = T'$.

Denote by $W := N_G(T)/T$ the Weyl group of your torus $T \subset B$. Note that all Weyl groups are isomorphic via conjugation, so we speak of *the* Weyl group of *G*.

We denote by X the flag variety of all Borel subgroups, and note that since they are mutually conjugate (and furthermore, $N_G(B) = B$), X = G/B. Recall from Amal's lecture that X is not a group scheme as B is not normal (unless X has only one element), but it is a projective variety.

Note that by Lang's theorem, since G is connected and it acts on X transitively, and furthermore, F(B') is a Borel subgroup for any Borel B' (here F is the associated Frobenius), by Lang's theorem, we find that there is a Borel subgroup B' such that F(B') = B'. So, WLOG we may pick B to be F-stable.

Stratification of X

Let B', B'' be two Borel subgroups of G. We say B' and B'' are in relative position $w \in W$ iff. there exists some $g \in G$ such that $B' = g \cdot B$ and $B'' = (g\tilde{W}) \cdot B$ (here \tilde{w} is a lift of w to $N_G(T)$).

Note that if we look at $X \times X$, then from Amal's talk, we have

$$X \times X \cong \sqcup_{w \in W} \mathscr{O}(w)$$

where $\mathscr{O}(w) = G \cdot (B, \tilde{w} \cdot B)$. As a result, we have that B', B'' are in relative position *w* iff. $(B', B'') \in \mathscr{O}(w)$.

There is an alternative characterization of $\mathcal{O}(w)$ as the set

$$\mathscr{O}(w) = \{ (g_1 \cdot B, g_2 \cdot B) : g_1^{-1}g_2 \in B\tilde{w}B \}$$

Now, $F : X \to X$ gives us its graph $\Gamma_F \subset X \times X$. We then define,

$$X(w) := \Gamma_F \cap \mathscr{O}(w)$$

One should note that X(w) is not empty for any $w \in W$ by surjectivity of the Lang map. Indeed, given w, find some $g \in G$ such that $g^{-1}F(g) = w$. Then, $F(gBg^{-1}) = (gw)F(B)(gw)^{-1}$. One can check that this intersection is transverse, so it is smooth, and since dim $\mathcal{O}(w) = \dim X + l(w)$, we find that dim(X(w)) = l(w).

Note that if you have $(B', F(B')) \in X(w)$, then for any $g \in G^F$, $g \cdot (B', F(B')) = (g \cdot B', F(g \cdot B')) \in \Gamma_F$ and naturally $g \cdot (B', F(B')) \in \mathcal{O}(w)$. Thus, X(w) admits a left action of G^F .

Note that

$$X(w) = \{gB \in X : g^{-1}F(g) \in B\tilde{w}B\} \subset X$$

and in fact,

 $X = \sqcup_{w \in W} X(w)$

Thus, we have a stratification of X which is respected by the action of G^F . Therefore, we may work over any X(w) individually.

The Deligne-Lusztig Variety

We now define Y := G/U where U is the unipotent radical of B (think upper triangular matrices with 1 on the diagonal). There is then a natural map,

$$Y = G/U \rightarrow G/B = X$$

and note that since $B = T \ltimes U$, *T* normalizes *U* in *B*, and so *Y* admits a right-action by *T* over *X*. In other (slight cooler/more complicated) words, *Y* is a *T*-torsor over *X* (think *T*-bundle).

We then define

$$Y(w) = \{gU : g^{-1}F(g) \in U\tilde{w}U\} \subset Y$$

Note that Y(w) lies over X(w), and it admits a left G^F action which is equivariant with respect to $\pi_w : Y(w) \to X(w)$.

Also note that if $t \in T$, then $gtU \in Y(w)$ for $gU \in Y(w)$, iff. $t^{-1}g^{-1}F(g)F(t) \in U\tilde{w}U$. But then since $gU \in Y(w)$, we have $t^{-1}g^{-1}F(g)F(t) \in t^{-1}U\tilde{w}UF(t) = U(t^{-1}\tilde{w}F(t))U$. By Bruhat decomposition, we therefore find that $gtU \in Y(w)$ iff. $ad(\tilde{w})(F(t)) = t$. Letting $F_w = ad(\tilde{w}) \circ F$, we therefore find that Y(w) is a T^{F_w} -torsor over X(w). Note that because W is finite, F_w is a Frobenius morphism.

This Y(w) is what we call a Deligne-Lusztig variety (note that there is some discrepancy: Deligne and Lusztig seem to consider X(w) the Deligne-Lusztig variety, and then the Y(w) are additional varieties over X(w) which give representations [slightly unclear]).

Also note, everywhere, we've put Y(w) and not $Y(\tilde{w})$ even though we use \tilde{w} in the definition of Y(w). This is actually okay, because if $\tilde{w}' = \tilde{w}t$ for some $t \in T$, then by finding some $t_1 \in T$ such that $t = ad(\tilde{w}^{-1})(t_1)$, we can check that $gU \mapsto gt_1U$ gives an isomorphism from $Y(\tilde{w})$ to $Y(\tilde{w}')$. Therefore, we may speak of Y(w).

So, since Y(w) is equipped with a left-action by G^F and a right action by T^{F_w} , these two groups also act on the *l*-adic cohomology of Y(w), and so we get a (G^F, T^{F_w}) -bimodule, and so we can decompose the cohomology of Y(w) via characters θ of T^{F_w} .

Thus, for every character θ of T^{F_w} , we get an induced virtual representation,

$$R_{\theta} = \sum_{i} (-1)^{i} H_{c}^{i}(Y(w), \overline{\mathbb{Q}_{l}})[\theta]$$

This is the so-called Deligne-Lusztig induced representation of the character θ (more on this next week).

This may devastate you, as twisted Frobenii might be unpleasant to handle. But we will be able to give an isomorphic construction description which is a T^F -torsor.

Rough idea:

We may express, X(w) as

$$X(w) := \{g \in G : g^{-1}F(g) \in \tilde{w}U\}/T^{F_w}(U \cap \tilde{w}U\tilde{w}^{-1})$$

and similarly express,

$$Y(w) := \{g \in G : g^{-1}F(g) \in \tilde{w}U\}/(U \cap \tilde{w}U\tilde{w}^{-1})$$

We may then define,

$$X_{T,B} := \{g \in G : g^{-1}F(g) \in F(B)\}/(B \cap F(B))$$

$$Y_{T,B} := \{g \in G : g^{-1}F(g) \in F(U)\}/(U \cap F(U))$$

Then, $Y_{T,B} \rightarrow X_{T,B}$ is a T^F -torsor.

(See next week's talk for more detail, we won't need it for this week).

Recovering the Drinfeld Curve

Let us look at the case of $G = SL_2$. Then, of course $G^F = SL_2(\mathbb{F}_q)$, *B* is the group of upper triangular matrices, *U* the group of upper triangular matrices with the diagonal being having 1. The torus is clear. The Weyl group here is the 2-element group < 1, w > where $w_{ij} = 0$ if i = j and $w_{21} = -w_{12} = 1$. Using the fact that $G/U \cong \mathbb{A}^2 - (0,0)$, it is not hard to check from definitions that Y(w) is the Drinfeld curve.

(Actual talk should spell out how this works).

The author of these notes is not aware of a more intrinsic way of seeing this realization (say, via flags).

Quasi-Affinity of Deligne-Lusztig Varieties

The Deligne-Lusztig varieties we have produced are, in fact, quasi-affine (i.e. there is an immersion into an affine scheme). We sketch a proof below. For more details, see *Representation Theory of Finite Reductive Groups* (link on website).

Sidebar

If we have a variety X/k ($k = \overline{k}$) equipped with a free *G* action, then let us assume that we may form the quotient variety X/G. We have a functor,

Fin- k[G]-Mod \rightarrow Coh(X/G)

In other words, to every finite dimensional (over *k*) k[G]-module *M*, we can associate a coherent $\mathcal{O}_{X/G}$ -module $\mathcal{L}_{X/G}(M)$. On an affine open *G*-stable subset U = SpecA, we have that,

$$\mathscr{L}_{X/G}(M)|_U = (M \otimes_{k[G]} A)^G$$

where we give the tensor product the diagonal action.

We state a few more properties of this functor in the special case that $X \xrightarrow{\pi} X/G$ is locally trivial (i.e. on some open cover U_i of X/G, $\pi^{-1}(U_i) \cong U_i \times G$).

$$\mathscr{L}_{X/G}(\check{M}) \cong (\mathscr{L}_{X/G}(M))^{\check{}}$$

$$\mathscr{L}_{X/G}(M \otimes N) \cong \mathscr{L}_{X/G}(M) \otimes_{\mathscr{O}_{X/G}} \mathscr{L}_{X/G}(N)$$

Pullback Theorem: Suppose $\alpha : G' \subset G$ is a subgroup, and we are given *X* equipped with a *G*-action and *X'* equipped with a *G'*-action. Suppose further that there is an α -equivariant morphism $\phi : X' \to X$ (i.e. $\phi(xg') = \phi(x)\alpha(g')$). This descends to a map,

$$\overline{\phi}: X'/G' \to X/G$$

Then, we have $\overline{\phi}^*(\mathscr{L}_{X/G}(M)) \cong \mathscr{L}_{X'/G'}(M^{\alpha})$, where M^{α} denotes the *k*-vector space *M* equipped with the canonical *G'* action coming from α .

End of Sidebar

Now, returning to the proof, for every character of the torus $\lambda \in X(T)$, we can look at the one-dimensional *k*-vector space it generates (viewed as a *T*-module). We can then further view it as a one-dimensional *B*-module by first projecting to $T \subset B$. This gives us coherent sheaves,

 $\mathscr{L}_{G/B}(\lambda)$

on *G*/*B*. Hereafter, we switch to additive notation for X(T) (i.e. $\lambda_1 + \lambda_2 := \lambda_1 \lambda_2$). Then, since $G \to G/B$ is locally trivial, we have that $\mathscr{L}_{G/B}(\lambda)$ is invertible for all λ .

Let $j: X(w) \to X = G/B$. We then claim that $j^* \mathscr{L}_{G/B}(\lambda \circ F) \cong j^* \mathscr{L}_{G/B}(\lambda(\mathrm{ad}(w)))$.

From this claim, we will be able to prove that the structure sheaf of X(w) is ample (which is equivalent to X(w) being quasi-affine).

How does this follow? Well, $t \mapsto ad(w)(t)^{-1}F(t)$ is surjective from T to T by Lang's theorem, and hence the dual map $X(T) \to X(T)$,

$$\lambda \mapsto \lambda \circ \mathrm{ad}(w) - \lambda \circ F$$

is injective. But this means the map of lattices has finite cokernel.

Now, from some magic, we can find some $\omega \in X(T)$ such that $\mathscr{L}_{G/B}(\omega)$ is ample (see *Representations of Algebraic Groups* by Jens Jantzen (II. 4.3 - 4.4) for a proof).

Thus, for some $m \in \mathbb{N}$, we can find a $\lambda \in X(T)$ such that $\lambda \circ ad(w) - \lambda \circ F = m\omega$. But $m\omega$ is still ample. Therefore, its pullback to X(w) is ample, and now its straightforward to conclude, via the claim above, that $\mathscr{O}_{X(w)}$ is ample.

The proof of the claim is a fairly technical application of the pullback theorem (see *Representation Theory of Finite Reductive Groups* for more details).

We end by remarking that, to the author's knowledge, it is an open conjecture that Deligne-Lusztig varieties are actually affine. This is known for sufficiently large q.