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1 Formal group laws
Definition 1.1. Let 𝐴 be a ring. A commutative formal group law is an element 𝐹 in the
ring of formal power series 𝐴[[𝑋,𝑌 ]] satisfying:

1. 𝐹(𝑋,0) =𝑋 and 𝐹(0,𝑌) = 𝑌,

2. 𝐹(𝑋,𝐹(𝑌 ,𝑍)) = 𝐹(𝐹(𝑋,𝑌),𝑍),

3. 𝐹(𝑋,𝑌) = 𝐹(𝑌,𝑋).

In [CF10], there are two more axioms:

a) 𝐹(𝑋,𝑌) =𝑋 +𝑌 +(degree 2 and higher terms)

b) there exists a unique 𝐺 ∈𝐴[[𝑋]] such that 𝐹(𝑋,𝐺(𝑋)) = 0=𝐹(𝐺(𝑋),𝑋).

It is obvious that a) is a consequence of 1. We show that b) is also a consequence.

Lemma 1.2. Let 𝐹 be a commutative formal group law. There exists a unique 𝐺 ∈
𝐴[[𝑋]] such that 𝐹(𝑋,𝐺(𝑋)) = 0=𝐹(𝐺(𝑋),𝑋).

Proof. Since 𝐹(𝑋,𝑌) =𝑋 +𝑌 +(degree 2 and higher terms), 𝐹(𝑋,𝐺(𝑋)) = 0 means

𝑋+𝐺(𝑋)+ higher terms = 0

Therefore the the degree 0 part of 𝐺(𝑋) must be 0 and the degree 1 part of 𝐺(𝑋) must
be −𝑋. We will inductively construct 𝐺(𝑋). Let 𝐺𝑑 denote the degree ≤ 𝑑 part of 𝐺. So
assume 𝐺𝑑(𝑋) is known and satisfies

𝐹(𝑋,𝐺𝑑(𝑋)) = 0 mod𝑋𝑑+1.

This means
𝐹(𝑋,𝐺𝑑(𝑋)) = 𝑐𝑑+1𝑋𝑑+1 mod𝑋𝑑+2

1



for a unique 𝑐𝑑+1 ∈𝐴. Let 𝐺𝑑+1(𝑋) =𝐺𝑑(𝑋)−𝑐𝑑+1𝑋𝑑+1. Then

𝐹(𝑋,𝐺𝑑+1(𝑋)) = 𝐹(𝑋,𝐺𝑑(𝑋)−𝑐𝑑+1𝑋𝑑+1)
=𝑋 +𝐺𝑑(𝑋)−𝑐𝑑+1𝑋𝑑+1+𝐻(𝑋,𝐺𝑑(𝑋)−𝑐𝑑+1𝑋𝑑+1)

where 𝐻(𝑋,𝑌) has no linear and constant terms. Modulo 𝑋𝑑+2, 𝐻(𝑋,𝐺𝑑(𝑋)−𝑐𝑑+1𝑋𝑑+1)
is just 𝐻(𝑋,𝐺𝑑(𝑋)) since other terms has degree at least 𝑑 +2. Thus

𝐹(𝑋,𝐺𝑑+1(𝑋)) = 𝐹(𝑋,𝐺𝑑)−𝑐𝑑+1𝑋𝑑+1 = 0 mod𝑋𝑑+2.

This completes the inductive step. �

Definition 1.3. Let 𝐹,𝐺 be commutative formal group laws. A morphism of formal
group laws ℎ ∶ 𝐹 → 𝐺 is a formal power series ℎ ∈ 𝐴[[𝑋]] such that ℎ ∈ 𝑋𝐴[[𝑋]] and
ℎ(𝐹(𝑋,𝑌)) = 𝐺(ℎ(𝑋),ℎ(𝑌)). ℎ is an isomorphism if there exist a morphism 𝑔 such that
𝑔(ℎ(𝑋)) =𝑋 =ℎ(𝑔(𝑋)).

Note that ℎ ∈ 𝑋𝐴[[𝑋]] is necessary since otherwise 𝐺(ℎ(𝑋),ℎ(𝑌)) involves a summation
of infinitely many elements in 𝐴.

Lemma 1.4. Let ℎ ∶ 𝐹 →𝐺 be a morphism of formal group laws, so ℎ(𝑋) = 𝑎1𝑋+⋯.
It is an isomorphism if and only if 𝑎1 is a unit in 𝐴.

Proof. Suppose ℎ(𝑋) has an inverse 𝑔(𝑋) = 𝑏1𝑋+𝑏2𝑋2+⋯. Then

ℎ(𝑔(𝑋)) = 𝑎1𝑔(𝑋)+⋯=𝑎1𝑏1𝑋+⋯

All terms in ⋯ are of degree 2 or higher. Thus 𝑎1𝑏1 = 1 so 𝑎1, 𝑏1 are units in 𝐴. Conversely,
if 𝑎1 is a unit in 𝐴, let 𝑏1 =𝑎−1

1 . Now inductively construct coefficients 𝑏2,⋯: suppose we
want to construct 𝑏𝑛. The coefficient before 𝑋𝑛 is of the form

𝑎1𝑏𝑛+⋯=0

So we let 𝑏𝑛 be the unique solution to the above equation, which exists since 𝑎1 is a
unit. �

Let 𝐾 be a local field, 𝒪𝐾 its valuation ring, 𝔪𝐾 the maximal ideal and 𝑘 the residue field.
Let 𝑞 = |𝑘|.

Definition 1.5. Let 𝜋 be a uniformizer of 𝒪𝐾. A Frobenius power series is a power series
𝑓 ∈𝒪𝐾[[𝑋]] such that

𝑓(𝑋) = 𝜋𝑋 mod𝑋2

and
𝑓(𝑋) =𝑋𝑞 mod 𝜋.

Definition 1.6. Let 𝑓 be a Frobenius power series. The unique formal group law 𝐹𝑓 such
that 𝑓 is an automorphism of 𝐹𝑓 is called the Lubin-Tate formal group law (for 𝑓).

It is unclear such a formal group law exists. Our next goal is to prove this existence.
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2 Lubin-Tate group laws
Proposition 2.1. Let 𝑓,𝑔 be Frobenius power series. Let 𝐹1 be a homogenous linear
polynomial in variables 𝑋1,⋯,𝑋𝑚 over 𝒪𝐾. There exists a unique 𝐹 ∈𝒪𝐾[[𝑋1,⋯,𝑋𝑚]]
such that 𝐹 =𝐹1 modulo degree 2, and

𝑓(𝐹(𝑋1,⋯,𝑋𝑚)) = 𝐹(𝑔(𝑋1),𝑔(𝑋2),⋯,𝑔(𝑋𝑚)).

Proof. We construct 𝐹 degree by degree. In this proof, when we write mod 𝑋𝑛 we mean
to mod out by the ideal of homogenous pieces of degrees at least 𝑛. We will construct a
sequence of polynomial 𝐹𝑛 of degree at most 𝑛 such that 𝐹𝑛+1 =𝐹𝑛 mod 𝑋𝑛+1, 𝐹𝑛 =𝐹1
mod 𝑋2, and

𝑓(𝐹𝑛(𝑋1,⋯,𝑋𝑛)) = 𝐹𝑛(𝑔(𝑋1),𝑔(𝑋2),⋯,𝑔(𝑋𝑛)) mod𝑋𝑛+1.

For 𝑛 = 1 we take the given 𝐹1. The first two conditions are vacuous, and for the third
one we have

𝑓(𝐹1(𝑋1,⋯,𝑋𝑛)) = 𝜋𝐹1(𝑋1,⋯,𝑋𝑛) = 𝐹1(𝜋𝑋1,⋯,𝜋𝑋𝑛) = 𝐹1(𝑔(𝑋1),⋯,𝑔(𝑋𝑛)) mod𝑋2.

Now assume that we have constructed 𝐹1,⋯,𝐹𝑛. We know that 𝑓 ∘𝐹𝑛−𝐹𝑛∘𝑔 is zero mod
𝑋𝑛+1, so

𝑓 ∘𝐹𝑛−𝐹𝑛 ∘𝑔 =𝑃𝑛+1 mod𝑋𝑛+2

for a unique homogenous 𝑃𝑛+1 of degree 𝑛+1.

Suppose 𝐹𝑛+1−𝐹𝑛 =𝐸𝑛+1 where 𝐸𝑛+1 is homogenous of degree 𝑛+1. What should 𝐸𝑛+1
be? We have

𝑓 ∘𝐹𝑛+1 = 𝑓 ∘(𝐹𝑛+𝐸𝑛+1)

Modulo 𝑋𝑛+2, this is equal to 𝑓 ∘𝐹𝑛+𝜋𝐸𝑛+1 since any non-constant term multiplied by
𝐸𝑛+1 is killed. Also,

𝐹𝑛 ∘𝑔 +𝐸𝑛+1 ∘𝑔 = 𝐹𝑛 ∘𝑔 +𝜋𝑛+1𝐸𝑛+1 mod𝑋𝑛+2

because in 𝐸𝑛+1 ∘𝑔 only the degree 1 terms of 𝑔 survive. So we must have

𝑓 ∘𝐹𝑛+𝜋𝐸𝑛+1 =𝐹𝑛 ∘𝑔 +𝜋𝑛+1𝐸𝑛+1 mod𝑋𝑛+2

This means we must take 𝐸𝑛+1 =
𝑃𝑛+1

𝜋(1−𝜋𝑛) . By the Frobenius property, we have that

𝑓 ∘𝐹𝑛−𝐹𝑛 ∘𝑔 = 𝐹𝑛(𝑋1,⋯,𝑋𝑛)𝑞−𝐹𝑛(𝑋
𝑞
1 ,⋯,𝑋𝑞

𝑛) mod 𝜋.

In 𝑘, (𝑎+𝑏)𝑞 =𝑎𝑞+𝑏𝑞, so the above difference is 0. This implies 𝜋 divides 𝑃𝑛+1. Therefore
𝐸𝑛+1 is well-defined since 𝜋 divides 𝑃𝑛+1 and 1−𝜋𝑛 is a unit.

�
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Proposition 2.2. Let 𝑓 ∈ 𝒪𝐾[[𝑋]] be a Frobenius power series. There exists a unique
formal group law 𝐹𝑓 ∈𝒪𝐾[[𝑋,𝑌 ]] such that 𝑓 is an automorphism of 𝐹𝑓.

Proof. By Proposition 2.1 applied to 𝐹1 = 𝑋 +𝑌, we know that there exists a unique
𝐹 ∈𝒪𝐾[[𝑋,𝑌 ]] such that 𝐹 =𝑋+𝑌 mod 𝑋2 and 𝑓(𝐹(𝑋,𝑌)) = 𝐹(𝑓(𝑋),𝑓(𝑌)). It remains
to check that 𝐹 is a formal group law, namely it is associative.

We want to prove an equality of formal power series 𝐹(𝐹(𝑋,𝑌),𝑍) = 𝐹(𝑋,𝐹(𝑌 ,𝑍)).
Notice that both of them are a formal power series 𝐺(𝑋,𝑌 ,𝑍) satisfying 𝐺(𝑋,𝑌 ,𝑍) =
𝑋 +𝑌 +𝑍 mod degree 2, and 𝑓 ∘𝐺 =𝐺 ∘𝑓. Such a power series is unique by Proposition
2.1, so 𝐹 is indeed a group law. �

Let 𝑓,𝑔 be Frobenius power series. For any 𝑎 ∈𝒪𝐾, by Proposition 2.1 there exists a unique
formal power series [𝑎]𝑓,𝑔 ∈𝒪[[𝑋]] such that [𝑎]𝑓,𝑔 = 𝑎𝑋 mod 𝑋2, and 𝑓 ∘ [𝑎]𝑓,𝑔 = [𝑎]𝑓,𝑔 ∘𝑔.
When 𝑓 = 𝑔 we simplify the notation to be [𝑎]𝑓.

Lemma 2.3. Let 𝑓,𝑔 be Frobenius power series. [𝑎]𝑓,𝑔 is a homomorphism of formal
group laws 𝐹𝑔 →𝐹𝑓.

Proof. We want to show that [𝑎]𝑓,𝑔 ∘𝐹𝑔 = 𝐹𝑓 ∘ [𝑎]𝑓,𝑔. Note that both side are equal to
𝑎𝑋 +𝑎𝑌 modulo degree 2. Moreover, we have

𝑓([𝑎]𝑓,𝑔 ∘𝐹𝑔) = 𝑓([𝑎]𝑓,𝑔(𝐹𝑔)) = [𝑎]𝑓,𝑔(𝑔(𝐹𝑔)) = [𝑎]𝑓,𝑔(𝐹𝑔(𝑔(𝑋),𝑔(𝑌)))

and similarly

𝑓(𝐹𝑓 ∘ [𝑎]𝑓,𝑔) = 𝐹𝑓(𝑓 ∘ [𝑎]𝑓,𝑔(𝑋),𝑓 ∘ [𝑎]𝑓,𝑔(𝑌)) = (𝐹𝑓 ∘ [𝑎]𝑓,𝑔)(𝑔(𝑋),𝑔(𝑌)).

However by Proposition 2.1, there is only one formal power series with these properties.
Hence [𝑎]𝑓,𝑔 ∘𝐹𝑔 =𝐹𝑓 ∘ [𝑎]𝑓,𝑔. �

In particular, [𝑎]𝑓,𝑔 is an isomorphism whenever 𝑎 is a unit in 𝒪𝐾. So for any Forbenius
power series 𝑓,𝑔, there is a canonical isomorphism 𝐹𝑓 →𝐹𝑔 given by [1]𝑓,𝑔.

Let 𝐿/𝐾 be an algebraic extension. Let 𝔪𝐿,𝔪𝐾 be the maximal ideals in 𝒪𝐿 and 𝒪𝐾. They
consist of elements with absolute value less than 1. Therefore, if 𝐹 is a formal group law,
and 𝑥,𝑦 ∈ 𝔪𝐿, then 𝐹(𝑥,𝑦) converges. This turns 𝔪𝐿 into an abelian group. We denote
this abelian group by 𝐹(𝔪𝐿).

Now let 𝜋 be a uniformizer of 𝒪𝐾 and 𝑓 a Frobenius power series for 𝜋. We have the
Lubin-Tate formal group law 𝐹𝑓. The abelian group 𝐹𝑓(𝔪𝐿) is an 𝒪𝐾-module: the action
is given by 𝑎 ⋅𝑥 = [𝑎]𝑓(𝑥).

Now we take 𝐿 =𝐾𝑠 the separable closure of 𝐾. Let 𝐸𝑓 be the torsion submodule of the
𝒪𝐾-module 𝐹𝑓(𝔪𝐿). Note that any element in 𝒪𝐾 is of the form 𝑢𝜋𝑛 for some unit 𝑢 and
𝑛 ≥ 0. So if 𝑥 is an torsion element, then it is killed by some 𝜋𝑛. Hence if we denote by
𝐸𝑛 the kernel of [𝜋𝑛]𝑓, we have 𝐸𝑓 =∪𝑛≥0𝐸𝑛.
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We saw above that any Frobenius power series give the same formal group law. Therefore
we might as well choose 𝑓 = 𝜋𝑋+𝑋𝑞. Then 𝑓 commutes with itself, and 𝑓 = 𝜋𝑋 mod 𝑋2.
Hence 𝑓 = [𝜋]𝑓. It follows also that 𝑓(𝑛) = [𝜋𝑛]𝑓. Thus 𝛼 ∈𝐸𝑛 if and only if 𝑓(𝑛)(𝛼) = 0.

We first focus on 𝐸1. By the above discussion it consists of element 𝛼 ∈ 𝔪𝐿 such that
𝑓(𝛼) = 0. What are these zeroes?

Lemma 2.4. For any 𝑧 ∈ 𝔪𝐿, the polynomial 𝜋𝑋 +𝑋𝑞−𝑧 is separable, and its roots
have absolute value less than 1.

Proof. The derivative is 𝜋+𝑞𝑋𝑞−1. If 𝑦 is a root of the derivative that has absolute value
less than 1, then

|𝜋| = |𝑞||𝑦𝑞−1| < |𝑞|.
But 𝑞 is 0 mod 𝜋, so |𝑞| ≤ |𝜋|, a contradiction. This means any root 𝑦 of the derivative
satisfies |𝑦| ≥ 1. If 𝑦 is also a root of 𝜋𝑋 +𝑋𝑞−𝑧, then reducing mod 𝔪𝐿 we know that
𝑦𝑞 = 0, so 𝑦 = 0 in 𝒪𝐿/𝔪𝐿, i.e. 𝑦 has absolute value less than 1. Therefore 𝜋𝑋 +𝑋𝑞−𝑧 is
separable and its roots have absolute value less than 1. �

This implies that 𝐸1 is a submodule of 𝐹𝑓(𝔪𝐿) that has 𝑞-elements, so it is isomorphic to
𝑘 =𝒪𝑘/(𝜋) as 𝒪𝐾-modules. Note that this also means 𝐹𝑓(𝔪𝐿) is a 𝜋-divisible 𝒪𝐾-module:
for any 𝑧 ∈𝒪𝐾 that is not a unit, there exists some 𝑦 such that

[𝜋]𝑓(𝑦) = 𝑧.

Proposition 2.5. We have 𝐸𝑓 ≅𝐾/𝒪𝐾 as 𝒪𝐾-modules.

Proof. Each 𝐸𝑛 is a finitely generated 𝒪𝐾-module, so by the structure theorem of finitely
generated modules over PIDs, and the fact that 𝐸𝑛 is torsion, we know that 𝐸𝑛 must be a
direct sum of modules of the form 𝒪𝐾/(𝜋𝑚). Multiply the generators by suitable powers
of 𝜋, we would get linearly independent elements in 𝐸1, so we conclude that each 𝐸𝑛 is
generated by 1 elements. Thus they are of the form 𝒪𝐾/(𝜋𝑚).

Multiplication by 𝜋 gives a surjective map from 𝐸𝑛 to 𝐸𝑛−1, because for any 𝑧 ∈ 𝐸𝑛−1, there
exists 𝑦 such that [𝜋]𝑓(𝑦) = 𝑧, and clearly [𝜋𝑛−1]𝑓(𝑧) = 0 implies [𝜋𝑛]𝑓(𝑦) = 0. Therefore
we have the short exact sequence

0→𝐸1 →𝐸𝑛 →𝐸𝑛−1 →0.

Counting cardinality shows that 𝐸𝑛 ≅𝒪𝐾/(𝜋𝑛). Hence

𝐸𝑓 = lim−→𝑛→∞
𝜋−𝑛𝒪𝐾/𝒪𝐾 ≅𝐾/𝒪𝐾.

�

Let 𝐾𝑛
𝜋 =𝐾(𝐸𝑛) and let 𝐾𝜋 =𝐾(𝐸𝑓). Then the extensions 𝐾𝑛

𝜋 /𝐾 are all Galois since they
are splitting fields of 𝑓(𝑛). We have that Gal(𝐾𝜋/𝐾)= lim←−𝑛

Gal(𝐾𝑛/𝐾).
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Lemma 2.6. We have Aut(𝐸𝑓) ≅𝒪×
𝐾 and Aut(𝐸𝑛) ≅ (𝒪𝐾/(𝜋𝑛))× ≅𝒪×

𝐾/(1+𝜋𝑛𝒪𝐾).

Proof. For notational ease let 𝐴 =𝒪𝐾. First note that since 𝐸𝑓 ≅𝐾/𝐴, the 𝐴-linear maps
𝐸𝑓 → 𝐸𝑓 are 𝐴-linear maps 𝐾/𝐴 → 𝐾/𝐴. For such a map 𝑓, we know that 1 must be
sent to some element 𝑎 ∈ 𝐴, and then 𝑓(𝜋−1) must be some element in 𝜋−1𝐴 such that
𝜋𝑓(𝜋−1) = 𝑓(1) mod 𝐴. Namely, 𝑓(1/𝜋−1) is a uniquely determined element in 𝜋−1𝐴/𝐴.
Continuing, 𝑓(𝜋−𝑛) is a uniquely determined element in 𝜋−𝑛𝐴/𝐴. This sequence is then
an element in the inverse limit

lim←−𝑛
𝜋−𝑛𝐴/𝐴 ≅ lim←−𝑛

𝐴/𝜋𝑛𝐴 =𝐴

since 𝐴 is complete. Such a sequence uniquely determines 𝑓, and conversely multiplication
by an element in 𝐴 gives a map 𝐾/𝐴 → 𝐾/𝐴, so we see that End𝐴(𝐾/𝐴) ≅ 𝐴. It then
follows the automorphisms are Aut𝐴(𝐾/𝐴) ≅𝐴×.

Recall that 𝐸𝑛 ≅𝐴/(𝜋𝑛), so Aut(𝐸𝑛) ≅ (𝐴/(𝜋𝑛))×. A unit in 𝐴/(𝜋𝑛) is an element 𝑎 ∈ 𝐴
such there exists some 𝑏 with 𝑎𝑏 = 1 mod 𝜋𝑛. Certainly a unit in 𝐴 satisfies this condition,
and if 𝑎,𝑎′ are units and 𝑎 = (1+𝑏𝜋𝑛)𝑎′, then 𝑎 = 𝑎′ in 𝐴/(𝜋𝑛). On the other hand, if 𝑎 is
not a unit in 𝐴, then 𝑎 = 𝑏𝜋 for some 𝑏 ∈ 𝐴, so there is no 𝑏 such that 𝑎𝑏 = 1+𝑐𝜋𝑛 because
|1+𝑐𝜋𝑛| = |1| = 1 but |𝑎𝑏| < 1. �

Proposition 2.7. We have Gal(𝐾𝑛/𝐾) ≅ 𝒪×
𝐾/𝑈

𝑛
𝐾 and Gal(𝐾𝜋/𝐾) ≅ Aut(𝐸𝑓) = 𝒪×

𝐾,
where 𝑈𝑛

𝐾 = 1+𝜋𝑛𝒪𝐾.

Proof. If 𝜎 ∈ Gal(𝐾𝜋/𝐾), then 𝜎|𝐸𝑓 is an automorphism of 𝐸𝑓. This gives an injection
Gal(𝐾𝜋/𝐾)→𝐴×. Similarly, if 𝜎 ∈Gal(𝐾𝑛/𝐾), then 𝜎|𝐸𝑛 is an automorphism of 𝐸𝑛, and
if 𝜎 is the identity on 𝐸𝑛 then it fixes 𝐾𝑛, so 𝜎 = 1 in Gal(𝐾𝜋/𝐾). Therefore for each 𝑛
we have injections Gal(𝐾𝑛/𝐾)→Aut(𝐸𝑛).

Let Φ0 =𝑋, and Φ𝑛 = 𝑓(𝑛)/𝑓(𝑛−1) = (𝑓(𝑛−1)(𝑋))𝑞−1+𝜋. Then 𝑓(𝑛) =Φ𝑛⋯Φ0. Notice that
Φ𝑛 has degree (𝑞−1)𝑞𝑛−1, and is irreducible since it is Eisenstein. A primitive element for
𝐾𝑛 is a root of Φ𝑛 since it is killed by 𝜋𝑛 but not by 𝜋𝑛−1, so the degree of 𝐾𝑛 is (𝑞−1)𝑞𝑛−1.
On the other hand, Aut(𝐸𝑛) =𝒪×

𝐾/𝑈
𝑛
𝐾, and we note that 𝒪×

𝐾/𝑈1
𝐾 ≅ (𝐴/𝜋)× has size 𝑞−1,

and 𝑈𝑛
𝐾/𝑈

𝑛+1
𝐾 ≅𝐴/𝔪 has size 𝑞 (1+𝑢𝜋𝑛 goes to 1+𝑢 is surjective with kernel 𝑈𝑛+1

𝐾 ), so
𝒪×

𝐾/𝑈
𝑛
𝐾 has size (𝑞 −1)𝑞𝑛−1. Hence we see that the injection Gal(𝐾𝑛/𝐾)→Aut(𝐸𝑛) are

all isomorphisms. Passing to the inverse limit gives Gal(𝐾𝜋/𝐾)≅Aut(𝐸𝑓). �

Corollary 2.8. The extensions 𝐾𝑛/𝐾 are totally ramified.

Proof. We saw in the proof above that 𝐾𝑛 = 𝐾(𝛼) where 𝛼 is a root of Φ𝑛, which is a
Eisenstein polynomial. Thus 𝐾𝑛/𝐾 is totally ramified (proved in class). �
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3 Local class field theory
We want to study the field 𝐿𝜋 =𝐾𝑛𝑟𝐾𝜋 where 𝐾𝑛𝑟 is the maximal unramified extension of
𝐾. Let 𝐾𝑛𝑟 be its completion and 𝐴𝑛𝑟 be its valuation ring. There is a Frobenius element
𝜎 ∈Gal(𝐾𝑛𝑟/𝐾), lifted from the Frobenius for the residue field extension. Suppose 𝜋 is a
uniformizer of 𝐾, and 𝜔 = 𝜋𝑢 is another uniformizer. Let 𝑓 be a Frobenius power series
for 𝜋, and 𝑔 a Frobenius power series for 𝜔. Then

Lemma 3.1. There exists a power series 𝜙 ∈ 𝐴𝑛𝑟[[𝑋]] such that 𝜙 = 𝑎𝑋 where 𝑎 is a
unit, and

1. 𝜎(𝜙) = 𝜙 ∘ [𝑢]𝑓

2. 𝜙 ∘𝐹𝑓 =𝐹𝑔 ∘𝜙

3. 𝜙 ∘ [𝑎]𝑓 = [𝑎]𝑔 ∘𝜙 for all 𝑎 ∈𝐴. Here 𝐴 is the valuation ring for 𝐾.

Proof. We will inductively produce 𝜓𝑛. Let 𝜓1 =𝑎𝑋. We have that

(𝜓1 ∘ [𝑢]𝑓)(𝑋) = 𝑎𝑢𝑋 mod𝑋2

so 𝑎 must satisfy 𝜎(𝑎) = 𝑎𝑢. It is a fact that 𝑥 ↦ 𝜎(𝑥)/𝑥 is a surjection onto the group
of units in 𝐴𝑛𝑟, so there exists 𝑎 that satisfies this equation. Now suppose we have a
compatible sequence 𝜓𝑛 such that 𝜎(𝜓𝑛) = 𝜓𝑛 ∘ [𝑢]𝑓 mod 𝑋𝑛+1. We want to construct

𝜓𝑛+1(𝑋) = 𝜓𝑛(𝑋)+𝑐𝑛+1𝑋𝑛+1

satisfying the same condition. Namely, modulo 𝑋𝑛+2

𝜓𝑛+1([𝑢]𝑓(𝑋)) = 𝜓𝑛([𝑢]𝑓(𝑋))+𝑐𝑛+1([𝑢]𝑓(𝑋)𝑛+1) = 𝜎(𝜓𝑛)(𝑋)+𝑟𝑛+1𝑋𝑛+1+𝑐𝑛+1𝑢𝑛+1𝑋𝑛+1

So we require 𝜎(𝑐𝑛+1) = 𝑟𝑛+1+𝑐𝑛+1𝑢𝑛+1. Let 𝑐𝑛+1 = 𝑐 ′𝑎𝑛+1, so it suffices to solve for 𝑐 ′
since 𝑎 is a unit. The equation becomes

𝜎(𝑐 ′)𝜎(𝑎)𝑛+1 = 𝑟𝑛+1+𝑐 ′(𝑎𝑢)𝑛+1 = 𝑟𝑛+1+𝑐 ′𝜎(𝑎)𝑛+1

i.e.
𝜎(𝑐 ′)−𝑐 ′ = 𝑟𝑛+1

𝜎(𝑎)𝑛+1

But 𝜎−1 is surjective on 𝐴𝑛𝑟, so such a 𝑐 ′ exists. This completes the construction of 𝜓𝑛,
so we obtain a series 𝜓 satisfying the requirement 1.

What about conditions 2 and 3? Note that since 𝑎 is a unit, the series 𝜓 is invertible. Let

ℎ = 𝜎(𝜓)∘𝑓 ∘𝜓−1 =𝜓∘ [𝑢]𝑓 ∘𝑓 ∘𝜓−1 =𝜓∘ [𝜔]𝑓 ∘𝜓−1.

The series ℎ is in 𝐴[[𝑋]] since it is fixed by 𝜎. The trick is to define let 𝜙 = [1]𝑔,ℎ𝜓. The
degree one coefficient is unchanged, and 1 is still satisfied because 𝜎 commutes with series
(simply by definition). Then

𝜎(𝜙)∘𝑓 ∘𝜙−1 = [1]𝑔,ℎ ∘𝜎(𝜓)∘𝑓 ∘𝜓−1 ∘ [1]−1
𝑔,ℎ = [1]𝑔,ℎ ∘ℎ ∘ [1]−1

𝑔,ℎ = 𝑔
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Then 2 and 3 are verified via the uniqueness of series satisfying commuting properties with
𝑔. �

The extensions 𝐾𝑛𝑟 and 𝐾𝜋 are linearly disjoint: 𝐾𝑛𝑟 is Galois over 𝐾, so to test linear
disjointness we just need to check that 𝐾𝑛𝑟 ∩𝐾𝜋 =𝐾. This is true because 𝐾𝜋 is totally
ramified and 𝐾𝑛𝑟 is unramified. Thus the extension 𝐿𝜋 makes sense.

We would like to use the above lemma to prove that 𝐿𝜋 is independent of the choices of 𝜋.
So let 𝜔 = 𝜋𝑢 be another uniformizer. The lemma implies that 𝜙 is an isomorphism of the
group laws 𝐹𝑓 and 𝐹𝑔, considered as group laws over 𝐾𝑛𝑟. Thus the torsion submodules
of 𝐹𝑓 and 𝐹𝑔 (this really means 𝐹𝑓(𝔪𝐾𝑠)) are the same, so 𝐾𝑛𝑟𝐾𝜋 = 𝐾𝑛𝑟𝐾𝜔. Here are
we considering 𝐾𝑛𝑟𝐾𝜋 as an extension of 𝐾𝑛𝑟 by adjoining the torsion element. Taking
completion, we get 𝐾𝑛𝑟𝐾𝜋 =𝐾𝑛𝑟𝐾𝜔.

Lemma 3.2. Let 𝐸 be any algebraic extension of a local field. If 𝛼 ∈ 𝐸̂ is algebraic
and separable, then 𝛼 ∈𝐸.

Proof. Let 𝐸 ′ be the closure of 𝐸 is a separable closure. Then 𝛼 ∈ 𝐸 ′. But any Galois
automorphism fixing 𝐸 also fixes 𝐸 ′ by continuity, so 𝐸 =𝐸 ′. �

This means 𝐾𝑛𝑟𝐾𝜋 =𝐾𝑛𝑟𝐾𝜔, so 𝐿𝜋 =𝐿 is independent of the choice of 𝜋.

Now we define a homomorphism 𝑟𝜋 ∶ 𝐾× →Gal(𝐿𝜋/𝐾) as follows: any element of 𝐾× is a
product 𝑢𝜋𝑛 where 𝑢 ∈𝐴× and 𝑛 ∈Z. So it suffices to prescribe what 𝑟𝜋(𝑢) is for 𝑢 ∈𝐴×

and what 𝑟𝜋(𝜋) is. We set

1. 𝑟𝜋(𝜋) = 1 on 𝐾𝜋 and 𝜎 on 𝐾𝑛𝑟

2. 𝑟𝜋(𝑢) = [𝑢−1]𝑓 on 𝐾𝜋 and 1 on 𝐾𝑛𝑟.

We want to show that this is also independent of the choice of 𝜋. So again let 𝜔 = 𝜋𝑢 be
another uniformizer. We want to show that 𝑟𝜋(𝜔) = 𝑟𝜔(𝜔). Namely, we need to compute
𝑟𝜋(𝜔) on 𝐾𝜔.

Recall that 𝐾𝜔 = 𝐾(𝐸𝑔) where 𝐸𝑔 is the torsion elements of 𝐹𝑔(𝔪𝐾𝑠). Let 𝜙 ∈ 𝐴𝑛𝑟[[𝑋]]
as in Lemma, which gives an isomorphism between 𝐸𝑓 and 𝐸𝑔. For any 𝜆 ∈ 𝐸𝑔, there is
𝜇 ∈ 𝐸𝑓 such that 𝜆 = 𝜙(𝜇). What we want to show is that 𝑟𝜋(𝜔) acts as 1 on 𝐸𝑔, i.e.
𝑟𝜋(𝜔)(𝜆) = 𝜆. We have

𝑟𝜋(𝜔)(𝜙) = 𝑟𝜋(𝜋)𝑟𝜋(𝑢)(𝜙) = 𝜎(𝜙) = 𝜙 ∘ [𝑢]𝑓

because 𝑟𝜋(𝑢) is 1 on 𝐾𝑛𝑟 and 𝑟𝜋(𝜋) is 𝜎 on 𝐾𝑛𝑟. Thus

𝑟𝜋(𝜔)(𝜆) = 𝑟𝜋(𝜔)(𝜙(𝜇)) = 𝑟𝜋(𝜔)(𝜙)(𝑟𝜋(𝜔)(𝜇)) = 𝜙 ∘ [𝑢]𝑓[𝑢−1]𝑓(𝜇) = 𝜙(𝜇) = 𝜆

So 𝑟𝜋(𝜔) = 𝑟𝜋(𝜋).
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We also want to show that 𝑟𝜋(𝑢) = 𝑟𝜔(𝑢) on 𝐸𝑔. We have

𝑟𝜋(𝑢)(𝜆) = 𝑟𝜋(𝑢)(𝜙(𝜇)) = 𝜙([𝑢−1]𝑓(𝜇)) = [𝑢−1]𝑔(𝜆)

by condition 3 of the lemma. Thus the homomorphism 𝑟𝜋 = 𝑟 is independent from the
choice of 𝜋. However such a homomorphism is uniquely determined, and the norm residue
symbol 𝜃 is such a homomorphism, so 𝑟 = 𝜃.

Notice that 𝑟|𝐴× maps into Gal(𝐿/𝐾𝑛𝑟) = Gal(𝐾𝜋/𝐾), by 𝑢 ↦ [𝑢−1]𝑓. We proved ear-
lier that Gal(𝐾𝜋/𝐾) ≅ Aut(𝐸𝑓) ≅ 𝐴×, so this is an isomorphism. This implies that the
composition

𝐴× →Gal(𝐾𝑎𝑏/𝐾𝑛𝑟)→Gal(𝐿/𝐾𝑛𝑟)

is an isomorphism. The first step is the absolute 𝜃, which is surjective, and the second
step is the natural surjection. Hence both 𝜃 and the second step are isomorphisms. This
proves the theorem on norm subgroups, and that 𝐿 =𝐾𝑎𝑏.
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