
DELIGNE-LUSZTIG REPRESENTATIONS

WENQI LI

1. Fixing the Frobenius Problem

Recall from last time that for G a connected linear reductive algebraic group over k = k of charac-
teristic p, we letX be the set of all Borel subgroups, which is then identifiedwithG/B for any fixed
Borel subgroup B, as G acts transitively on X by conjugation and the stabilizer (i.e. normalizer)
of B is B itself. This is a flag variety (so it’s projective). Also recall that W is the Weyl group and
F is the Frobenius on G.

Fix a F -stable Borel subgroupB and its maximal torus T . We definedX(w) forw ∈ W as the set of
Borel subgroups B′ such that B′ and F (B′) are in relative position w. We then defined Y = G/U
for U the unipotent radical of B, and

Y (w) = {gU | g−1F (g) ∈ UwU}
and saw that Y (w) → X(w) is a TFw -torsor where Fw = ad(w)◦F is the Frobenius F twisted by w.
Now we will give a construction that produces a TF -torsor that is isomorphic to Y (w) → X(w).

What’s going on here is that a Borel subgroupB′ is inX(w) if and only ifB′ = gBg−1 and F (B′) =
gwBw−1g−1 for some g ∈ G. Using the bijection G/B ∼= X given by g 7→ gBg−1, the g that gives
rise to B′ satisfies

F (g)BF (g)−1 = gwBw−1g−1.

This says w−1g−1F (g) normalizes B, which happens if and only if g−1F (g) ∈ wB. Thus, we see
that the subset

{g ∈ G | g−1F (g) ∈ wB}
parametrizes X(w). Two elements g1, g2 in this set represent the same Borel subgroup in X(w)

if and only if g1Bg−1
1 = g2Bg−1

2 and g1wBw−1g−1
1 = g2wBw−1g−1

2 , which translates to g−1
2 g1 ∈

B ∩ wBw−1. Thus, an alternative description of X(w) is
X(w) = {g ∈ G | g−1F (g) ∈ wB}/(B ∩ wBw−1).

Using B = TU and that w normalizes T , we have B ∩ wBw−1 = T (U ∩ wUw−1). For each g with
g−1F (g) ∈ wB, we want to replace g by gt for some t ∈ T such that g−1F (g) ∈ wU . For which t
would this work? We have

(gt)−1F (gt) = t−1g−1F (g)F (t) ∈ t−1wUF (t) = t−1(wUw−1)(wF (t)w−1)w

Since T commutes with U and T = wTw−1, which see that the above becomes
(wUw−1)(t−1(wF (t)w−1))w,

and this is in wU if and only if t−1(wF (t)w−1) = 1, i.e. t ∈ TFw . Thus, we get that
X(w) = {g ∈ G | g−1F (g) ∈ wU}/TFw(U ∩ wUw−1).

A similar computation shows that
Y (w) = {g ∈ G | g−1F (g) ∈ wU}/(U ∩ wUw−1).
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To get rid of the twist by w, we define

Definition 1.1. Let T ′ be aF -stablemaximal torus. LetB′ be a Borel subgroup (no longerF -stable)
that contains T with unipotent radical U ′. Define

XT ′⊂B′ = {g ∈ G | g−1F (g) ∈ F (B′)}/(B′ ∩ F (B′))

= {g ∈ G | g−1F (g) ∈ F (U ′)}/T ′F (U ′ ∩ F (U ′)).

and
YT ′⊂B′ = {g ∈ G | g−1F (g) ∈ F (U ′)}/(U ′ ∩ F (U ′)).

Proposition 1.2. Let T ′, B′ be as above, but now assume B′ ∈ X(w), i.e. B′ and F (B′) are in relative
position w. We can choose h ∈ G such that h(T,B)h−1 = (T ′, B′), so that the map g 7→ gh−1 gives an
isomorphism from the TFw -torsor Yw → Xw to the T ′F -torsor YT ′⊂B′ → XT ′⊂B′ .

Proof. Replacing h by htwe may assume h−1F (h) = w. If g is such that g−1F (g) ∈ wU , then
(gh−1)−1F (gh−1) = hg−1F (g)F (h)−1 ∈ hwUF (h)−1 = hwUw−1h−1hwF (h)−1.

The relative position w condition means
F (B′) = hwBw−1h−1.

Since T is F -stable and normalized by w, this means F (U ′) = hwUw−1h−1. Thus gh−1 satisfies the
condition of being in XT ′⊂B′ .

�

2. Representations

Recall from last time we defined the virtual representation

Rθ
w =

∑
i

(−1)iH i
c(Y (w),Ql)[θ].

We will prove that this is independent of w, and its character is independent of l.

Proposition 2.1. LetX be a quasi-projective separated scheme that is finite type over an algebraically closed
field of characteristic p, and let σ : X → X be an automorphism of finite order. Then

tr(σ∗,H•
c (X,Ql))

is an integer independent of l.

Here σ∗ is induced effect of σ on cohomology, and H•
c (X,Ql) is the direct sum of all degrees. For

a map of graded vector space f : V • → V •, its trace is defined as

tr(f, V •) =
∑
i

(−1)i tr(f, V i).

Proof. The schemeX lives over some finite field Fq, so let F : X → X be the Frobenius. For n ≥ 1,
the composition Fn ◦σ is some other Frobenius, namely the one if we considerX as a scheme over
Fqn . So the Lefschetz fixed point formula for Frobenius says that

tr((Fn ◦ σ)∗,H•
c (X,Ql)) = |XFn◦σ|.
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which is also the number of the Fqn points.

On the other hand, since F ∗ and σ∗ commutes (simultaneously diagonizable), and traces are sums
of eigenvalues, the value tr((Fn ◦ σ)∗,H•

c (X,Ql)) as a function of n is of the form
∑

λ∈Ql
∗ aλλ

n,
where all but finitely many aλ = 0. So we have∑

λ∈Ql
∗

aλλ
n = |XFn◦σ|.

The right side is an integer, so it is fixed by any automorphism ofQl. Thus if τ is an automorphism
ofQl, we have ∑

λ∈Ql
∗

τ(aλ)τ(λ)
n =

∑
λ∈Ql

∗

aλλ
n.

The left side is equal to
∑

λ∈Ql
∗ τ(aτ−1(λ))λ

n after re-indexing, and one can check by using a Van-
dermonde determinant that n 7→ λn are linearly independent. So we conclude that

τ(aτ−1(λ)) = aλ, or equivalently τ(aλ) = aτ(λ).

for all λ ∈ Ql. Therefore tr(σ∗,H•
c (X,Ql)) =

∑
λ∈Ql

∗ aλ is fixed by any automorphism of Ql, so
it is in Q. Since σ has finite order, the traces are sums of roots of unity, and hence algebraic, so
being in Q implies that it is an integer. Also, these coefficients aλ are independent of l since they
are determined by the number of the Fqn points of X . �

For independence of w, we will focus on the θ = 1 case, which is where the hard work really is.
When θ = 1, we have

R1
w =

∑
i

(−1)iH i
c(X(w),Ql).

For w ∈ W , we say an element is an F -conjugate of w if it is of the form w1wF (w1)
−1 for some

w1 ∈ W .

Theorem 2.2. R1
w depends only on the F -conjugacy class of w.

To prove this theoremwewill need to use the structure of theWeyl group as a Coxeter group. This
means W is generated by elements s1, · · · , sn satisfying (sisj)

mij = 1 where mii = 1 and mij ≥ 2
(could be ∞). These generators are called fundamental reflections. For each w ∈ W , its length is
denoted by l(w), and it is the length of the minimal expression w = si1 · · · sik . Here is a lemma we
need to use:

Lemma 2.3. Let s, t be two fundamental reflections in W . For w ∈ W , if l(swt) = l(w), then either
swt = w or l(sw) = l(w)− 1, or l(wt) = l(w)− 1.

Proof of Theorem 2.2. Since the fundamental reflections generated the group, it suffices to consider
w and w′ = swF (s) for some fundamental reflection s. Exchanging the roles of w and w′, we
may assume l(w′) ≥ l(w). If l(w′) = l(w), the previous lemma implies that either w = w′ or
l(sw) = l(w)− 1.

So there are only two cases to consider. The first one is w = w1w2, and w′ = w2F (w1), and l(w) =
l(w1) + l(w2) = l(w2) + l(F (w1)) = l(w′). In this case, for any B ∈ X(w), we have B = gB0g

−1 and
F (B) = gw1w2B0w

−1
2 w−1

1 g−1
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So if we let σB = gw1B0w
−1
1 g−1, then (B, σB) ∈ O(w1), and (σB,F (B)) ∈ O(w2).

Now σB is in X(w′), because F (B) and F (σB) are in relative position F (w1), so σB and F (σB)
are in relative position w2F (w1). This gives a map σ : X(w) → X(w′).

The same procedure can be used on w2F (w1) and F (w1)F (w2) = F (w), so we get a map τ :
X(w′) → X(F (w)). We have a commutative diagram

X(w) X(w′)

X(F (w)) X(F (w′))

σ

F
τ

F

σq

.

Now by étale cohomology magic, F induces an equivalence of étale sites, so σ and τ also induce
equivalences of étale sites. Thus we obtain an isomorphisms H i

c(X(w))
∼−→ H i

c(X(w′)).

The second case is that l(w′) > l(w), and since w′ = swF (s) this means l(w′) = l(w) + 2. Let B ∈
X(w′) = X(swF (s)). Using the same method as before, we find γB and δB such that (B, γB) ∈
O(s), (γB, δB) ∈ O(w), and (δB, F (B)) is in O(F (s)).

We define
X1 = {B ∈ X(w′) | δB = F (γB)} and X2 = {B ∈ X(w′) | δB 6= F (γB)}.

Then X1 is a closed subset of X(w′) and X2 is its open complement. This decomposition gives a
long exact sequence

· · · → H i−1
c (X1) → H i

c(X2) → H i
c(X(w′)) → H i

c(X1) → · · ·
So for any g ∈ G, we have

tr(g∗,H•
c (X(w′))) = tr(g∗,H•

c (X1)) + tr(g∗,H•
c (X2))

Wewill show the first term is tr(g∗,H•
c (X(w))) and the second term is 0. Then the representations

R1
w and R1

w′ have the same character, so they are isomorphic.

After decomposing, we obtain the map γ : X1 → X(w). For each B′ ∈ X(w), the fiber γ−1(B′)
consists of Borel subgroups B such that (B,B′) ∈ O(s). This means the fiber γ−1(B′) is an affine
line over k (?), so X1 is a fiber bundle with fibers being affine lines. Thus

H i
c(X1) ∼= H i−2

c (X(w))(−1).

This shows tr(g∗,H•
c (X1)) = tr(g∗,H•

c (X(w))).

A similar but slightly more complicated analysis for X2 produces long exact sequence

· · ·H i−1
c (X(sw)) → H i

c(X2) → H i−2
c (X(sw))(−1) → H i

c(X(sw)) → · · ·
which then implies tr(g∗,H i

c(X2)) = 0. (The original DL paper gives a reference to Grothendieck.)

�

In terms of our new description XT ′⊂B′ and YT ′⊂B′ , we can define

Definition 2.4. For a character θ : TF → Ql, we define

Rθ
T ′⊂B′ =

∑
i

(−1)iH i
c(YT ′⊂B′)[θ]
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which is a virtual representation of GF .

We have RT ′⊂B′ = R
θ◦ad(w)
w .

Corollary 2.5. The virtual representation R1
T ′⊂B′ depends only on the GF -conjugacy class of the maximal

tori T ′.

Proof. We have R1
T ′⊂B′ = R1

w, which depends only on the F -conjugacy class of w in W by the
previous theorem. This translates to dependence on the GF -conjugacy class of T ′, because F -
conjugacy classes in W parametrize GF -conjugacy classes of F -stable maximal tori. �

3. Green Functions and the Character Formula

Definition 3.1. Let T be an F -stable maximal torus ofG. The Green functionQT,G(u) is the restric-
tion to the unipotent elements in GF of the character of the virtual representation R1

T⊂B , where B
is any Borel subgroup containing T .

By what’s in the previous section, QT,G(u) doesn’t depend on B, so there is no subscript B in the
notation.

We will prove (probably next time)

Theorem 3.2. Let x = su be the Jordan decomposition of x ∈ GF (so s is semisimple and u is unipotent).
Then

tr(x,Rθ
T⊂B) =

∑ 1

|Z0(s)F |
∑
g∈GF

ad g(T )⊂Z0(s)

Qad g(T ),Z0(s)(u) ad g(θ)(s).

This formula expresses the character of Rθ
T⊂B in terms of only θ and the some Green function, so

it shows that Rθ
T⊂B is independent of the choice of B.
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