
Deligne-Lusztig varieties

Introduction

We begin by setting some notation:

GF is our finite group of Lie type, being the fixed points under Frobenius of some (con-
nected) linear algebraic group G.

Let B be a fixed Borel subgroup of G, with a maximal torus T . These pairs are mutually
conjugate, meaning if there is some other Borel B′ which cotnains a maximal torus T ′,
then there exists g ∈ G such that gBg−1 = B′ and gT g−1 = T ′.

Denote by W :=NG(T )/T the Weyl group of your torus T ⊂B. Note that all Weyl groups
are isomorphic via conjugation, so we speak of *the* Weyl group of G.

We denote by X the flag variety of all Borel subgroups, and note that since they are mu-
tually conjugate (and furthermore, NG(B) = B), X = G/B. Recall from Amal’s lecture
that X is not a group scheme as B is not normal (unless X has only one element), but it is
a projective variety.

Note that by Lang’s theorem, since G is connected and it acts on X transitively, and fur-
thermore, F(B′) is a Borel subgroup for any Borel B′ (here F is the associated Frobe-
nius), by Lang’s theorem, we find that there is a Borel subgroup B′ such that F(B′) = B′.
So, WLOG we may pick B to be F-stable.

Stratification of X

Let B′, B′′ be two Borel subgroups of G. We say B′ and B′′ are in relative position w ∈W
iff. there exists some g ∈ G such that B′ = g ·B and B′′ = (gW̃ ) ·B (here w̃ is a lift of w to
NG(T )).

Note that if we look at X ×X , then from Amal’s talk, we have

X ×X ∼= ⊔w∈W O(w)

where O(w) = G · (B, w̃ ·B). As a result, we have that B′,B′′ are in relative position w iff.
(B′,B′′) ∈ O(w).

There is an alternative characterization of O(w) as the set

O(w) = {(g1 ·B,g2 ·B) : g−1
1 g2 ∈ Bw̃B}

Now, F : X → X gives us its graph ΓF ⊂ X ×X . We then define,

X(w) := ΓF ∩O(w)

One should note that X(w) is not empty for any w ∈ W by surjectivity of the Lang map.
Indeed, given w, find some g∈G such that g−1F(g)=w. Then, F(gBg−1)= (gw)F(B)(gw)−1.
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One can check that this intersection is transverse, so it is smooth, and since dimO(w) =
dimX + l(w), we find that dim(X(w)) = l(w).

Note that if you have (B′,F(B′)) ∈ X(w), then for any g ∈ GF , g · (B′,F(B′)) = (g ·
B′,F(g ·B′)) ∈ ΓF and naturally g · (B′,F(B′)) ∈O(w). Thus, X(w) admits a left action of
GF .

Note that
X(w) = {gB ∈ X : g−1F(g) ∈ Bw̃B} ⊂ X

and in fact,
X = ⊔w∈W X(w)

Thus, we have a stratification of X which is respected by the action of GF . Therefore, we
may work over any X(w) individually.

The Deligne-Lusztig Variety

We now define Y := G/U where U is the unipotent radical of B (think upper triangular
matrices with 1 on the diagonal). There is then a natural map,

Y = G/U → G/B = X

and note that since B = T ⋉U , T normalizes U in B, and so Y admits a right-action by
T over X . In other (slight cooler/more complicated) words, Y is a T -torsor over X (think
T -bundle).

We then define
Y (w) = {gU : g−1F(g) ∈Uw̃U} ⊂ Y

Note that Y (w) lies over X(w), and it admits a left GF action which is equivariant with
respect to πw : Y (w)→ X(w).

Also note that if t ∈ T , then gtU ∈Y (w) for gU ∈Y (w), iff. t−1g−1F(g)F(t)∈Uw̃U . But
then since gU ∈ Y (w), we have t−1g−1F(g)F(t) ∈ t−1Uw̃UF(t) = U(t−1w̃F(t))U . By
Bruhat decomposition, we therefore find that gtU ∈ Y (w) iff. ad(w̃)(F(t)) = t. Letting
Fw = ad(w̃)◦F , we therefore find that Y (w) is a T Fw-torsor over X(w). Note that because
W is finite, Fw is a Frobenius morphism.

This Y (w) is what we call a Deligne-Lusztig variety (note that there is some discrepancy:
Deligne and Lusztig seem to consider X(w) the Deligne-Lusztig variety, and then the
Y (w) are additional varieties over X(w) which give representations [slightly unclear]).

Also note, everywhere, we’ve put Y (w) and not Y (w̃) even though we use w̃ in the defi-
nition of Y (w). This is actually okay, because if w̃′ = w̃t for some t ∈ T , then by finding
some t1 ∈ T such that t = ad(w̃−1)(t1), we can check that gU 7→ gt1U gives an isomor-
phism from Y (w̃) to Y (w̃′). Therefore, we may speak of Y (w).

So, since Y (w) is equipped with a left-action by GF and a right action by T Fw , these two
groups also act on the l-adic cohomology of Y (w), and so we get a (GF ,T Fw)-bimodule,
and so we can decompose the cohomology of Y (w) via characters θ of T Fw .
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Thus, for every character θ of T Fw , we get an induced virtual representation,

Rθ = ∑
i
(−1)iH i

c(Y (w),Ql)[θ ]

This is the so-called Deligne-Lusztig induced representation of the character θ (more on
this next week).

This may devastate you, as twisted Frobenii might be unpleasant to handle. But we will
be able to give an isomorphic construction description which is a T F -torsor.

Rough idea:

We may express, X(w) as

X(w) := {g ∈ G : g−1F(g) ∈ w̃U}/T Fw(U ∩ w̃Uw̃−1)

and similarly express,

Y (w) := {g ∈ G : g−1F(g) ∈ w̃U}/(U ∩ w̃Uw̃−1)

We may then define,

XT,B := {g ∈ G : g−1F(g) ∈ F(B)}/(B∩F(B))

YT,B := {g ∈ G : g−1F(g) ∈ F(U)}/(U ∩F(U))

Then, YT,B → XT,B is a T F -torsor.

(See next week’s talk for more detail, we won’t need it for this week).

Recovering the Drinfeld Curve

Let us look at the case of G = SL2. Then, of course GF = SL2(Fq), B is the group of
upper triangular matrices, U the group of upper triangular matrices with the diagonal
being having 1. The torus is clear. The Weyl group here is the 2-element group < 1,w >
where wi j = 0 if i = j and w21 = −w12 = 1. Using the fact that G/U ∼= A2 − (0,0), it is
not hard to check from definitions that Y (w) is the Drinfeld curve.

(Actual talk should spell out how this works).

The author of these notes is not aware of a more intrinsic way of seeing this realization
(say, via flags).

Quasi-Affinity of Deligne-Lusztig Varieties

The Deligne-Lusztig varieties we have produced are, in fact, quasi-affine (i.e. there is an
immersion into an affine scheme). We sketch a proof below. For more details, see Repre-
sentation Theory of Finite Reductive Groups (link on website).
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Sidebar

If we have a variety X/k (k = k) equipped with a free G action, then let us assume that
we may form the quotient variety X/G. We have a functor,

Fin- k[G]-Mod → Coh(X/G)

In other words, to every finite dimensional (over k) k[G]-module M, we can associate a
coherent OX/G-module LX/G(M). On an affine open G-stable subset U = SpecA, we
have that,

LX/G(M)|U = (M⊗k[G] A)
G

where we give the tensor product the diagonal action.

We state a few more properties of this functor in the special case that X π−→ X/G is locally
trivial (i.e. on some open cover Ui of X/G, π−1(Ui)∼=Ui ×G).

LX/G(M )̌∼= (LX/G(M))̌

LX/G(M⊗N)∼= LX/G(M)⊗OX/G
LX/G(N)

Pullback Theorem: Suppose α : G′ ⊂ G is a subgroup, and we are given X equipped
with a G-action and X ′ equipped with a G′-action. Suppose further that there is an α-
equivariant morphism φ : X ′ → X (i.e. φ(xg′) = φ(x)α(g′)). This descends to a map,

φ : X ′/G′ → X/G

Then, we have φ
∗
(LX/G(M)) ∼= LX ′/G′(Mα), where Mα denotes the k-vector space M

equipped with the canonical G′ action coming from α .

End of Sidebar

Now, returning to the proof, for every character of the torus λ ∈ X(T ), we can look at
the one-dimensional k-vector space it generates (viewed as a T -module). We can then
further view it as a one-dimensional B-module by first projecting to T ⊂ B. This gives us
coherent sheaves,

LG/B(λ )

on G/B. Hereafter, we switch to additive notation for X(T ) (i.e. λ1 +λ2 := λ1λ2). Then,
since G → G/B is locally trivial, we have that LG/B(λ ) is invertible for all λ .

Let j : X(w)→ X = G/B. We then claim that j∗LG/B(λ ◦F)∼= j∗LG/B(λ (ad(w))).

From this claim, we will be able to prove that the structure sheaf of X(w) is ample (which
is equivalent to X(w) being quasi-affine).
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How does this follow? Well, t 7→ ad(w)(t)−1F(t) is surjective from T to T by Lang’s
theorem, and hence the dual map X(T )→ X(T ),

λ 7→ λ ◦ ad(w)−λ ◦F

is injective. But this means the map of lattices has finite cokernel.

Now, from some magic, we can find some ω ∈ X(T ) such that LG/B(ω) is ample (see
Representations of Algebraic Groups by Jens Jantzen (II. 4.3 - 4.4) for a proof).

Thus, for some m ∈ N, we can find a λ ∈ X(T ) such that λ ◦ ad(w)−λ ◦F = mω . But
mω is still ample. Therefore, its pullback to X(w) is ample, and now its straightforward
to conclude, via the claim above, that OX(w) is ample.

The proof of the claim is a fairly technical application of the pullback theorem (see Rep-
resentation Theory of Finite Reductive Groups for more details).

We end by remarking that, to the author’s knowledge, it is an open conjecture that Deligne-
Lusztig varieties are actually affine. This is known for sufficiently large q.
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