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1 Basics of Linear Algebraic Groups

Let G be a closed subgroup of GLn(k) considered as an algebraic group, with k = k.

Example. GLn, SLn, SOn, etc.

We are interested in representations of these groups, and indeed each of them come with
a given representation (adjoint). In the nicest imaginable representation representations,
every matrix is simultaneously diagonalizable. But since that’s not always possible, let’s
look at elements that behave nicely.

Definition 1.1. Say g ∈ G is semi-simple if g is conjugate to a diagonal matrix.

What about elements that don’t behave nicely? The furthest a matrix can be from
diagonalizable is nilpotent. Can think of nilpotent matrices as conjugate to upper triangular
matrices with zeroes on the diagonal.

Proposition 1.2 (Jordan Decomposition). Let x ∈ G. There are unique n, s ∈ G with
x = s+ n, s semisimple, n nilpotent, and [n, s] = Id.

But since our groups are multiplicative, we’d prefer a mutiplicative decomposition. Thus,

Definition 1.3. Say u ∈ G is unipotent if u− Id is nilpotent.

Proposition 1.4 (Jordan Decomposition). Let x ∈ G. There are unique u, s ∈ G with
x = un, s semisimple, u unipotent, and [u, s] = Id.

Now that we can split our group elements into good and bad parts, we want to control
good and bad parts of the group itself. First, topologically:

Definition 1.5. Let G0 be the maximal connected closed subgroup of G.

Thus, G/G0 is a finite group.

Definition 1.6. G is solvable if there exists 1 = H0◁, ..., ◁Hr = G with Hi+1/Hi equal Ga

or Gm.

Example. Upper triangular matrices, by peeling off elements.
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Theorem 1.7 (Lie-Kolchin theorem). If G is connected and solvable, every irreducible rep-
resentation has dimension 1.

Corollary 1.8. Every connected solvable closed subgroup is conjugate to a subgroup of upper
triangular matrices.

Definition 1.9. The radical of G is the largest closed normal connected solvable subgroup.
The unipotent radical of G is the largest closed normal unipotent subgroup.

Example. The radical of GLn is scalar matrices. The radical of SLn is trivial.
The unipotent radical of GLn and SLn are trivial.

Definition 1.10. Say G is semi-simple if it has trivial radical and reductive if it has trivial
unipotent radical.

Note that the radical and unipotent radical are closed and normal, so we can quotient
by them to get semi-simple and reductive groups.

Now that we know how to get rid of the bad parts of G, let’s study the good parts.

Definition 1.11. A maximal closed solvable subgroup is a Borel subgroup. A torus is a
subgroup isomorphic to Gr

m.

Example. For G = GLn, we often fix the Borel B as upper triangular matrices and the
maximal torus T as diagonal matrices.

Fact. • All Borel subgroups and all maximal tori are conjugate.

• NG(B) = B and CG(T ) = T .

Definition 1.12. Fixing a Borel B and maximal torus T ⊂ B, the Weyl group W :=
NG(T )/T .

Example. For G = GLn and T diagonal matrices, NG(T ) consists of monomial matrices
(one entry per row and column). Quotienting by T yields permutation matrices, so W = Sn.

2 Finite Fields

Let Fq be a finite field, k = Fq. Our goal is to understand linear algebraic groups over the
former using our understanding of those over the latter.

Last time we saw schemes over Fq can be base changed to schemes over k.
Let G ≤ GLn(k) be a linear algebraic group. We have G = G0 ⊗Fq k, but G0 is not

unique!

Definition 2.1. A standard Frobenius map is:

F : G → G, (aij) 7→ (aqij)

A Frobenius map is F ′ : G → G with (F ′)m = Fm for F standard and m ∈ N.
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Fact. A choice F of Frobenius determines G0 by (X(k))F = X0(Fq).

Example. Let G = GLn(k). Let F : (gij) 7→ (gqij). Then GF = GLn(Fq).

Now let F ′ : g 7→ (F (g)T )−1. Note (F ′)2 = F 2. Then GF ′
= Un(Fq) since F (g)Tg = Id.

Definition 2.2. The Lang map is L : G → G, g 7→ g−1F (g).

Note kerL = GF .

Theorem 2.3. If G is connected then L is surjective.

Proof sketch. For x ∈ G, define

Lx : G → G, g 7→ g−1xF (g)

It suffices to show Lx is dominant (since then im(Lx) ∩ im(L) ̸= ∅, so g−1F (g) = h−1xF (h)
and x = L(gh−1)).

Consider differential maps TG → TG. Have dLx = −1 since dF = 0. So Lx is an
immersion G → G (same dimension). Since G is connected (and smooth), Lx is dominant.

Next we’ll see how the Lang map helps us interpolate between k and Fq.

Lemma 2.4. Let G be connected acting on X = X0 ⊗Fq k. Let O be an orbit such that
F (O) ⊂ O (i.e., O is F -stable). Then

1. OF ̸= ∅

2. For x ∈ OF , g ∈ g(x)

g(x) ∈ OF ⇐⇒ L(g) ∈ StabG(x)

Proof sketch. 1. Let x ∈ O. Then F (x) = g(x) by stability. Let g−1 = L(h) = h−1F (h)
by surjectivity. Then

x = h−1F (h)F (x) ⇐⇒ hx = F (h)F (x) ⇐⇒ hx = F (hx)

using compatibility of F actions on G and X.

2.
RHS ⇐⇒ (g−1F (g))(x) = x ⇐⇒ (F (g))(F (x)) = gx ⇐⇒ F (gx) = gx

But we also want to work with GF as well as XF . To that end:

Definition 2.5. Say g, g′ are F -conjugate if ∃h ∈ G with g′ = hgF (h)−1.

Lemma 2.6. Let G act on X and O be an F -stable orbit. For x ∈ OF there is a bijection

{GF -orbits on OF}
∼=−→ {F -conjugacy classes of StabG(x)/StabG(x)

0}

gx 7→ L(g)

3



Proof sketch. The F -conjugacy classes of G and G/G0 are in bijection.

Proposition 2.7. There is a bijection

{GF -conjugacy classes of x}
∼=−→ {F -conjugacy classes of CG(x)/CG(x)

0}

Proof. Let G act on itself via g · h = ghg−1. Then GF -orbits are GF -conjugacy classes and
StabG(x) = CG(x).

Corollary 2.8. There is a bijection

{GF -conjugacy classes of F -stable maximal tori}
∼=−→ {F -conjugacy classes of W}

3 Bruhat Decomposition

Recall that Borel subgroups are “good.” So let’s learn more about them. Let G/k be a
reductive connected algebraic group.

Fact. Let B be the set of all Borel subgroups of G. Then

G/B
≃−→ B, gB 7→ gBg−1

(recalling all B ∈ B are conjugate and NG(B) = B).

Remark. Since B is not normal, G/B is not a group! It is, however, a projective variety.
This makes B a (minimal) parabolic subgroup.

Example. For G = GLn, have G/B the flag variety parameterizing

V1 ⊂ ... ⊂ Vn

with dimVi = i.
You can think of the data of a Borel subgroup as a fixed flag.

Now let T ⊂ B be a maximal torus. Recall the Weyl group NG(T ) = W . It will have
the following structure.

Definition 3.1. A Coxeter group is ⟨r1, ..., rn : (rirj)
mij = 1⟩ with mii = 1 and mij = mji ≥

2.
The length of an element r is the minimal ℓ such that r = r1...rℓ.

Fact. Weyl groups have the structure of Coxeter groups.

Example. For G = SLn, W = Sn. The reflections are simple transpositions (k k + 1).

Theorem 3.2. Fix a Borel subgroup B and a maximal torus T ⊂ B. The corresponding
Bruhat decomposition of G is

G =
⊔
w∈W

BẇB

where ẇ ∈ NG(T ) is a lift of w.
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Example. Let G = GLn, B be upper triangular matrices, T be diagonal matrices, and
represent W by permutation matrices.

Decomposition says every matrix A has unique representation A = U1PU2.
Intuition: U1 is row operations, U2 is column operations, all down-right. Permutation

matrix is left.

Corollary 3.3.

G/B =
⊔
w∈W

BẇB/B

and BẇB/B ∼= Aℓ(w).

Example. Let G = GL3, B upper triangular matrices, T diagonal matrices. For w = id,
the stratum BẇB consists of matrices like∗ ∗ ∗

0 ∗ ∗
0 0 ∗


and under the action of B there is a unique element, and indeed ℓ(w) = 0. For w = (1 2),
the stratum BẇB consists of matrices like0 ∗ ∗

* ∗ ∗
0 0 ∗


and the action of B on the right can’t eliminate the bold ∗, so there is an A1 worth of
elements, and indeed ℓ(w) = 1.

Fact. B\G/B
≃−→ G\(G/B ×G/B) via g 7→ (1, g).

Finally, we see how we can use this description to understand W intrinsically.

Corollary 3.4. W
≃−→ {G-orbits on B × B}, w → O(w).

Fact. Fixing a Borel subgroup B,

O(w)
≃−→ {(g1B, g2B) : g−1

1 g2 ∈ BwB}

There is a fibration O(w) → B and over fixed B the fiber is BwB/B, so dimO(w) =
dim(B) + ℓ(w).

To multiply O(w) and O(w′), ensure ℓ(w) + ℓ(w′) = ℓ(ww′), and then

O(w)×B O(w′)
≃−→ O(ww′)
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